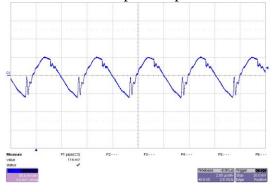
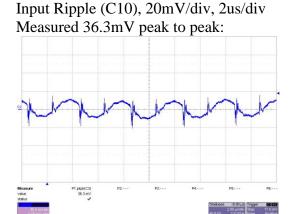

PMP6812 (Type 2) – 12V/1.8A/25W

Efficiency

The efficiency of the converter is shown below:

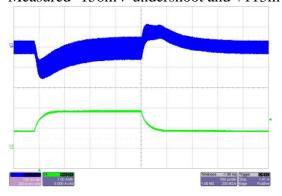
		J3	J3	J3	J1	J1	J1
lout	Vout	<u>lin</u>	<u>Vin</u>	<u>Eff</u>	<u>lin</u>	<u>Vin</u>	<u>Eff</u>
0.000	11.96	0.009	48.0	0.0%	0.009	48.0	0.0%
0.050	11.96	0.022	48.0	56.6%	0.022	48.0	56.6%
0.100	11.96	0.038	48.0	65.6%	0.039	48.0	63.9%
0.200	11.96	0.064	48.0	77.9%	0.063	48.0	79.1%
0.400	11.96	0.122	48.0	81.7%	0.122	48.0	81.7%
0.600	11.96	0.177	48.0	84.5%	0.179	48.0	83.5%
0.800	11.96	0.235	48.0	84.8%	0.237	48.0	84.1%
1.000	11.96	0.289	48.0	86.2%	0.294	48.0	84.8%
1.200	11.96	0.349	48.0	85.7%	0.355	48.0	84.2%
1.400	11.96	0.405	48.0	86.1%	0.412	48.0	84.7%
1.600	11.96	0.462	48.0	86.3%	0.471	48.0	84.6%
1.800	11.96	0.519	48.0	86.4%	0.531	48.0	84.5%




01-20-2012

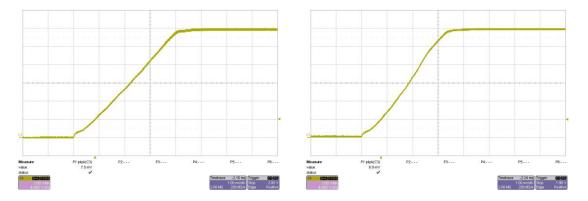
<u>Ripple and Noise</u>

Ripple measurements taken with a 48VIN at J1, 900mA load, and 20MHz BWL.


12V Ripple (C21), 50mV/div, 2us/div Measured 114mV peak to peak:

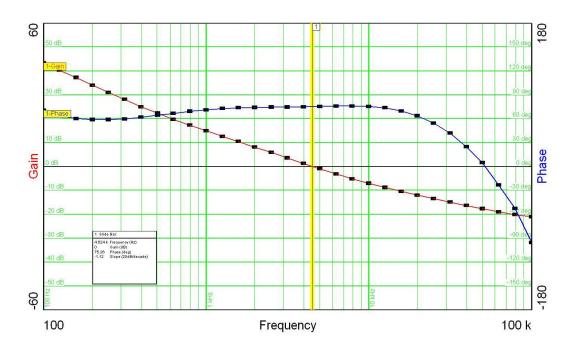
Dynamic Loading

Load Step, 48VIN at J1 100mV/div, 1A/div, 500usec/div 900mA to 1.8A load step Measured -156mV undershoot and +113mV overshoot:

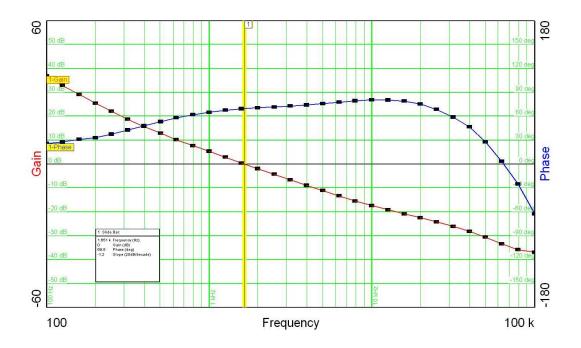


Turn On Response

48VIN, 1.8A Load, 2V/div, 1msec/div:


48VIN, 0A Load, 2V/div, 1msec.div:

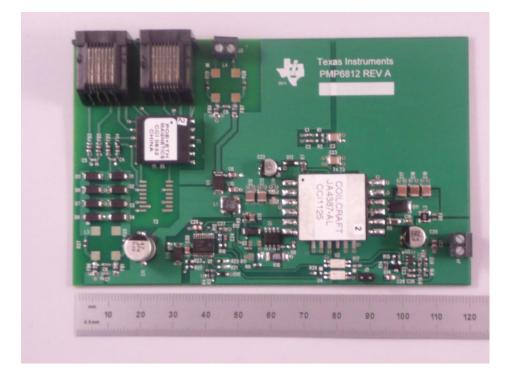
01-20-2012


Stability (Loop Gain)

The figure below is the loop gain of the converter with a 48V input and 1.8A load. The bandwidth is 4.5 KHz, the phase margin is 75 degrees, and the gain margin is 18 dB.

The figure below is the loop gain of the converter with a 48V input and 180mA load. The bandwidth is 1.6 KHz, the phase margin is 69 degrees, and the gain margin is 34 dB.

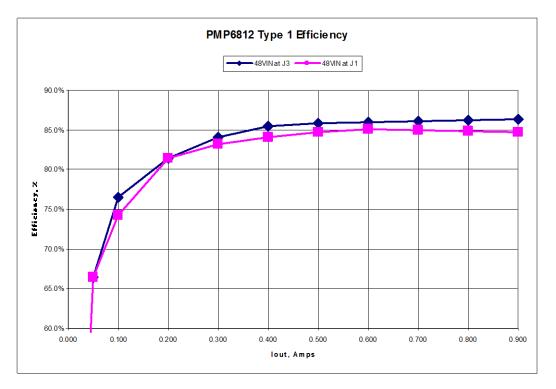
01-20-2012


Thermal Analysis:

48V input and 1.8A load:

Photo:

01-20-2012

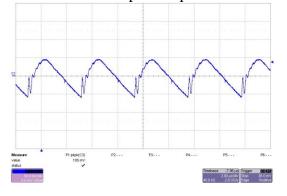

Note: Board Photos are of the PMP6812.2 Rev A board.

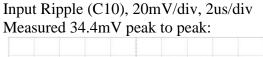
PMP6812 (Type 1) - 12V/0.9A/13W

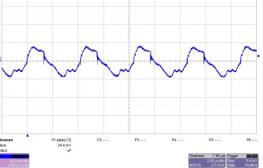
Efficiency

The efficiency of the converter is shown below:

		J3	J3	J3	J1	J1	J1
lout	Vout	<u>lin</u>	<u>Vin</u>	<u>Eff</u>	lin	<u>Vin</u>	Eff
0.000	12.11	0.005	48.0	0.0%	0.005	48.0	0.0%
0.050	12.11	0.019	48.0	66.4%	0.019	48.0	66.4%
0.100	12.11	0.033	48.0	76.5%	0.034	48.0	74.2%
0.200	12.11	0.062	48.0	81.4%	0.062	48.0	81.4%
0.300	12.11	0.090	48.0	84.1%	0.091	48.0	83.2%
0.400	12.11	0.118	48.0	85.5%	0.120	48.0	84.1%
0.500	12.11	0.147	48.0	85.8%	0.149	48.0	84.7%
0.600	12.11	0.176	48.0	86.0%	0.178	48.0	85.0%
0.700	12.11	0.205	48.0	86.1%	0.208	48.0	84.9%
0.800	12.11	0.234	48.0	86.3%	0.238	48.0	84.8%
0.900	12.11	0.263	48.0	86.3%	0.268	48.0	84.7%

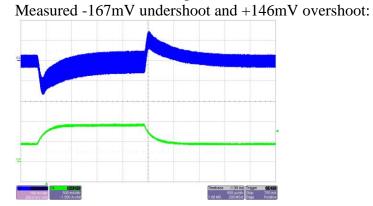



01-20-2012


Ripple and Noise

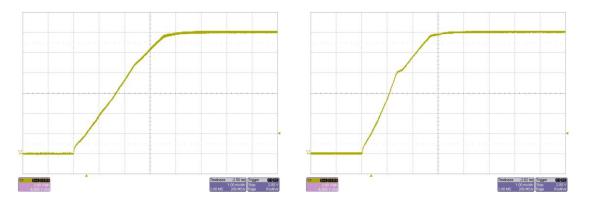
Ripple measurements taken with a 48VIN at J1, 900mA load, and 20MHz BWL.

12V Ripple (C21), 50mV/div, 2us/div Measured 105mV peak to peak:



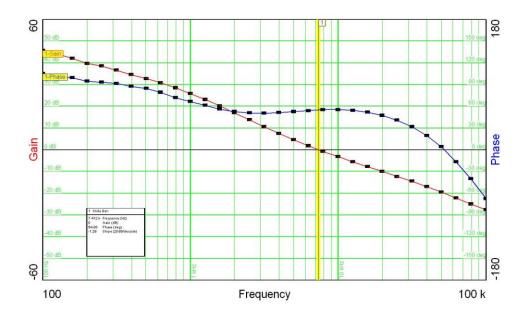
Dynamic Loading

450mA to 900mA load step

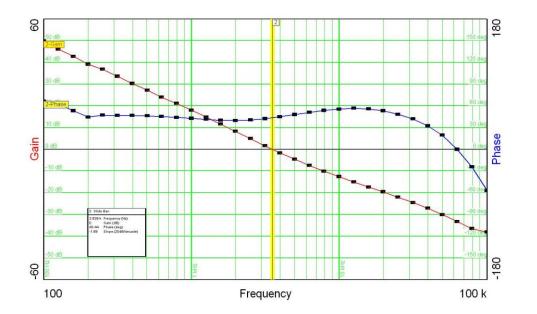


Load Step, 48VIN at J1 100mV/div, 500mA/div, 500usec/div

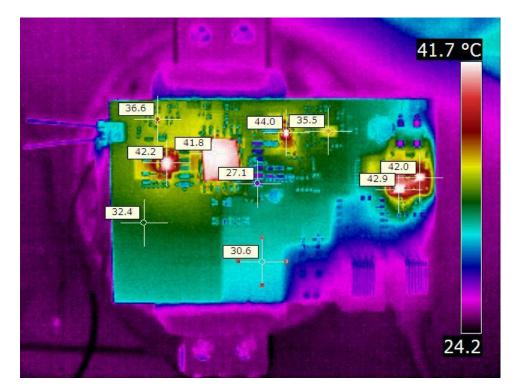
Turn On Response


48VIN, 900mA Load, 2V/div, 1msec/div: 48VIN, 0A Load, 2V/div, 1msec.div:

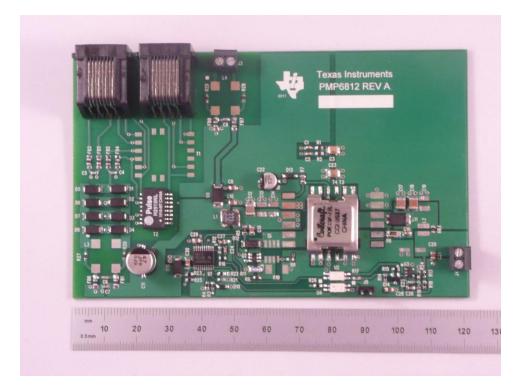
01-20-2012


Stability (Loop Gain)

The figure below is the loop gain of the converter with a 48V input and 900mA load. The bandwidth is 7.4 KHz, the phase margin is 55 degrees, and the gain margin is 20 dB.


The figure below is the loop gain of the converter with a 48V input and 90mA load. The bandwidth is 3.5 KHz, the phase margin is 43 degrees, and the gain margin is 33 dB.

01-20-2012


Thermal Analysis:

48V input and 900mA load:

01-20-2012

Photo:

Note: Board Photos are of the PMP6812.1 Rev A board.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated