Application Report

THVD2450 and THVD2410 Functional Safety FIT Rate, FMD and Pin FMA

Table of Contents

1 Overview
· · · · · · · · · · · · · · · · · · ·
3 Failure Mode Distribution (FMD)
4 Pin Failure Mode Analysis (Pin FMA)

Trademarks

All trademarks are the property of their respective owners.

Overview www.ti.com

1 Overview

This document contains information for RS-485 transceivers THVD2450 and THVD2410 (SOIC, VSON, VSSOP packages) to aid in a functional safety system design. Information provided are:

- Functional Safety Failure In Time (FIT) rates of the semiconductor component estimated by the application of industry reliability standards
- Component failure modes and their distribution (FMD) based on the primary function of the device
- Pin failure mode analysis (Pin FMA)

Figure 1-1 shows the device functional block diagram for reference.

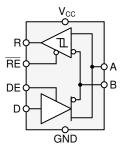


Figure 1-1. Functional Block Diagram

THVD2450 and THVD2410 were developed using a quality-managed development process, but was not developed in accordance with the IEC 61508 or ISO 26262 standards.

2 Functional Safety Failure In Time (FIT) Rates

This section provides Functional Safety Failure In Time (FIT) rates for THVD2450 and THVD2410 based on two different industry-wide used reliability standards:

- Table 2-1 provides FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-3 provides FIT rates based on the Siemens Norm SN 29500-2

Table 2-1. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11 for THVD2450

FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 10 ⁹ Hours) 8-pin SOIC (D)	FIT (Failures Per 10 ⁹ Hours) 8-pin VSON (DRB)	FIT (Failures Per 10 ⁹ Hours) 8-pin VSSOP (DGK)
Total Component FIT Rate	11	18	7
Die FIT Rate	3	3	3
Package FIT Rate	8	15	4

Table 2-2. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11 for THVD2410

FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 10 ⁹ Hours) 8-pin SOIC (D)	FIT (Failures Per 10 ⁹ Hours) 8-pin VSON (DRB)	FIT (Failures Per 10 ⁹ Hours) 8-pin VSSOP (DGK)
Total Component FIT Rate	10	18	7
Die FIT Rate	3	3	3
Package FIT Rate	7	15	4

The failure rate and mission profile information in Table 2-1 comes from the Reliability data handbook IEC TR 62380 / ISO 26262 part 11:

Mission Profile: Motor Control from Table 11

· Power dissipation: 370 mW

Climate type: World-wide Table 8Package factor (lambda 3): Table 17b

· Substrate Material: FR4

EOS FIT rate assumed: 0 FIT

Table 2-3. Component Failure Rates per Siemens Norm SN 29500-2

Table	Category	Reference FIT Rate	Reference Virtual T _J
5	CMOS, BICMOS Digital, analog / mixed	25 FIT	55°C

The Reference FIT Rate and Reference Virtual T_J (junction temperature) in Table 2-3 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.

3 Failure Mode Distribution (FMD)

The failure mode distribution estimation for THVD2450 and THVD2410 in Table 3-1 comes from the combination of common failure modes listed in standards such as IEC 61508 and ISO 26262, the ratio of sub-circuit function size and complexity and from best engineering judgment.

The failure modes listed in this section reflect random failure events and do not include failures due to misuse or overstress.

Table 3-1. Die Failure Modes and Distribution

Die Failure Modes	Failure Mode Distribution (%)
Receiver fail	7%
Transmitter fail	74%
I/O	11%
PCU	8%

4 Pin Failure Mode Analysis (Pin FMA)

This section provides a Failure Mode Analysis (FMA) for the pins of the THVD2450 and THVD2410. The failure modes covered in this document include the typical pin-by-pin failure scenarios:

- Pin short-circuited to Ground (see Table 4-2)
- Pin open-circuited (see Table 4-3)
- Pin short-circuited to an adjacent pin (see Table 4-4)
- Pin short-circuited to supply (see Table 4-5)

Table 4-2 through Table 4-5 also indicate how these pin conditions can affect the device as per the failure effects classification in Table 4-1.

Table 1-1	TI	Classification	of Failuro	Effocts
Table 4-1.		Ciassilication	OI FAIIUIE	

Class	Failure Effects
Α	Potential device damage that affects functionality
В	No device damage, but loss of functionality
С	No device damage, but performance degradation
D	No device damage, no impact to functionality or performance

Figure 4-1 and Figure 4-2 show the THVD2450 and THVD2410 pin diagrams. For a detailed description of the device pins please refer to the *Pin Configuration and Functions* section in the THVD2450 and THVD2410 data sheet.

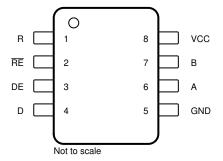


Figure 4-1. D Package Pin Diagram

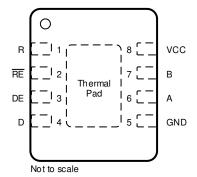


Figure 4-2. DRB Package Pin Diagram

Table 4-2. Pin FMA for Device Pins Short-Circuited to Ground

Pin Name	Pin No.	Description of Potential Failure Effect(s)	Failure Effect Class
R	1	Host unable to receive data from bus via transceiver. Increased output current and ICC when output state is high.	В
RE	2	Receiver output always enabled.	D
DE	3	Driver output always disabled.	В
D	4	Host unable to transmit data to bus via transceiver. Output state is low when driver is enabled.	В
GND	5	Intended operation.	D
А	6	Non-inverting signal stuck low; bus unable to reach differential high level. Communication errors likely.	В
В	7	Inverting signal stuck low; bus unable to reach differential high level. Communication errors likely.	В
VCC	8	Device unpowered; neither transmit nor receive functionality available. Large current load on external VCC regulator.	В

Table 4-3. Pin FMA for Device Pins Open-Circuited

Pin Name	Pin No.	Description of Potential Failure Effect(s)	Failure Effect Class
R	1	Host unable to receive data from bus via transceiver	В
RE	2	Receiver output always disabled.	В
DE	3	Driver output always disabled.	В
D	4	Host unable to transmit data to bus via transceiver. Output state is indeterminate when driver is enabled.	В
GND	5	Device unpowered; neither transmit nor receive functionality available.	В
Α	6	Communication errors likely; may work with degraded margin if bus termination is not implemented.	В
В	7	Communication errors likely; may work with degraded margin if bus termination is not implemented.	В
VCC	8	Device unpowered; neither transmit nor receive functionality available.	В

Table 4-4. Pin FMA for Device Pins Short-Circuited to Adjacent Pin

Pin Name	Pin No.	Shorted to	Description of Potential Failure Effect(s)	Failure Effect Class
R	1	RE	Undetermined state of shared net; receive functionality unlikely to work.	В
RE	2	DE	Receiver is enabled when driver is disabled and vice-versa. Transceiver state may not be well-defined in cases where this short results in contention between two active control lines from the host.	В
DE	3	D	Driver output can only be output-high or disabled (high-Z). State may not be well-defined due to contention between host control lines.	В
GND	5	Α	Non-inverting signal stuck low; bus unable to reach differential high level. Communication errors likely.	В
A	6	В	Bus unable to reach differential-high or differential-low states; communication cannot occur on bus.	В
В	7	VCC	Inverting signal stuck high; bus unable to reach differential high level. Communication errors likely.	В

Table 4-5. Pin FMA for Device Pins Short-Circuited to supply

Pin Name	Pin No.	Description of Potential Failure Effect(s)	Failure Effect Class
R	1	Host unable to receive data from bus via transceiver. Increased input current when output state is low.	В
RE	2	Receiver output always disabled.	В
DE	3	Driver output always enabled.	D
D	4	Host unable to transmit data to bus via transceiver. Output state is high when driver is enabled.	В
GND	5	Device unpowered; neither transmit nor receive functionality available. Large current load on external VCC regulator.	В
A	6	Non-inverting signal stuck high; bus unable to reach differential high level. Communication errors likely.	В
В	7	Inverting signal stuck high; bus unable to reach differential high level. Communication errors likely.	В
VCC	8	Intended operation	D

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated