

TVP5150AM1 Patch Code Download Guidelines

The TI family of video decoder products offers the optional flexibility to update device firmware by downloading patch code into the device RAM. This application note outlines how to correctly download patch code updates into the TVP5154A. A summary of all required I²C register writes, and sample C code are included.

1 Download Options

There are two options for downloading the patch code onto the TVP5154A: (1) using the TI EVM, and (2) using the Customer System.

1.1 TI EVM

- 1. Power-on the board with TVP5154A device on it. Connect source to Input and Output to monitor.
- 2. From the included WinVCC4 or later software, open P5154_02XX.CMD file, where XX refers to the patch code revision number.
- 3. Load line 1
 - "Set TVP5154 ROM Initialize for NTSC"

Now you should get good picture on monitor. There is no code loading here, just setups for TVP5154A and ADV7311.

Check the version number from property sheets on WinVCC4. You will see 02.00

4. Load line 2

"TVP5154 Load RAM Code p5154_02XX.hra" Now the patch code is downloaded and microprocessor is restarted. The decoder is running ROM + Patch RAM code.

Check the version number from the property sheets, you will see 02.XX. The XX refers to the patch code revision number.

1.2 Customer System

- 1. Power on the board with TVP5154A ROM v2.00 device on it. After the power supplies are active and stable (at least 100ms), perform a hardware reset. This is done by pulling RESETB (pin 8) active low for at least 500ns. Then wait at least 10ms before initiating I²C communication.
- 2. Configure I²C Master Controller speed to 400kbps.
- 3. Start the TVP5154A without the patch code.

There are only two register writes to get the TVP5154A up and running. The user should start the internal microprocessor (write 0x00 into register 0x7F) and has the option (not required) to enable the outputs (write 0x69 into register 0x03). There is no code loading here, this just set up the TVP5154A for normal operation.

Check the version number in registers 0x82 and 0x83. The values you will see are 0x02 and 0x00, respectively.

Download Options www.ti.com

4. Load the code

There is a password for patch RAM code download. After the password is set, it is a good idea to lock the device again, by writing 00 into that address. The password prevents undesirable writes into the device at startup due to power surges etc. The following code demonstrates the method for unlocking and then locking the device again.

**** Code starts here ***

(a) Select to write to all four decoders in TVP5154A

I2C Subaddress	Data	Description
0xFE	0x0F	// Write to all 4 decoders

(b) Unlock the device

I2C Subaddress	Data	Description
0x21	0x51	// Password MSB data
0x22	0x54	// Password LSB data
0x23	0xFF	//Data address
0x24	0x04	// Write command

(c) Download real patch code P5151_02XX.hra through subaddress 0x7E. XX refers to the patch code revision number. Write all data to address 0x7E continuously.

Start	0xB8/0xBA	0x7E	Data0	Data1	Data2		DataN-1	Stop
-------	-----------	------	-------	-------	-------	--	---------	------

Slave Address and data address are only needed for first byte of data, and user can download all patch code data continuously.

(d) Restart Microprocessor

Write into register 0x7F, data 0x00 // Restart TVP5154A microprocessor

(e) Select to write to all four decoders in TVP5154A

I2C Subaddress	Data	Description
0xFE	0x0F	// Write to all 4 decoders

(f) Lock the device

I2C Subaddress	Data	Description
0x21	0x00	// Password MSB data
0x22	0x00	// Password MSB data
0x23	0xFF	// Data address
0x24	0x04	// Write command

^{****} Code ends here ****

Now decoder should run ROM + Patch RAM code.

Check the version number in registers 0x82 and 0x83. The values you will see are 0x02 and 0xXX, respectively. XX refers to the patch code revision number.

5. After downloading the patch code, if there is an H/W reset to the TVP5154A (active low pulse to pin 8), the original ROM code is restarted to run (patch code is disabled). To let patch code run without downloading the whole patch code again, please use the following procedure.

Set the correct password by doing the four writes as mentioned above (step 4a-4b) to unlock the device. Then write 0x05 to I²C address 0x10. Now the patch code is running. (Verify the version number in registers 0x82 and 0x83. The values you will see are 0x02 and 0xXX, respectively.) Finally, lock the device as in the previous section (step 4f).

www.ti.com Download Options

1.3 Summary of fC Register Writes

I2C Subaddress	Data	Description
0xFE	0x0F	// Write to all 4 decoders
0x7F	0x00	// Restart microprocessor
0xFE	0x0F	// Write to all 4 decoders
0x03	0x69	// Enable outputs
0x21	0x51	// Password MSB data
0x22	0x54	// Password LSB data
0x23	0xFF	// Data address
0x24	0x04	// Write command
0x7E	Patch code	// Load patch code with multi-byte/burst writes

ST B8/BA 7E D0 D1 D2 ... Dn-1 SP

Where,

ST: Start Condition
B8/BA: I²C Slave Address
7E: I²C Subaddress

D0: First Byte of patch code data n: number of Bytes in patch code

SP: Stop Condition

0x7F	0x00	// Restart microprocessor
0xFE	0x0F	// Write to all 4 decoders
0x21	0x00	// Password MSB data
0x22	0x00	// Password LSB data
0x23	0xFF	// Data address
0x24	0x04	// Write command

1.4 Sample C Code for Patch Download

```
#define TVP5154A ADDR 0xB8
                        //Device Address could also be 0xBA
// Firmware data array (.C file example)
/* COPYRIGHT (C) 2003 TEXAS INSTRUMENTS HexConv v3.00
                                               * /
/* DEVICE
          : TVP5154A
                                               * /
                                               * /
/* VIDEO STANDARD: (M)NTSC(AUTO)
                                               * /
/* SAMPLING RATE : ITU-R BT.656
/* FILENAME : P5154_0280.HRA
                                               * /
/* ASSEMBLED
            : Wednesday, November 05, 200X 14:31:02
                                               * /
/* VERSION
                                               * /
            : 2.80
                                               * /
/* SIZE (BYTES) : 3990
const unsigned char g_pData[3990] =
   0x01, 0x00, 0x00,
   0x00, 0x00, 0x04,
   0x03, 0x05, 0x00,
```


Download Options www.ti.com

```
0x00, 0x00, 0x80,
  0x0F, 0x56, 0xC7
};
// Buffer Size
int g_nNumBytes = 3990; //Add this line
// Function prototypes
//This will write to slave address 'nSlaveAddr',
//sub-address 'nSubAddr' the data 'nData'
//Definition based on system and I2C controller requirements.
void I2CWriteByte(unsigned char nSlaveAddr,
             unsigned char nSubAddr,
             unsigned char nData );
//This will write to slave address 'nSlaveAddr', sub-address 'nSubAddr'
//'nNumBytes' bytes from buffer 'pData' in one continuous I2Ctransfer.
//Definition based on system and I2C controller requirements.
void I2CWriteBuffer(unsigned char nSlaveAddr,
              unsigned char nSubAddr,
              int nNumBytes,
              unsigned char* pData );
//This will load the TVP5154A program RAM from buffer 'pData'
//'nNumBytes' bytes
void TVP5154ALoadProgramRAM(unsigned char* pData,
                    int nNumBytes );
// Main Program
int main (int argc, char *argv[])
TVP5154ALoadProgramRAM( g_pData, g_nNumBytes );
// Function: TVP5154ALoadProgramRAM()
void TVP5154ALoadProgramRAM ( unsigned char* pData, int nNumBytes )
  I2CWriteByte( TVP5154A_ADDR, 0xFE,0x0F ); // Write to all 4
  I2CWriteByte( TVP5154A_ADDR, 0x7F,0x00 ); // Restart TVP5154A uP
  I2CWriteByte( TVP5154A_ADDR, 0x03,0x69 ); // Enable Outputs
  // unlock password for patch code download & register write
  I2CWriteByte( TVP5154A_ADDR, 0x21,0x51 );
```


www.ti.com Download Options

```
I2CWriteByte( TVP5154A_ADDR, 0x22,0x54 );
I2CWriteByte( TVP5154A_ADDR, 0x23,0xFF );
I2CWriteByte( TVP5154A_ADDR, 0x24,0x04 );

//This will write to slave address TVP5154A_ADDR, sub-address 0x7E
//(auto-incrementing data register) 'nNumBytes' bytes
//from buffer 'pData' in one continuous I2Ctransfer.

I2CWriteBuffer( TVP5154A_ADDR, 0x7E, nNumBytes, pData );

I2CWriteByte( TVP5154A_ADDR, 0x7F,0x00 ); // Restart TVP5154A uP

// lock password for patch code download & register write
I2CWriteByte( TVP5154A_ADDR, 0x21,0x00 );
I2CWriteByte( TVP5154A_ADDR, 0x22,0x00 );
I2CWriteByte( TVP5154A_ADDR, 0x23,0xFF );
I2CWriteByte( TVP5154A_ADDR, 0x23,0xFF );
I2CWriteByte( TVP5154A_ADDR, 0x24,0x04 );
}
```

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps