

Open-Drain Output and Power Consumption Using TI Programmable Logic Devices (TPLD)

ABSTRACT

This application note explores the use of open-drain outputs and mixed-signal voltage circuits in TI programmable logic devices (TPLDs), providing an overview of the design principles and challenges associated with these circuits. This document specifically focuses on the use of these circuits in systems that require interfacing with multiple voltage domains, such as industrial control systems, medical devices, or personal electronic applications, which combine low-voltage digital processing with high-voltage sensing or actuation.

Table of Contents

1 Introduction to Mixed-Voltage Logic in TPLD.....	2
2 Introduction to Output Modes.....	2
3 Timing of Open-Drain Outputs.....	3
4 Calculating Power Consumption.....	6
5 Summary.....	6
6 References.....	6

Trademarks

All trademarks are the property of their respective owners.

1 Introduction to Mixed-Voltage Logic in TPLD

The demand for smaller, more power-efficient devices is driving many semiconductor devices and circuit designs to use lower supply voltage levels, such as 1.8V. These advances in technology and manufacturing are challenged by managing integration with existing devices or complying with industry standards that potentially require higher supply voltages, such as 3.3V or 5V. To address these challenges, voltage level translation is a feature in logic devices which serves as a bridge between devices like processors, sensors, and devices of different generations. See [Basics of Voltage-Level Translation](#) for a comprehensive explanation of voltage translation.

TI programmable logic devices (TPLDs) can up-translate and down-translate voltages, allowing for the use of several different logic levels. All TPLDs have an optional low-voltage digital input mode for the input pins, allowing for 1.8V logic inputs across all supply voltages. Similarly, the TPLD can facilitate voltage translation with an optional open-drain NMOS output mode. Details about how to use these TPLD features can be found at [Up and Down Translation in TI's Programmable Logic Devices \(TPLD\)](#).

2 Introduction to Output Modes

There are three common output modes for CMOS devices, all of these modes are optional in TPLD. These include push-pull, open-drain, and tri-state.

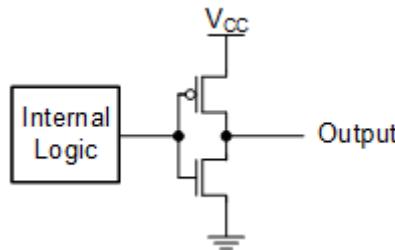


Figure 2-1. Typical Push-Pull Output Configuration

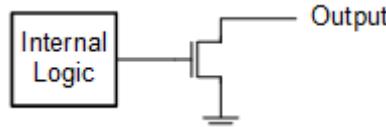


Figure 2-2. Typical Open-Drain Configuration

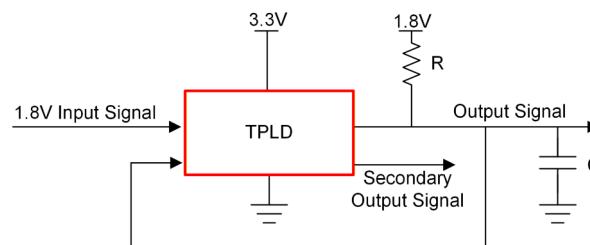
Figure 2-3. Typical Tri-State Output Configuration

The difference between open-drain and push-pull outputs is in the way the outputs drive output signals. A push-pull output uses two transistors to actively drive the line both high and low with one transistor pushing to VCC and the other pulling to ground, providing strong drive in both directions. An open-drain output only has a transistor to pull the line low to ground; the open-drain output relies on an external pullup resistor to bring the line high when the transistor is off. As a result, push-pull outputs actively control both states while open-drain passively releases the line high and actively pulls the line low. As the name suggests, a tri-state output can be in one of three states at any given time:

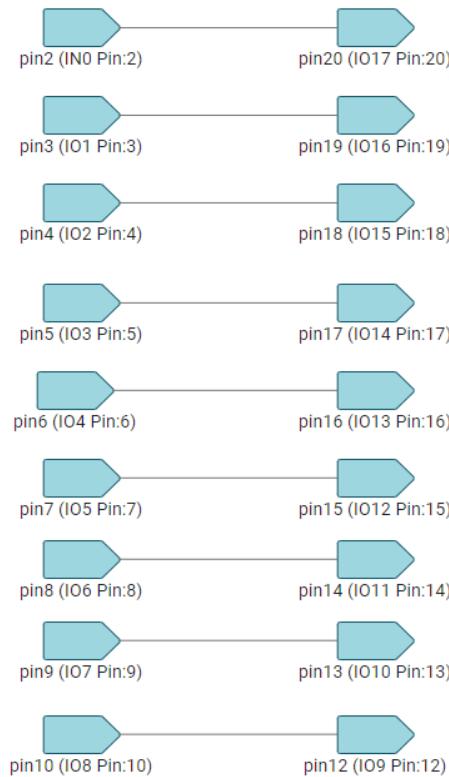
- Driving high
- Driving low
- Not driving (high impedance)

Tri-state outputs are similar to push-pull devices but with the addition of a high-impedance state.

Choosing between output types depends on how the signal is used and which trade-offs matter most in the design. Push-pull outputs are better when fast edges or frequent switching is required. Open-drain outputs are a better choice when the signal line is shared by multiple devices, when level flexibility is required, or if the signal is idle most of the time. Tri-state outputs are a good choice for when a signal line is shared by multiple devices but the use of external resistors is undesirable. Tri-state outputs often require an additional input to take them in and out of the high impedance state.


Push-pull outputs consume power mainly during switching, actively charging and discharging the load capacitance during switching. Unlike open-drain output devices, push-pull output devices do not need to pull current through a resistor for a low signal, making push-pull more power efficient for signals that toggle often or remain low for long periods.

Aside from a small amount of leakage current, open-drain outputs draw virtually no power when the signal is high. This makes open-drain devices excellent for signals that idle high and do not switch often, such as status lines or interrupts. However, open-drain outputs must draw current through a pullup resistor to achieve a low signal. The current consumption can be reduced by increasing the size of the pullup resistor, but increasing the resistor decreases the switching speed and potentially impacts the ability of the device to drive any loads on the line.


3 Timing of Open-Drain Outputs

Open-drain outputs rely on an external pullup resistor to pull the output voltage high. As a result, the output rise time depends on the value of the pullup resistor and the load capacitance, including pin capacitance and parasitic capacitance. This combination of a pullup resistor and load capacitance has all the characteristic behaviors of a typical resistor-capacitor (RC) circuit.

As an example, this section refers to the setup shown in [Figure 3-1](#) as using a basic buffer configuration, shown in [Figure 3-2](#).

Figure 3-1. TPLD Open-Drain Output Example

Figure 3-2. TPLD Buffer Configuration

This output signal is part of an RC circuit, and the voltage seen at the output signal when transitioning from a low to high state is governed by the equation:

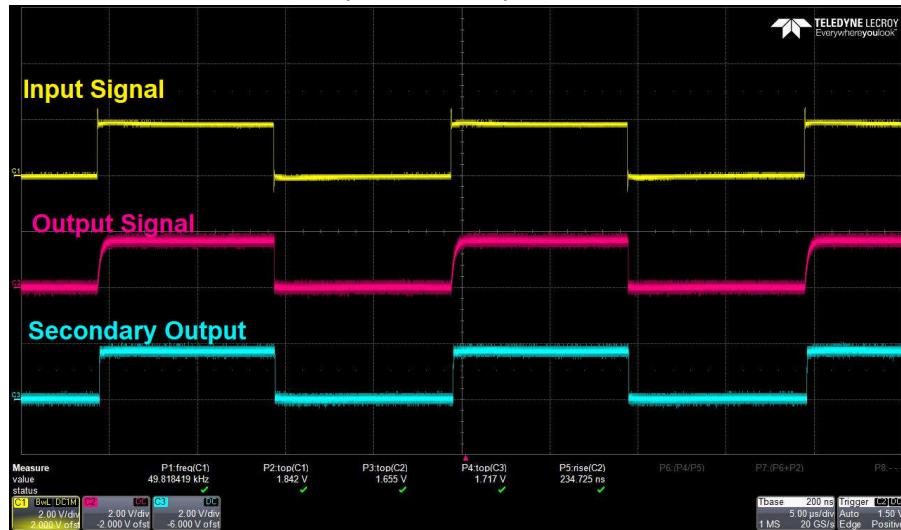
$$V_C = V_S (1 - e^{-t/RC}) \quad (1)$$

The 10% to 90% rise time of an RC circuit is:

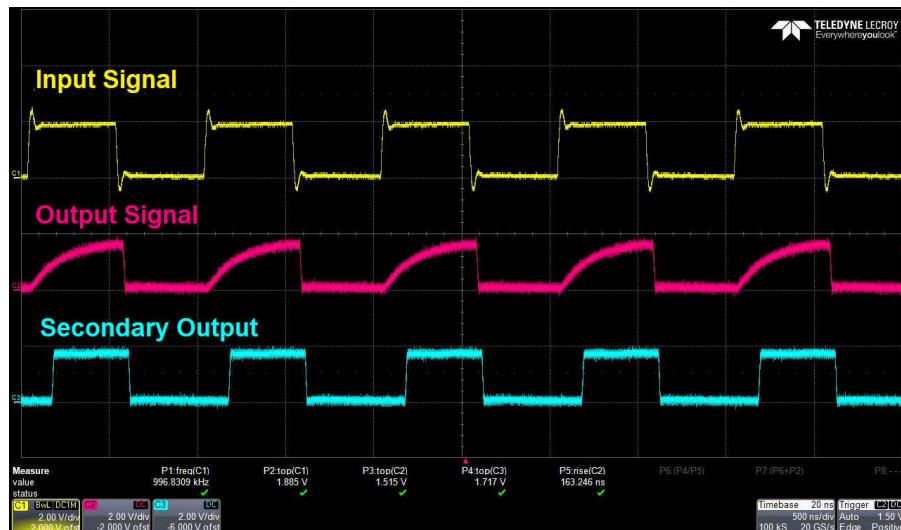
$$t_{rise} = 2.2\tau = 2.2RC \quad (2)$$

In this case, V_S is 1.8V supply from the pullup resistor and V_C is the voltage across C.

Equation 1 shows that the rise time of an open-drain device is dependent on the pullup resistor because the load capacitance is not easy to change in many applications. This means that choosing the correct resistor value for a specific application becomes very important. By Ohm's law, a larger resistor reduces the current, and therefore, reduces the power consumption. However, a larger resistance also increases the rise time of the output signal.


Ohm's law also dictates the minimum size of the pullup resistor that can be used, and therefore, the maximum rise time. This equation is:

$$R_{pullup, min} = \frac{V_{out}}{I_{OL}} \quad (3)$$


Every open-drain device defines a maximum low-level output current, I_{OL} , and this can be used to calculate the smallest allowable resistor before risking damage to the device with high current. Continuing with the TPLD2001 example, there are two options for I_{OL} . In this example, $I_{OL} = 20mA$ is selected, and $V_{out} = 1.8V$. This selection makes $R_{pullup,min} = 90\Omega$. This resistor produces a fast rise time, but also uses a lot of power. Choosing a

90 Ω resistor over a 9k Ω resistor means a 100 times faster rise time but a 10,000 times increase in power consumption. Whether this outcome is considered a fair trade depends on the design requirements.

Although the rise time of an open-drain output is dependent on the pullup resistor size, the fall time is not. An open-drain device passively releases the output high, but the device actively pulls the output low. This outcome produces the asymmetric rise and fall time of open-drain output devices.

Figure 3-3. Input and Outputs at 50kHz

Figure 3-4. Inputs and Outputs at 1MHz

The waveforms in [Figure 3-3](#) and [Figure 3-4](#) show the inputs and outputs of the test setup shown in [Figure 3-1](#). The setup includes a TPLD2001 resistor configured as a simple buffer with low-voltage inputs (as shown in [Figure 3-2](#)) to accept 1.8V logic even though the TPLD is powered by a 3.3V rail. Note that the TPLD can also be powered directly by 1.8V. The output labeled *Secondary Output* is configured as a push-pull output. The pullup resistor is $10\text{k}\Omega$. At 50kHz, the effect of this large pullup resistor becomes evident, and at 1MHz, the slow rise time of the output signal starts to affect the duty cycle of the signal of the *Secondary Output*. Although the TPLD2001 resistor can output frequencies up to 8MHz from any output pin in push-pull mode; the output speeds of the open-drain mode outputs of the resistor are still determined by the RC time constant. For this reason, open-drain outputs are rarely appropriate for high-speed applications.

More information about how to choose a pullup resistor can be found at [Choosing an Appropriate Pull-Up/Pull-Down Resistor for Open Drain Outputs](#).

4 Calculating Power Consumption

In CMOS devices, the static and dynamic power consumption of a device are important. TPLD is no different in this regard.

Static power consumption for CMOS devices is calculated by using the equation:

$$P_{S, \text{Device}} = V_{\text{Supply}} I_{\text{CC}} \quad (4)$$

For a push-pull device, this is all the power drawn from the VCC pin of the device when the output does not switch. For an open-drain device, this calculation is still valid, but the system as a whole includes the current that is drawn through the external pullup resistors. To use the example in [Figure 3-1](#), this is the 1.8V source. If the output is low, the power consumption of the system includes both the power drawn from the 3.3V source of the device, in addition to the power dissipated in the device by the pullup resistor. The total power consumption of the system for an open-drain device must include:

$$P_{S, \text{Total}} = P_{S, \text{Device}} + N_{\text{Low}} \frac{V^2}{R} \quad (5)$$

[Equation 5](#) illustrates that a larger pullup resistor is advantageous when power consumption is a concern; particularly, when many outputs are in a low state at the same time. However, a larger pullup resistor is detrimental to the switching speed, as shown in the previous section. Timing and power consumption are the major trade-offs to consider for open-drain devices.

Dynamic power consumption is a bit more complicated. This type of consumption includes transient power consumption and capacitive-load power consumption, and only occurs when a device switches from one state to another. Dynamic power consumption includes the power consumed in charging external load capacitance, the power necessary to charge the internal nodes, and the power consumed by the shoot-through current that flows from Vcc to GND when both the p-channel and n-channel transistors turn on briefly at the same time. When used in open-drain NMOS mode, a TPLD in open-drain output mode avoids shoot-through current, as do similar open-drain devices.

Additional information on this topic can be found in [CMOS Power Consumption and Cpd Calculation](#).

5 Summary

TPLDs can up-translate and down-translate voltages, allowing for the use of several different logic levels, and the outputs facilitate voltage translation with an optional open-drain NMOS output mode. Open-drain outputs are appropriate for signals that idle high and do not switch often, such as status lines or interrupts; as these signals consume virtually no power when the signal is high, and the signals can be tied together at the outputs without danger of bus contention. When considering power consumption of a system that uses open-drain outputs, selection of an appropriate pullup resistor is critical, as this value affects the rise time and power consumption of the output signal; a larger resistor can reduce power consumption but increase the rise time. Understanding these trade-offs is essential for excellent system design.

6 References

- Texas Instruments, [Basics of Voltage-Level Translation](#), Application Report
- Texas Instruments, [Up and Down Translation in TI's Programmable Logic Devices \(TPLD\)](#), Application Brief
- Texas Instruments, [Choosing an Appropriate Pull-Up/Pull-Down Resistor for Open Drain Outputs](#), Application Report
- Texas Instruments, [CMOS Power Consumption and Cpd Calculation](#), Application Report

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025