SN54ALVTH16244, SN74ALVTH16244 2.5-V/3.3-V 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SN54ALVTH16244 . . . WD PACKAGE

SN74ALVTH16244 . . . DGG, DGV, OR DL PACKAGE

(TOP VIEW)

10F L

SCES070G - JUNE 1996 - REVISED MAY 1999

48 20E

- **Members of the Texas Instruments** Widebus™ Family
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V **Operation and Low Static-Power** Dissipation
- 5-V I/O Compatible
- High Drive Capability (-32 mA/64 mA)
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- **Support Unregulated Battery Operation** Down to 2.3 V
- Typical V_{OI P} (Output Ground Bounce) $< 0.8 \text{ V at V}_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- **Auto3-State Eliminates Bus Current Loading When Voltage at the Output** Exceeds V_{CC}
- Ioff and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per **JESD 17**
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package


NOTE: For tape and reel order entry:

The DGGR package is abbreviated to GR, and the DGVR package is abbreviated to VR.

description

The 'ALVTH16244 devices are 16-bit buffers/line drivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer.

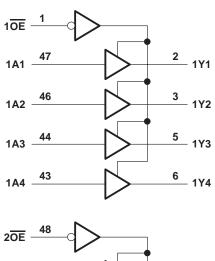
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

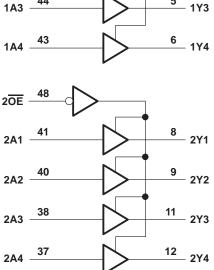
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

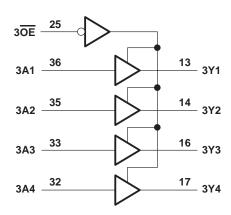
Widebus is a trademark of Texas Instruments Incorporated

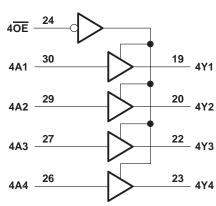
description (continued)

When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.


These devices are fully specified for hot-insertion applications using $I_{\rm off}$ and power-up 3-state. The $I_{\rm off}$ circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.


The SN54ALVTH16244 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ALVTH16244 is characterized for operation from –40°C to 85°C.


FUNCTION TABLE (each buffer)


INP	JTS	OUTPUT
ŌĒ	Α	Y
L	Н	Н
L	L	L
Н	Χ	Z

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high state, V _O (see Note 1)	\dots -0.5 V to V _{CC} to 7V
Output current in the low state, I _O : SN54ALVTH16244	96 mA
SN74ALVTH16244	128 mA
Output current in the high state, I _O : SN54ALVTH16244	–48 mA
SN74ALVTH16244	
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I _{OK} (V _O < 0)	
Package thermal impedance, θ _{JA} (see Note 2): DGG package	89°C/W
DGV package	93°C/W
DL package	94°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions, V_{CC} = 2.5 V \pm 0.2 V (see Note 3)

			SN54ALV7	ГН16244	SN74ALVT	H16244	UNIT
			MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage		2.3	2.7	2.3	2.7	V
VIH	High-level input voltage	1.7	2	1.7		V	
V _{IL}	Low-level input voltage		0.7		0.7	V	
VI	Input voltage	0	5.5	0	5.5	V	
IOH	High-level output current		1	-6		-8	mA
lo	Low-level output current		2	6		8	mA
lor	Low-level output current; current duty cycle ≤ 50%; f ≥	1 kHz	70,	18		24	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	Q	10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN54ALVTH16244, SN74ALVTH16244 2.5-V/3.3-V 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCES070G - JUNE 1996 - REVISED MAY 1999

recommended operating conditions, $V_{\mbox{\footnotesize{CC}}}$ = 3.3 V \pm 0.3 V (see Note 3)

			SN54ALV	ГН16244	SN74ALVT	H16244	UNIT
			MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage		3	3.6	3	3.6	V
VIH	High-level input voltage		2	3	2		V
V _{IL}	Low-level input voltage		8.0		0.8	V	
VI	Input voltage	0	5.5	0	5.5	V	
Іон	High-level output current		7	-24		-32	mA
lou	Low-level output current		20	24		32	mA
lor	Low-level output current; current duty cycle ≤ 50%; f ≥	1 kHz	70,	48		64	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	Q	10		10	ns/V
Δt/ΔVCC	Power-up ramp rate				200		μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted)

PARAMETER		TEST OF	NUNTIONS	SN54	ALVTH1	6244	SN74	ALVTH1	6244	UNIT
		lESI CC	ONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNII
VIK		$V_{CC} = 2.3 \text{ V},$	I _I = -18 mA			-1.2			-1.2	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0	.2		V _{CC} -0	.2		
VOH		V _{CC} = 2.3 V	$I_{OH} = -6 \text{ mA}$	1.8						V
		VCC = 2.3 V	$I_{OH} = -8 \text{ mA}$				1.8			
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	$I_{OL} = 100 \mu A$			0.2			0.2	
			I _{OL} = 6 mA			0.4				
VOL		V _{CC} = 2.3 V	$I_{OL} = 8 \text{ mA}$						0.4	V
		V(C) = 2.3 V	$I_{OL} = 18 \text{ mA}$			0.5				
			$I_{OL} = 24 \text{ mA}$						0.5	
	Control inputs	$V_{CC} = 2.7 \text{ V},$	$V_I = V_{CC}$ or GND			±1			±1	
1.	Control inputs	$V_{CC} = 0 \text{ or } 2.7 \text{ V},$	V _I = 5.5 V			\$ 10			10	μΑ
'1	ll Bata innuts	V _{CC} = 2.7 V	$\Lambda^{I} = \Lambda^{CC}$, Š	1			1	μΑ
	Data inputs	VCC = 2.7 V	V _I = 0		72	- 5			– 5	
l _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V		1				±100	μΑ
		V _{CC} = 2.3 V	V _I = 0.7 V		115			115		
I _I (hold)	Data inputs	VCC = 2.3 V	V _I = 1.7 V	-10			-10			μΑ
, ,		$V_{CC} = 2.7 V^{\ddagger}$,	$V_{ } = 0 \text{ to } 2.7 \text{ V}$	Q		±300			±300	
I _{EX} §		$V_{CC} = 2.3 \text{ V},$	$V_0 = 5.5 \text{ V}$			125			125	μΑ
IOZ(PU	_{/PD)} ¶	$V_{CC} \le 1.2 \text{ V}, V_{O} = \underline{0.5} \text{ V}$ $V_{I} = \text{GND or } V_{CC}, \overline{\text{OE}} =$	to V _{CC} , don't care			±100			±100	μΑ
lozh		V _{CC} = 2.7 V	V _O = 2.3 V, V _I = 0.7 V or 1.7 V			5			5	μΑ
lozL		V _{CC} = 2.7 V	V _O = 0.5 V, V _I = 0.7 V or 1.7 V			- 5			- 5	μΑ
		V _{CC} = 2.7 V,	Outputs high		0.04	0.1		0.04	0.1	
ICC		$I_{\Omega}=0$,	Outputs low		2.3	4.5		2.3	4.5	mA
		$V_I = V_{CC}$ or GND	Outputs disabled		0.04	0.1		0.04	0.1	
Ci		V _{CC} = 2.5 V,	V _I = 2.5 V or 0		3			3		pF
Со		V _{CC} = 2.5 V,	V _O = 2.5 V or 0		6			6		pF

 $[\]uparrow$ All typical values are at V_{CC} = 2.5 V, T_A = 25°C.

[‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

 $[\]S$ Current into an output in the high state when $V_O > V_{CC}$

 $[\]P$ High-impedance state during power up/power down

SN54ALVTH16244, SN74ALVTH16244 2.5-V/3.3-V 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCES070G - JUNE 1996 - REVISED MAY 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

PARAMETER		TEOT 0	CAUDITIONS	SN54	ALVTH1	6244	SN74	ALVTH1	6244		
PA	RAMEIER	l lesi c	CONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
VIK		V _{CC} = 3 V,	I _I = -18 mA			-1.2			-1.2	V	
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0.	2		V _{CC} -0	.2			
V_{OH}		V _{CC} = 3 V	$I_{OH} = -24 \text{ mA}$	2						V	
		ACC = 2 A	$I_{OH} = -32 \text{ mA}$				2				
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	$I_{OL} = 100 \mu\text{A}$			0.2			0.2		
			I _{OL} = 16 mA						0.4		
\/o:			$I_{OL} = 24 \text{ mA}$			0.5				V	
VOL		VCC = 3 V	$I_{OL} = 32 \text{ mA}$						0.5	V	
			$I_{OL} = 48 \text{ mA}$			0.55					
	_		$I_{OL} = 64 \text{ mA}$						0.55		
	Control inputs	$V_{CC} = 3.6 \text{ V},$	$V_I = V_{CC}$ or GND			±1			±1		
	Control inputs	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V			10			10		
IJ		v _{CC} = 3.6 V	V _I = 5.5 V			20			20	μΑ	
	Data inputs		$V_I = V_{CC}$			1			1		
			V _I = 0		FIL	- 5			– 5		
l _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V		D. C.				±100	μΑ	
		VCC = 3 V	V _I = 0.8 V	75	Ċ,		75				
I _I (hold)	Data inputs		V _I = 2 V	-75	70.		-75			μΑ	
, ,		$V_{CC} = 3.6 V^{\ddagger}$,	$V_{I} = 0 \text{ to } 3.6 \text{ V}$	S. C.		±500			±500		
I _{EX} §		V _{CC} = 3 V,	V _O = 5.5 V			125			125	μΑ	
I _{OZ(PU}	/PD) [¶]	$V_{CC} \le 1.2 \text{ V}, V_{O} = \frac{0.5}{\text{OE}}$	V to V _{CC} , = don't care			±100			±100	μΑ	
lozh		V _{CC} = 3.6 V	V _O = 3 V, V _I = 0.8 V or 2 V			5			5	μΑ	
lozL		V _{CC} = 3.6 V	V _O = 0.5 V, V _I = 0.8 V or 2 V			- 5			-5	μΑ	
		V _{CC} = 3.6 V,	Outputs high		0.07	0.1		0.07	0.1		
ICC	Icc	$I_O = 0$, $V_I = V_{CC}$ or GND	Outputs low		3.2	5		3.2	5	mA	
			Outputs disabled		0.07	0.1		0.07	0.1		
ΔI _{CC} #		$V_{CC} = 3 \text{ V to } 3.6 \text{ V, On}$ Other inputs at V_{CC} or				0.4			0.4	mA	
Ci		V _{CC} = 3.3 V,	V _I = 3.3 V or 0		3			3		pF	
Со		V _{CC} = 3.3 V,	V _O = 3.3 V or 0		6			6		pF	

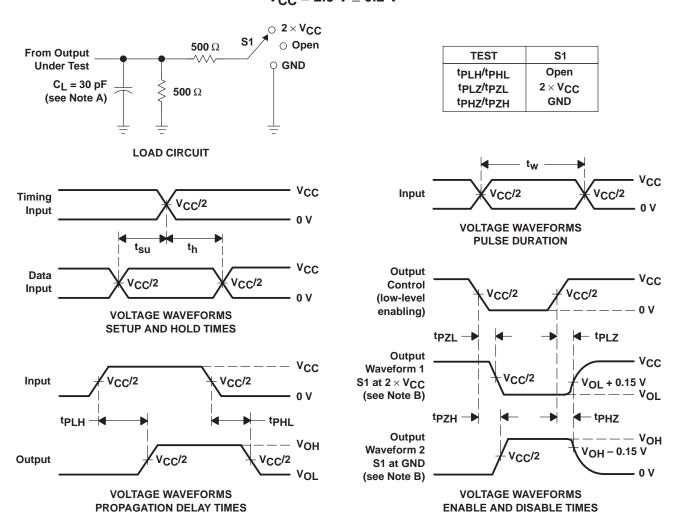
[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡]This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

 $[\]S$ Current into an output in the high state when $V_O > V_{CC}$

[¶] High-impedance state during power up/power down

[#] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

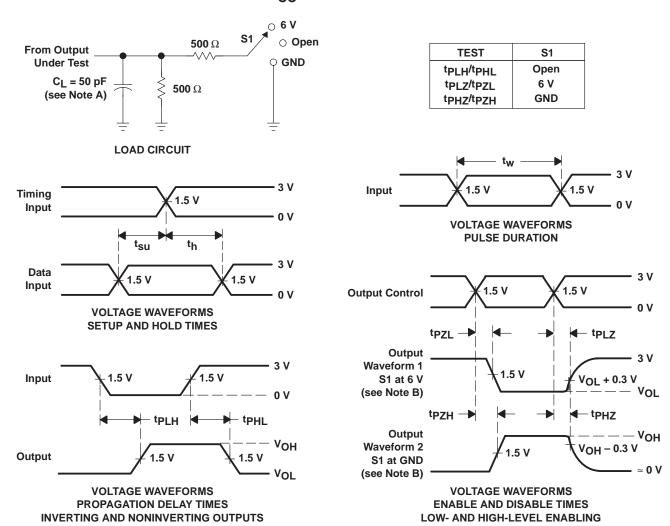

switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	SN54ALV	ГН16244	SN74ALVT	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
t _{PLH}	۸	V	1	3.1	1	3	ns
^t PHL	А	ı	1	3.6	1	3.5	115
^t PZH	-	V	1.1	6	1.1	5.9	ns
^t PZL	OE	ı	1.150	4.8	1.1	4.7	115
^t PHZ	ŌĒ	V	1.5	4.5	1.5	4.4	ns
t _{PLZ}	OE	,	Q 1	3.5	1	3.4	115

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	SN54ALVT	H16244	SN74ALVT	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNII
t _{PLH}	Α	V	1	2.6	1	2.4	ns
^t PHL	A	ı	1	2.6	1	2.5	115
^t PZH	-	V	1,0	3.9	1	3.8	ns
t _{PZL}	OE	ı	5	3	1	2.9	115
^t PHZ	ŌĒ	V	1.5	4.3	1.5	4.2	ns
^t PLZ	OE .	ı	1.5	3.7	1.5	3.6	113

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns. $t_f \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \ \Omega$, $t_\Gamma \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74ALVTH16244DL	Obsolete	Production	SSOP (DL) 48	-	-	Call TI	Call TI	-40 to 85	ALVTH16244
SN74ALVTH16244DLR	Obsolete	Production	SSOP (DL) 48	-	-	Call TI	Call TI	-40 to 85	ALVTH16244
SN74ALVTH16244GR	Obsolete	Production	TSSOP (DGG) 48	-	-	Call TI	Call TI	-40 to 85	ALVTH16244
SN74ALVTH16244VR	Obsolete	Production	TVSOP (DGV) 48	-	-	Call TI	Call TI	-40 to 85	VT244

⁽¹⁾ Status: For more details on status, see our product life cycle.

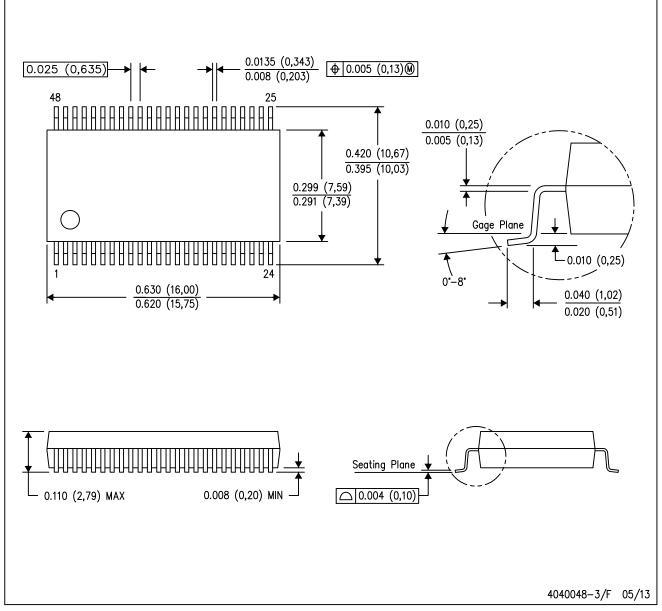
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.


⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

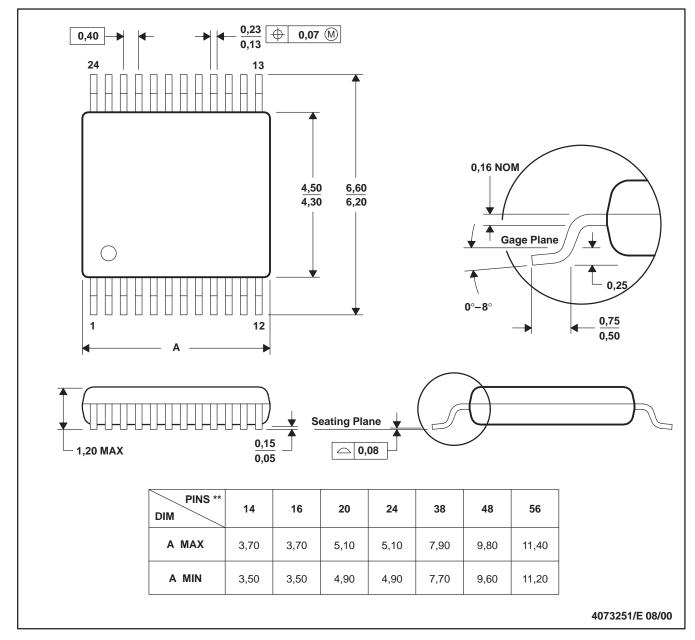
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118


PowerPAD is a trademark of Texas Instruments.

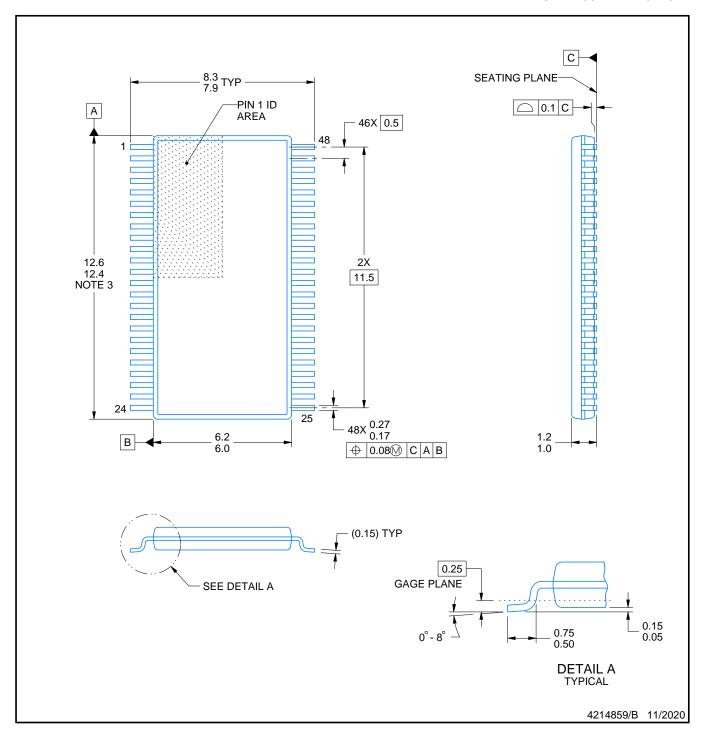
DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

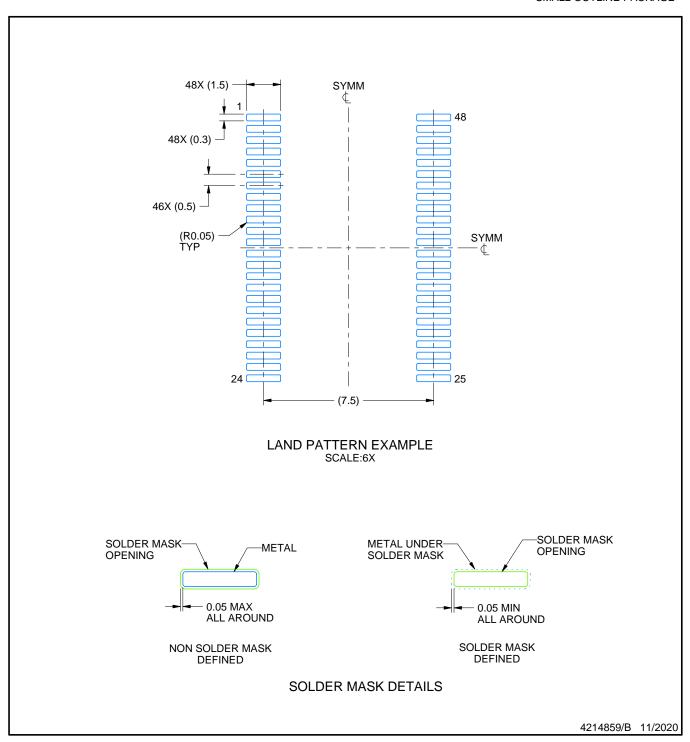
B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

SMALL OUTLINE PACKAGE

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

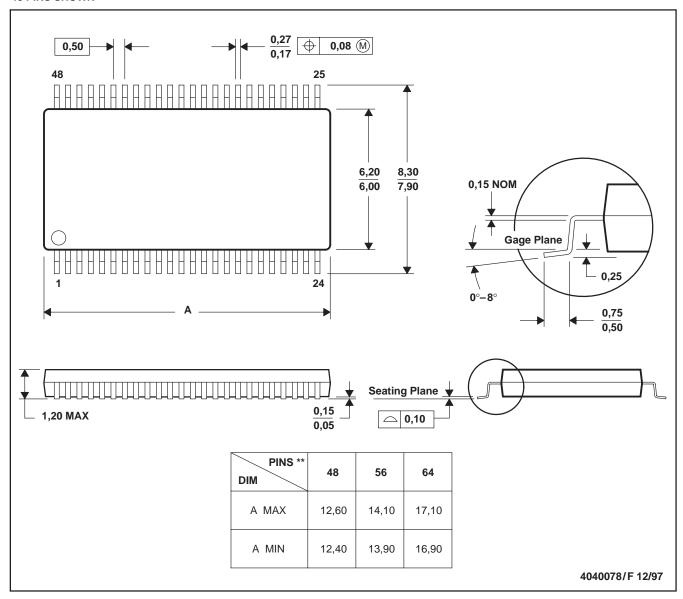


NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)


- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025