

Quick Start Guide for bq2750x Family Gas Gauge

Ming Yu

HVAL - Battery Management Solutions

ABSTRACT

This application report provides you a design process overview, procedures to use the evaluation module and software, and helpful troubleshooting techniques.

Contents 1 Introduction 2 Terminology 3 1.2 1.3 2 2.1 2.2 bq2750x EVM Board and Pin Description...... 4 Download the bq2750x Evaluation Software..... 5 2.3 2.4 Install bq2750x Evaluation Software 6 2.5 2.6 2.7 2.8 3 3.1 4.1 Data Flash Window 12 4.2 4.3 4.4 4.5 5 5.1 5.2 The Gas Gauge File 16 5.3 6 6.1 6.2 6.3 6.4 **List of Figures** 1 2 Basic bq2750xEVM Configuration......5 3 4 5 6

Impedance Track is a trademark of Texas Instruments. Windows is a trademark of Microsoft Corporation.

8	bqEVSW software shows no USB board if EV2300 is not connected	. 9
9	bqEVSW Complains if no EVM or EVM not powered up	10
10	DataRAM Displaying Appropriate Communication with EV2300	11
11	Data Flash Window Displaying Default Parameters	12
12	Data Flash Definitions Display with Right-click and Choosing Help Text	12
13	I2C Pro Window	
14	Calibrate Window	
15	bqEASY Wizard	15
16	Production Flow Diagram	16
17	Gas Gauge File (Default and Cycled Values)	17
18	Chemistry Selection Table in bqEASY Wizard	18
19	Sending MACs - DataRAM and I2C Pro Windows	19
20	DataRAM Data Logging Command	
21	Gas Gauge Logging Setup and Start Commands	20
22	Default Unseal Key and Full Access Key	
23	Sealed Mode for the bqEVSW DataRAM window	21
24	Default Unseal Command Using Control Register	22
25	Status Showing Unsealed Mode With Full Access FAS Bit Set	22
26	FAS and SS Bits are Cleared	23
	List of Tables	
1	bg2750x Pin/Jumper Descriptions	. 4

1 Introduction

The Texas Instruments bq27500/01 system-side Li-Ion battery fuel gauge is a microcontroller peripheral that provides fuel gauging for single-cell Li-Ion battery packs. The device requires little system microcontroller firmware development. The bq27500/01 resides on the system main board, and manages an embedded battery (non-removable) or a removable battery pack.

The bq2750x uses a patented Impedance algorithm for fuel gauging, and provides information such as remaining battery capacity (mAh), state-of-charge (%), run-time to empty (min.), battery voltage (mV), and temperature (°C).

Battery fuel gauging with the bq27500 requires only PACK+ (P+), PACK- (P-), and Thermistor (T) connections to a removable battery pack or embedded battery. The bq27501 works with identification resistors in battery packs to gauge batteries of different fundamental chemistries and/or significantly different rated capacities.

1.1 Related Documentation

TI recommends that you familiarize yourself with these documents before working with the Impedance Track™ gas gauge devices.

- Quick Start Guide for bg27500/1EVM Kit (SLUU298)
- Single-Cell Impedance Track™ Gas Gauge Introduction (<u>SLUA422</u>)
- Key Design Considerations for the bq27500 and bq27501 (<u>SLUA439</u>)
- bq2750xEVM System Side Single-Cell Impedance Track™ Technology Evaluation Module (SLUU287)
- Host-side gas-gauge-system design considerations for single-cell handheld apps (<u>SLYT285</u>)
- Configuring the bq27500 Data Flash (SLUA432)
- bg2750x Datasheet (SLUS785)
- Using bqTester Single Site Software (<u>SLUA352</u>)
- bq27500 Theory and implementation of Impedance Track battery fuel-gauging algorithm (SLUA450)
- Data Flash Programming and Calibrating the bg27500 Gas Gauge (SLUA440)
- Going to Production with the bg2750x (SLUA449)

1.2 Terminology

Acronym	Description	Acronym	Description
DF	Data Flash	IT	Impedance Track™
GG	Gas gauge	MAC	Manufacturer Access Command
SENC	Firmware file (encrypted)	DFI	Data Flash Image file (binary) with modified data
bqEASY	bq2750x programming wizard	ENCR	Data Flash file specific to a fresh TI fuel gauge
CHEM	Chemical model files for different LI-ion batteries	EZY	bqEASY project file

1.3 Document Overview

This document covers procedures for evaluation module setup and working with bq Evaluation Software. Additionally, the document highlights multiple approaches to troubleshooting the software connection, graphical user interface navigation, and key elements for the different configuration windows.

Example step-by-step procedures are described in Section 6 for:

- Choosing the correct chemistry
- Resetting the pack
- Logging data during testing
- Sealing and unsealing a pack

2 Getting Started With the bq2750x Evaluation Module

To get started with the bq2750x evaluation module (EVM), you will want to:

- 1. Gather all needed components
- 2. Acquaint yourself with the EVM board, pin descriptions, and basic EVM configuration
- 3. Download the bg Evaluation Software
- 4. Install the bg Evaluation Software
- 5. Install two USB drivers to communicate with the EV2300
- 6. Make the circuit module connections
- 7. Start the bg Evaluation Software
- 8. Become familiar with key Li-lon battery fuel gauge software procedures

2.1 Necessary Components

To perform the bq2750x procedures described in this report, you need:

- bq2750x EVM board (HPA291) check bq27500 Errata (<u>SLUZ015</u>) and bq27500 EVM (HPA291 Rev. A) Errata (<u>SLUZ016</u>)
- EV2300 USB PC Interface Board
- 4-colored wire set connector (I²C communication from EVM J4 to EV2300)
- USB cable (A-B type)
- NTC103AT Thermistor
- bq2750x EVM CD or latest documentation and software from the Texas Instruments Internet site (see Figure 3)
- PC host running the Windows™ 98SE, Windows XP, or Windows 2000 operating system and an available USB port
- Power supply or single-cell in series Li-ion battery (Li-ion battery preferred)
- Electronic load or electronic system (range 3 V to 4.2 V)

• Single-cell Li-ion battery charger (optional)

2.2 bq2750x EVM Board and Pin Description

Use this section to become familiar with the bq2750xEVM module, pin/jumper descriptions, and the basic EVM configuration.

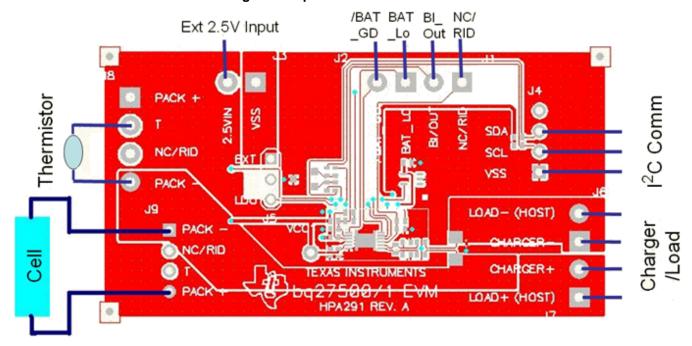


Figure 1. bq2750x Evaluation Module

Table 1. bq2750x Pin/Jumper Descriptions

PIN NAME / Jumper	DESCRIPTION
PACK+ (J8)	Pack positive terminal
PACK- (J8)	Pack negative terminal
Т	Pack thermistor input
NC/RID	Pack resistor ID input (only for bq27501)
SDA (J4)	I ² C communication data line
SCL (J4)	I ² C communication clock line
VSS (J4)	Signal return for communication line; shared with charger and ground
CHARGER+/LOAD+ (J7)	Power for load or charger connection
CHARGER-/LOAD- (J6)	Ground for load or charger connection (system VSS)
BAT_LOW	Access to push-pull output that signals low state-of-charge
BAT_GD	Access to open drain output indicating pack is ready to connect to the EVM
BI_OUT	Battery-Insertion detection input. Power pin for pack thermistor network.

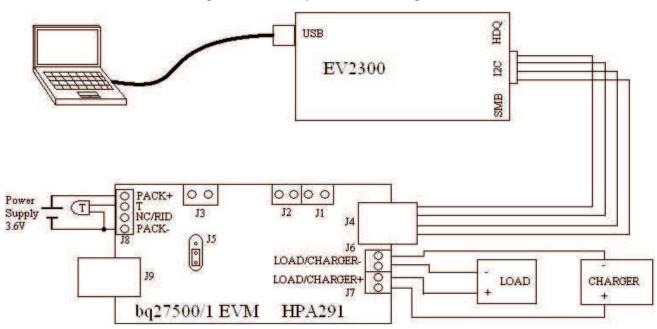


Figure 2. Basic bq2750xEVM Configuration

2.3 Download the bq2750x Evaluation Software

This software is included with the EVM on a CD or can be downloaded from the evaluation module product folder (use the Part Number *bq27500EVM* as the search keyword) from www.Tl.com. Figure 3 displays the portion of the Internet page with the EVM software link named: *bq27500 EVSW installation File*.

Figure 3. bq27500EVM Product Folder

System-Side Impedance Track(TM) Fuel Gauge Evaluation Module BQ27500EVM, Status: ACTIVE

Texas Instruments

⊙ Description	Support Software	▼ Technical Documents
▼ Features	Available Updates	Order Options
→ What's Included	Compatibility Issues	○ Related Products

Other text about bq27500EVM

What's Included

SLUU287,bq2750xEVM System Side Single-Cell Impedance Track™

Support Software

bq27500 EVSW Installation File (Rev. A) (sluc082a.zip, 5482 KB) 18 Dec 2007 zip

2.4 Install bq2750x Evaluation Software

Note: Before you install the bq2750xEVM software, make sure the EV2300 communication box is disconnected from the PC Host.

Using the CD included with the bq2750xEVM or the zip file you downloaded from the TI Internet site:

- 1. (Download only) Unzip the SLUC082.zip file to a temporary directory.
- 2. In your temporary directory (or the EVM CD), browse for the preliminary software installation file with the generic name: bqEV-EASY-HH SWSetup00.XX.yy_bq27500v1.00_bqEasyvz.zz.exe, where XX=major preliminary number, yy=minor preliminary number, and z.zz= version number.
- 3. Double-click and follow the standard installation instructions; accept license agreement, choose folder, and display Readme file.

2.5 Install USB Drivers for EV2300 Communication

Note: Before installing the USB drivers, use the supplied USB cable to connect the EV2300 to the computer that has the bq2750x evaluation software installed.

Installing the driver for the EV2300 communication box requires you to install two USB drivers for proper operation. Complete instructions for installing the USB drivers can be found in the EV2300 Driver to USB Port Association section of the Using bqTester Single Site Software document (SLUA352).

Briefly, the required steps are:

- 1. When the operating system prompts you with a **Found New Hardware Wizard**, Choose the *No, not at this time* option.
- 2. On the next screen, select the *Install from a list or specific location* option and use the **Browse** button to navigate to the PC Host folder (XP system): C:\Windows\TI\USB1
- 3. Respond **Continue Anyway** to the warning that drivers are not certified by Microsoft. You have successfully installed the *TI USB Firmware Updater*.
- 4. Once again, the operating system prompts you with a **Found New Hardware Wizard**, Choose the *No, not at this time* option.
- 5. On the next screen, select the *Install from a list or specific location* option and use the **Browse** button to navigate to the PC Host folder (XP system): C:\Windows\TI\USB2
- 6. Respond **Continue Anyway** to the warning that drivers are not certified by Microsoft. You have successfully installed the *TI USB bq2750x Driver*.

2.6 EVM Connection Setup

Refer to Figure 2 when performing the EVM setup:

- 1. Connect one side of the 4-wire-set connector to the EV2300's I2C port (black wire aligned with GND pin) and the other side to the board's **J4** connector (black wire aligned with the VSS pin).
- 2. Ensure that jumper in **J5** of board is connected at the bottom position as shown Figure 2.
- Ensure that NTC103AT thermistor is connected to the T and PACK- terminals of the J8 block of the board.
- 4. Ensuring proper polarity, connect the 3-V to 4.2-V power supply or single-cell Li-ion battery between the PACK+ and PACK- terminals (**J8**) of the board.
- 5. To see current measurements, apply a load to **J7** and **J6** board connectors.

Note:	J6 is for host or charger <i>ground</i> and J7 is for host or charger <i>power</i> .
-------	--

6. To properly configure the fuel gauge IC for a given application, proceed to the **bqEASY** area of the evaluation software (Section 4.5) and the bq2750x EVM User's Guide (SLUU287).

For detailed instructions on operating the fuel gauge system, see the *bq2750x Datasheet* (SLUS785) and the *bq2750xEVM System Side Single-Cell Impedance Track™ Technology Evaluation Module* User's Guide (SLUU287).

2.7 Starting the bg2750EVM Software

Beginning at the Windows Start menu, start the bq27500x evaluation software by selecting the application from the cascading menus: $\mathbf{start} \to \mathbf{Programs} \to \mathbf{Texas}$ Instruments $\to \mathbf{bq}$ Evaluation Software. To become familiar with the bq2750x evaluation module (EVM) you can simulate a battery cell with resistors and a power supply. You can vary the voltage across these resistors to simulate different states of charge. This configuration is shown in Figure 2 and described in the bq2750xEVM System Side Single-Cell Impedance Track The Chnology Evaluation Module application note (SLUU287).

2.8 bqEVSW Software Sections

The bq2750x evaluation software uses five major sections (Figure 4):

- DataRAM—standard I²C information you can read from the pack when it is sealed and important IC status registers.
- Data Flash—shows all the parameters you can change when designing your system. Because this
 multiple-dialog window contains so much information, you can right-click the mouse to display a Help
 pop-up window that describes each value name.
- I2C Pro—reads and writes data from any gas gauge, plus can also load a new firmware file.
- Calibrate—performs temperature, coulomb counter (CC) input, board current, and pack current calibration tests.
- bqEASY—software wizard that acts like a workflow to simplify the configuring, chemistry selection, and performing learning cycles needed to produce the final "golden image" file.

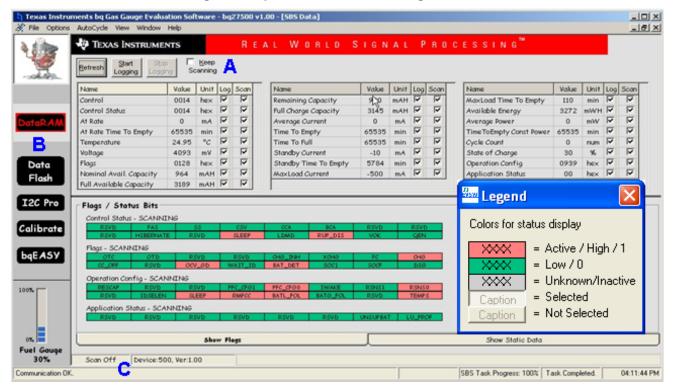


Figure 4. bq2750x EVM Software Organization

- A Check box to Keep Scanning while you make changes.
- B Switches you quickly between major software areas.
- C Area provides information on Communication status, device type, and firmware version number.

3 Software Communication and Trouble Shooting

When you start the bq2750x EVM software (**bqEVSW**), it should automatically recognize the firmware and hardware version. If there is a EV2300 USB PC Interface board communication problem, the message in Figure 5 displays.

Figure 5. bqEVSW Unable to Communicate With EV2300

Click **OK** and the software requests you to choose a device in use. If you get to this point, you are not going to have proper communication with the EVM.

Figure 6. Select bq2750x device

If you choose one of the devices and firmware revisions, you eventually can display the DataRAM window; however key flags and status bits are grayed-out (Figure 7). The bq2750x EVM software uses color codes to describe the current status for the DataRam Flags and Status bits. Please familiarize yourself with the legend in Figure 4 and Figure 10.

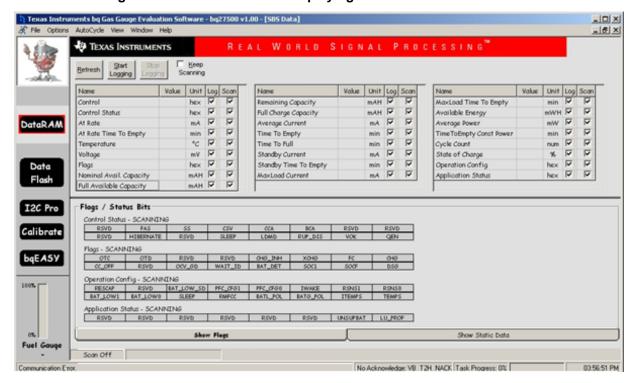


Figure 7. DataRAM Window displaying No EV2300 Communication

3.1 Troubleshooting USB Communication Issues

If you are having EVM communication issues, try these steps:

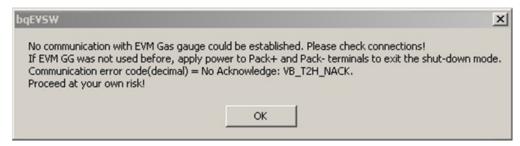

- Do you have the EV2300 USB cable connected (Figure 8) as shown in the Basic bq2750xEVM Configuration?
- Have you properly installed the required *TI USB Firmware Updater* and the *TI USB bq2750x* drivers, as discussed in Install USB Drivers for EV2300 Communication?
- Did you kick start the EVM by connecting power momentarily to PACK+ and PACK- to simulate a charger insertion?
- Are the I²C lines connected to the EVM (Figure 2)?
- Is there another instance of the software already running? Press Cntl+Alt+Delete keys to display the Task Manager and look for another instance of the bg2750x EVM software (**bgEVSW**) running.
- Try restarting your computer if you do not see the TI USB bq2750x driver displayed in the System Properties → Hardware dialog tab → Device Manager window.

Figure 8. bqEVSW software shows no USB board if EV2300 is not connected

Figure 9. bqEVSW Complains if no EVM or EVM not powered up

10

4 bg2750x Evaluation Software Sections

The DataRAM screen displays as the default window, providing you access to the context-sensitive help and the five windows used to organize the software GUI controls:

- DataRAM
- Data Flash, with context-sensitive (right-mouse) help
- I2C Pro
- Calibrate
- bqEASY Wizard

4.1 DataRam window

If everything is working OK, a DataRAM window similar to Figure 10 displays with green/orange indicators in the status registers. Also, *Communication OK* will be in the lower left-hand corner. Click on the *Keep Scanning* box at the top of the window. The software will keep updating these values throughout your testing process.

The DataRAM window shows the standard I²C information you can read from the pack when it is sealed, as well as showing important status registers on the IC which can only be seen when the pack is unsealed or in full access mode (no FAS or SS bit set in Control Status register). By default, the IC is configured in full access mode.

Figure 10. DataRAM Displaying Appropriate Communication with EV2300

You can issue Manufacture Access commands (MAC) from this window by clicking in the **Control** field under the *Value* column (see Issuing MACs procedures). For example, this issue arises when writing the Unseal or Full Access commands. Examples of how to complete these processes is included in Seal and Unseal Process.

4.2 Data Flash Window

The Data Flash window (Figure 11) shows all the parameters you can change when designing your system. To begin, you can load the default values stored which shows the single cell pack configuration.

For detailed information on configuring the Data Flash for your particular design, see *Configuring the bq27500 Data Flash* (SLUA432)—a comprehensive resource for all Data Flash parameters.

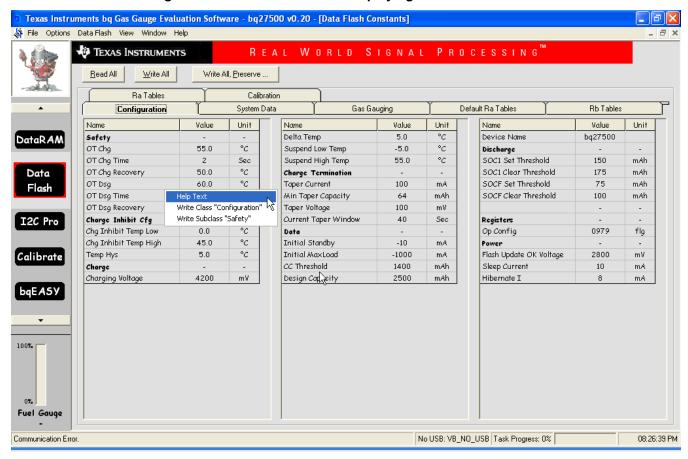


Figure 11. Data Flash Window Displaying Default Parameters

Remembering all the nuances of the Data Flash parameters is not practical. However, all of the Data Flash definitions are listed in the *bq2750x Technical Reference Manual*. Additionally, you can right-click on any Data Flash parameter and choose *Help Text* (Figure 12), which displays an appropriate definition.

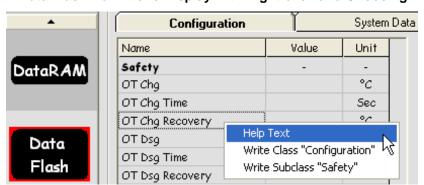


Figure 12. Data Flash Definitions Display with Right-click and Choosing Help Text

4.3 I2C Pro Window

The I2C Pro window helps you communicate with bq2750x IC. It is here where you can read and write byte, work, and block information. Also, you can upload a new **.SENC** file from this window by following the steps in the *Data Flash Programming and Calibrating the bq27500 Gas Gauge* (SLUA440).

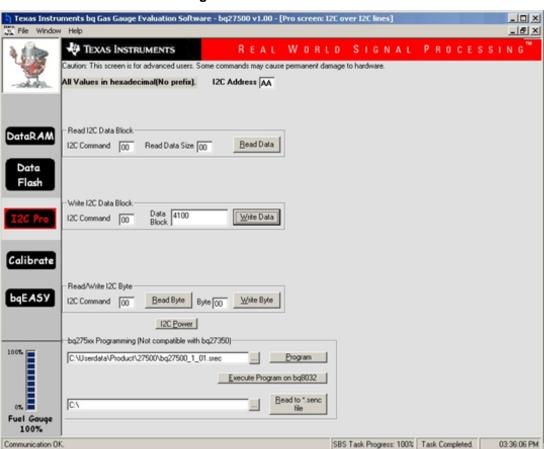


Figure 13. I2C Pro Window

4.4 Calibrate Window

The Calibrate window (Figure 14) helps you calibrate gas gauge voltage, current, temperature, and offsets. See similar procedures in the *Data Flash Programming and Calibrating the bq27500 Gas Gauge* (SLUA440).

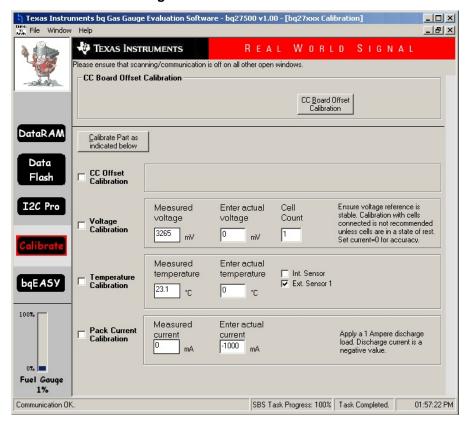


Figure 14. Calibrate Window

4.5 bqEASY Wizard

The bqEASY window (Figure 15) is a new feature in the bq Evaluation Software, used to program the Data Flash parameters, choose the proper battery chemistry, and perform the two cycle tests to create your Golden Image. If you are new to the Impedance TrackTM technology, this is a great way to have a structured workflow to follow. (See details in Production Flow section.)

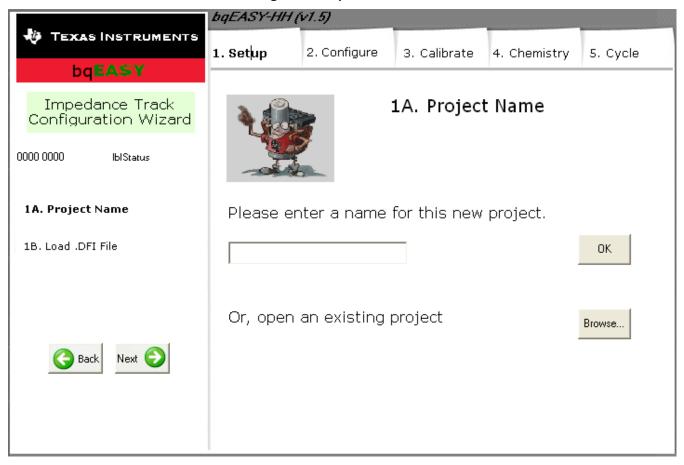
The bqEASY Wizard uses data entry dialogs to gather information and perform production tasks:

- 1. **Setup**—Impedance Track Configuration Wizard Splash screen
- 2. Configure—choose Data Flash parameters
 - a. Cell Characteristics
 - b. Charge Parameters
 - c. Discharge Parameters
 - d. Reserve Capacity
 - e. Load Characteristics
 - f. Application Configuration
 - g. Remaining Capacity Method
 - h. Miscellaneous Information

3. Calibrate

- a. CC Offset
- b. Voltage

- c. Temperature
- d. Pack Current
- e. Board Offset
- f. Review / Read DFI file


4. Chemistry

- a. Use Default Chemistry
- b. Select Chemistry Manually
- c. Do Chemistry Select Cycling

5. Cycle

- a. Learning Cycle
- b. Update Golden Pack

Figure 15. bqEASY Wizard

5 Creating Your Golden Image

One of the major benefits of using the Impedance Track technology, aside from super accurate gas gauging, is a simplified manufacturing process. No charge or discharge cycles are required after assembling the pack, which can take many hours.

5.1 Production Flow

Figure 16 is a procedure diagram showing the normal production flow of the bq2750x chipset. A detailed description of these states can be found in the *Going to Production with the bq27500* application report (SLUA449).

Program golden data-3. Write pack-specific Calibrate flash image file information 4. Perform any needed testing 7. Wait 5 5. Attach 6. Reset such as data-flash check, minutes cells electrical integrity tests, etc. (optional, use only if step 9 longer than 500 seconds) Charge/Discharge for Enable IT 10. Seal 11, Ship testing purposes or to customer requested level (optional)

Figure 16. Production Flow Diagram

These are different steps in design, preproduction, and production.

5.2 Design and Evaluation

- 1. Install the bgEVSW software and EV2300 communication USB drivers.
- 2. Connect resistors and power supply to simulate battery pack.
- 3. "Kick-start" the EVM (connect power momentarily to the PACK+ and PACK- to simulate charger insertion).
- 4. Start bqEVSW software
- 5. Explore the different features of the software.
- Load the correct .chem file corresponding to the chemistry of your battery cells using the bqEASY wizard (see Choosing the Correct Chemistry).
- 7. Program the necessary Data Flash constants specific to your design.
- 8. Connect a real battery cell to the EVM
- 9. Fully charge the cells and let reset for 2 hours.
- 10. Start Data Logging both DataRAM parameters and the .GG gas gauge files.
- 11. Repeat these steps as often as necessary:
 - Enable Impedance Track Algorithm
 - Discharge Pack to termination voltage and let reset.
 - Repeat this process
- 12. Look for updated resistances and Update Status = 02 in the final .GG file.

Once you have a properly cycled pack with updated values, we need to create a Golden image file that is programmed and incorporated into every pack coming off the production line.

- 13. Export the .GG file and make a few changes (disable IT and change cycle count to 0).
- 14. Reload the .DFI file to clear out Data Flash hidden values.
- 15. Import your changed .GG file.
- 16. Now you are ready to create the .DFI file used to program production packs.

5.3 The Gas Gauge File

The Gas Gauge (.GG) file stores all programmable Data Flash parameters as well as the updated cell resistance profile after doing the two cycle tests. Figure 17 displays a gas gauge file, showing its default values (specific to this chemistry) and it's updated values after the cycle tests.

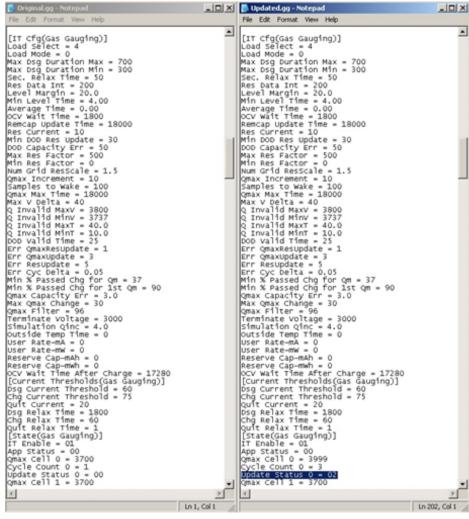


Figure 17. Gas Gauge File (Default and Cycled Values)

- (1) Update Status as changed from 0x00 to 0x02
- (2) QMAX for the individual cells and pack has been updated
- (3) Resistance table (Ra Table) updated for each of the cells.

6 Example Procedures

6.1 Choosing the Correct Chemistry

For the impedance track algorithm to work properly, the exact chemistry of the Lithium cells needs to be known and the correct .SENC file needs to be loaded.

The most updated chemistry files can be found installing the latest version of the bqEVSW software, which you found on the TI Internet site in the bq2750x Product Folder (Figure 3). The files are stored in the folder named: C:\Program Flles\Texas Instruments\bq Evaluation Software\Plugins\Chemistry The Chem.ini file describes the chemistry, manufacturer, and model numbers for the *.CHEM files in this folder.

You can use the bqEASY wizard (Figure 18) to display the chemistry information in an easy-to-use and organized manner. If you are using the bqEASY Wizard, it asks you to choose the correct chemistry from a list of manufacturers and model numbers. Alternatively, you can test for a compatible chemistry using a 4 point test.

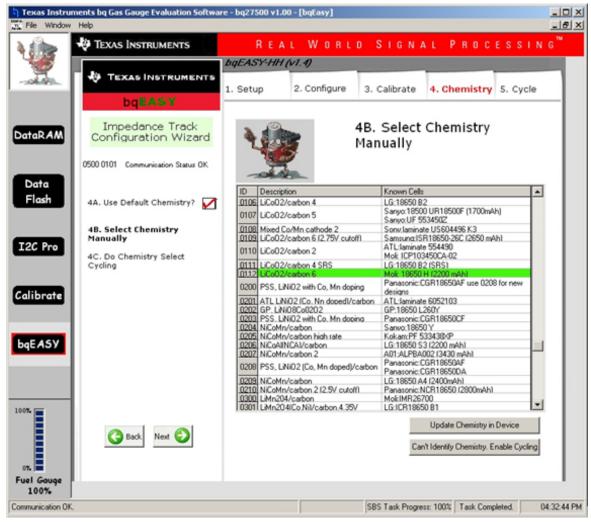


Figure 18. Chemistry Selection Table in bqEASY Wizard

A unique chemical ID indicates a different battery chemistry being used.

6.2 Resetting the Pack

Vary the voltage of the power supply (careful not to exceed maximum voltages) and issue a **RESET** Manufacture Access Command (MAC) to the bq2750x. The I²C double-word command is *0x00*, data *0x0041*.

There are two ways to do this (see Figure 19). The shortcut is to type 41 into the Manufacture Access **Value** of the DataRAM window. Alternatively, use the I2C Pro window to issue a reset command 00, data 4100 from the **Write I2C Data Block** and click the **Write Data** button.

Stop Keep Start Refresh Scanning Logging Name Value Unit Log Scan 41 ⊽ Control hex ▽ 굣 Control Status 0010 굣 굣 At Rate 0 mA ▽ 굣 At Rate Time To Empty 65535 min Write I2C Data Block Data 4100 Write Data 12C Command 00 Block

Figure 19. Sending MACs - DataRAM and I2C Pro Windows

6.3 Data Logging

While you are running your charge and discharge tests you may want to log the DataRAM and gas gauge (.GG) flash data. This is done in two steps. The DataRAM data is logged by selecting the **File** \rightarrow **Start Logging** menu command (**Figure 20**). The **Save As (Log File Name)** dialog asks what folder and what file name to use for the Log File.

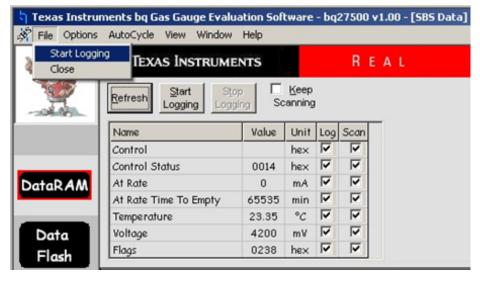


Figure 20. DataRAM Data Logging Command

To save the iterations of the Gas Gauge (.GG) file, go to the **Data Flash** window and select the **Options** \rightarrow **Set AutoExport Filename** command. A series of Gas Gauge files is created in the folder specified throughout the testing. You can adjust the save interval of AutoExport (every 15 minutes is usually acceptable) using the **Options** \rightarrow **Set Export Interval** command. To start the logging, select the **Options** \rightarrow **AutoExport** command (Figure 21) to begin saving the Gas Gauge files.

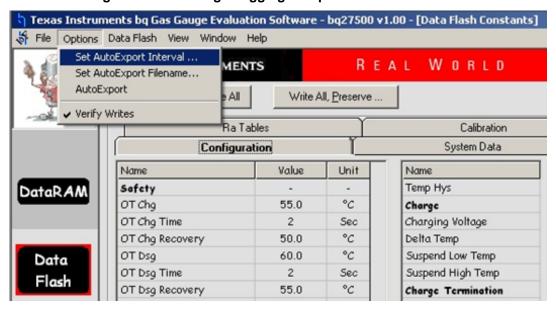


Figure 21. Gas Gauge Logging Setup and Start Commands

6.4 Seal and Unseal Process

Once you are finished with the production flow (see Figure 16) and have programmed the correct gas gauge (.gg) file for your "golden pack", you will want to seal the pack. If you do seal the pack, you can issue the Unseal command, followed by the Full Access command to make changes. However, if you removed power to IC, it returns to sealed mode and you would have to repeat this process again to unseal and subsequently move to full access mode. The only way to *reset* the IC to automatically come up in full access mode is to reload the .SENC file with defaults.

Note: Be careful when reloading the .SENC file as it can erase any Data Flash constants or resistance updates through cycling that you may have made.

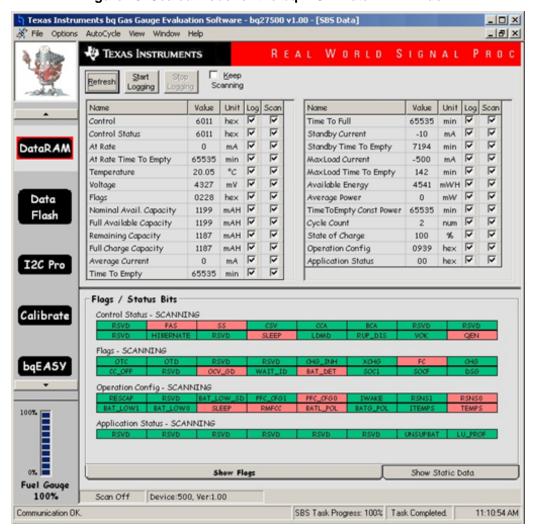
If you Seal your battery pack and later you decide to unseal it (for example, diagnosing a field failure), you must perform these steps to move from **Sealed**, to **Unsealed**, and finally to **Full Access** mode.

- During production, you will want to change the default Unseal and Full Access Keys settings in the IC.
 To read the default Unseal and Full Access Key, the data flash portion of the device needs to be
 opened by the configuration file .encr and the Security dialog tab (Figure 22) can be accessed. The
 default Unseal Key and Full Access Key can be modified.
- 2. When the IC is sealed, and you connect the EV2300 and start the bq2750x evaluation software, the DataRAM window displays as in Figure 23. (Not all the status registers are accessible. These are grayed out in the DataRAM window.) Sealing the pack is done using Manufacture Access 0x0020.

Note: Do not seal your pack until after production.

3. The FAS (Full Access Seal Mode) and SS (Sealed State) bits are set when seal command is issued through control register. To move from Sealed to Unsealed mode, write to the bq2750x device with the UNSEAL Key (04from the previous step. After this command is issued you are able to read all the status registers, as shown in Figure 25. We still need to move from Unsealed to Full Access mode using the FullAccessKey.

Note: The SS bit (Sealed) is cleared; however the FAS bit (Full Access) is still set in Figure 25.


4. After issuing the two *0xFFFF* Full Access Key through control register, the FAS bit (Figure 26) is also cleared.

Texas Instruments bg Gas Gauge Evaluation Software - bg27500 v1.00 - [Data Flash Constants] File Options Data Flash View TEXAS INSTRUMENTS REAL WORLD SIGNAL Read All Write All Write All, Preserve .. System Data Gas Gauging Default Ra Tables Configuration Calibration Security Unit Name Codes****Make Private*** Unsealed to Full **FFFFFFF** DataR A M Sealed to Unsealed 36720414 Data Flash I2C Pro

Figure 22. Default Unseal Key and Full Access Key

Figure 23. Sealed Mode for the bqEVSW DataRAM window

Texas Instruments bq Gas Gauge Evaluation Software - bq27500 v1. 👣 Texas Instruments bq Gas Gauge Evaluation Software - bq27500 File Options AutoCycle View Window Help Options AutoCycle View Window Help TEXAS INSTRUMENTS TEXAS INSTRUMENTS REA Start Start Scanning Logging Logging Value Unit Log Scan Name Unit Log Scan Name Value ⊽ Control 0414 hex Control 3672 hex V V Control Status 0014 hex V Control Status 0014 hex 굣 굣 mA DataR A M At Rate Π V V DataR AM At Rate 0 mA 65535 min V V At Rate Time To Empty At Rate Time To Empty 65535 min 🔽 굣 굣 °C Temperature 22.45 °c 🔽 V Temperature 22.45 굣 굣 Voltage 4328 mV mV ▽ 굣 Voltage 4328 V 굣 Flags 0238 Data hex 🔽 V Flags 0238 Data mAH 🔽 V Nominal Avail. Capacity 997 mAH ▼ V Flash Nominal Avail. Capacity 997 Flash mAH 🔽 V Full Available Capacity 997 mAH ▼ V Full Available Capacity 997 mAH ▼ V Remaining Capacity 989 mAH 🔽 Remaining Capacity 989

Figure 24. Default Unseal Command Using Control Register

Figure 25. Status Showing Unsealed Mode With Full Access FAS Bit Set

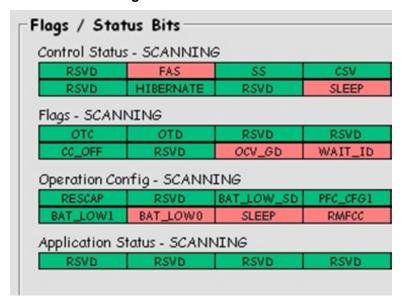


Figure 26. FAS and SS Bits are Cleared

RSVD	FAS	SS	CSV
RSVD	HIBERNATE	RSVD	SLEEP
Flags - SCAN	INING		
отс	OTD	RSVD	RSVD
CC_OFF	RSVD	OCV_GD	WAIT_I
Operation Co	nfig - SCANN	ING	
RESCAP	RSVD	BAT_LOW_SD	PFC_CFG
BAT_LOW1	BAT_LOW0	SLEEP	RMFCC

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com microcontroller.ti.com Microcontrollers www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright 2008, Texas Instruments Incorporated