TPS7H4001-SHP Production Flow and Reliability Report

ABSTRACT

This report presents the reliability and qualification results for the TPS7H4001-SHP, radiation tolerant, 3-V to 7-V input, 18-A, synchronous step-down voltage converter in space High Grade Plastic (SHP) package. The TPS7H4001-SHP is manufactured with a controlled baseline and has the following:

- · An extended product life cycle
- One assembly and test site
- Product traceability
- · Extended product-change notification

Table of Contents

Texas Instruments High Grade Plastic Product Qualification and Reliability Report	2
Space High Grade Plastic Production Flow	
2.1 Device Introduction	2
2.2 TPS7H4001-SHP Space High Grade Plastic Production Flow	
Device Qualification.	4
Outgas Test Report	5
List of Figures igure 2-1. TPS7H4001-SHP Space High Grade Plastic Production Flow Chart	3
List of Tables	
able 3-1. Space High Grade Plastic Products New Device Qualification Matrix	4
able 4-1. Outgas Test Results	

Trademarks

All trademarks are the property of their respective owners.

1 Texas Instruments High Grade Plastic Product Qualification and Reliability Report

TI qualification testing is a risk mitigation process that is engineered to assure device longevity in customer applications. Wafer fabrication process and package level reliability are evaluated in a variety of ways that may include accelerated environmental test conditions with subsequent derating to actual use conditions. Manufacturability of the device is evaluated to verify a robust assembly flow and assure continuity of supply to customers.

2 Space High Grade Plastic Production Flow

2.1 Device Introduction

TPS7H4001-SHP is a radiation hardened device in a plastic package which allows this device to be used in space application. The device was verified immune to 75 MeV·cm²/mg at 125°C for single event latch-up (SEL). Each fabrication lot was tested according to MIL-STD-883 for Radiation Lot Acceptance Tested (RLAT) up to 100 krad(Si) and each assembly and test lot follows the process flow shown in Figure 2-1. To ensure the quality of TPS7H4001-SHP, it is qualified with Space High Grade Plastic requirements. See Section 3 for further details.

2.2 TPS7H4001-SHP Space High Grade Plastic Production Flow

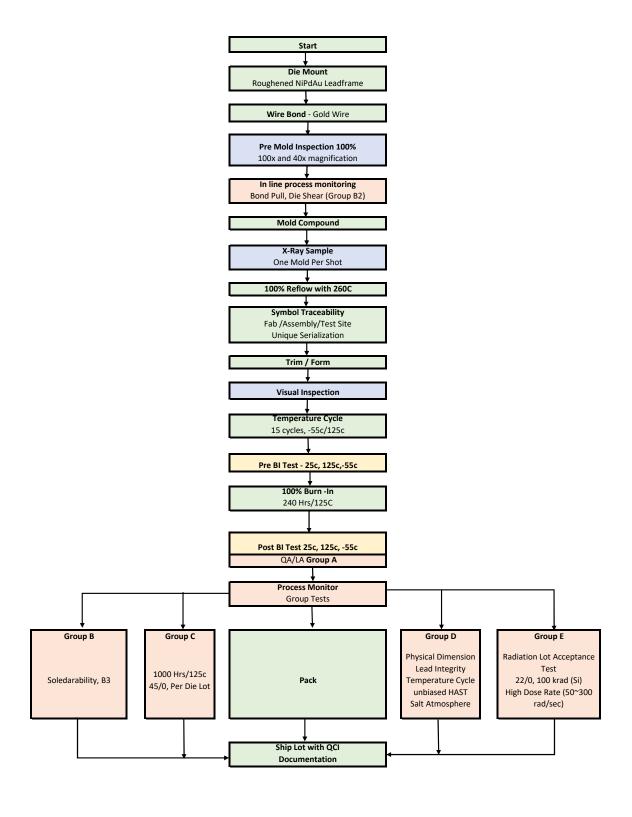


Figure 2-1. TPS7H4001-SHP Space High Grade Plastic Production Flow Chart

3 Device Qualification

The following is the device qualification summary.

Qualification by Similarity (Qualification Family)

A new device can be qualified either by performing full scale quality and reliability tests on the actual device or using previously qualified device(s) through "Qualification by Similarity" (QBS) rules. By establishing similarity between the new device and those qualified previously, repetitive tests will be eliminated, allowing for timely production release. When adopting QBS methodology, the emphasis is on qualifying the differences between a previously qualified product and the new product under consideration.

Table 3-1. Space High Grade Plastic Products New Device Qualification Matrix

Note that qualification by similarity ("qualification family") per JEDEC JESD47 is allowed.					
Description	Condition	Sample Size Used/ Rejects	Lots Required	Test Method	
Electromigration	Maximum Recommended Operating Conditions	N/A	N/A	Per TI Design Rules	
Wire Bond Life	Maximum Recommended Operating Conditions	N/A	N/A	Per TI Design Rules	
Electrical Characterization	TI Data Sheet	30	1	N/A	
Electrostatic Discharge Sensitivity	НВМ	3 units/voltage	1	JS-001	
	СДМ			JS-002	
Latch-up	Per Technology	3/0	1	EIA/JESD78	
Physical Dimensions	TI Data Sheet	5/0	1	EIA/JESD22- B100	
Thermal Impedance	Theta-JA on board	Per Pin-Package	N/A	Modelling	
Bias Life Test	125°C / 1000 hours or equivalent	45/0	1	JESD22-A108*	
Biased HAST	130°C / 85% / 96 hours	77/0	1	JESD22-A110*	
Extended Biased HAST	130°C / 85% / 192 hours (for reference)	77/0	1	JESD22-A110*	
Unbiased HAST	130°C / 85% / 96 hours	22/0	1	JESD22-A.118*	
Temperature Cycle	-65°C to +150°C non-biased for 500 cycles	77/0	1	JESD22-A104*	
High Temp Storage Life	175°C, 420 hours	77/0	1	JESD22-A103*	
Solderability	22 leads, min 3 devices, 245C +5C	22/0	1	J-STD-002	
Flammability	Method A / Method B	5/0	1	UL 94V0, Method A	
Radiation Response Characterization	Total Ionization Dose (TID)	5 units/dose level	1	MIL-STD-883/Method 1019	
Radiation Response Characterization	Single Event Latch-up (SEL)	3	1	MIL-STD-883/Method 1019	
RLAT	Radiation Lot Acceptance Testing	22/0		MIL-STD-883/Method 1019	
Outgassing Characterization, packaged unit	TML (Total Mass Lost)<=1%, CVCM (Collected Volatile Condensable material) <=0.1%	5/0	1	ASTM E595	
Bond Strength	22 bonds, min. 4 devices	22/0	1	TM2011	
Die Shear	Per TI Internal method	3/0	1	Per TI Internal method	
Internal Visual Inspection	Per TI Internal method	3/0	1	Per TI Internal method	
Lead Terminal Integrity	Per TI Internal method	3/0	1	Per TI Internal method	
Salt Atmosphere	Salt atmosphere, visual inspection	15/0	1	TM1009	
*Precondition performed per JEDEC Std. 22, Method A112/A113.					

www.ti.com Outgas Test Report

4 Outgas Test Report

Outgassing test was performed on 5 units. A total mass loss (TML) of 1.00% and collected volatile condensable material (CVCM) of 0.10% were used as screening levels for rejection of spacecraft materials. The outgas test was performed in a vacuum environment of less than 5×10 –5 torr according to ASTM E 595, for a duration of 24 hours, at 125°C. The TML and CVCM were measured after the test.

Table 4-1. Outgas Test Results

SAMPLE	TML < 1.0%	CVCM < 0.1%
TPS7H4003MDDWSEP	PASS	PASS

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated