
Application Note
MSPM0 Bootloader (BSL) Implementation

Chao Gao

ABSTRACT
This application note provides application level description for bootloader(BSL) for MSPM0 devices. It
summarizes the resources related with BSL about MSPM0 and provide the step by step usages for the BSL
examples or tools in SDK. For more details about the ROM-based BSL, see the MSPM0 Bootloader User's
Guide.

Table of Contents
1 Introduction...3

1.1 Bootloader Introduction.. 3
1.2 BSL Host Implementation Summary.. 10

2 BSL Configuration in Non-Main (Configuration NVM)...11
2.1 Non-Main Introduction.. 11
2.2 Example – Disable PA18 BSL Invoke Pin With Sysconfig... 12

3 Bootloader Host..13
3.1 MCU Host Code Introduction... 13
3.2 PC Host Example...19

4 Bootloader Target... 21
4.1 Default ROM-Based BSL... 21
4.2 Flash-Based Plug-In Interface Demos... 22
4.3 Secondary BSL Demo..24

5 Common Questions..27
5.1 Linker File Modification.. 27
5.2 Factory Reset by CCS to Recover Device... 28

6 References.. 29
Revision History...30

List of Figures
Figure 1-1. The Firmware Update Structure Through BSL..3
Figure 1-2. BSL Structure in MSPM0.. 5
Figure 1-3. ROM-Based BSL Structure... 5
Figure 1-4. ROM-Based BSL With Flash-Based Plug-In Interface Structure.. 6
Figure 1-5. Flash-Based Secondary BSL Structure...6
Figure 1-6. Secondary BSL Solutions..7
Figure 1-7. Secondary BSL Execute Flow...7
Figure 1-8. BSL Firmware Update System Block Diagram..10
Figure 2-1. Disable PA18 BSL Invoke Pin Step One... 12
Figure 2-2. Disable PA18 BSL Invoke Function...12
Figure 2-3. Chose Other Pins as BSL Invoke..13
Figure 2-4. Enable NON-MAIN Flash Erase..13
Figure 3-1. Flow Diagram of Host Project..14
Figure 3-2. Steps to Convert TXT File to Header File... 16
Figure 3-3. Hardware Signal Connections...17
Figure 3-4. Import Host Project Into CCS.. 18
Figure 3-5. Generate TI-TXT Hex File in CCS...18
Figure 3-6. BSL Default Password File (BSL_Password32_Default.txt)... 19
Figure 3-7. LaunchPad Kit Connection (Left: LP-MSPM0G3507, Right: LP-MSPM0L1306).. 20
Figure 3-8. Steps to Download Image by GUI With UART.. 21
Figure 3-9. Update XDS110 Firmware...21
Figure 4-1. Launch the Device in CCS.. 23

www.ti.com Table of Contents

SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

MSPM0 Bootloader (BSL) Implementation 1

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

Figure 4-2. Connect the Device in CCS...23
Figure 4-3. Load Symbols in CCS... 23
Figure 4-4. Data Section in Change Baudrate Command... 24
Figure 4-5. Move to 0x4000 cmd File Modification.. 25
Figure 4-6. Move to 0x4000 Sysconfig File Modification... 25
Figure 5-1. Open Target Configurations.. 28
Figure 5-2. Find the ccxml File.. 28
Figure 5-3. Launch Selected Configuration... 29
Figure 5-4. Do Factory Reset With the Script.. 29
Figure 5-5. Log Information in Console... 29

List of Tables
Table 1-1. MSPM0L and MSPM0G BSL Solutions Summary ...4
Table 1-2. MSPM0C Solutions Summary ... 4
Table 1-3. MSPM0 BSL Features Summary ...8
Table 1-4. MSPM0 BSL Demos summary... 9
Table 1-5. MSPM0 BSL Demos Co-Work - MCU as host..9
Table 1-6. MSPM0 BSL Demos Co-Work - PC as host... 9
Table 2-1. Flash Memory Regions... 11
Table 2-2. NON-MAIN Region Overview..11
Table 2-3. NON-MAIN Flash BSL Configuration Main Parameters..11
Table 3-1. Hardware Signal Connections.. 15
Table 3-2. Hardware Signal Connections for MSPM0C...15
Table 3-3. Jumper Connections... 17
Table 3-4. Jumpers Connection... 20
Table 3-5. Standalone Signal Connection..20
Table 4-1. MSPM0 Secondary BSL Demos Summary.. 24

Trademarks
Code Composer Studio™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

Trademarks www.ti.com

2 MSPM0 Bootloader (BSL) Implementation SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

1 Introduction

1.1 Bootloader Introduction
1.1.1 Bootloader Concept

A microcontroller bootloader can be used to program the internal memory of the MCU using common interfaces
like universal asynchronous receiver/transmitter (UART) or inter-integrated circuit (I2C). A bootloader enables
quick and easy programming of the device through the entire life cycle. The firmware update structure through
BSL showed as Figure 1-1. Based on Figure 1-1, the new firmware can be downloaded into MSPM0 device by a
BSL host that can be a PC or processor with the interface like UART, I2C and so on.

In this application note, the MCU being programmed is called the target, and the device or tool performing the
update is called the host.

Figure 1-1. The Firmware Update Structure Through BSL

www.ti.com Introduction

SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

MSPM0 Bootloader (BSL) Implementation 3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

1.1.2 MSPM0 Bootloader Structure

There are three kind of Bootloader solutions provided with MSPM0 devices: ROM-based BSL, ROM-based
BSL with flash based plug-in interface and flash-based secondary BSL. Just choose one of the three solutions
based on the application's requirement. Both of the solutions use the same invoke mode (general-purpose
input/output (GPIO) invoke, blank-device detection and software invoke). There are some parameters that need
to be configured in the NON-MAIN flash. For more details, see Section 2.

Table 1-1. MSPM0L and MSPM0G BSL Solutions Summary

BSL Solutions ROM Cost
Flash Cost (By

default) Interface

Pins Used
With

Hardware
Invoke

Pins Used With
Software Invoke Using Case

ROM Based BSL 5K
N/A UART 4 2 Need to follow TI's protocol

and the setting with UART/I2CI2C 4 2

ROM Based BSL
with Plug-In
interface

5K (just used the
BSL Core section)

~ 1.6K UART 4 2 Need to follow TI's protocol,
for the interface level are

totally open source.~ 1.3K I2C 4 2

~ 1.6K SPI 6 4

~ 5.8K CAN 4 2

Flash Based
Secondary BSL N/A

~ 4.9K UART 4 2 Totally open source.

~ 4.7K I2C 4 2

~ 5K SPI 6 4

~ 9K CAN 4 2

Note
Hardware invoke needs two more pins than software invoke, the pins are reset pin and GPIO invoke
pin.

Table 1-2. MSPM0C Solutions Summary

BSL Solutions Flash Cost Interface
Pins Used With Hardware

Invoke
Pins Used With
Software Invoke Using Case

Flash Based BSL
~ 3.8K UART 4 2 Totally open source.

~ 3.5K I2C 4 2

Note
For the flash cost is with limited features: Mass Erase , Get device Identity and Program. For other
features can be enabled in the code.

Introduction www.ti.com

4 MSPM0 Bootloader (BSL) Implementation SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

Figure 1-2 shows the structure of BSL in MSPM0.

Figure 1-2. BSL Structure in MSPM0

1.1.2.1 ROM-Based BSL

MSPM0 L&G devices are shipped with a highly customizable ROM-based bootloader supporting UART and I2C.

The ROM-based BSL consist with BSL core and interface. The interface used to receive or send data packets
between the host and target. The BSL core is used to interpret the packet data come from interface based on
the protocol. Some of the parameters can be configured in non-main flash like BSL password or UART/I2C pins
assignment.

Figure 1-3. ROM-Based BSL Structure

www.ti.com Introduction

SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

MSPM0 Bootloader (BSL) Implementation 5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

1.1.2.2 ROM-Based BSL With Flash-Based Plug-In Interface

If the ROM-based communication interface (UART/I2C) cannot meet with the application, there are flash-based
interface plug-in demos like UART, I2C,CAN and serial peripheral interface (SPI) that is fully open source can be
modified as needed. The plug-in interface demos shared the ROM-based BSL core to interpret the packets that
can save Flash memory to do that.

Figure 1-4. ROM-Based BSL With Flash-Based Plug-In Interface Structure

1.1.2.3 Flash-Based Secondary BSL

If the private protocol is needed, the ROM-based BSL core cannot be used any more and the secondary BSL
demo can be referred. A totally open sourced secondary BSL demo is provided in the SDK that you can use to
easily modify the protocol. The default protocol of the secondary BSL demo is the same with ROM-based BSL.

Figure 1-5. Flash-Based Secondary BSL Structure

Introduction www.ti.com

6 MSPM0 Bootloader (BSL) Implementation SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

There are also two kinds of secondary BSL demos mentioned, as shown in Figure 1-6. Use MSPM0G3507 as an
example:

Figure 1-6. Secondary BSL Solutions

• For the secondary BSL start from 0x1000, you can put it anywhere in the flash except 0x0. Because the
application code must start from the 0x0 address. In this condition when device power up or reseted, it
checks the BSL invoke condition in the bootcode the decide run application code or BSL code.The demo
reused the ROM-based BSL's trigger resources. (Both hardware, software and blank device detection, more
information please refer to section 3.2 of MSPM0 Bootloader User's Guide). Figure 1-7 shows the secondary
BSL demo executed flow.

Figure 1-7. Secondary BSL Execute Flow

www.ti.com Introduction

SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

MSPM0 Bootloader (BSL) Implementation 7

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

• For the secondary BSL that start from 0 address, the MCU runs into secondary BSL every time when power
up or reset. In the secondary BSL use custom check judgment to decide if stay in BSL to do firmware update
or go into application. For the advantage of this solution is that customer can used special judgment that
not limited to GPIO, blank device detection. For example need to check CRC of application before jump to
application code to make sure the integrity of the application code. The other using case is for some MSPM0
device without ROM BSL like MSPM0C and we do have demo code about it in the SDK. In this demo, after
check the invoke condition, if need jump to application, it can set the PC to the start address of application.
More information you can refer to Section 4.3.2. There is also a demo that using FreeRTOS in the secondary
BSL that can realize live firmware update. That demo means the secondary BSL firmware update ongoing
without stop application code. For more information, see MSPM0 Live Firmware Update (LFU) Bootloader
Implementation .

1.1.3 MSPM0 BSL Features and Demos Summary
Table 1-3. MSPM0 BSL Features Summary

Device Family MSPM0C MSPM0L MSPM0G

BSL General

BSL memory type Flash ROM ROM

BSL memory size >3.5K 5K 5K

User configuration in Non-main flash ✔ ✔ ✔
UART ✔ ✔ ✔

I2C ✔ ✔ ✔

Plug-In interface demos

UART ✔ ✔
I2C ✔ ✔
SPI ✔ ✔
CAN ✔

BSL Invoke
GPIO Invoke ✔ ✔ ✔

Blank device detection ✔ ✔ ✔
Software Invoke ✔ ✔ ✔

Hardware Tools XDS110 with UART ✔ ✔ ✔

Software Tools
MSPM0_BSL_GUI in SDK ✔ ✔

Uniflash ✔ ✔
Security 256 bits password protected ✔ ✔ ✔

Introduction www.ti.com

8 MSPM0 Bootloader (BSL) Implementation SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/an/slaaec9/slaaec9.pdf
https://www.ti.com/lit/an/slaaec9/slaaec9.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

There are some BSL code examples in the SDK and it can be summarized, as shown in Table 1-4.

Table 1-4. MSPM0 BSL Demos summary
Demo Type Demo Name Using Case

Target side demos

Plug-in interface demos

bsl_spi_flash_interface
When ROM-based communication interface
configuration or type not meet with requirement (need
UART1 module as interface or need SPI) and TI’s
default BSL protocol can be used

bsl_uart_flash_interface

bsl_i2c_flash_interface

bsl_can_flash_interface

Secondary BSL demo
secondary_bsl (uart/i2c/spi/

can)
flash_bsl(for MSPM0C)

When TI’s default BSL protocol cannot meet with
requirements, it re-used the same trigger condition
of ROM-based BSL except the flash_bsl demo for
MSPM0C.

Application demo bsl_software_invoke_app_de
mo (uart/i2c/spi/can)

Application example code can be co-work with ROM-
based BSL or flash-based secondary BSL demo or
flash-based interface plug-in demos, it also include
software trigger function.

Host side demos

MCU or processor as
host

bsl_host_mcu_to_m0x_targe
t (uart/i2c/spi/can)

When MCU or processor as host and follow TI’s
default BSL protocol. It can be used with ROM BSL
and default secondary BSL demos.

PC as host MSPM0_BSL_GUI/Uniflash

When PC as host with UART and follow TI’s default
BSL protocol. That means this can be used for ROM
based UART BSL or default UART plug-in interface
demo or default secondary BSL UART demo.

Table 1-5. MSPM0 BSL Demos Co-Work - MCU as host
Target side Host side

Memory location BSL code demo Application code demo MCU/Processor Host
ROM BSL ROM /

bsl_software_invoke_app_demo
(uart/i2c/spi/can)

bsl_host_mcu_to_m0x_target
(uart/i2c/spi/can)

Plug-In interface
demos

Main Flash (Need co-
work with ROM BSL)

bsl_spi_flash_interfac
e

bsl_uart_flash_interfa
ce

bsl_i2c_flash_interfac
e

bsl_can_flash_interfa
ce

Secondary BSL
demo

Main Flash secondary_bsl
(uart/i2c/spi/can)

Table 1-6. MSPM0 BSL Demos Co-Work - PC as host
Target side Host side

Memory location BSL code demo Application code demo PC Host
ROM BSL ROM /

bsl_software_invoke_app_demo
(uart/i2c/spi/can)

MSPM0_BSL_GUI/Uniflash

Plug-In interface
demos

Main Flash (Need co-
work with ROM BSL)

bsl_spi_flash_interface N/A

bsl_uart_flash_interfac
e MSPM0_BSL_GUI/Uniflash

bsl_i2c_flash_interface N/A

bsl_can_flash_interfac
e N/A

Secondary BSL
demo

Main Flash secondary_bsl
(uart/i2c/spi/can) N/A

www.ti.com Introduction

SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

MSPM0 Bootloader (BSL) Implementation 9

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

1.2 BSL Host Implementation Summary
This application note describes the implementation of two types of hosts: one is PC with an interface bridge like
XDS110, the other is an MCU or processor. Figure 1-8 shows the signal connection diagram.

Figure 1-8. BSL Firmware Update System Block Diagram

When use PC as the host, there is a GUI that developed based on python 3 to handle the download operations.
A pre-built Windows executable (tested on Win10 64-bits) is included, the source code of the GUI are also in the
SDK. Uniflash can also be used on PC side.

When use MCU or processor as the host, there are some demos based on MSPM0 act as the host MCU to do
firmware updated for another MSPM0 device.

Introduction www.ti.com

10 MSPM0 Bootloader (BSL) Implementation SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

2 BSL Configuration in Non-Main (Configuration NVM)
2.1 Non-Main Introduction
There are three different kind of Flash memories in MSPM0 devices.

Table 2-1. Flash Memory Regions
Flash Memory Region Region Contents Executable Used by Programmed by
FACTORY Device ID and other parameters No Application TI only(not modifiable)

NON-MAIN Device boot configuration (BCR and BSL) No Boot ROM TI, User

MAIN Application code and data Yes Application User

The NON-MAIN is a dedicated region of Flash memory that stores the configuration data used by the BCR and
BSL to boot the device. The region is not used for any other purpose. The BCR and BSL both have configuration
policies that can be left at their default values (as is typical during development and evaluation), or modified
for specific purposes (as is typical during production programming) by altering the values programmed into the
NON-MAIN flash region. Due to MSPM0C series do not have ROM based BSL, so there is no BSL related
configuration part in MSPM0C series device's NON-MAIN.

Table 2-2. NON-MAIN Region Overview
NON-MAIN Section Start Address End Address
BCR Configuration 41C0.0000h 41C0.005Bh

BCR Configuration CRC 41C0.005Ch 41C0.005Fh

BSL Configuration 41C0.0100h 41C0.0153h

BSL Configuration CRC 41C0.0154h 41C0.0157h

The main BSL parameters can be configured in Table 2-3.

Table 2-3. NON-MAIN Flash BSL Configuration Main Parameters
Parameters Using Case Parameters Description

Common

BSLCONFIGID BSL configuration ID

BSLPW 256-bit BSL access password. (Optional for secondary
BSL)

BSLCONFIG0 BSL invoke pin configuration and memory read-out policy.
(For memory read-out policy is optional for secondary

BSL)

BSLAPPVER Address of the application version word.

BSLCONFIG1 BSL security configuration.(Optional for secondary BSL)

BSLCRC CRC digest (CRC-32) of the BSL_CONFIG portion of the
NON-MAIN memory.

ROM-Based BSL
BSLPINCFG0 BSL UART pin configuration

BSLPINCFG1 BSL I2C pin configuration

ROM-Based BSL with Flash based Plug-in
interface

BSLPLUGINCFG Defines the presence and type of a BSL plug-in in MAIN
Flash memory.

BSLPLUGINHOOK Function pointers for plug-in init, receive, transmit, and
de-init functions

Flash-Based Secondary BSL
PATCHHOOKID Alternate BSL configuration

SBLADDRESS Address of an alternate BSL.

For more details about the NON-MAIN flash, see the MSPM0 L-Series 32-MHz Microcontrollers Technical
Reference Manual or MSPM0 G-Series 80-MHz Microcontrollers Technical Reference Manual

www.ti.com BSL Configuration in Non-Main (Configuration NVM)

SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

MSPM0 Bootloader (BSL) Implementation 11

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAU847
https://www.ti.com/lit/pdf/SLAU847
https://www.ti.com/lit/pdf/SLAU846
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

2.2 Example – Disable PA18 BSL Invoke Pin With Sysconfig
The NON-MAIN configuration can be done with Sysconfig. Here is an example how to disable PA18 BSL invoke
function in NON-MAIN flash, for PA18 is used for BSL invoke by default settings in NON-MAIN. If the application
do not use the PA18 as the BSL invoke, this pin must be pull down or disable its BSL invoke function in
NON-MAIN to avoid the device to into BSL mode when power up or reset.

1. Open Sysconfig and add configuration NVM, it will show an error when you do this to remind you the risks to
enable the NON-MAIN flash. Accept configuration risks at step 2 can remove the error.

Figure 2-1. Disable PA18 BSL Invoke Pin Step One
2. Disable the PA18 BSL invoke function show in Figure 2-2 or choose another BSL invoke pin show in Figure

2-3.

Figure 2-2. Disable PA18 BSL Invoke Function

BSL Configuration in Non-Main (Configuration NVM) www.ti.com

12 MSPM0 Bootloader (BSL) Implementation SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

Figure 2-3. Chose Other Pins as BSL Invoke
3. Build the project in Code Composer Studio™ (CCS) or IAR or Keil and then download the code into flash.

The important thing to download the image is to enable NON-MAIN flash erase. For example in CCS to
enable it in Figure 2-4.

Figure 2-4. Enable NON-MAIN Flash Erase

3 Bootloader Host
3.1 MCU Host Code Introduction
The MCU host demos based on Code Composer Studio™ (CCS) are in the folder

< …\mspm0_sdk_xxxx\examples\nortos\LP_MSPM0xxxx\bsl >

These demos can update the target MSPM0 device through UART, I2C, SPI or CAN. The BSL host demo source
code include a target device's firmware in application_image.h file that is converted from .txt image file by a GUI
tool in SDK. For more details, see Section 3.1.2. It also includes the BSL password in the main.c file named
BSL_PW_RESET array. The target side password is defined in the non-main flash, that is BSL configuration
area BSLPW. Figure 3-1 shows a flow chart of the host BSL project.

www.ti.com Bootloader Host

SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

MSPM0 Bootloader (BSL) Implementation 13

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

Figure 3-1. Flow Diagram of Host Project

The host demo can support hardware trigger that pull PA18 pin to high and then do a reset. Or the demo also
can support software invoke that just need to send 0x22 command to trigger the BSL.

Note
When use software trigger, the application with software trigger function demo need to be downloaded
first.

Bootloader Host www.ti.com

14 MSPM0 Bootloader (BSL) Implementation SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

3.1.1 Hardware Connection

The host demo codes also use MSPM0 as the host MCU. The hardware signals connection between host and
target is shown in Table 3-1

Table 3-1. Hardware Signal Connections
Signals LP-MSPM0G3507 LP-MSPM0L1306

Host device Target device Host device Target device

Reset PB0 NRST pin PA3 NRST pin

Invoke PB16 PA18 PA7 PA18

UART
PB7/UART1_RX PA10/UART0_TX PA9/UART0_RX PA23/UART0_TX

PB6/UART1_TX PA11/UART0_RX PA8/UART0_TX PA22/UART0_RX

I2C
PB2/I2C1_SCL PA1/I2C0_SCL PA11/I2C0_SCL PA1/I2C0_SCL

PB3/I2C1_SDA PA0/I2C0_SDA PA10/I2C0_SDA PA0/I2C0_SDA

SPI

PB9/SPI1_SCLK PB9/SPI1_SCLK PA6/SPI0_SCLK PA6/SPI0_SCLK

PB8/SPI1_PICO PB8/SPI1_PICO PA5/SPI0_PICO PA5/SPI0_PICO

PB7/SPI1_POCI PB7/SPI1_POCI PA4/SPI0_POCI PA4/SPI0_POCI

PB6/SPI1_CS PB6/SPI1_CS PA8/SPI0_CS0 PA8/SPI0_CS

CANFD
PA12/CAN_TX PA13/CAN_RX \ \

PA13/CAN_RX PA12/CAN_TX \ \

Note
Connect only one communication interface that UART or I2C or SPI. The target side pins are just
default configuration pins that can be changed in the non-main flash.

Note
When use software invoke, the reset and invoke signals do not need to be connected.

Note
For CANFD, the transceiver are needed to connected with MSPM0 both host and target side.

Table 3-2. Hardware Signal Connections for MSPM0C
Signals LP-MSPM0C1104

Host device Target device

Reset PA2 NRST pin

Invoke PA4 PA18

UART
PA24/UART0_RX PA27/UART0_TX

PA27/UART0_TX PA26/UART0_RX

I2C
PA11/I2C0_SCL PA11/I2C0_SCL

PA0/I2C0_SDA PA0/I2C0_SDA

Note
When use software invoke, the reset and invoke signals do not need to be connected.

Note
When use UART interface, need to remove the jumpers connect to XDS110 UART back channel on
J101.

www.ti.com Bootloader Host

SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

MSPM0 Bootloader (BSL) Implementation 15

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

3.1.2 TXT to Header File Conversion

The MCU host firmware contains an image of the target application as a header file(application_image.h). The
header file is the new application firmware that need to programed into the MSPM0 target device. To get the
header file, there is a conversion utility in the GUI MSPM0_BSL_GUI.exe in the following path:

< …\mspm0_sdk_xxxx\tools\bsl\BSL_GUI_EXE >.

1. Select TXT_to_H in the MoreOption menu.
2. Choose the TI-TXT format file to be converted. Few simple application demo files can be used that provided

in the input folder.
3. Choose a folder for the output file (for example, choose the folder named Output).
4. Click the Convert button to start the conversion.

Figure 3-2. Steps to Convert TXT File to Header File

3.1.3 Step-by-Step Using the Demo

The following steps describe how to program an MSPM0 MCU using a LP-MSPM0G3507 as the host. A
MSPM0G3507 is used as target device, hardware BSL invoke and UART communication are used in this demo.
A similar process can be used to program other MSPM0 devices through either UART, I2C or SPI by using the
proper hardware connections (seeTable 3-1).

Bootloader Host www.ti.com

16 MSPM0 Bootloader (BSL) Implementation SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

1. Connect the hardware signals as shown in Figure 3-3. This example uses UART, so the I2C signals do not
need to be connected.

Figure 3-3. Hardware Signal Connections
2. Connect the jumpers as shown in Table 3-3.

Table 3-3. Jumper Connections
Board Mode Jumpers to Connect Jumpers to Disconnect

LP-MSPM0G3507 Host J101(Power and debug), J4,J7(LED) None

LP-MSPM0G3507 Target J7,(LED) J21, J22 (UART to J101 XDS110) All in J101

Note
If use LP-MSPM0L1306 as target board, jumper on J6 must be removed.

www.ti.com Bootloader Host

SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

MSPM0 Bootloader (BSL) Implementation 17

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

3. Import the BSL host with UART demo that available in the folder < …
\mspm0_sdk_xxxx\examples\nortos\LP_MSPM0G3507\bsl\bsl_host_mcu_to_mspm0g1x0x_g3x0x_target_u
art> into CCS.

Figure 3-4. Import Host Project Into CCS
4. Modify the password in the bsl_password array in main.c, if needed. The default password are all 0xFF with

32 bytes. The target BSL password is defined in the NON-MAIN memory. For more information, see the
technical reference manual [1] or [2] or the bootloader user's guide [3].

5. If just want to run the demo and no need to make any change of the application code, the BSL
host demo include default firmware file application_image_uart.h that generate from demo named
bsl_software_invoke_app_demo_uart) and the step 6 to 8 can be skip.

6. Import the application code(here can use the demo bsl_software_invoke_app_demo_uart) into CCS and
generate the target device firmware in TI-TXT hex format (see Figure 3-5).

Figure 3-5. Generate TI-TXT Hex File in CCS
7. Run the GUI MSPM0_BSL_GUI.exe to convert the target device firmware .txt format to a header file. For

more details, see Section 3.1.2.
8. Copy the contents of the output file xxx.h file by the GUI into the host project file application_image.h.
9. Build the host project and download to LP-MSPM0G3507.

Bootloader Host www.ti.com

18 MSPM0 Bootloader (BSL) Implementation SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

10. Push button S2 on the host board to initiate the firmware update. If there is an error, LED1 turns on.

3.2 PC Host Example
The PC as host need a software GUI (MSPM0_BSL_GUI.exe or Uniflash) and a USB-to-UART bridge. Two
hardware bridges are included (can be chosen in the MSPM0_BSL_GUI.exe): one is XDS110 on the MSPM0
LaunchPad kit and the other is a standalone XDS110. Both of the bridges support the backchannel UART that
can be used as a USB-to-UART bridge. The XDS110 on the LaunchPad kit supports NRST pin and BSL invoke
pin controlling that can be used by the GUI to start BSL mode on the MCU. For the standalone XDS110, two
GPIO output pins (IOOUT0 and IOOUT1) in the AUX connection port can be used to control the NRST pin and
BSL invoke pin on the target device and start BSL mode. (This is implemented with MSPM0_BSL_GUI.exe).

Note
Due to LP-MSPM0C1104 on boad XDS110 do not layout the BSL invoke pin, the GUI not support for it
so far.

3.2.1 Prepare the Image File and Password File

Before downloading the firmware with the GUI, prepare two files: the application firmware file and the BSL
password file.

The GUI (MSPM0_BSL_GUI.exe) supports only the TI-TXT format. For details on how to generate this format
image file with CCS, see 6 in Section 3.1.3.

The format of the password file is similar to the TI-TXT format as shown in Figure 3-6. The BSL
password is defined in the Non-Main memory. For more information, see the technical reference manual
[1] [2] or the bootloader user's guide [3]. If the BSL password is not the default (all 0xFF), modify the
password file. A default password file named BSL_Password32_Default.txt is available in this folder: < …
\mspm0_sdk_xxxx\tools\bsl\BSL_GUI_EXE\Input >.

Figure 3-6. BSL Default Password File (BSL_Password32_Default.txt)

www.ti.com Bootloader Host

SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

MSPM0 Bootloader (BSL) Implementation 19

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/TMDSEMU110-U
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

3.2.2 Steps to Using the GUI
1. Connect the target device and the XDS110 to the PC. When using the XDS110 integrated in the LaunchPad

kit, connect the micro USB cable to the PC as Figure 3-7.

The ROM-based BSL UART pins for MSPM0G3507 are PA10 and PA11, and the pins are directly connected
to the XDS110 backchannel UART, so all of the jumpers in J101 are required (see Table 3-5).

On the LP-MSPM0L1306, the XDS110 backchannel UART pins are different from the BSL UART pins, so
disconnect TXD and RXD in J101 and use jumper wires to connect PA22 and PA23 (see Table 3-5).

Figure 3-7. LaunchPad Kit Connection (Left: LP-MSPM0G3507, Right: LP-MSPM0L1306)

Table 3-4. Jumpers Connection

Boards Mode Jumpers Need Populated
Jumpers Need
Unpopulated

LP-MSPM0G3507 Target
J101 (power, UART pins, Reset and BSL invoke pin), J4, J7(LED),
J21, J22 (UART to J101 XDS)

NA

LP-MSPM0L1306 Target J101 (GND, 3V3, NRST, BSL), J2, J3(LED) J101 (TXD, RXD)

For standalone XDS110, the auxiliary interface (AUX) uses the signal connections in Table 3-5.

Table 3-5. Standalone Signal Connection

Signal

Standalone XDS110 Target Device

Signal AUX Port Signal LP-MSPM0G3507 LP-MSPM0L1306

NRST IO output IOOUT0 NRST NRST pin NRST pin

Invoke IO output IOOUT1 Default: Invoke pin PA18 PA18

UART
RXD UARTRX TXD PA10/UART0_TX PA23/UART0_TX

TXD UARTTX RXD PA11/UART0_RX PA22/UART0_RX

2. Use the GUI to download the image to the target.
a. Choose the TI-TXT format image file that need to be downloaded. (There are two demo images in the

folder named input)
b. Choose the TI-TXT format password file (a default file is in the input folder). For details on preparing this

file, see Section 3.2.1.
c. Choose hardware bridge.
d. Click the download button.

Bootloader Host www.ti.com

20 MSPM0 Bootloader (BSL) Implementation SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

The GUI automatically invokes the BSL so there is no need to manually invoke the BSL during this
operation.

Figure 3-8. Steps to Download Image by GUI With UART
3. If using the XDS110, this GUI supports XDS110 firmware version firmware_3.0.0.20 or higher. If errors occur

when download the image, update the XDS110 firmware.

Figure 3-9. Update XDS110 Firmware

4 Bootloader Target
4.1 Default ROM-Based BSL
For some of the MSPM0 devices include the ROM-based BSL. The ROM-based BSL can just support UART
and I2C interface. That cannot be changed but can be configured for some features in the NON-MAIN flash.
For example, the UART/I2C pin assignment or the I2C address and so on. For more details, see the MSPM0
Bootloader User's Guide.

4.1.1 UART Interface

MSPM0 ROM-based BSL UART is enabled with following configuration:

• Baud rate: 9600bps (can be changed in NON-MAIN (just for some devices) or BSL core commands)
• Data width: 8 bit
• One stop bit
• No parity

The UART pins assignment and baud rate (just for some devices) can be configured in the NON-MAIN flash.

4.1.2 I2C Interface

MSPM0 ROM-based BSL I2C is enabled with following configuration:

• Address: 0x48 (can be changed in NON-MAIN)
• Address width: 7 bit

The I2C pins assignment and slave address can be configured in the NON-MAIN flash.

www.ti.com Bootloader Target

SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

MSPM0 Bootloader (BSL) Implementation 21

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

4.2 Flash-Based Plug-In Interface Demos
When the ROM-based BSL interface section settings can’s meet the application’s requirement. The flash-based
plug-in interface demos can be used. Due to the code for the communication section are both open source,
customer can change any settings in the code. Remember that the flash-based plug-in interface demos can only
receive the BSL packets and not parse the packets. So, the plug-in interface demos need to co-work with BSL
core located in the ROM BSL to parsing the commands.

4.2.1 UART Interface

MSPM0 flash-based UART is enabled with following configuration by default:

• Baud rate: 9600bps
• Data width: 8 bit
• One stop bit
• No parity

4.2.1.1 Step by Step Using the Demo

These are the steps on how to use the flash-based UART plug-in interface demo for MSPM0G3507:

1. Import the flash-based UART plug-in interface demo into CCS from the SDK.

<…\mspm0_sdk_xxxx\examples\nortos\LP_ MSPM0G3507\bsl\ bsl_uart_flash_interface >
2. Make any needed changes and build the project.
3. Do a factory reset to clear any static flash write protection settings in NONMAIN. If the device is blank, this

step can be skipped. For more information on the steps to perform this operation, see Section 5.2.
4. Download the UART plug-in code into flash. The important thing downloading the image is to enable

NONMAIN flash erase shown in Figure 2-4. The plug-in interface demo cannot be debugged directly. For
more details, see Section 4.2.1.2.

5. Prepare one LP-MSPM0G3507 launchpad and use the BSL host demos to do the firmware update. For
more details, see Section 3.1.3 (MCU as host) or Section 3.2.2 (PC as host).

4.2.1.2 How to Debug the Plug-In Interface Code

When changing the plug-in interface demo code and doing a debug , here are some guide lines:

1. Make any changes needed and build the plug-in interface project.
2. Download it into the device with NON-MAIN erased as the same with step C in Section 2.2 and then do a

power cycle.
3. Launch the device as shown below in Figure 4-1. Step 2 is to right click of the ccxml file.

Bootloader Target www.ti.com

22 MSPM0 Bootloader (BSL) Implementation SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

Figure 4-1. Launch the Device in CCS
4. Connect the target.

Figure 4-2. Connect the Device in CCS
5. Load symbols of the plug-in interface code and put the breakpoint needed.

Figure 4-3. Load Symbols in CCS
6. Keep running the code to do the debug. The device go into BSL mode automatically due to the application

area is empty.

www.ti.com Bootloader Target

SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

MSPM0 Bootloader (BSL) Implementation 23

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

4.2.2 I2C Interface

The I2C interface in the BSL acts as the I2C target or slave.

• I2C target address is 0x48 by default
• External pullup resistors are required for the SCL and SDA lines.

The demo’s operation details is similar with UART plug-in interface. For the step by step operation and how to
debug the demo, see Section 4.2.1.1 and Section 4.2.1.2

4.2.3 SPI Interface

The SPI plug-in demo is configured the SPI in target mode and other default settings as below:

• Motorola 4 wire connection
• Data captured on first clock edge
• Clock polarity low
• Bit order MSB

The demo’s operation details is similar with UART plug-in interface. For the step by step operation and how to
debug the demo, see Section 4.2.1.1 and Section 4.2.1.2

4.2.4 CAN Interface

The CAN plug-in demo is configured the CAN module as below by default:

• The Example is configured to work in CAN mode initially at 1Mbps.
• To change the bitrate of communication based on the configuration obtained from host through change

baudrate command.

The data section in change baudrate command is expected to match the format shown in Figure 4-4.

Figure 4-4. Data Section in Change Baudrate Command

• An arbitrary CAN frame is injected into CAN bus, on changing the CAN Mode to CAN FD to calibrate the
transmission delay compensation attribute values. The Identity value can be modified as required.

• Message Identifier accepted by BSL Plug-in is 0x003
• Message Identifier sent from BSL Plug-in is 0x004

The demo’s operation details is similar with UART plug-in interface. For the step by step operation and how to
debug the demo, see Section 4.2.1.1 and Section 4.2.1.2

4.3 Secondary BSL Demo
If the private protocol is needed, the ROM-based BSL core cannot be used anymore or MSPM0C without ROM
BSL, the secondary BSL demo can be referred. A totally open sourced secondary BSL demos is provided in the
SDK that you can use to easily modify the protocol. The default protocol of the secondary BSL demo is the same
with ROM-based BSL. There are some kinds of secondary BSL demos mentioned in Figure 1-6.

Table 4-1. MSPM0 Secondary BSL Demos Summary
Demos Projects in SDK Using Case
Seconday BSL start from 0x1000 <...\mspm0_sdk_xx\examples\nortos\LP_MS

PM0L1306(or
LP_MSPM0G3507)\bsl\secondary_bsl_uart/i
2c/spi/can>

Just can be used with the device that can do
BSL invoke detection in boot code(normally
the device with ROM BSL) and need private
protocol.

Flash based BSL start from 0x0 for
MSPM0C

<...\mspm0_sdk_xx\examples\nortos\LP_MS
PM0C1104\bsl\flash_bsl>

MSPM0 without ROM based BSL or need to
change the judgment condition before jump
to application like to do application's area
CRC every time when power up or reset.

Live Firmware Update BSL NA Need live firmware update

Bootloader Target www.ti.com

24 MSPM0 Bootloader (BSL) Implementation SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

In troditinal flash based BSL solution are most similar with the demo of Flash based BSL start from 0x0 for
MSPM0C. For this kind of solution it will jump into the application code directly to set the PC with the start
address of the application code. But it may cause stack conflict issue in some unexpected condition. For the
solution of Seconday BSL start from 0x1000, it use reset to jump to applicaton code that will reset all registers
or SRAM before go into applicaton code that will be more stable. So if the MSPM0 device with ROM based BSL
and also need private protocol highly recommend to usde the demo of Seconday BSL start from 0x1000.

4.3.1 Flash-Based Secondary BSL Start From 0x1000

The secondary BSL start from 0x1000, it can be put anywhere in the flash area except start from 0x0. Because
the application code must start from the 0x0. The secondary BSL demo executed flow showed in Figure 1-6. It
can support UART or I2C or SPI or CAN interface if the device supported. The demo’s step-by-step operation is
the same as shown in Section 4.2.1.1.

When needed to debug the code after modification, follow the steps in Section 4.2.1.2.

In the secondary BSL, the interrupt vector table offset address has been moved start from 0x1000(due to the
code start from 0x1000) in the reset handler that located in the file named startup_mspm0xxxx_ticlang.

When trying to move the secondary BSL to another flash area, this can be done in the cmd file. For example,
move the secondary BSL start from 0x4000, make the modification of the cmd file as shown in Figure 4-5.

Figure 4-5. Move to 0x4000 cmd File Modification

The flash static write protection parameters and the start address of the alternate BSL also should be modified in
the Sysconfig file, as shown in Figure 4-6.

Figure 4-6. Move to 0x4000 Sysconfig File Modification

Except the modification in the secondary BSL, the application’s cmd file also need to be modified that to avoid
re-used the flash area that be used by secondary BSL.

www.ti.com Bootloader Target

SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

MSPM0 Bootloader (BSL) Implementation 25

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

4.3.2 Flash-Based Secondary BSL Start From 0x0000

For the secondary BSL that start from 0 address, the MCU will run into secondary BSL every time when
power up or reset. In the secondary BSL use custom check judgement to decide if stay in BSL to do firmware
update or go into application. For the advantage of this solution is that customer can used special judgement
that not limited to GPIO, blank device detection. For example need to check CRC of application before jump
to application code to make sure the integrity of the application code. The other using case is for some
MSPM0 device without ROM BSL like MSPM0C and we do have demo code about it in the SDK.When jump to
application can set the PC to the start address of application.

To use this kind of BSL, it is better to create two project one is for secondary BSL and the other is for the
application. The flash area need to be seperated. So there will be two interrupt table that each project has one.
It need to configurate the vector table offset registe(SCB->VTOR) to make the current interrupt table to be active
when jump from BSL to applciaton code(Applicaton jump to BSL is using reset that will reset vector table offset
registe automatically).

There is also a secondary BSL demos code that can support live firmware update. That demo means the
secondary BSL firmware update ongoing without stop application code. For more information, see MSPM0 Live
Firmware Update (LFU) Bootloader Implementation .

4.3.2.1 Flash-Based 0x0 Address BSL Demo for MSPM0C

Due to MSPMC device do not has the ROM based BSL, so it must to use flash based BSL and it must be start
from 0x0 address that to run the invoke detection code every time when power up or reset.

In this demo, when device power up or reset, it will go into secondary BSL code first, in BSL reset handler it will
detect the BSL invoke conditions (blank detectin, GPIO invoke or software invoke) to decide if need to stay in
the BSL code to do firmware update or go into application code by set PC to application's start address. For this
demo do not include application code CRC check, you can can refer to the applicaton note of MSP430.

Currently in this demo using the code below to set the PC of application's start address in reset handler ISR.

 uint32_t *appResetHandler = (uint32_t *) (MAIN_APP_START_ADDR + VTOR_RESET_HANDLER_OFFSET);
 appPointer FlashBSL_applicationStart = (appPointer) * (appResetHandler);
 /* Before branch check if the address of reset handler is a valid Flash address */
 if ((*((uint32_t *) MAIN_APP_RESET_VECTOR_ADDR) >= MAIN_APP_START_ADDR) &&
 (*((uint32_t *) MAIN_APP_RESET_VECTOR_ADDR) < (MAIN_APP_START_ADDR + DEVICE_FLASH_SIZE))) {
 FlashBSL_applicationStart(); }

There is another simple way to do the jump as below(APP_AREA_START_ADDR is the application's area start
address that saved the interrupt vector table, shift 4 bytes to get the reset handler address)

/*! Jumps to application using its reset vector address */
#define TI_MSPBoot_APPMGR_JUMPTOAPP() {((void (*)()) (*(uint32_t *)(APP_AREA_START_ADDR + 4)))
();}

Bootloader Target www.ti.com

26 MSPM0 Bootloader (BSL) Implementation SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/an/slaaec9/slaaec9.pdf
https://www.ti.com/lit/an/slaaec9/slaaec9.pdf
https://www.ti.com/lit/an/slaa721/slaa721.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

If there are some jumping issue, please try the assembly code below that clear the RAM before jump to
application's start address if the boot code and applicaton code are sharing some SRAM area.

 __asm(
#if defined(__GNUC__)
 ".syntax unified\n" /* Load SRAMFLASH register*/
#endif
 "ldr r4, = 0x41C40018\n" /* Load SRAMFLASH register*/
 "ldr r4, [r4]\n"
 "ldr r1, = 0x03FF0000\n" /* SRAMFLASH.SRAM_SZ mask */
 "ands r4, r1\n" /* Get SRAMFLASH.SRAM_SZ */
 "lsrs r4, r4, #6\n" /* SRAMFLASH.SRAM_SZ to kB */
#if defined ECC
 "ldr r1, = 0x20300000\n" /* Start of ECC-code */
 "adds r2, r4, r1\n" /* End of ECC-code */
 "movs r3, #0\n"
 "init_ecc_loop: \n" /* Loop to clear ECC-code */
 "str r3, [r1]\n"
 "adds r1, r1, #4\n"
 "cmp r1, r2\n"
 "blo init_ecc_loop\n"
#endif
 "ldr r1, = 0x20200000\n" /* Start of NON-ECC-data */
 "adds r2, r4, r1\n" /* End of NON-ECC-data */
 "movs r3, #0\n"
 "init_data_loop:\n" /* Loop to clear ECC-data */
 "str r3, [r1]\n"
 "adds r1, r1, #4\n"
 "cmp r1, r2\n"
 "blo init_data_loop\n"
 //Jump to Reset_Handler
 "ldr r0, = 0x7004\n" //FLASH_SBSL_INTVEC in .cmd file+ 4
 "ldr r0, [r0]\n"
 "blx r0\n"
);

Add define of ECC if the device support ECC SRAM. For this demo the application start address is saved at
address 0x7004, change it based on your application start address.

If you put the jump after peripheral initilization(not call the jump function before execute main() function), few
points here need to take care:

• Do not jump in the ISR(execpt reset handler ISR) .
• Disable global interrupt(can use this function __disable_irq; and need to enable it in application's code by

call __enable_irq;) → reset all peripherals that been used → clear all pending NVIC IRQs(call this API
NVIC_ClearPendingIRQ(IRQn_Type IRQn)) → clear the RAM if needed → jump to application code start
address.

4.3.2.2 Live Firmware Update (LFU) Solution

Live firmware update is used to run the application code during the firmware update. It uses FreeRTOS to
handle the firmware update and the application code both running at the same time. For more information, see
MSPM0 Live Firmware Update (LFU) Bootloader Implementation.

5 Common Questions
5.1 Linker File Modification
The demo provided currently are based on the CCS and most of the demos need to modify the linker files to
do the memory arrangement. CCS is used in the cmd file to handle this work. For more information about the
introduction of the cmd linker file, see this web page TI Linker Command File Primer.

www.ti.com Bootloader Target

SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

MSPM0 Bootloader (BSL) Implementation 27

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/an/slaaec9/slaaec9.pdf
https://software-dl.ti.com/ccs/esd/documents/sdto_cgt_Linker-Command-File-Primer.html
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

5.2 Factory Reset by CCS to Recover Device
If the device cannot be accessed, try to do a factory reset of CCS to recover the device. The steps are as shown
below:

1. Hardware connection: XDS110 with MSPM0 device.

Signals needed: GND, SWDIO, SWCLK, NRST
2. Open Target Configurations.

Figure 5-1. Open Target Configurations
3. In the Target Configurations window, find current MSPM0 project and expand the folders to find the .ccxml

file:

Figure 5-2. Find the ccxml File

Common Questions www.ti.com

28 MSPM0 Bootloader (BSL) Implementation SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

4. Right-click the .ccxml file and click on Launch Selected Configuration.

Figure 5-3. Launch Selected Configuration
5. Click on Scripts→ MSPM0G3507 Commands → MSPM0_Mailbox_FactoryReset_Auto.

Figure 5-4. Do Factory Reset With the Script
6. The Console will show the following:

Figure 5-5. Log Information in Console
7. If that is not working, try force the device go into BSL and do the steps b to e above. To force the device go

into BSL mode, if you have not modify the default BSL invoke pin that is PA18 in Non-main flash, you can
pull high of PA18 before power up the device and keep it high. If you use the Launchpad you can just keep
push the button connect with PA18 when connect the board to PC.

6 References
1. Texas Instruments: MSPM0 G-Series 80-MHz Microcontrollers Technical Reference Manual
2. Texas Instruments: MSPM0 L-Series 32-MHz Microcontrollers Technical Reference Manual
3. Texas Instruments: MSPM0 Bootloader User's Guide

www.ti.com References

SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

MSPM0 Bootloader (BSL) Implementation 29

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAU846
https://www.ti.com/lit/pdf/SLAU847
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (March 2024) to Revision C (September 2024) Page
• Updated Section 1.1.2.. 4
• Updated Section 1.1... 6
• Updated Section 1.1.3.. 8
• Updated Section 1.2... 15
• Updated Section 3.. 24

Revision History www.ti.com

30 MSPM0 Bootloader (BSL) Implementation SLAAE88C – MARCH 2024 – REVISED SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE88C&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	1.1 Bootloader Introduction
	1.1.1 Bootloader Concept
	1.1.2 MSPM0 Bootloader Structure
	1.1.2.1 ROM-Based BSL
	1.1.2.2 ROM-Based BSL With Flash-Based Plug-In Interface
	1.1.2.3 Flash-Based Secondary BSL

	1.1.3 MSPM0 BSL Features and Demos Summary

	1.2 BSL Host Implementation Summary

	2 BSL Configuration in Non-Main (Configuration NVM)
	2.1 Non-Main Introduction
	2.2 Example – Disable PA18 BSL Invoke Pin With Sysconfig

	3 Bootloader Host
	3.1 MCU Host Code Introduction
	3.1.1 Hardware Connection
	3.1.2 TXT to Header File Conversion
	3.1.3 Step-by-Step Using the Demo

	3.2 PC Host Example
	3.2.1 Prepare the Image File and Password File
	3.2.2 Steps to Using the GUI

	4 Bootloader Target
	4.1 Default ROM-Based BSL
	4.1.1 UART Interface
	4.1.2 I2C Interface

	4.2 Flash-Based Plug-In Interface Demos
	4.2.1 UART Interface
	4.2.1.1 Step by Step Using the Demo
	4.2.1.2 How to Debug the Plug-In Interface Code

	4.2.2 I2C Interface
	4.2.3 SPI Interface
	4.2.4 CAN Interface

	4.3 Secondary BSL Demo
	4.3.1 Flash-Based Secondary BSL Start From 0x1000
	4.3.2 Flash-Based Secondary BSL Start From 0x0000
	4.3.2.1 Flash-Based 0x0 Address BSL Demo for MSPM0C
	4.3.2.2 Live Firmware Update (LFU) Solution

	5 Common Questions
	5.1 Linker File Modification
	5.2 Factory Reset by CCS to Recover Device

	6 References
	Revision History

