User's Guide TPS92682-Q1 Frame Definitions and Examples

Lee Shanley

Lighting Power Products

ABSTRACT

This document serves as a quick reference for Software or Firmware Engineers tasked with establishing and maintaining communications with the TPS92682 device. There are real code examples written in the C programming language designed to accelerate the learning curve required to effectively manipulate the various registers found in TPS92682 devices. All data sheet references are from the *TPS92682-Q1 Dual-Channel Constant-Voltage and Constant-Current Controller with SPI Data Sheet*.

Table of Contents

1 Build a Frame	1
2 Response Frame	3
3 Initialization	5
4 Registers	6

Trademarks

TI E2E[™] are trademarks of Texas Instruments. All trademarks are the property of their respective owners.

1 Build a Frame

Create a valid frame based on address and data with parity.

```
Uint16 assembleSPICmd 682(Uint16 write, Uint16 address, Uint8 data)
    Uint16 assembledCmd = 0; // Build this to shift through parity calculation
                         // Parity bit calculated here
// This will be what we send
    Uint16 parity = 0;
    Uint16 packet = 0;
    if(write)
    {
        assembledCmd |= 0x8000; // Set CMD = 1
    }
    assembledCmd |= (((address << 9) & 0x7E00) | (Uint16)(data & 0x00FF));
    packet = assembledCmd;
    // Calculate parity
    while(assembledCmd > 0)
        // Count the number of 1s in the LSb
        if(assembledCmd & 0x0001)
            parity++;
        // Shift right
        assembledCmd >>= 1;
    }
    // If the LSb is a 0 (even \# of 1s), we need to add the odd parity bit
    if(!(parity & 0x0001))
    {
        packet |= (1 << 8);
    return (packet);
}
```

1

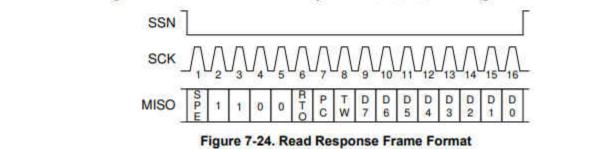
7.5.2 Command Frame The command frames are the only defined frame-format that are sent from master to slave on MOSI. A command frame can be either a read command or a write command. A Command frame consists of a CMD bit, six bits of ADDRESS, a PARITY bit (odd parity), and eight bits of DATA. The format of the Command frame is shown in Figure 7-23. The bit sequence is as follows: 1. The COMMAND bit (CMD). CMD = 1 means the transfer is a write command; CMD = 0 means it is a read command. Six bits of ADDRESS (A5..A0) 3. The PARITY bit (PAR). This bit is set by the following equation: PARITY = XNOR(CMD, A5..A0, D7..D0). 4. Eight bits of DATA (D7..D0). For read commands, the DATA bits must be set to zero. Both the Read and the Write Command follow the Command frame format. SSN SCK D D D D D D D D MOSI 0 3 5 6 4 3 2 1 0

2 Response Frame

The command response frames are defined in the following portions of the *TPS92682-Q1 Dual-Channel Constant-Voltage and Constant-Current Controller with SPI Data Sheet.*

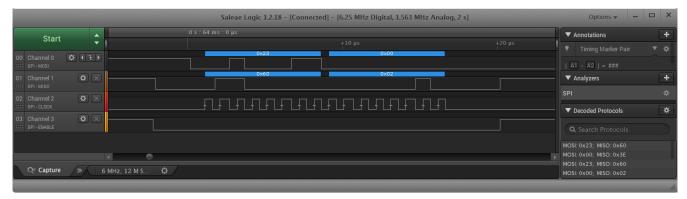
The following image illustrates the read response frame section of the data sheet.

7.5.3 Response Frame


There are three possible response frame formats: Read Response, Write Response, and Write Error/POR. These formats are further described below.

7.5.3.1 Read Response Frame Format

The Read Response has the following format:


- 1. The SPI Error bit (SPE)
- 2. Four reserved bits (always '1100')
- 3. The RT Open Fault bit (RTO)
- 4. The Power-Cycled bit (PC)
- 5. The Thermal Warning bit (TW)
- 6. Eight bits of DATA (D7..D0)

This is shown in Figure 7-24. This frame is sent out by the TPS92682-Q1 following a read command.

The command frame (Build a Frame) is SPI MOSI and the response is found in SPI MISO following it. The SPI MOSI command issued = 0x23 0x00. In this example the return (MISO result of 2 reads per SPI) has a status byte of 0x60 with a data byte of 0x02 indicating: CH2UV: Output undervoltage fault (CH2UV is disabled if 2PH is set to '1'). For a detailed explanation of the expected SPI bus return value with the TPS92682-Q1, visit the *TI E2ETM support forum*.

The following image shows the *Read Fault Register 0x11 (FLT1)*.

Response Frame

The following image shows the write response frame format, write error/POR frame format SPI error sections from the data sheet:

7.5.3.2 Write Response Frame Format

The Write Response frame has the following format:

- 1. The SPI Error bit (SPE)
- 2. The COMMAND bit (CMD)
- 3. Six bits of ADDRESS (A5..A0)
- 4. Eight bits of DATA (D7..D0)

This is shown in Figure 7-25. This frame is sent out following a write command if the previously received frame was a write command and no SPI Error occurred during that frame.

The data and address bits in the write response are the data and address that were sent in the previous write command.

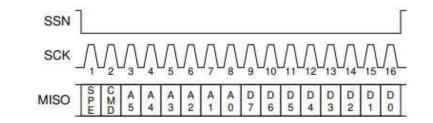
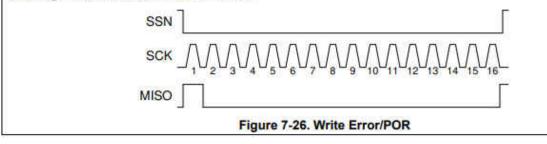



Figure 7-25. Write Response Frame Format

7.5.3.3 Write Error/POR Frame Format

The Write Error/POR frame is simply a '1' in the MSB, followed by all zeroes (see Figure 7-26). This frame is sent out by the TPS92682-Q1 internal digital block during the first SPI transfer following power-on reset, or following a write command with a SPI Error.

The following command frame is SPI MOSI and the response is found in SPI MISO after it. The SPI MOSI command issued = $0x81 \ 0x3E$. In this example, the return (MISO result of previous read of register 0x00) has a status byte of 0x60 with a data byte of 0x3c indicating: default power up value for register 0x00. For a detailed explanation of the expected SPI bus return value with the TPS92682-Q1, visit the *TI E2ETM support forum*.

The following image shows the Write Enable Register 0x00 (EN).

		0 s : 560 m s : 0 μ	s			n	Annotations	ſ
Start					+20 μs		Timing Marker Pair	
	◇ (ł) —		0×81	0x3E			 A1 - A2 = ### 	
	¢ × —		0×50	0x3C			▼ Analyzers	
	\$ ×						▼ Decoded Protocols	
	* × —							
	•		•			• •	MOSI: 0x23; MISO: 0x80 MOSI: 0x00; MISO: 0x00 MOSI: 0x23; MISO: 0x62	
Q≡ Capture	∕≫∕ i 6 MHz	e, 12 M S 🗘					MOSI: 0x23, MISO: 0x82 MOSI: 0x00; MISO: 0x22	

7.5.4 SPI Error

The TPS92682-Q1 device records a SPI Error if any of the following conditions occur:

- The SPI command has a non-integer multiple of 16 SCK pulses.
- Any of the DATA bits during a read command are non-zero.
- · There is a parity error in the previously received command.

If any of these conditions are true, the TPS92682 sets the SPE bit high in the next response frame. A write command with a SPI Error (not 16-bit aligned or bad parity) does NOT write to the register being addressed. Similarly, a read command to FLT1 or FLT2 does not clear any active fault bits in those registers if the command has a SPI Error.

3 Initialization

Note

Initialize the 682 device at power up.

- 1. Read fault register 0x11 to clear the PC (Power Cycle) bit (D5). SPI Command = 0x23 0x00
- 2. Read fault register 0x12 to clear any remaining faults. SPI Command = 0x25 0x00

4 Registers

The following image from the data sheet shows the available TPS92682 registers:

7.6 TPS92682 Registers

The SPI-accessible registers are 8-bits wide and exist in a 6-bit-addressable register array (0x00 through 0x3F). The registers in the TPS92682 device contain programmed information and operating status. Upon power-up the registers are reset to their default values. Writes to unlisted addresses are not permitted and may result in undesired operation. Reads of unlisted addresses return the zero value.

Reserved bits ("RSVD") must be written with '0' values when writing. Registers are read/write unless indicated in the description of the register. Table 7-2 lists the TPS92682 register map.

Table 7-2. TPS92682 Register N	lap
--------------------------------	-----

ADDR	REGISTER	D7	D6	D5	D4	D3	D2	D1	D0	DEFAULT
ADDK	REGISTER	07		CH2MAXD	CH1MAXD	CH2PDRV	CH1PDRV	01	00	DEFAULT
00h	EN	FPINRST	SYNCEN	EN	EN	EN	EN	CH2EN	CH1EN	00111100
01h	CFG1	PWMPH	INTPWM	2PH	LH	CH2HG	CH1HG	CH2CV	CH1CV	00000000
02h	CFG2	CH2LEB	CH1LEB	RSVD	RSVD	CH2FILT1	RSVD	RSVD	CH1FILT1	00000000
03h	SWDIV	RSVD	RSVD	RSVD	RSVD		CH2DIV1:0 CH1DIV1:0			00000000
04h	ISLOPE	RSVD		CH2ISLP2:0		RSVD CH1ISLP2:0				01010101
05h	FM	RSVD							00000101	
06h	SOFTSTART		CH2	SS3:0			CH19	SS3:0		01110111
07h	CH1IADJ					DJ7:0				00000000
08h	CH2IADJ					DJ7:0				00000000
09h	PWMDIV	RSVD	RSVD	RSVD	RSVD	RSVD		PWMDIV2:0		00000001
0Ah	CH1PWML				CH1P					00000000
0Bh	СН1РШМН	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	CH1P	VM9:8	00000000
0Ch	CH2PWML				CH2P	WM7:0				00000000
0Dh	CH2PWMH	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	CH2P	VM9:8	00000000
0Eh	ILIM	CH2ILIN	ICNT1:0	CH1ILIN	ICNT1:0	CH2IL	IM1:0 CH1ILIM1:0			00001111
0Fh	IFT	RSVD	RSVD	RSVD	RSVD	CH2I	IFT1:0 CH1IFT1:0			00001010
10h	MFT		CH2M	IFT3:0			CH1M	IFT3:0		10011001
11h	FLT1	RTO	RSVD	PC	TW	CH2OV	CH10V	CH2UV	CH1UV	read
12h	FLT2	CH2UC	CH1UC	CH2OC	CH1OC	CH2ILIM	CH1ILIM	CH2ISO	CH1ISO	read
13h	FEN1	CH2RFEN	CH1RFEN	CH2FBOE N	CH1FBOE N	CH2OVEN	CH10VEN	CH2UVEN	CH1UVEN	00111100
14h	FEN2	OVOPT	RSVD	CH2OCEN	CH10CEN	CH2ILIME N	CH1ILIME N	CH2ISOEN	CH1ISOE N	00001111
15h	FLATEN	CH2ILIMF L	CH1ILIMF L	CH2OCFL	CH10CFL	CH2OVFL	CH10VFL	CH2UVFL	CH1UVFL	00000000
16h	ov	RSVD CH2OV2:0 RSVD CH1OV2:0					00100010			
17h	LHCFG	LHPWMP H	LHINTPW M	LHCH2MA XDEN	LHCH1MA XDEN	LHCH2PD RVEN	LHCH1PD RVEN	LHCH2EN LHCH1EN		00111100
18h	LHCH1IADJ		LHCH1IADJ7:0							00000000
19h	LHCH2IADJ	LHCH2IADJ7:0							00000000	
1Ah	LHCH1PWM L	LHCH1PWM7:0							00000000	
1Bh	LHCH1PWM H	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	LHCH1PWM9:8		00000000
1Ch	LHCH2PWM L	LHCH2PWM7:0							00000000	
1Dh	LHCH2PWM H	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	LHCH2PWM9:8		00000000
1Eh	LHILIM			LHCH1ILIMCNT1:0			LHCH2ILIM1:0		LHCH1ILIM1:0	
1Fh	LHIFT	RSVD	RSVD	RSVD	RSVD	LHCH2	2IFT1:0	LHCH1IFT1:0		00001010
20h	LHMFT	LHCH2MFT3:0			LHCH1MFT3:0				10011001	
21h	LHFEN1	LHCH2RF EN	LHCH1RF EN	LHCH2FB OEN	OEN	LHCH2OV EN	LHCH1OV EN	LHCH2UV EN	LHCH1UV EN	00111100
22h	LHFEN2	RSVD	RSVD	LHCH2OC EN	LHCH1OC EN	LHCH2ILI MEN	LHCH1ILI MEN	EN	LHCH1ISO EN	00001111
23h	LHFLATEN	LHCH2ILI MFL	LHCH1ILI MFL	LHCH2OC FL	LHCH1OC FL	LHCH2OV FL	LHCH1OV FL	LHCH2UV FL	LHCH1UV FL	00000000
24h	LHOV	RSVD		LHCH2OV2:)	RSVD	I	HCH10V2:0		00100010
25h	CAL		CH2CAL2:0		CH2GOFF		CH1CAL2:0		CH1GOFF	00000000
26h	RESET				RES	ET7:0				00000000

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated