

TVP5146 SCART and OSD

HPA Digital Audio Video

ABSTRACT

The TVP5146 video decoder provides support for a SCART interface, which is commonly used in the European market to provide synchronized composite and component video simultaneously. Various fast switching and overlay options are available, including digital RGB overlay. The various overlay modes are addressed along with the TVP5146 hardware and software setup requirements.

Contents

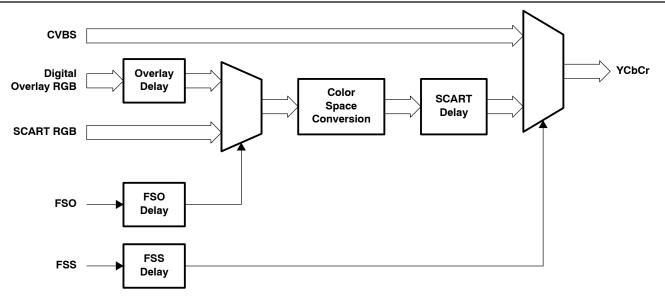
1	Introduction	2
2	SCART Mode	
3	Digital RGB Overlay	5
Apr	pendix A. SCART- and Overlay-Related I ² C Registers	
••	Input Select	
	Fast-Switch Control	10
	Fast-Switch Overlay Delay	10
	Fast-Switch SCART Delay	
	Overlay Delay	
	SCART Delay	
App	pendix B. Additional Overlay Options	

Figures

Figure 1.	Fast-Switch Control of SCART and Digital Overlay	3
Figure 2.	SCART Overlay With CVBS (Mode 000: CVBS $\leftarrow \rightarrow$ SCART)	
Figure 3.	Typical RGB, CVBS, and FSS Connections for SCART	5
Figure 4.	Digital RGB Overlay with CVBS (Mode 001: (CVBS, S_VIDEO $\leftarrow \rightarrow$ Digital Overlay)	6
Figure 5.	Digital RGB Overlay With Component YPbPr (Mode 2: Component ←→ Digital Overlay)	
Figure 6.	Digital RGB Overlay	
Figure 7.	SCART-Mode Overlay of Digital RGB	
Figure 8.	Fast-Switch Mode 003 [(CVBS ←→ SCART) ←→ Digital Overlay]	
Figure 9.	Fast Switch Mode 004 [(CVBS ←→ Digital Overlay) ←→ SCART]	. 13
Figure 10.	Fast Switch Mode 005 [CVBS ←→ (SCART RGB ←→ Digital Overlay)]	

Tables

Table 1.	Supported Overlay Modes (I ² C Register 28h)	3
	Typical I ² C Setup for SCART RGB Overlay With CVBS	
Table 3.	Typical I ² C Setup for Digital RGB Overlay With CVBS	6
Table 4.	Typical I ² C Setup for Digital RGB Overlay With Component YPbPr	7


1 Introduction

The TVP5146 offers a SCART mode of operation for simultaneous hookup of composite video and analog RGB component inputs. The SCART interface, commonly used in the European market, carries synchronous composite video and analog RGB video on the same interface, with the composite video (CVBS) serving as the timing source for both. Sync signals are typically not present on the analog RGB signals. A fast-switch signal may be present on the interface for control of switching between the input sources. The FSS/GPIO input terminal of the TVP5146 can be used to switch actively between the CVBS and RGB inputs. The analog RGB inputs must be synchronous to CVBS, because all TVP5146 internal timing and sampling is derived from this composite input signal.

Support for digital RGB overlay is also provided through the use of three digital RGB input terminals and the FSO/GPIO fast-switch input terminal of the TVP5146. Eight colors of digital RGB can be overlaid on a composite, S-video, or component input source. As with the SCART analog overlay, the digital RGB must be synchronous with the input source. Digital RGB overlay is only available when a 10-bit ITU-R BT.656 digital output format is used.

Both SCART and digital overlay modes can be used for on-screen RGB graphics or picture-in picture applications. The FSS/GPIO input terminal serves as the fast switch for SCART operation, while the FSO/GPIO terminal serves as the fast switch for digital overlay operations. Four delay controls are provided for adjusting timing between input sources and timing between fast switch inputs and the input sources. Only slight internal delay adjustments are possible, so coarse positioning must be controlled by the OSD source. Figure 1 shows a block diagram of the fast switches and delay controls. The FSS/GPIO input controls SCART switching, while the FSO/GPIO input controls digital overlay switching. Table 1 shows the overlay modes that are supported with the I²C fast-switch control register (28h). The parentheses in the table entries help define the priority of the overlay. Detailed descriptions of the I²C registers related to SCART and overlay options are shown in Appendix A.

Note: All TVP5146 digital inputs are 3.3-V compliant, so care should be taken not to exceed these levels on the digital RGB and fast switch input terminals. This may require signal attenuation depending on the application and devices used. Resistor dividers or transistor based level shifters should work in most cases.

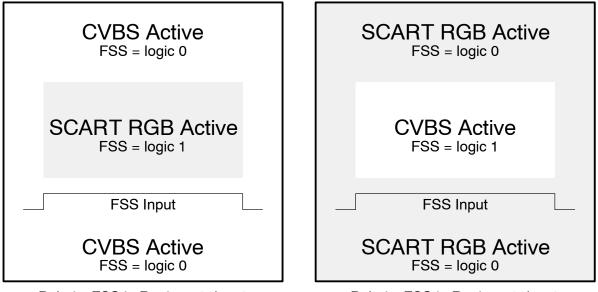

Modes	Description						
000	CVBS ←→ SCART						
001	CVBS, S_VIDEO $\leftarrow \rightarrow$ Digital overlay						
010	Component ←→ Digital overlay						
011	(CVBS $\leftarrow \rightarrow$ SCART) $\leftarrow \rightarrow$ Digital overlay						
100	(CVBS $\leftarrow \rightarrow$ Digital overlay) $\leftarrow \rightarrow$ SCART						
101	$CVBS \leftrightarrow (SCART \leftrightarrow Digital overlay)$						
110	CVBS only						
111	Component only						

Table 1. Supported Overlay Modes (I²C Register 28h)

2 SCART Mode

The TVP5146 has four 30-MSPS, 10-bit A/D channels that can be set up to sample composite CVBS video and component RGB/YPbPr inputs simultaneously. In the SCART mode of operation, all synchronization and timing is derived from the CVBS video input signal. This CVBS signal must always be assigned to input terminal VI_4_A (pin 23) for proper SCART operation. Various SCART input configurations are selectable in the I²C input select register (00h) and are shown in Appendix A along with the other overlay and fast-switch related registers. Automatic gain control is provided for the CVBS input signal, but a fixed, manually controlled gain is used for the RGB/YPbPr inputs. The default fixed gain settings are set for nominal RGB input levels.

Various SCART overlay options are also available and selectable in I²C register 28h. Pixel-bypixel switching is supported by use of the FSS/GPIO fast-switch input terminal. This FSS input can be used to overlay RGB graphics pixel-by-pixel or can be used to define a window for picture-in-picture applications. Internal scaling is not supported, so all overlay formatting must be handled by the video source. Figure 2 shows a typical application where RGB is overlaid with CVBS. The polarity of the FSS/GPIO input terminal defines which input source is passed to the digital output in any instance. The polarity FSS bit in I²C register 28h can be used to invert the polarity of the FSS fast switch input, essentially inverting the overlay. Typical hardware and I²C software configurations for this mode of operation are shown in Table 2 and Figure 3. Level translation may be required for the fast-switch input.

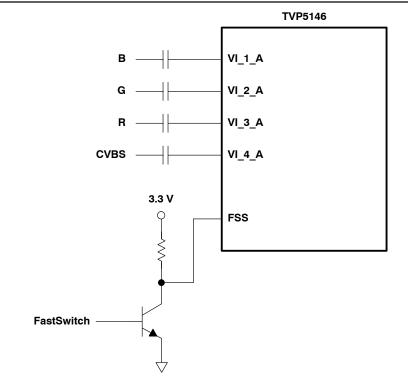
Polarity FSS in Register 28h = 1

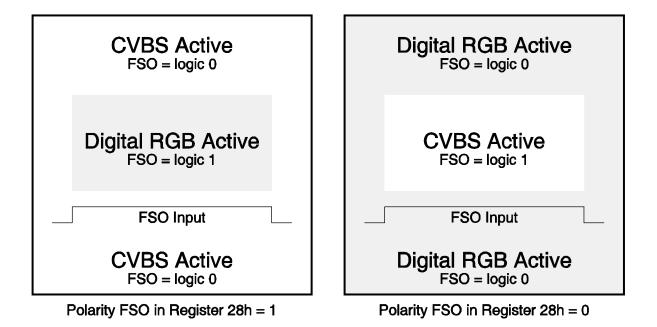
Polarity FSS in Register 28h = 0

Table 2. Typical I²C Setup for SCART RGB Overlay With CVBS

I ² C Subaddress	Contents	Description					
00h	CCh	Assign CVBS to VI_4_A , select SCART RGB and assign to VI_1_A, VI_2_A, and VI_3_A					
28h	04h	Select CVBS <> SCART fast switch mode, polarity FSS = 0, FSS sampled on falling edge					

Note: See Appendix A for a more detailed description of the I²C registers.




Figure 3. Typical RGB, CVBS, and FSS Connections for SCART

3 Digital RGB Overlay

The TVP5146 also provides support for pixel-by-pixel overlay of digital RGB on decoded CVBS, S-video, or component video. Three input terminals (C_6_GPIO_RED, C_7_GPIO_GREEN, and C_8_GPIO_BLUE) are available for a total of eight possible colors. In this mode of operation, the TVP5146 receives digital RGB from a back-end processor or OSD device that is synchronized to the input video source and the TVP5146. The FSO/PGIO input terminal, similar to the FSS/GPIO input used for SCART overlay, is used as the fast-switch control for digital overlay. Best performance is achieved when this FSO control and the digital RGB inputs are synchronized with the TVP5146 DATACLK output.

As with SCART overlay, the polarity of the FSO input terminal defines which input source is active in any given instance. The polarity FSO bit in I²C register 28h can be used to invert this polarity (Figure 4 and Figure 5). Figure 6, Table 3, and Table 4 show typical hardware and software configurations for digital RGB overlay with CVBS and component YPbPr inputs.

Digital overlay is only supported when a 10-bit output format is used. If a 20-bit output format is required, SCART overlay can be used to overlay the digital RGB on CVBS as analog RGB (Figure 7). This method can also offer improved performance if the digital RGB cannot be properly synchronized with the TVP5146 DATACLK. Resistor dividers should be used to establish proper analog RGB input levels. In this mode of operation, I²C software setup is identical to the SCART overlay mode.

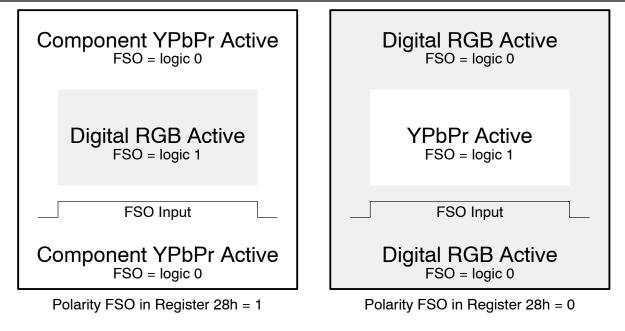


Figure 4. Digital RGB Overlay with CVBS (Mode 001: (CVBS, S_VIDEO $\leftarrow \rightarrow$ Digital Overlay)

Note: Video output switching is controlled by the FSO/GPIO input terminal. The FSO polarity bit in I²C register 28h can be used to invert the polarity of the FSO fast-switch input.

I ² C Subaddress	Contents	Description
00h	0Ch	Assign only CVBS to VI_4_A.
28h 28h		Select CVBS, S_VIDEO $\leftarrow \rightarrow$ Digital overlay fast-switch mode, polarity FS0 = 0, FS0 sampled on falling edge.

Note: See Appendix A for a more detailed description of the I²C registers.

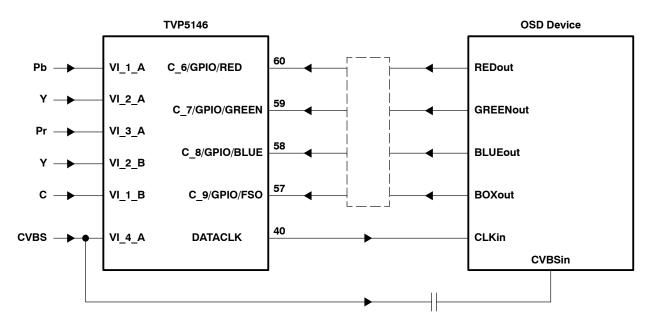

Figure 5. Digital RGB Overlay With Component YPbPr (Mode 2: Component ←→ Digital Overlay)

Table 4. Typical I²C Setup for Digital RGB Overlay With Component YPbPr

I ² C Subaddress	Contents	Description
00h	94h	Assign only YPbPr to VI_1_A, VI_2_A, and VI_3_A.
28h	48h	Select component $\leftarrow \rightarrow$ Digital overlay fast-switch mode, polarity FS0 = 0, FS0 sampled on falling edge.

Note: See Appendix A for a more detailed description of the I²C registers.

Figure 6 is a block diagram depicting digital RGB overlay. Eight colors of digital RGB can be overlaid on CVBS, S-video, or component inputs. Best performance is achieved if digital RGB data and FSO are synchronized to DATACLK. Digital overlay is only supported when a 10-bit output format is used.

Note: Digital RGB and FSO inputs are 3.3-V compliant. Attenuation or level translation may be required with some OSD devices.

Figure 7 is a block diagram depicting the SCART-mode overlay of digital RGB. If 20-bit output format is required, SCART analog overlay can be used to overlay digital RGB on CVBS video. Resistor dividers should be used to establish proper analog input levels. This method can also offer performance advantages in 10-bit applications, if RGB data cannot be synchronized properly to the TVP5146 DATACLK.

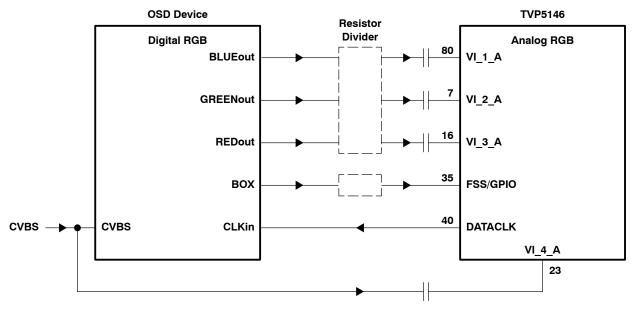


Figure 7. SCART-Mode Overlay of Digital RGB

Appendix A. SCART- and Overlay-Related I²C Registers

Input Select

Subaddre	ss 00h												
											D		t (00h)
7	6	5	4	3			2			1			0
			Input se	elect [7:0]									
								Innu	t Sel	ect [7	7.01		
	INPUT(S) SELECTED				7	6	5	4	3	2	1	0	HEX
	VI_1_A (defau	ılt)			0	0	0	0	0	0	0	0	00
CVBS	VI_1_B				0	0	0	0	0	0	0	1	01
	VI_1_C				0	0	0	0	0	0	1	0	02
	VI_2_A				0	0	0	0	0	1	0	0	04
	VI_2_B				0	0	0	0	0	1	0	1	05
	VI_2_C				0	0	0	0	0	1	1	0	06
	VI_3_A				0	0	0	0	1	0	0	0	08
	VI_3_B				0	0	0	0	1	0	0	1	09
	VI_3_C				0	0	0	0	1	0	1	0	0A
	VI_4_A				0	0	0	0	1	1	0	0	0C
	VI_2_A(Y), VI_1_A(C)					1	0	0	0	1	0	0	44
S-Video	VI_2_B(Y), VI_1_B(C)					1	0	0	0	1	0	1	45
	VI_2_C(Y), VI_1_C(C)					1	0	0	0	1	1	0	46
	VI_2_A(Y), VI_3_A(C)					1	0	1	0	1	0	0	54
	VI_2_B(Y), VI				0	1	0	1	0	1	0	1	55
	VI_2_C(Y), VI				0	1	0	1	0	1	1	0	56
	VI_4_A(Y), VI	· ·			0	1	0	0	1	1	0	0	4C
	VI_4_A(Y), VI	· ·			0	1	0	0	1	1	0	1	4D
	VI_4_A(Y), VI	· ·			0	1	0	0	1	1	1	0	4E
	VI_4_A(Y), VI				0	1	0	1	1	1	0	0	5C
	VI_4_A(Y), VI	· ·			0	1	0	1	1	1	0	1	5D
	VI_4_A(Y), VI	;			0	1	0	1	1	1	1	0	5E
505	-	_2_A(G), VI_3_A			1	0	0	0	0	1	0	0	84
RGB		_2_B(G), VI_3_E			1	0	0	0	0	1	0	1	85
		_2_C(G), VI_3_(1	0	0	0	0	1	1	0	86
YPbPr		/I_2_A(Y), VI_3_			1	0	0	1	0	1	0	0	94
	VI_1_B(Pb), VI_2_B(Y), VI_3_B(Pr)					0	0	1	0	1	0	1	95
	VI_1_C(Pb), VI_2_C(Y), VI_3_C(Pr)					0	0	1	0	1	1	0	96
SCADT	VI_1_A(B), VI_2_A(G), VI_3_A(R), VI_4_A(CVBS)					1	0	0	1	1	0	0	CC
SCART	VI_1_B(B), VI_2_B(G), VI_3_B(R), VI_4_A(CVBS)					1	0	0	1	1	0	1	CD
		_2_C(G), VI_3_(1	1	0	0	1	1	1	0	CE
		/I_2_A(Y), VI_3_		, ,	1	1	0	1	1	1	0	0	DC
		/I_2_B(Y), VI_3_			1	1	0	1	1	1	0	1	DD
i	VI_1_C(Pb), V	/I_2_C(Y), VI_3_	<u>(</u> Pr), VI_4_A	(CARS)	1	1	0	1	1	1	1	0	DE

Fast-Switch Control

Subaddress	28h
------------	-----

Default (CC											
7	6	5	4	3	2	1	0				
	Mode [2:0]		Reserved	FSO edge	FSS edge	Polarity FSO	Polarity FSS				

Mode [2:0]: Select fast-switch modes

- $000 = CVBS \leftrightarrow SCART$
- 001 = CVBS, S_VIDEO $\leftarrow \rightarrow$ Digital overlay
- 010 = Component $\leftarrow \rightarrow$ Digital overaly
- 011 = (CVBS $\leftarrow \rightarrow$ SCART) $\leftarrow \rightarrow$ Digital overlay
- 100 = (CVBS $\leftarrow \rightarrow$ Digital overlay) $\leftarrow \rightarrow$ SCART
- 101 = $CVBS \leftrightarrow (SCART \leftrightarrow Digital overlay)$
- 110 = Composite only (default)
- 111 = Component only

FSO edge: FSO is sampled at rising or falling edge of sampling clock

- 0 = Rising edge
- 1 = Falling edge (default)

FSS edge: FSS is sampled at rising or falling edge of sampling clock

- 0 = Rising edge
- 1 = Falling edge (default)

Polarity FSO

- 0 = Digital RGB overlay is active when the FSO input is low.
- 1 = Digital RGB overlay is active when the FSO input is high.

Polarity FSS

- 0 = SCART overlay is active when the FSO input is low.
- 1 = SCART overlay is active when the FSO input is high.

Fast-Switch Overlay Delay

Subaddress	29h							
						I	Default (00h)	
7	6	5	4	3	2	1	0	
	Reserved		FSO delay [4:0]					

FSO delay [4:0]: Adjusts delay between digital RGB and FSO

01111 = +15-pixel delay

00001 = +1-pixel delay

00000 = 0-pixel delay (default)

11111 = -1-pixel delay

10000 = -16-pixel delay

Fast-Switch SCART Delay

Subaddress	2Ah						
	·						Default (00h)
7	6	5	4	3	2	1	0
Reserved			FSS delay [4:0]				

FSS delay [4:0]: Adjusts delay between FSS and component RGB/YPbPr

01111 = +15-pixel delay

00001 = +1-pixel delay

00000 = 0-pixel delay (default)

- 11111 = -1-pixel delay
- 10000 = -16-pixel delay

Overlay Delay

Subaddress	2Bh						
							Default (00h)
7	6	5	4	3	2	1	0
Reserved			Overlay delay [4:0]				

Overlay delay[4:0]: Adjusts delay between digital RGB and CVBS (or S-Video or component video)

- 01111 = +15-pixel delay
- 00001 = +1-pixel delay

00000 = 0-pixel delay (default)

- 11111 = -1-pixel delay
- 10000 = -16-pixel delay

SCART Delay

Subaddress 2Ch

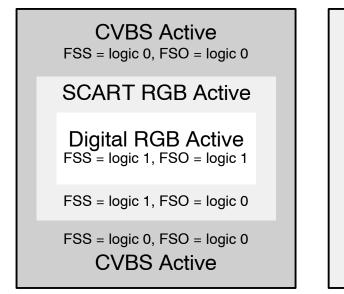
							Default (00h)
7	6	5	4	3	2	1	0
Reserved			SCART delay [4:0]				

SCART delay[4:0]: Adjusts delay between CVBS and component (RGB) video

01111 = +15-pixel delay

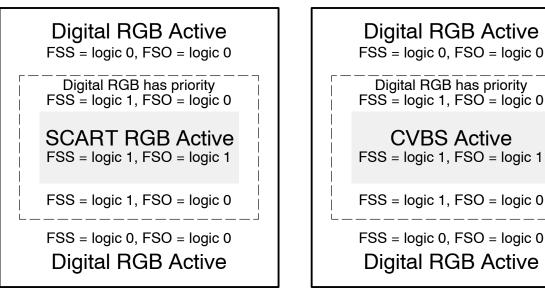
00001 = +1-pixel delay

00000 = 0-pixel delay (default)


11111 = -1-pixel delay

10000 = -16-pixel delay

Appendix B. Additional Overlay Options


Figure 8 shows fast-switch mode 003. In this mode, CVBS is first overlaid with SCART and the result then overlaid with digital RGB. FSO has priority over FSS.

Polarity FSS = 1, Polarity FSO = 1

SCART RGB Active FSS = logic 0, FSO = logic 0 CVBS Active Digital RGB Active FSS = logic 1, FSO = logic 1 FSS = logic 1, FSO = logic 0 FSS = logic 0, FSO = logic 0 SCART RGB Active

Polarity FSS = 0, Polarity FSO = 1

Polarity FSS = 1, Polarity FSO = 0

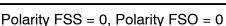
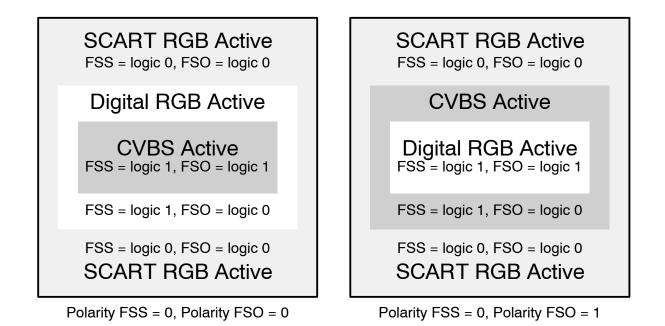
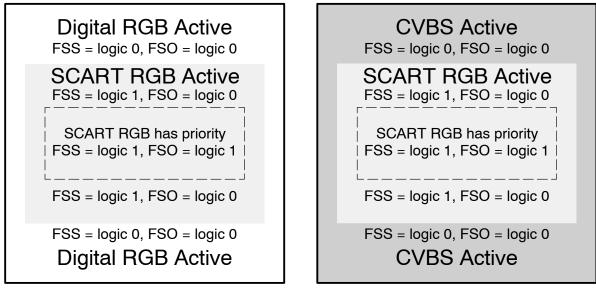
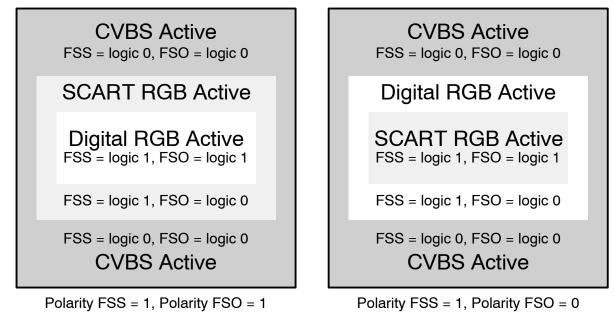
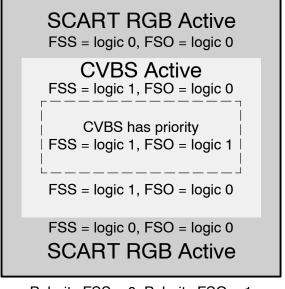




Figure 9 shows fast-switch mode 004. In this mode, CVBS is overlaid with digital RGB, and the result then overlaid with SCART. FSS has priority over FSO.




Polarity FSS = 1, Polarity FSO = 0

Polarity FSS = 1, Polarity FSO = 1

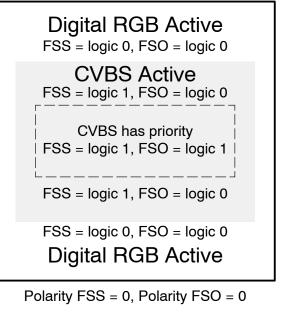


Figure 10 shows fast-switch mode 005. In this mode, SCART is overlaid with digital RGB, and the result then overlaid with CVBS. FSS has priority over FSO.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated