
1SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

Application Report
SLAA685–December 2015

MSP Code Protection Features

Katie Pier.. MSP Applications

ABSTRACT
MSP microcontrollers (MCUs) offer a number of features to help control code accessibility in the device, to
add different layers of code access management and protection strategies. These include features that
can lock or password protect the JTAG/SBW access, IP Encapsulation (IPE) to isolate sensitive code with
different permissions than the rest of the program, and bootloader (BSL) access features for field firmware
updates. This application report details some of the features available in different MSP device families and
considerations that can be taken to add additional layers of protection to the device.

Related source code and additional information is available from http://www.ti.com/lit/zip/slaa685.

Contents
1 Introduction ... 2
2 Locking JTAG Across Different MSP Families... 2
3 IP Encapsulation (IPE) .. 9
4 Bootloader (BSL) Security Features ... 29
5 References .. 32

List of Figures

1 Target Configuration... 6
2 JTAG Password on First Load ... 8
3 IPE Tool in CCS .. 14
4 Debug Configurations in CCS .. 17
5 IPE Load Configuration in CCS .. 17
6 IPE Test Configuration in CCS ... 18
7 IPE Memory View in CCS - Unprotected ... 19
8 IPE Memory View in CCS - Protected... 19
9 IPE Tool in IAR ... 23
10 Generating .map File in IAR .. 24
11 Options for IPE_FR59xx .. 26
12 Generating .txt Binary File in IAR .. 26
13 IPE Debug Configurations in IAR .. 28
14 IPE Memory View in IAR - Protected .. 28

List of Tables

1 JTAG Locking Features Across MSP Families .. 2
2 JTAG Locking on F5xx/F6xx ... 3
3 JTAG Locking on FR5xx/FR6xx ... 3
4 JTAG Locking on FR2xx/FR4xx ... 4
5 JTAG Locking on i2xx... 4
6 JTAG Lock With Password on FR5xx/FR6xx .. 5
7 IPE Initialization Structure... 16
8 IPE Initialization Structure... 27

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/lit/zip/slaa685

Introduction www.ti.com

2 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

9 BSL Signature Functionality on MSP430FR5xx/FR6xx Devices... 31
10 BSL Signature Functionality on MSP430F1xx/F2xx/F4xx Devices .. 31

Trademarks
MSP430, MSP432, Code Composer Studio are trademarks of Texas Instruments.
IAR Embedded Workbench is a trademark of IAR Systems.

1 Introduction
As more products include a microcontroller (MCU) or other embedded device, embedded security is
becoming more and more important. A common concern for embedded system applications is preventing
readout of the device in order to help protect the intellectual property (IP) of proprietary code. While there
is no perfect solution to protect against unauthorized access or reverse engineering of code, designers
can take precautions to make their code more difficult to access without more sophisticated techniques or
equipment. Using a layered approach with different methodologies for trying to control code access is
typically a good idea to add layers of security against someone trying to read out the device. This
application report discusses some features in the MSP430™ and MSP432™ microcontroller families that
can be used to help provide some of these layers—locking JTAG, using IP Encapsulation (on devices that
support this feature), and bootloader (BSL) security options. Using a combination of these methodologies
helps to increase the layered protection of the device, to increase the difficulty for anyone trying to read
the device.

NOTE: This application report primarily covers features of the MSP430 microcontrollers. For
information on securing an MSP432 microcontroller or using the bootloader on the MSP432
microcontrollers, see the application report Configuring Security and Bootloader (BSL) on
MSP432P4xx (SLAA659). For the IP Protection secure zones feature found on MSP432
devices, see the application report Software IP Protection on MSP432P4xx Microcontrollers
(SLAA660).

2 Locking JTAG Across Different MSP Families
Table 1 lists the locking features that are available in each MSP family.

Table 1. JTAG Locking Features Across MSP Families

Device Family Physical
Fuse

Boot
Override

Electronic
Fuse JTAG Signatures Reversible

JTAG
Access

With
Password

MSP430F1xx/F2xx/F4xx ✓
MSP430F5xx/F6xx ✓ 0x17FC–0x17FF ✓ with bootloader

MSP430FR5xx/FR6xx ✓ 0xFF80–0xFF83 ✓ with bootloader ✓
MSP430FR2xx/FR4xx ✓ 0xFF80–0xFF83 ✓ with bootloader

MSP430i2xx ✓ 0xFFDC–0xFFDF No factory
bootloader available

MSP432Pxx ✓ ✓ with boot override
factory reset

2.1 Physical JTAG Fuse (F1xx/F2xx/F4xx)
MSP430F1xx, F2xx, and F4xx family devices JTAG can be secured through a physical JTAG security
fuse. The fuse is blown by the programming tool after JTAG or SBW programming. The tool applies a fuse
blowing voltage (6.5 V ±0.5 V) on the TEST pin (on devices with a TEST pin) or TDI pin (on devices
without a TEST pin) [see MSP430 Programming Via the JTAG Interface (SLAU320)] for more details.
Blowing the fuse completely disables the JTAG port and is not reversible, and further JTAG or SBW
access is not possible. After the physical fuse is blown, the device is accessible only through the
password-protected bootloader, if supported and enabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/lit/pdf/SLAA659
http://www.ti.com/lit/pdf/SLAA660
http://www.ti.com/lit/pdf/SLAU320

www.ti.com Locking JTAG Across Different MSP Families

3SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

2.2 Electronic Fuse or Lock Without Password
Most MSP430 devices have an electronic fuse, sometimes called the e-Fuse or "JTAG Lock Without
Password". The JTAG/SBW interface is locked by setting a value into 2 words in memory, the JTAG
signatures. After the JTAG lock signatures are programmed and the device is reset, the device cannot be
accessed through JTAG or SBW. The device will only be accessible through password-protected
bootloader. It is possible to regain access to the device by using the BSL to access the device and clear
the JTAG signatures, but this requires either the correct BSL password, or doing a mass erase of the
device (depending on the device family). The implementation of the e-Fuse varies slightly amongst
MSP430 subfamilies, as explained in the following sections.

2.2.1 F5xx/F6xx Electronic Fuse Implementation
On MSP430 F5xx/F6xx devices, the JTAG signatures are located in the bootloader memory area
(F5xx/F6xx devices contain a Flash-based BSL in a protected area of flash memory) at addresses
17FCh–17FFh. If anything other than 00000000h or FFFFFFFFh is programmed to these addresses, then
the JTAG/SBW interface is locked. To program these addresses, the protected area of BSL flash must
first be unlocked by clearing the SYSBSLPE bit in the SYSBSLC register. After programming the
signatures, the BSL protection should be re-enabled.

To clear JTAG/SBW lock protection, the BSL can be used to clear the JTAG signatures to 00000000h.
The BSL is password protected by the last 32 bytes of the interrupt vector table FFE0h–FFFFh (see
Section 4). Because the JTAG signature is located in the protected BSL area, the BSL must first clear the
SYSBSLPE bit in the SYSBSLC register (write 0003h to the address 0182h), before writing 00000000h to
the JTAG signatures.

(1) These addresses are in the protected BSL flash area, which must be unlocked by writing 0003h to clear SYSBSLPE to the
address 0182h (SYSBSLC register address) before the signatures can be changed.

Table 2. JTAG Locking on F5xx/F6xx

Name Addresses Value Device Security

JTAG/SBW Signature 17FCh–17FFh (1)

FFFF_FFFFh
JTAG/SBW is unlocked.

0000_0000h
Any other value JTAG/SBW is locked.

2.2.2 FR5xx/FR6xx Electronic Fuse Implementation (Lock without password)
On MSP430FR5xx/FR6xx devices, the JTAG signatures are located in the main area of FRAM at
addresses FF80h–FF83h. The JTAG/SBW interface is locked without password by writing 55555555h to
the JTAG signatures.

To clear JTAG/SBW lock protection, the bootloader can be used to clear the JTAG signatures to any
values other than 5555h and AAAAh. The BSL is password protected and the last 32 bytes of the interrupt
vector table (FFE0h–FFFFh) are used as the BSL password (see Section 4). Unlocking JTAG/SBW
access can be easily performed with the BSL mass erase command on these FRAM devices, because the
JTAG signatures are located in main memory (rather than in a protected BSL area like on F5xx/F6xx).

(1) See Section 2.3 for more details.

Table 3. JTAG Locking on FR5xx/FR6xx

Name Addresses Value Device Security

JTAG/SBW
Signatures FF80h–FF83h

5555h_5555h JTAG/SBW is locked without password.
@FF80h = AAAAh
@FF82h = password length in words JTAG/SBW is locked with password. (1)

Any other value JTAG/SBW is unlocked.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685

Locking JTAG Across Different MSP Families www.ti.com

4 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

2.2.3 FR2xx/FR4xx Electronic Fuse Implementation
On MSP430FR2xx/FR4xx devices, the JTAG signatures are located in the main area of FRAM at
addresses FF80h–FF83h (just like on other FRxx devices). The JTAG/SBW interface is locked without
password by writing anything other than 00000000h or FFFFFFFFh to the JTAG signatures (this is
different from other FRxx devices).

To clear JTAG/SBW lock protection, the bootloader can be used to clear the JTAG signatures to
00000000h or FFFFFFFFh. The BSL is password protected and the last 32 bytes of the interrupt vector
table (FFE0h–FFFFh) are used as the BSL password (see Section 4). Unlocking JTAG/SBW access can
be easily performed with the BSL mass erase command on these FRAM devices, because the JTAG
signatures are located in main memory (rather than some protected BSL area like on F5xx/F6xx).

Table 4. JTAG Locking on FR2xx/FR4xx

Name Addresses Value Device Security

JTAG/SBW Signature FF80h–FF83h
FFFF_FFFFh

JTAG/SBW is unlocked.
0000_0000h

Any other value JTAG/SBW is locked.

2.2.4 MSP430i2xx Electronic Fuse Implementation – Start-Up Code (SUC)
On MSP430i2xx devices, the JTAG/SBW device security is controlled by the Start-Up Code (SUC). The
SUC must set the device as secured or unsecured within the first 64 MCLK clock cycles after a BOR or
POR reset. The SUC determines if JTAG/SBW access should be enabled or disabled by checking the
signatures at addresses 0xFFDC-0xFFDF.

The JTAG/SBW interface is disabled by writing the addresses FFDCh–FFDFh with any value other than
00000000h or FFFFFFFFh. The SUC checks the value in these addresses after a POR or BOR reset. If
the value is different from 00000000h or FFFFFFFFh, then the SUC writes A5A5h into the SYSJTAGDIS
register to disable the JTAG/SBW interface and secure the device. The SUC must complete this within 64
MCLK cycles after the BOR or POR reset.

Because the MSP430i2xx device does not have a bootloader, it is not possible to clear the addresses
0xFFDC-0xFFDF to re-enable JTAG/SBW access. If the user has implemented a custom bootloader in
main memory, they can use this to write the addresses FFDCh–FFDFh to 00000000h. The SUC checks
the value in these addresses after a POR or BOR reset. If the value is 00000000h or FFFFFFFFh, then
the SUC does nothing and continues on to the calibration routine—after 64 MCLK cycles, the JTAG is
enabled the device is unsecured automatically.

See the MSP430i2xx Family User's Guide (SLAU335) and the device code examples for more information
about the SUC.

(1) The correct SUC code must be implemented to check these addresses and perform the locking or unlocking within 64 cycles of
MCLK after start-up. Use the SUC code included with the i2xx code examples, which already has this implemented.

Table 5. JTAG Locking on i2xx

Name Addresses Value Device Security

JTAG/SBW Signature FFDCh–FFDFh
FFFF_FFFFh

JTAG/SBW is unlocked. (1)

0000_0000h
Any other value JTAG/SBW is locked. (1)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/lit/pdf/SLAU335

www.ti.com Locking JTAG Across Different MSP Families

5SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

2.3 JTAG Lock With Password (FR5xx/FR6xx)
Some MSP430 FRAM devices additionally allow a JTAG lock with password option. This is different from
the eFuse/JTAG Lock without Password, because with this mechanism access can be regained without
using the bootloader, by providing a user-defined password through the toolchain.

On MSP430FR5xx/FR6xx devices, the JTAG signatures are located in the main area of FRAM at
addresses FF80h–FF83h. The JTAG/SBW is locked with password by writing AAAAh to JTAG signature 1
(FF80h), and writing JTAG signature 2 (FF82h) with anything but 5555h. The value written into JTAG
signature 2 is used to define the length in words of the desired password. The password starts at address
FF88h and continues for the number of words set by JTAG signature 2. Note that if the password is long
enough, it may overlap with addresses used by the interrupt vector table. The password value for these
addresses should be the interrupt vector table value, and this is necessary for proper interrupt handling
and code execution. The password protection takes effect on the next BOR event.

Table 6. JTAG Lock With Password on FR5xx/FR6xx

Name Addresses Value Device Security

JTAG/SBW
Signatures FF80h–FF83h

5555h_5555h JTAG/SBW is locked without password.
@FF80h = AAAAh
@FF82h = password length in
words

JTAG/SBW is locked with password.

Any other value JTAG/SBW is unlocked.

JTAG Password FF88h–length User Defined + Vector Table
Configuration

If JTAG/SBW is locked with password, the password
value defined in these addresses must be provided by
the tool-chain through the JTAG mailbox.

When a device is secured with JTAG lock with password, the tool-chain must supply the correct password
to access the device. After the correct password is provided, the device is unlocked until the next BOR
event occurs.

2.3.1 Using JTAG Lock With Password in CCS
The code example JTAG_lock_FR5xx_with_password.c from the zip file (http://www.ti.com/lit/zip/slaa685)
shows how to set the JTAG lock with password on an MSP430FR5969 device in Code Composer
Studio™ IDE (CCS). Note however that some production programming tools may also offer the option to
set the password from a GUI interface instead of having to hard-code it into the project.

For the MSP430 TI C/C++ compiler, use #pragma DATA_SECTION to place the correct signatures into
the linker file section .jtagsignature and to place the password into the section .jtagpassword. Use the
#pragma RETAIN to keep the compiler from optimizing out the data (since it is not used by the program).
For more information on these pragmas, see the MSP430 TI C/C++ Compiler guide (SLAU132).

#pragma RETAIN(JTAG_signatures)
#pragma DATA_SECTION(JTAG_signatures, ".jtagsignature")
const uint16_t JTAG_signatures[] = {0xAAAA, 0x0002};

...

#pragma RETAIN(JTAG_password)
#pragma DATA_SECTION(JTAG_password, ".jtagpassword")
const uint8_t JTAG_password[] = {0x12, 0x34, 0x56, 0x78};

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/lit/zip/slaa685
http://www.ti.com/lit/pdf/slau132

Locking JTAG Across Different MSP Families www.ti.com

6 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

The following example shows a section of the TI-txt binary file for the device locked with a 2-word
password of 12h 34h 56h 78h:

@ff80
AA AA 02 00 FF FF FF FF 12 34 56 78 FF FF FF FF

After the device has been locked with password and has undergone BOR reset (at which point the
settings take effect), the password has to be provided in order to regain access to the device for
reprogramming. Provide the password in CCS, in the targetConfigs folder, open the .ccxml file for the
device. Under "Advanced Setup" click the link "Target Configuration". Then, click on "MSP430" under the
device part number, and in the box "Password: (HEX format)" enter the password to provide when
unlocking the part. For the example above, the password is 12h 34h 56h 78h. The password should be
written in words, starting with the least significant word, so for this example, enter 0x34127856. An easy
way to find the correct order to supply the password to the toolchain is to use the Memory Browser with
the view set to "16-Bit Hex – TI Style", and look at the password programmed into the device on first load.

Figure 1. Target Configuration

NOTE: When a different user project is loaded, if JTAG lock with password was enabled in the code
that was previously loaded in the device, the correct password must be provided in the
project settings the first time to get into the part and erase the device. After the part is
erased, if JTAG lock with password is not enabled in the new project, then the part is
unlocked and can be debugged normally.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685

www.ti.com Locking JTAG Across Different MSP Families

7SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

2.3.2 Using JTAG Lock With Password in IAR
The code example JTAG_lock_FR5xx_with_password.c from the associated zip file shows how to set the
JTAG lock with password on an MSP430FR5969 device in IAR. Note however that some production
programming tools may also offer the option to set the password from a GUI interface instead of having to
hard-code it into the project.

For the IAR C/C++ compiler, use #pragma location to place the correct signatures starting at the address
FF80h, and to place the password starting at the address FF88h. Use the __root keyword to keep the
compiler from optimizing out the data (since it is not used by the program). For more information on these
pragmas, see the IAR C/C++ Compiler User's Guide, found in IAR under the Help menu.

#pragma location = 0xFF80
__root const uint16_t JTAG_signatures[] = {0xAAAA, 0x0002};

...

#pragma location = 0xFF88
__root const uint8_t JTAG_password[] = {0x12, 0x34, 0x56, 0x78};

The following example shows a section of the TI-txt binary file for a device locked with a 2-word password
of 12h 34h 56h 78h:

@FF80
AA AA 02 00
@FF88
12 34 56 78

To provide the password in IAR, in the Project > Options menu, go to "Debugger" > "FET Debugger", and
select the "Download" tab. In the box "JTAG password" enter the password to provide when unlocking the
part. For the example above, the password is 12h 34h 56h 78h. The password should be written in words,
starting with the least significant word, so for this example, enter 0x34127856. An easy way to find the
correct order to supply the password to the toolchain is to use the Memory view with the format set to "2x
Units", and look at the password programmed into the device on first load.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/lit/zip/slaa685

Locking JTAG Across Different MSP Families www.ti.com

8 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

Figure 2. JTAG Password on First Load

NOTE: When a different user project is loaded, if JTAG lock with password was enabled in the code
that was previously loaded in the device, the correct password must be provided in the
project settings the first time to get into the part and erase the device. After the part is
erased, if JTAG lock with password is not enabled in the new project, then the part is
unlocked and can be debugged normally.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685

www.ti.com IP Encapsulation (IPE)

9SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

3 IP Encapsulation (IPE)
IP Encapsulation (IPE) is a feature found on some MSP430 FRAM microcontrollers, like the
MSP430FR59xx/69xx family. (Note: For the IP Protection secure zones feature found on MSP432
devices, see the application report Software IP Protection on MSP432P4xx Microcontrollers (SLAA660).

IP Encapsulation allows the user to encapsulate and protect an area of the FRAM memory from readout.
When IPE is in place, any code or data in the IP Encapsulated area is protected from read or write access
from anywhere outside of the IP Encapsulated area, even by JTAG. The way to remove the IPE protection
is to perform a special mass erase sequence enabled by the tool chain. No form of code protection is
perfect, but this feature adds an additional layer on top of JTAG/SBW or bootloader security, for sensitive
data like keys or for proprietary code that is the user's intellectual property (IP).

The IP Encapsulation is only as secure as the code stored in it—poor code security practices can make
the code more vulnerable even if it is within the encapsulated area. Code that can read/write to addresses,
or that does not follow robust coding practices, is especially concerning. It is also important to clear any
hardware modules and peripheral registers used or RAM to their original states at the end of the
encapsulated execution if it is desired to hide what the code does with these modules.

For example, the IPE example project includes an example of clearing hardware module registers used by
the IPE code section:

TA0CCTL0 = 0;
TA0CCR0 = 0;
TA0CCR1 = 0;
TA0CCR2 = 0;
TA0CTL = 0;
TA0R = 0;
P4DIR &= ~BIT6;
P4OUT &= ~BIT6;

It also includes an example of clearing the general-purpose CPU registers R4–R15:

__asm(" mov.w #0, R4");
__asm(" mov.w #0, R5");
__asm(" mov.w #0, R6");
__asm(" mov.w #0, R7");
__asm(" mov.w #0, R8");
__asm(" mov.w #0, R9");
__asm(" mov.w #0, R10");
__asm(" mov.w #0, R11");
__asm(" mov.w #0, R12");
__asm(" mov.w #0, R13");
__asm(" mov.w #0, R14");
__asm(" mov.w #0, R15");

NOTE: If passing parameters back to code outside the IPE area, the registers R12-R15 may need
to be preserved. See the MSP430 Optimizing C/C++ Compiler User's Guide sections on
"How a Function Makes a Call" and "How a Called Function Responds" for more information.

More code security measures may be needed for different applications; for example, clearing RAM that
was allocated in the course of the function. Another possible precaution would be disabling interrupts (if
possible) for functions not used by the IPE while the IPE executes, and reenabling them at the end of the
IPE. This would ensure that the registers or RAM are cleared before servicing any ISR outside of the IPE
region. These types of advanced precautions are very application-specific, with what is important to hide
varying based on need, but in all cases care should be taken.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/lit/pdf/SLAA660
http://www.ti.com/lit/zip/slaa685
http://www.ti.com/lit/pdf/SLAU132

IP Encapsulation (IPE) www.ti.com

10 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

3.1 IP Encapsulation Using the IPE Tool in CCS
CCS includes a built-in IPE tool, as well as predefined segments in the linker file, to help enable IPE in a
project. While the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's
Guide describes in detail how to set up an IPE initialization structure and manually enable IPE using the
MPU registers, the use of the built-in IPE tool in CCS presents an easier and more automated alternative.
The next sections discuss how to enable IPE in a project using these tools in CCS. Also see the
associated source (http://www.ti.com/lit/zip/slaa685) for an example project in CCS that uses IPE. This
code is meant to be run on the MSP-EXP430FR5969 LaunchPad Development Kit. For more information
on enabling IPE in CCS using the tool, see the Code Composer Studio v6.1 for MSP430 User's Guide
(SLAU157).

3.1.1 CCS Linker File Features for IPE

NOTE: These linker file features are current as of CCSv6.1.1. Earlier versions of the CCS linker file
do not have all of these features, so it is recommended to use CCSv6.1.1 or later when
using this method for enabling IPE.

The CCS linker .cmd files for devices with IPE support include some sections for placing IPE code and
data. All that user code has to do is to tell the compiler what variables and functions should be placed
within these predefined sections. The following snippet is from the MSP430FR5969 linker cmd file:

GROUP(IPENCAPSULATED_MEMORY)
{

.ipestruct : {} /* IPE Data structure */

.ipe : {} /* IPE */

.ipe_const : {} /* IPE Protected constants */

.ipe:_isr : {} /* IPE ISRs */

.ipe_vars : type = NOINIT{} /* IPE variables */
} PALIGN(0x0400), RUN_START(fram_ipe_start) RUN_END(fram_ipe_end)
RUN_END(fram_rx_start)

• .ipestruct – This segment is for containing the IPE initialization structure that includes information
about the address location of the IP Encapsulated memory boundaries and control settings. There is
more information about the IPE initialization structure in the MSP430FR58xx, MSP430FR59xx,
MSP430FR68xx, and MSP430FR69xx Family User's Guide. The user should not place any data in this
section—when using the built-in CCS IPE tool, the tool generates the required values and places them
here.

• .ipe – This segment is for any code functions the user wants to place in the IP Encapsulated area.
• .ipe_const – This segment is for any constant data that needs to be encapsulated. This could be

things like encryption keys, or calibration info, encapsulated code version numbers, or any constants
used by the encapsulated code that should be kept hidden. Application dependent.

• .ipe: _isr – This segment is for any Interrupt Service Routines (ISRs) that are needed as part of the IP
encapsulated user code.

• .ipe_vars – This segment is for any data variables that need to be encapsulated. Any variables used
solely within the IP encapsulated code should be also placed in the IP encapsulated area instead of in
RAM for the most security – otherwise observation of changes to RAM could be used to try to reverse-
engineer the functionality of the encapsulated code. This is of course application dependent.

Further at the bottom of the linker file, observe there is a section for calculating the IPE initialization values
for the IPE structure:

/**/
/* MPU/IPE Specific memory segment definitions */
/**/

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/lit/zip/slaa685
http://www.ti.com/tool/msp-exp430fr5969
http://www.ti.com/lit/pdf/SLAU157
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/lit/pdf/SLAU367

www.ti.com IP Encapsulation (IPE)

11SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

#ifdef _IPE_ENABLE
#define IPE_MPUIPLOCK 0x0080
#define IPE_MPUIPENA 0x0040
#define IPE_MPUIPPUC 0x0020

// Evaluate settings for the control setting of IP Encapsulation
#if defined(_IPE_ASSERTPUC1)

#if defined(_IPE_LOCK) && (_IPE_ASSERTPUC1 == 0x08))
fram_ipe_enable_value = (IPE_MPUIPENA | IPE_MPUIPPUC |IPE_MPUIPLOCK);

#elif defined(_IPE_LOCK)
fram_ipe_enable_value = (IPE_MPUIPENA | IPE_MPUIPLOCK);

#elif (_IPE_ASSERTPUC1 == 0x08)
fram_ipe_enable_value = (IPE_MPUIPENA | IPE_MPUIPPUC);

#else
fram_ipe_enable_value = (IPE_MPUIPENA);

#endif
#else

#if defined(_IPE_LOCK)
fram_ipe_enable_value = (IPE_MPUIPENA | IPE_MPUIPLOCK);

#else
fram_ipe_enable_value = (IPE_MPUIPENA);

#endif
#endif

// Segment definitions
#ifdef _IPE_MANUAL // For custom sizes selected in the GUI

fram_ipe_border1 = (_IPE_SEGB1>>4);
fram_ipe_border2 = (_IPE_SEGB2>>4);

#else // Automated sizes generated by the Linker
fram_ipe_border2 = fram_ipe_end >> 4;
fram_ipe_border1 = fram_ipe_start >> 4;

#endif

fram_ipe_settings_struct_address = Ipe_settingsStruct >> 4;
fram_ipe_checksum = ~((fram_ipe_enable_value & fram_ipe_border2 &

fram_ipe_border1) | (fram_ipe_enable_value & ~fram_ipe_border2 & ~fram_ipe_border1)
| (~fram_ipe_enable_value & fram_ipe_border2 & ~fram_ipe_border1) |
(~fram_ipe_enable_value & ~fram_ipe_border2 & fram_ipe_border1));
#endif

The user does not have to modify anything with these settings, but this demonstrates how the linker file is
working with the CCS IPE tool settings, to determine the values to go in the IPE initialization structure.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685

IP Encapsulation (IPE) www.ti.com

12 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

3.1.2 Placing Code and Data in the IPE Sections in CCS
The user must indicate for the compiler which code and data should be placed in the IPE sections defined
in the linker file. For the MSP430 TI C/C++ compiler, this is enabled through the use of two pragmas,
CODE_SECTION and DATA_SECTION. For more information on these pragmas, see the MSP430
Optimizing C/C++ Compiler User's Guide (SLAU132). For more information on enabling IPE in CCS using
the tool, see the Code Composer Studio v6.1 for MSP430 User's Guide (SLAU157).

Code that should be placed in the IPE area must be contained in a function or set of functions. These
functions should all be placed in the .ipe section (see the following example).

#pragma CODE_SECTION(IPE_encapsulatedInit, ".ipe")
void IPE_encapsulatedInit (void)
{

...

...

}

#pragma CODE_SECTION(IPE_encapsulatedBlink, ".ipe")
void IPE_encapsulatedBlink (void)
{

...

...
}

Any interrupt service routines (ISRs) used by the IP encapsulated code should also be placed in the IPE
area so that they are also encapsulated. These ISRs should be placed in the .ipe:_isr section (see the
following example).

#pragma CODE_SECTION(TIMER0_A0_ISR, ".ipe:_isr")
#pragma vector=TIMER0_A0_VECTOR
__interrupt
void TIMER0_A0_ISR(void)
{

...

...

}

Some applications may have constants like encryption keys that are recommended to be stored in the IPE
area. The CCS linker file does not allow constants in the same section as variables or code. These
constant values should be placed in the .ipe_const section (see the following example).

#pragma DATA_SECTION(IPE_encapsulatedKeys, ".ipe_const")
const uint16_t IPE_encapsulatedKeys[] = {0x0123, 0x4567, 0x89AB, 0xCDEF,

0xAAAA, 0xBBBB, 0xCCCC, 0xDDDD};

Finally, any variables used by the IPE code, should also be placed in the IPE area rather than RAM so
that other parts of the code cannot read or access them.

#pragma DATA_SECTION(IPE_encapsulatedCount, ".ipe_vars")
unsigned char IPE_encapsulatedCount;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/lit/pdf/SLAU132
http://www.ti.com/lit/pdf/SLAU157

www.ti.com IP Encapsulation (IPE)

13SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

...

#pragma DATA_SECTION(IPE_i, ".ipe_vars")
uint8_t IPE_i;

The .ipe_vars section is set as NOINIT in the linker file to indicate that any variables placed here should
not have any initialization value and should not be zero-initialized by the start-up code. This is because the
C start-up code and .cinit initialization tables are not located in the IPE area, and therefore cannot write to
and set the variables in the IPE section because they do not have permission. For the user, this means
that any variables placed in the .ipe_vars section, should be set in a custom init function that is placed in
the .ipe section, so that the variables are initialized by code running inside the IPE area. This init function
should then be called by the user's main code at start-up to initialize the variables before they are used,
for example after halting the watchdog timer.

#pragma DATA_SECTION(IPE_encapsulatedCount, ".ipe_vars")
unsigned char IPE_encapsulatedCount;

/*
* main.c
*/

void main(void) {
WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

IPE_encapsulatedInit();
...
...

}

#pragma CODE_SECTION(IPE_encapsulatedInit, ".ipe")
void IPE_encapsulatedInit (void)
{

IPE_encapsulatedCount = 1;
}

3.1.3 Enabling IPE in CCS Project Options
Enabling IPE in the CCS Project is simply achieved by going to Project > Properties > General, and then
using the MSP430 IPE tab.

For automated IPE handling, select "Enable Intellectual Property Encapsulation (IPE)" and "Let compiler
handle IPE memory partitioning based on user-code and data placement". Click OK, and now the IPE is
set up (see Figure 3).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685

IP Encapsulation (IPE) www.ti.com

14 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

Figure 3. IPE Tool in CCS

3.1.4 Viewing the Compiler-Selected IPE partitioning in CCS
After building the project in CCS with IPE enabled, if desired, users can use the .map file found in the
Debug folder to view what IPE boundaries were set and where the different segments like .ipe and the
functions within have been placed. Additionally, the values of things like fram_ipe_border1,
fram_ipe_settings_struct_address, and others can also be found.

SECTION ALLOCATION MAP

output attributes/
section page origin length input sections
-------- ---- ---------- ---------- ----------------
...
...

.ipestruct
* 0 00004800 00000008

00004800 00000008
MSPIPE_INIT_LIB_CCS_msp430_large_code_restricted_data.lib : ipe_init.o
(.ipestruct:retain)

.ipe 0 00004808 000000d2
00004808 000000cc IPE_FR59xx.obj

(.ipe:IPE_encapsulatedBlink)
000048d4 00000006 IPE_FR59xx.obj (.ipe:IPE_encapsulatedInit)

.ipe_const
* 0 000048da 00000010

000048da 00000010 IPE_FR59xx.obj (.ipe_const)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685

www.ti.com IP Encapsulation (IPE)

15SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

.ipe:_isr
* 0 000048ea 0000000a

000048ea 0000000a IPE_FR59xx.obj (.ipe:_isr:TIMER0_A0_ISR)

.ipe_vars
* 0 000048f4 00000002 UNINITIALIZED

000048f4 00000002 IPE_FR59xx.obj (.ipe_vars)...

GLOBAL SYMBOLS: SORTED ALPHABETICALLY BY Name

address name
------- ----
...
...
00004808 IPE_encapsulatedBlink
000048f4 IPE_encapsulatedCount
000048d4 IPE_encapsulatedInit
000048da IPE_encapsulatedKeys
000048f5 IPE_i
0000ff88 Ipe_enableSignature
00004800 Ipe_settingsStruct
0000ff8a Ipe_structureAddress
...
...
00000480 fram_ipe_border1
000004c0 fram_ipe_border2
ffffffff fram_ipe_checksum
00000040 fram_ipe_enable_value
00004c00 fram_ipe_end
00000480 fram_ipe_settings_struct_address
00004800 fram_ipe_start
00004400 fram_rw_start
00004c00 fram_rx_start
...
...

The IPE struct is built into the binary image for the code (.txt or .hex) to allow it to be found by the device
boot code at first start-up as described in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and
MSP430FR69xx Family User's Guide (SLAU367). This binary can also be viewed by going to Project >
Properties > Build > MSP430 Hex Utility. Select "Enable MSP430 Hex Utility", and under "Output Format
Options" choose "Output TI-TXT hex format (--ti_txt)". Build, and a .txt file should appear in the Debug
folder.

When viewing the txt file to view the IPE initialization struct, verify these items:
1. Check the value at 0xFF8A. This is the portion of the IPE signature that contains the address of the

IPE struct. Remember that the value has been shifted right by 4 bits. In the example, the value at
0xFF8A is 0x0480 which points to address 0x4800 for the ipe struct. Note how this matches the .map
file.

@ff80
FF FF FF FF FF FF FF FF AA AA 80 04 FF FF FF FF

2. Go to the address of the IPE initialization struct (which we found in step 1, in this case 0x4800), and
see the values in the structure. It will be in the format from the user's guide.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/lit/pdf/SLAU367

IP Encapsulation (IPE) www.ti.com

16 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

Table 7. IPE Initialization Structure

Field Name Address
Offset Length Description

MPUIPC0 0h word Control setting for IP Encapsulation. Value is written to MPUIPC0
MPUIPB2 2h word Upper border of IP Encapsulation segment. Value is written to MPUIPSEGB2.
MPUIPB1 4h word Lower border of IP Encapsulation segment. Value is written to MPUIPSEGB1.

MPUCHECK 6h word Odd bit interleaved parity

In the following example, you can see:
• MPUIPC0 = 0x0040 → MPUIPENA = 1 = IPE enable
• MPUIPB2 = 0x04C0 → address 0x4C00 is IPE end
• MPUIPB1 = 0x0480 → address 0x4800 is IPE start
• MPUCHECK = 0xFFFF → checksum of the previous data. Calculated where checksum lower byte =

INV(Byte 0 XOR Byte 2 XOR Byte 4) = INV(40 XOR C0 XOR 80) = 0xFF, and checksum upper byte =
INV(Byte 1 XOR Byte 3 XOR Byte 5) = INV(00 XOR 04 XOR 04) = 0xFF

@4800
40 00 C0 04 80 04 FF FF

3.1.5 Running and Testing IPE Code in CCS
This code is meant to be run on the MSP-EXP430FR5969 LaunchPad Development Kit.
1. Download the example (http://www.ti.com/lit/zip/slaa685)
2. Import the project into CCSv6 or greater:

• Project > Import CCS Projects…
• Browse… and select the location where you have downloaded and unzipped the code. Make sure

that "Copy projects into workspace" is checked, and click OK.
3. Build the project.

3.1.5.1 Debug Settings With IPE in CCS
As mentioned in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family
User's Guide (SLAU367), the IPE settings do not take effect until the part has reset so that the boot code
can run. To test the IPE preventing JTAG access of protected areas, two different debug configurations
have been provided with the example project to simplify the processes of loading the part and testing the
IPE feature:
• IPE_FR59xx_load – Programs the device with new code, including IPE code.
• IPE_FR59xx_test – Debugs the device without reprogramming the device. Used for IPE protection

testing.

In CCS, select the drop-down arrow next to the debug bug icon, and select Debug configurations (see
Figure 4).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/tool/msp-exp430fr5969
http://www.ti.com/lit/zip/slaa685
http://www.ti.com/lit/pdf/SLAU367

www.ti.com IP Encapsulation (IPE)

17SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

Figure 4. Debug Configurations in CCS

In the new window (see Figure 5), there are two debug configurations for this project, IPE_FR59xx_load
and IPE_FR59xx_test. Each of these configurations includes some changes from the default debug
configuration to better facilitate debug with IPE enabled.

IPE_FR59xx_load configures the device to erase the IP protected area before trying to program the part.
Otherwise, the program load fails if IPE code is present, because IPE prevents programming access from
JTAG. However a special erase can be performed by the toolchain to mass erase the part and also erase
the secured nonvolatile system data area that stores the saved IPE structure pointer [see "Trapdoor
Mechanism for IP Structure Pointer Transfer" in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx,
and MSP430FR69xx Family User's Guide (SLAU367)]. This is set in the debug configuration on the Target
tab under MSP430 Properties > Connection Options, by selecting "On connect, erase main, information,
and IP protected area".

Figure 5. IPE Load Configuration in CCS

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/lit/pdf/SLAU367

IP Encapsulation (IPE) www.ti.com

18 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

IPE_FR59xx_test on the other hand, makes sure that this erase-on-connect does not occur, so that the
user can observe the IPE behavior (see Figure 6). This build configuration leaves the On connect, erase
main, information, and IP protected area setting deselected. Rather, the difference between
IPE_FR59xx_test and the default configuration is that IPE_FR59xx_test does not try to load the program
(which would fail with IPE enabled). The user in this case needs to debug without downloading. This is set
in the debug configuration on the Program tab, under Loading options, by selecting "Load symbols only".

Figure 6. IPE Test Configuration in CCS

For ease of development with IPE for any CCS project where IPE is enabled, TI recommends making two
build configurations with the settings demonstrated here.

3.1.5.2 Testing IPE in CCS
1. Click the drop-down next to the debug icon, go to Debug Configurations, and select the

IPE_FR59xx_load debug configuration. Debug.
2. The program loads into the device. Run the code. The LEDs on the LaunchPad should blink.
3. Pause the code.

1. Select View > Memory Browser to open the Memory view. In the Memory view, enter the name of
IPE protected variables or functions (IPE_encapsulatedInit, IPE_encapsulatedBlink, and so on).

2. Observe that the IP encapsulated variables and functions are still viewable. This is because the
boot code must run and load the IPE structure pointer into the internal secured nonvolatile system
data area the first time, and then load the IPE registers from the IPE structure before IPE will take
effect (requires a reset so bootcode run).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685

www.ti.com IP Encapsulation (IPE)

19SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

Figure 7. IPE Memory View in CCS - Unprotected

4. End the debug session.
5. Power cycle the device. The IPE should now be active and preventing readout and write access to the

IPE areas of the device.
6. Click the drop-down next to the debug icon, go to Debug Configurations, and select the

IPE_FR59xx_test debug configuration. Debug.
7. No program is loaded this time, only the debugging symbols. Run the code. LEDs on the LaunchPad

should blink.
8. Pause the code.

• Select View > Memory Browser to open the Memory view. In the Memory view, enter the name of
IPE protected variables or functions (IPE_encapsulatedInit, IPE_encapsulatedBlink, and so on).

• Observe that the IPE encapsulated variables and functions are no longer viewable. 0x3FFF
(JMP$) is all that the tool can see in these areas. IP encapsulation is active and preventing
readout of the memory area.

Figure 8. IPE Memory View in CCS - Protected

NOTE: When a different user project is loaded, if IPE was enabled in the code that was previously
loaded in the device, the IPE area will cause the new project not to be able to load correctly
and give an error in CCS (because the IPE area is protected from erase or write). To load
the new project the first time, select "On connect, erase main, information, and IP protected
area" in the debug settings for the new project for the first time you load it, to erase the IPE
code and settings.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685

IP Encapsulation (IPE) www.ti.com

20 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

3.2 IP Encapsulation Using the IPE Tool in IAR
IAR includes a built-in IPE tool, as well as predefined segments in the linker file, to help enable IPE in a
project. While the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's
Guide describes in detail how to set up an IPE initialization structure and manually enable IPE using the
MPU registers, the use of the built-in IPE tool in IAR presents an easier more automated alternative. The
next sections discuss how to enable IPE in a project using these tools in IAR. Also see the zip file
(http://www.ti.com/lit/zip/slaa685) for an example project in IAR that uses IPE. This code is meant to be
run on the MSP-EXP430FR5969 LaunchPad Development Kit. For more information on enabling IPE in
IAR using the tool, see the IAR C/C++ Compiler User Guide found in the Help menu of the IAR Embedded
Workbench™ IDE.

3.2.1 IAR Linker File Features for IPE

NOTE: These linker file features are current as of IAR v6.40.1. Earlier versions of the IAR linker file
do not have all of these features, so it is recommended to use IAR v6.40.1 or greater when
using this method for enabling IPE.

The IAR linker .xcl files for devices with IPE support include some sections for placing IPE code and data.
All that user code has to do is to tell the compiler what variables and functions should be placed within
these predefined sections. The following snippet is from the MSP430FR5969 linker xcl file:

// ---------------------------
// Intellectual Property Encapsulation (IPE)
//

-Z(CONST)IPE_B1=4400-FF7F
-Z(DATA)IPEDATA16_N
-Z(CODE)IPECODE16
-Z(CONST)IPEDATA16_C,IPE_B2

• (CONST)IPE_B1 – This segment is the beginning of the IPE area, and also contains the IPE
initialization structure that includes information about the address location of the IP Encapsulated
memory boundaries and control settings. There is more information about the IPE initialization
structure in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family
User's Guide (SLAU367). The user should not place any data in this section. When using the built-in
IAR IPE tool, the tool generates the required values and places them here.

• (DATA)IPEDATA16_N – This segment is for any data variables that need to be encapsulated (these
variables should be declared with the __no_init option). Any variables used solely within the IP
encapsulated code should be also placed in the IP encapsulated area instead of in RAM for the most
security. Otherwise, observation of changes to RAM could be used to try to reverse-engineer the
functionality of the encapsulated code. This is of course application dependent.

• (CODE)IPECODE16 – This segment is for any code functions the user wants to place in the IP
Encapsulated area. Any Interrupt Service Routines (ISRs) that are needed as part of the IP
encapsulated user code are placed here as well.

• (CONST)IPEDATA16_C – This segment is for any constant data that needs to be encapsulated. This
could include things like encryption keys or passwords, or other sensitive data.

• (CONST)IPE_B2 – This is the boundary marking the end of the IPE area.

3.2.2 Placing Code and Data in the IPE Sections in IAR
The user must indicate for the compiler which code and data should be placed in the IPE sections defined
in the linker file. For the IAR C/C++ compiler, this is enabled through the use of #pragma location. For
more information on this pragma and also on enabling IPE in IAR, see the IAR C/C++ Compiler User
Guide, found under the Help menu in IAR.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/lit/pdf/slau367
http://www.ti.com/lit/pdf/slau367
http://www.ti.com/lit/zip/slaa685
http://www.ti.com/tool/msp-exp430fr5969
http://www.ti.com/lit/pdf/SLAU367

www.ti.com IP Encapsulation (IPE)

21SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

Code that should be placed in the IPE area must be contained in a function or set of functions. These
functions should all be placed in the IPECODE16 section (see the following example).

#pragma location = "IPECODE16"
void IPE_encapsulatedInit(void)
{

...

...

}

#pragma location = "IPECODE16"
void IPE_encapsulatedBlink (void)
{

...

...
}

Any interrupt service routines (ISRs) used by the IP encapsulated code should also be placed in the IPE
area so that they are also encapsulated. These ISRs should also be placed in the IPECODE16 section
(see the following example).

#pragma location = "IPECODE16"
#pragma vector=TIMER0_A0_VECTOR
__interrupt
void TIMER0_A0_ISR(void)
{

...

...
}

Some applications may have constants like encryption keys that are recommended to be stored in the IPE
area. The IAR linker file does not allow constants in the same section as variables or code. These
constant values should be placed in the IPEDATA16_C section (see the following example).

#pragma location = "IPEDATA16_C"
const uint16_t IPE_encapsulatedKeys[] = {0x0123, 0x4567, 0x89AB, 0xCDEF,

0xAAAA, 0xBBBB, 0xCCCC, 0xDDDD};

Finally, any variables used by the IPE code, should also be placed in the IPEDATA16_N section rather
than RAM so that other parts of the code cannot read or access them. Note that these variables should be
marked with the __no_init keyword.

#pragma location = "IPEDATA16_N"
__no_init unsigned char IPE_encapsulatedCount;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685

IP Encapsulation (IPE) www.ti.com

22 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

The variables should be marked with the __no_init keyword to indicate that any variables placed here
should not have any initialization value and should not be zero-initialized by the start-up code. This is
because the C start-up code and .cinit initialization tables are not located in the IPE area, and therefore
cannot write to and set the variables in the IPE section because they do not have permission. For the
user, this means that any variables placed in the IPEDATA16_N section, should be set in a custom init
function that is placed in the IPECODE16 section, so that the variables are initialized by code running
inside the IPE area. This init function should then be called by the user's main code at start-up to initialize
the variables before they are used; for example, after halting the watchdog timer.

#pragma location = "IPEDATA16_N"
__no_init unsigned char IPE_encapsulatedCount;

/*
* main.c
*/

void main(void) {
WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

IPE_encapsulatedInit();
...
...

}

#pragma location = "IPECODE16"
void IPE_encapsulatedInit(void)
{

IPE_encapsulatedCount = 1;
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685

www.ti.com IP Encapsulation (IPE)

23SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

3.2.3 Enabling IPE in IAR Project Options
Enabling IPE in the IAR Project is simply achieved by going to Project > Options > General Options, and
then using the MPU/IPE tab.

For automated IPE handling, select "Support IPE" and "Enable IPE". Click OK, and now the IPE is set up.

Figure 9. IPE Tool in IAR

3.2.4 Viewing the Compiler-Selected IPE Partitioning in IAR
After building the project in IAR with IPE enabled, if desired, users can use the .map file found in the
Output folder to view what IPE boundaries were set and where the different segments like IPECODE16
and the functions within have been placed. Additionally, the values of things like
__iar_430_MPUIPC0_value, which shows the IPE register setup value, IPE_B1 and IPEB2 boundaries,
and so on can also be found.

To generate the .map file, go to Project > Options > Linker, and on the List tab select "Generate linker
listing". "Segment map" should already be checked as well. Build, and a .map file should appear in the
Output folder.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685

IP Encapsulation (IPE) www.ti.com

24 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

Figure 10. Generating .map File in IAR

**
* *
* MODULE MAP *
* *
**

...

...

IPEDATA16_N

Relative segment, address: 4808 - 4808 (0x1 bytes), align: 0
Segment part 17. Intra module refs: IPE_encapsulatedBlink

IPE_encapsulatedInit
ENTRY ADDRESS REF BY
===== ======= ======
IPE_encapsulatedCount 4808

IPEDATA16_N

Relative segment, address: 4809 - 4809 (0x1 bytes), align: 0
Segment part 18. Intra module refs: IPE_encapsulatedBlink

ENTRY ADDRESS REF BY
===== ======= ======
IPE_i 4809

IPEDATA16_C

Relative segment, address: 48DE - 48ED (0x10 bytes), align: 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685

www.ti.com IP Encapsulation (IPE)

25SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

Segment part 19. Intra module refs: IPE_encapsulatedBlink
ENTRY ADDRESS REF BY
===== ======= ======
IPE_encapsulatedKeys 48DE

---...
...
...

IPECODE16

Relative segment, address: 480A - 480F (0x6 bytes), align: 1
Segment part 25. Intra module refs: main

ENTRY ADDRESS REF BY
===== ======= ======
IPE_encapsulatedInit 480A

IPECODE16

Relative segment, address: 4810 - 48D3 (0xc4 bytes), align: 1
Segment part 24. Intra module refs: main

ENTRY ADDRESS REF BY
===== ======= ======
IPE_encapsulatedBlink 4810

IPECODE16

Relative segment, address: 48D4 - 48DD (0xa bytes), align: 1
Segment part 23. Intra module refs: TIMER0_A0_ISR::??INTVEC 90

ENTRY ADDRESS REF BY
===== ======= ======
TIMER0_A0_ISR 48D4

interrupt function
---...

...

...
**
* *
* SEGMENTS IN ADDRESS ORDER *
* *
**

SEGMENT SPACE START ADDRESS END ADDRESS SIZE TYPE ALIGN
======= ===== ============= =========== ==== ==== =====
...
...
IPE_B1 4800 - 4807 8 rel 10
IPEDATA16_N 4808 - 4809 2 rel 0
IPECODE16 480A - 48DD D4 rel 1
IPEDATA16_C 48DE - 48ED 10 rel 1
IPE_B2 4C00 rel 10

The IPE struct is built into the binary image for the code (.txt or .hex) to allow it to be found by the device
boot code at first start-up as described in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and
MSP430FR69xx Family User's Guide (SLAU367). This binary can also be viewed by going to Project >
Options > Linker, and on the Output tab select "Allow C-SPY-specific extra output file".

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/lit/pdf/SLAU367

IP Encapsulation (IPE) www.ti.com

26 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

Figure 11. Options for IPE_FR59xx

On the Extra Output tab, select "Generate extra output file" and set the Output format to "msp430-txt".
Build, and a .txt file should appear in the Output folder.

Figure 12. Generating .txt Binary File in IAR

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685

www.ti.com IP Encapsulation (IPE)

27SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

When viewing the txt file to view the IPE initialization struct, verify these items:
1. Check the value at 0xFF8A. This is the portion of the IPE signature that contains the address of the

IPE struct. Remember that the value has been shifted right by 4 bits. In the example, the value at
0xFF8A is 0x0480, which points to address 0x4800 for the ipe struct.

@FF88
AA AA 80 04

2. Go to the address of the IPE initialization struct (found in step 1, in this case 0x4800), and see the
values in the structure. It is in the format from the user's guide.

Table 8. IPE Initialization Structure

Field Name Address
Offset Length Description

MPUIPC0 0h word Control setting for IP Encapsulation. Value is written to MPUIPC0
MPUIPB2 2h word Upper border of IP Encapsulation segment. Value is written to MPUIPSEGB2.
MPUIPB1 4h word Lower border of IP Encapsulation segment. Value is written to MPUIPSEGB1.

MPUCHECK 6h word Odd bit interleaved parity

In the following example, you can see:
• MPUIPC0 = 0x0040 – MPUIPENA = 1 = IPE enable
• MPUIPB2 = 0x04C0 → address 0x4C00 is IPE end
• MPUIPB1 = 0x0480 → address 0x4800 is IPE start
• MPUCHECK = 0xFFFF → checksum of the previous data. Calculated where checksum lower byte =

INV(Byte 0 XOR Byte 2 XOR Byte 4) = INV(40 XOR C0 XOR 80) = 0xFF, and checksum upper byte =
INV(Byte 1 XOR Byte 3 XOR Byte 5) = INV(00 XOR 04 XOR 04) = 0xFF

@4800
40 00 C0 04 80 04 FF FF

3.2.5 Running and Testing IPE Code in IAR
This code is meant to be run on the MSP-EXP430FR5969 LaunchPad Development Kit.
1. Download the example (http://www.ti.com/lit/zip/slaa685).
2. Open the workspace IPE_FR59xx.eww in IAR EW430 6.30.2 or greater.
3. Build the project.

3.2.5.1 Debug Settings With IPE in IAR
The project has to configure the device to erase the IP protected area before trying to program the part.
Otherwise, the program load fails if IPE code is present, because IPE prevents programming access from
JTAG. However, a special erase can be performed by the toolchain to mass erase the part and also erase
the secured nonvolatile system data area that stores the saved IPE structure pointer [see "Trapdoor
Mechanism for IP Structure Pointer Transfer" in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx,
and MSP430FR69xx Family User's Guide (SLAU367)]. This is set in Project > Options > Debugger > FET
Debugger on the Download tab. Select "Erase main and Information memory inc. IP PROTECTED area".

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/tool/msp-exp430fr5969
http://www.ti.com/lit/zip/slaa685
http://www.ti.com/lit/pdf/SLAU367

IP Encapsulation (IPE) www.ti.com

28 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

Figure 13. IPE Debug Configurations in IAR

3.2.5.2 Testing IPE in IAR
1. Click the Download and Debug icon.
2. The program loads into the device, and runs the code. The LEDs on the LaunchPad should blink.
3. Pause the code.

1. Select View > Memory to open the Memory view. In the Memory view, enter the name of IPE
protected variables or functions (IPE_encapsulatedInit, IPE_encapsulatedBlink, and so on), or
addresses like 0x4800.

2. Observe that the IPE encapsulated variables and functions are not viewable. 0x3FFF (JMP$) is all
that the tool can see in these areas. IP encapsulation is active and preventing readout of the
memory area.

Figure 14. IPE Memory View in IAR - Protected

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685

www.ti.com Bootloader (BSL) Security Features

29SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

NOTE: When a different user project is loaded, if IPE was enabled in the code that was previously
loaded in the device, the IPE area causes the new project not to load correctly and can give
an error in IAR (because the IPE area is protected from erase or write). To load the new
project the first time, select "Erase main and Information memory inc. IP PROTECTED area"
in the debug settings for the new project for the first time you load it, to erase the IPE code
and settings.

4 Bootloader (BSL) Security Features
The MSP430 bootloader allows a way for users to do field firmware updates, even when JTAG/SBW
access has been locked or disabled. It can also be a valuable tool for users trying to read out memory or
run tests on field-returned units from their end customers, where the JTAG/SBW access was locked or
disabled at production. The BSL provides a number of features to help prevent misuse of this BSL access
feature. For more information about the BSL implementation on a particular device, see the appropriate
BSL user's guide for that device [MSP430 Programming With the Bootloader (BSL) (SLAU319) or
MSP430FR57xx, FR58xx, FR59xx, FR68xx, and FR69xx Bootloader (BSL) User's Guide (SLAU550)].
Also see the device data sheet to determine if the device has a built-in default BSL. Most MSP430 devices
implement BSL, but some devices (like MSP430G2xx1/G2xx2 and MSP430i2040) do not support a built-in
BSL.

NOTE: For information on securing an MSP432 device or using MSP432 device BSL, see the
application report Configuring Security and Bootloader (BSL) on MSP432P4xx (SLAA659).

4.1 Password Protection
All MSP430 bootloaders provide password protection on some commands. Typically, any commands that
allow readout of the device, like TX_DATA_BLOCK, or control of the device, like Load PC or
RX_DATA_BLOCK, are protected and do not execute unless the correct password was already provided.
Usually, the only commands not protected are RX_PASSWORD to receive the BSL password and unlock
the other commands, CHANGE_BAUD_RATE for changing the BSL baud rate to facilitate BSL
communication, and MASS_ERASE for totally wiping the device memory.

The password consists of a number of bytes, typically 32 bytes, located at the end of the interrupt vector
table up to memory address 0xFFFF (see the BSL user's guide for more details on specific addresses for
the device). Almost all MSP430 BSLs have the password being made up of the data at the addresses
0xFFE0-0xFFFF (excluding only MSP430F54xx non-A devices that have only a 16-byte password).

Because the BSL password consists of values from the device interrupt vector table (IVT), on a
programmed device the IVT always has a value other than 0xFFFF at least for the reset vector at address
0xFFFE (in addition to any other interrupt vectors used in the application), there is always some BSL
password set simply by loading a program into the device.

In CCS, if any interrupt vectors have no ISRs defined by the user, the TI C/C++ compiler automatically
adds a trap ISR to catch any of these unused vectors. Because of this, the unused vectors have some
value other than 0xFFFF, but it is the same value for all unused vectors. This adds some more values to
the password, but if the user code is not using many interrupts it still might not have very much variation to
it.

@FFE0
1A 4C 1A 4C 1A 4C 1A 4C 1A 4C 9C 48 1A 4C 1A 4C
1A 4C 1A 4C 1A 4C 1A 4C 1A 4C 1A 4C 1A 4C 00 4C

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAU550
http://www.ti.com/lit/pdf/SLAA659

Bootloader (BSL) Security Features www.ti.com

30 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

In the TI-txt file snippet above, observe the IVT area that contains the BSL password – 32 bytes between
0xFFE0-0xFFFF. The values 489Ch and 4C00h are highlighted in green text (these are used interrupt
vectors) in this example, for one of the Timer ISRs and for the Reset vector. Observe how the reset vector
at FFFEh is indicating that the start-up code begins at 4C00h. All other IVT entries, which are unused,
have been filled with 4C1Ah – this is the address of the trap ISR. Looking in the .map file, the address of
the trap ISR is also found, marked __TI_ISR_TRAP. Other ISR addresses are also found under the _isr
section.

.text:_isr
* 0 00004c00 00000020

00004c00 0000001a rts430x_lc_rd_eabi.lib : boot_special.obj
(.text:_isr:_c_int00_noargs_noexit)

00004c1a 00000006 : isr_trap.obj
(.text:_isr:__TI_ISR_TRAP)

If it is desired to customize the BSL password, the unused entries of the IVT could be modified to other
values for the password. However, the danger in this case is that if an interrupt comes in, the IVT entry is
used as the address for code execution to jump to, so putting random values here could cause code to
run wild or reset the part especially if an erroneous interrupt occurs (for example if an interrupt had been
enabled unintentionally). This may not be a very likely scenario but still does pose some risk, and
therefore, the user must decide based on their system and application. Alternately, the user can define
separate ISRs for all unused interrupts with IVT entries in the BSL password area FFE0h–FFFFh, and use
linker file modification and pragmas to place these at desired addresses to create the desired BSL
password.

4.2 Mass Erase on Incorrect Password
By default, on most MSP430 bootloaders, an incorrect BSL password results in mass erase of the device.
The mass erase causes all code to be erased. This feature adds another layer of security by helping to
prevent someone from doing a "brute force" guessing of the password by trying every combination of 32
bytes. If the password is not correct on the first attempt, the part is mass erased and now there is no code
to be read out. See the corresponding device user's guide to determine if a particular device supports this
feature. A BSL mass erase does not erase the IPE regions and IPE security settings are retained, if
enabled.

The mass erase also erases the IVT, so after one bad password attempt the firmware is gone and the
BSL password then returns to the default blank value of FFh for all 32 bytes. This means that after one
bad password the default password can then be used to access the device – this helps for cases where
perhaps a bad load or corrupted firmware was present in the device, where the BSL password may not be
correct, by still allowing for a load of new firmware. This should be considered however as a possibility if
there is a concern about unauthorized sources being able to load new firmware into the unit – in that case,
other measures may need to be taken.

Bootloaders that the support mass erase on incorrect password feature also provide a way to disable this
feature if desired. This is done by setting a BSL signature in the device memory to indicate that mass
erase should not occur on an incorrect BSL password. More information on disabling this feature can be
found in the BSL user's guide or device user's guide. Note that in this case the device may be vulnerable
to more "brute force" type of attempts to guess the password.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685

www.ti.com Bootloader (BSL) Security Features

31SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

Table 9. BSL Signature Functionality on MSP430FR5xx/FR6xx Devices

Name Addresses Value Device Security

BSL Password FFE0h–FFFFh User Defined + Vector
Table Configuration

This password must be provided by BSL host before the device is
accessible by the BSL.

BSL Signature FF84h–FF87h

5555_5555h BSL is disabled.

AAAA_AAAAh BSL is password-protected. Mass erase on wrong BSL password feature
is disabled.

Any other value BSL is password-protected. Mass erase on wrong BSL password.

(1) The start of the IVT varies depending on the device. Refer to the "Memory Organization" section of the device-specific data
sheet. For example, the MSP430F2131 IVT starts at FFE0h. Therefore, the BSL signature on that device is located at
FFDEh–FFDFh.

Table 10. BSL Signature Functionality on MSP430F1xx/F2xx/F4xx Devices

Name Addresses Value Device Security

BSL Password FFE0h–FFFFh User Defined + Vector
Table Configuration

This password must be provided by BSL host before the device is
accessible by the BSL.

BSL Signature
Data word

beneath the
IVT (1)

AA55h BSL is disabled.

0000h BSL is password-protected. Mass erase on wrong BSL password
feature is disabled.

Any other value BSL is password-protected. Mass erase on wrong BSL password.

4.3 Disabling Bootloader (BSL)
If the bootloader is not used in the application, or if there is a concern about an unauthorized user
obtaining access through the BSL despite the password feature mentioned above, BSL can also be
completely disabled. On devices with a Flash-based BSL, the BSL area of Flash can simply be erased
when programming the device at production. On devices with a ROM-based BSL, the BSL can be
completely disabled by setting a BSL signature in the device main memory as shown in Table 9 and
Table 10. See the appropriate BSL user's guide for more information:

MSP430 Programming With the Bootloader (BSL) (SLAU319)

MSP430FR57xx, FR58xx, FR59xx, FR68xx, and FR69xx Bootloader (BSL) User's Guide (SLAU550)

NOTE: If the bootloader is disabled completely and JTAG/SBW access is also disabled, not only is
there no possibility for field firmware updates or patches, but there is also no way to recover
the part by loading new code if an issue like memory corruption occurs. It also means that
diagnosing any issues encountered in the field may not be possible since it is not possible to
read out or load new code for diagnostic testing. This needs to be taken into careful
consideration when making the decision to disable BSL rather than using password
protection and other features – whether the benefits in the particular situation outweigh the
risk of not being able to do updates or diagnose code issues in the field.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAU550

References www.ti.com

32 SLAA685–December 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

MSP Code Protection Features

5 References
1. MSP430 FRAM Technology – How To and Best Practices (SLAA628)
2. Code Composer Studio v6.1 for MSP430 User's Guide (SLAU157)
3. MSP430 Optimizing C/C++ Compiler v4.4 User's Guide (SLAU132)
4. MSP430 Programming Via the JTAG Interface (SLAU320)
5. MSP430 Programming With the Bootloader (BSL) (SLAU319)
6. MSP430FR57xx, MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Bootstrap

Loader (BSL) (SLAU550)
7. MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide

(SLAU367)
8. MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208)
9. MSP430x2xx Family User's Guide (SLAU144)
10. MSP430i2xx Family User's Guide (SLAU335)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA685
http://www.ti.com/lit/pdf/SLAA628
http://www.ti.com/lit/pdf/SLAU157
http://www.ti.com/lit/pdf/SLAU132
http://www.ti.com/lit/pdf/SLAU320
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAU550
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/lit/pdf/SLAU208
http://www.ti.com/lit/pdf/SLAU144
http://www.ti.com/lit/pdf/SLAU335

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	MSP Code Protection Features
	1 Introduction
	2 Locking JTAG Across Different MSP Families
	2.1 Physical JTAG Fuse (F1xx/F2xx/F4xx)
	2.2 Electronic Fuse or Lock Without Password
	2.2.1 F5xx/F6xx Electronic Fuse Implementation
	2.2.2 FR5xx/FR6xx Electronic Fuse Implementation (Lock without password)
	2.2.3 FR2xx/FR4xx Electronic Fuse Implementation
	2.2.4 MSP430i2xx Electronic Fuse Implementation – Start-Up Code (SUC)

	2.3 JTAG Lock With Password (FR5xx/FR6xx)
	2.3.1 Using JTAG Lock With Password in CCS
	2.3.2 Using JTAG Lock With Password in IAR

	3 IP Encapsulation (IPE)
	3.1 IP Encapsulation Using the IPE Tool in CCS
	3.1.1 CCS Linker File Features for IPE
	3.1.2 Placing Code and Data in the IPE Sections in CCS
	3.1.3 Enabling IPE in CCS Project Options
	3.1.4 Viewing the Compiler-Selected IPE partitioning in CCS
	3.1.5 Running and Testing IPE Code in CCS
	3.1.5.1 Debug Settings With IPE in CCS
	3.1.5.2 Testing IPE in CCS

	3.2 IP Encapsulation Using the IPE Tool in IAR
	3.2.1 IAR Linker File Features for IPE
	3.2.2 Placing Code and Data in the IPE Sections in IAR
	3.2.3 Enabling IPE in IAR Project Options
	3.2.4 Viewing the Compiler-Selected IPE Partitioning in IAR
	3.2.5 Running and Testing IPE Code in IAR
	3.2.5.1 Debug Settings With IPE in IAR
	3.2.5.2 Testing IPE in IAR

	4 Bootloader (BSL) Security Features
	4.1 Password Protection
	4.2 Mass Erase on Incorrect Password
	4.3 Disabling Bootloader (BSL)

	5 References

	Important Notice

