UCC28517 100-W PFC power converter with 12-V, 8-W bias supply, Part 2

By Michael O'Loughlin (Email: michael_oloughlin@ti.com)
Member, Applications Engineering Staff

Introduction

Power factor corrected (PFC) preregulators are generally used in offline ac/dc power converters with a power level higher than 75 W or to meet line harmonic requirements such as EN61000-3-2. PFC is typically done with a boost converter ac/dc topology due to the continuous input current that can be manipulated through average currentmode control to achieve a near-unity power factor (PF). However, due to the high output voltage of a boost converter, a second dc/dc converter is generally needed to step down the output to a usable voltage. In the past this has been accomplished with two pulse-width modulators (PWMs). One PWM controlled and regulated the PFC
power stage, while the second was used to control the step-down converter. The UCC28517 controller reduces the need for two PWMs and combines both of these functions into one control-integrated circuit. The UCC28517 operates the second converter at twice the switching frequency of the PFC stage, which reduces the size of the boost magnetics and the ripple current in the boost capacitor. For more information on this device, please see Reference 7. This article reviews the design of the second $12-\mathrm{V}, 8$-W power stage to be used as an auxiliary bias supply. A review of the PFC preregulator power stage can be found in the 3Q03 issue of the TI Analog Applications Journal.

Variable definitions	
$\Delta \mathrm{t}$	Soft-start interval
$\eta 1$	Output A efficiency
$\eta 2$	Output B efficiency
$\mathrm{C}_{\text {DIODE }}$	Boost diode capacitance
$\mathrm{C}_{\text {oss }}$	FET drain-to-source capacitance
$\mathrm{D}_{\text {max }}$	Duty cycle maximum
ESR	Output capacitance equivalent resistance
f_{c}	Voltage-loop crossover frequency
$\mathrm{f}_{\text {opto_pole }}$	Frequency where optoisolator gain is -3 dB from its dc operating point
$\mathrm{f}_{\text {S }}$	Minimum switching frequency
$\mathrm{f}_{\text {SA }}$	Output A switching frequency
$\mathrm{f}_{\text {SB }}$	Output B switching frequency
$\mathrm{G}_{\mathrm{c}(\mathrm{s})}$	Control transfer function
$\mathrm{G}_{\text {cols }}$	Control to output transfer function
$\mathrm{G}_{\text {opto(s) }}$	Optoisolator gain transfer function
$\mathrm{H}_{\text {(s) }}$	Voltage divider gain
I_{m}	Transformer magnetizing current
$I_{\text {op_min }}$	Minimum optocoupler current (1 mA)
$\mathrm{I}_{\text {PK }}^{\text {Opm }}$	Peak inductor current, peak diode current, peak switch current
$\mathrm{I}_{\text {RMS }}$	RMS device current
$\mathrm{I}_{\text {ss }}$	UCC28517 soft-start current of $10 \mu \mathrm{~A}$
L_{m}	Transformer primary magnetizing inductance
N	Transformer turns ratio
N_{p}	Primary turns
$\mathrm{N}_{\text {s }}$	Secondary turns
$\mathrm{P}_{\text {cond }}$	Device conduction losses
$\mathrm{P}_{\text {coss }}$	Power dissipated by the FET's drain-to-source capacitance
$\mathrm{P}_{\text {DIODE }}$	Total loss in the boost diode

$\mathrm{P}_{\text {diode_cap }}$	Loss due to boost diode capacitance
$\mathrm{P}_{\text {fet_tr }}^{\text {drem }}$	FET transition losses
$\mathrm{P}_{\text {GATE }}$	Power dissipated by the FET gate
$\mathrm{P}_{\text {OUTA }}$	Output A maximum power
$\mathrm{P}_{\text {оитв }}$	Output B maximum power
$0_{\text {Gate }}$	FET gate charge
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	On resistance of the FET
$\mathrm{R}_{\text {load }}$	Typical load impedance
$\mathrm{R}_{\text {SENSE }}$	Current sense resistor
s	Angular frequency ($\mathrm{j} 2 \pi \mathrm{f}$)
$t_{\text {blank }}$	Amount of leading-edge blanking time
t_{f}	FET fall time
t_{r}	FET rise time
$\mathrm{T}_{\text {SB }}$	$1 / \mathrm{f}_{\text {SB }}=5 \mu \mathrm{~S}$
$\mathrm{T}_{\text {sff }}$	Voltage loop frequency response
$V_{\text {boost }}$	Same as $\mathrm{V}_{\text {OUTA }}$
V_{c}	Control voltage
$V_{\text {ct }}$	Oscillator peak (5 V)
$V_{\text {d }}$	Forward diode drop (0.6 V)
$V_{\text {dynamic }}$	Current sense voltage range
V_{f}	Forward voltage of a diode
$V_{\text {Gate }}$	Gate-drive voltage
$V_{\text {IN }}$	RMS input voltage
$V_{\text {OUTA }}$	Boost output voltage ($\mathrm{V}_{\text {boost }}$)
$\mathrm{V}_{\text {оutb }}$	Auxiliary output voltage
$V_{\text {pp }}$	Output peak-to-peak ripple voltage
$V_{\text {REF }}$	UCC28517 internal reference
$V_{\text {ripple }}$	Output B ripple voltage
$V_{\text {slope }}$	Voltage ramp peak added for slope compensation
$V_{\text {VERR }}$	Feedback error voltage
$\mathrm{V}_{\text {VREE_TL431 }}$	TL431 (D13) internal reference

Table 1. Design specifications

	MAXIMUM	TYPICAL	MINIMUM
$\mathrm{V}_{\text {IN }}$	$265 \mathrm{~V}_{\text {rms }}$		$85 \mathrm{~V}_{\text {rms }}$
Output A (V $\mathrm{V}_{\text {OUTA }}$)	410 V	390 V	370 V
Output B (V $\mathrm{V}_{\text {OUTB }}$)	12.6 V	12 V	11.4 V
Output A efficiency (η 1)		85\%	
Output B efficiency (η 2)		50\%	
$\mathrm{P}_{\text {OUTA }}$	100 W		10 W
$\mathrm{P}_{\text {оитв }}$	8 W		4 W
Output ripple A (V_{pp})	12 V		
Output ripple B (V $\mathrm{V}_{\text {ripple }}$)	750 mV		
Output A THD (\% THD)	10\%		
PF	1		
Output A switching frequency ($\mathrm{f}_{\text {SA }}$)		100 kHz	
Output B switching frequency ($\mathrm{f}_{\text {SB }}$)		200 kHz	

The following design example was generated using typical parameters rather than worst-case values. Please refer to Table 1 and Figures 1-3 for design specifications and component placement. All variables are defined in the sidebar on page 21

12-V, 8-W auxiliary converter (OUTB)

Due to the high input voltage from the boost converter, this design required a dc/dc converter with a step-down transformer to achieve the desired output voltage of 12 V . The low power requirements permitted use of a discontinuousmode flyback topology, which uses fewer components than a standard forward converter.

Transformer turns ratio

The following equation can be used to calculate the transformer turns ratio (N) needed for this power stage.

$$
\mathrm{N}=\frac{\mathrm{D}_{\max } \times \mathrm{V}_{\text {OUTA }} \times \mathrm{T}_{\mathrm{SB}}}{\left(0.9-\mathrm{D}_{\max }\right) \times\left(\mathrm{V}_{\text {OUTB }}+\mathrm{V}_{\mathrm{d}}\right) \times \mathrm{T}_{\mathrm{SB}}}
$$

The UCC28517 PWM/PFC controller has a user-selectable duty-cycle clamp. For this design the duty-cycle clamp was set to a $\mathrm{D}_{\max }$ of 0.55 . The UCC28517 has a forward enable comparator that will not allow the forward converter to operate with a boost voltage less than 50% of the nominal value. This allows the cascaded step-down converter to

Figure 1. PFC power stage schematic

Figure 2. dc/dc power stage schematic

Figure 3. Controller schematic

operate during loss of line voltage. An auxiliary winding of 22 turns was added to power the UCC28517 control IC as well. For this design Pulse Engineering designed a 22-turn transformer (part number PB2039).

Power switch (02) and output diode (D8) selection

To select D8 and Q2 properly, a power budget is generally set for these devices to maintain the desired efficiency goal. The following equations were used to estimate power loss in the switching devices. To meet the power budget for this design, an IRFBF20S FET and a 20CJQ045 dual diode from International Rectifier were chosen.

$$
\begin{aligned}
& \mathrm{I}_{\text {PK_Q } 2}=\frac{2 \times \frac{\mathrm{P}_{\text {OUTB }}}{\mathrm{V}_{\text {OUTB }}}}{\eta 2 \times \mathrm{N}} \\
& I_{\text {RMS_FET_Q2 }}=\frac{P_{\text {OUTB }}}{\eta 2 \times N} \times \sqrt{\frac{D_{\text {max }}}{3}} \\
& \mathrm{P}_{\text {COND_FET_Q2 }}=\mathrm{R}_{\text {DS(on) }} \times \mathrm{I}_{\text {RMS_FET }}^{2} \\
& \mathrm{P}_{\text {GATE_Q2 }}=\mathrm{Q}_{\mathrm{GATE}} \times \mathrm{V}_{\mathrm{GATE}} \times \mathrm{f}_{\mathrm{S}} \\
& \mathrm{P}_{\text {COSS_Q2 }}=\frac{1}{2} \mathrm{C}_{\text {OSS_Q2 }} \times \mathrm{V}_{\text {OUTB }}^{2} \times \mathrm{f}_{\mathrm{S}} \\
& \mathrm{P}_{\mathrm{FET} T_{-} \text {TR_Q2 }}=\frac{1}{2} \mathrm{~V}_{\text {OUTB }} \times \mathrm{I}_{\text {RMS_Q } 2} \times\left(\mathrm{t}_{\mathrm{r}}+\mathrm{t}_{\mathrm{f}}\right) \times \mathrm{f}_{\mathrm{SB}} \\
& \mathrm{P}_{\mathrm{Q} 2}=\mathrm{P}_{\mathrm{GATE}_{-} \mathrm{Q} 2}+\mathrm{P}_{\text {COSS_Q }^{2}}+\mathrm{P}_{\text {COND_FET }}+\mathrm{P}_{\mathrm{FET}_{-} \mathrm{TR} _ \text {Q2 }} \\
& \mathrm{I}_{\mathrm{PK} _\mathrm{D} 8}=\frac{2 \times \mathrm{P}_{\mathrm{OUTB}} \times\left(1-\mathrm{D}_{\max }\right)}{\mathrm{V}_{\mathrm{OUTB}}} \\
& \text { P }_{\text {DIODE_CAP_D8 }}=\frac{C_{\text {DIODE }}}{2} \times V_{\text {OUTB }}^{2} \times f_{\text {SB }} \\
& \mathrm{P}_{\mathrm{COND} \text { _ }} 8=\mathrm{V}_{\mathrm{f}} \times \mathrm{I}_{\text {RMS_D8 }} \\
& \mathrm{I}_{\text {RMS_D8 }}=\mathrm{I}_{\mathrm{PK}_{-} \mathrm{D} 8} \times \sqrt{\frac{1-\mathrm{D}_{\max }}{3}} \\
& \mathrm{P}_{\text {DIODE }}=\mathrm{P}_{\text {COND_D8 }}+\mathrm{P}_{\text {DIODE_CAP_D8 }}
\end{aligned}
$$

Output capacitor

The output capacitor selection for the step-down converter was based on requirements for energy storage, output ripple voltage, RMS current, and peak current.

$$
\begin{gathered}
\mathrm{I}_{\mathrm{PK}_{-} \mathrm{C} 30}=2 \times \frac{\frac{\mathrm{P}_{\text {OUTB }}}{\mathrm{V}_{\text {OUTB }}}}{1-\mathrm{D}_{\text {max }}} \\
\mathrm{ESR}_{\mathrm{C} 30 _ \text {max }} \leq \frac{\mathrm{V}_{\text {ripple }}}{\mathrm{I}_{\text {PK_C } 30}} \\
\mathrm{C} 30 \geq \frac{0.5 \times \mathrm{I}_{\mathrm{PK}} \times\left(1-\mathrm{D}_{\text {max }}\right)}{\mathrm{f}_{\mathrm{SB}} \times \mathrm{V}_{\text {OUTB }}} \\
\mathrm{I}_{\text {RMS_C } 30}=\mathrm{I}_{\mathrm{PK}_{-} \mathrm{C} 30} \times \sqrt{\left(1-\mathrm{D}_{\text {max }}\right) \times\left[\frac{4-3 \times\left(1-\mathrm{D}_{\max }\right)}{12}\right]}
\end{gathered}
$$

$\mathbf{R}_{\text {SENSE2 }}$

The dc/dc power converter is designed for peak-currentmode control. R4 is the current sense resistor, which can be sized through the following two equations.

$$
\begin{aligned}
& I_{m}=\frac{V_{\text {OUTA }} \times D_{\max }}{L_{m} \times f_{S B}} \\
& R 4=\frac{V_{\text {dynamic }}}{I_{m}+\frac{I_{\text {PK_C }}}{N}}
\end{aligned}
$$

Soft start

The UCC28517 has soft-start circuitry to allow for a controlled ramp of the second stage's duty cycle during startup. The following equation was used to calculate the approximate capacitance needed to achieve a soft start of roughly $5 \mathrm{~ms}(\Delta \mathrm{t})$.

$$
\mathrm{C} 16=\frac{\mathrm{I}_{\mathrm{SS}} \times \Delta \mathrm{t}}{5 \mathrm{~V}}
$$

Slope compensation

Designing a power converter that uses peak-current-mode control generally requires slope compensation to remove instabilities in the control loop and to make the design less susceptible to noise. Resistors R11 and R8 (Figure 3) sum in a portion of the oscillator signal to the current sense signal for slope compensation. Generally the added slope $\left(\mathrm{V}_{\text {slope }}\right)$ required is equal to half the down slope of the change in output current. By selecting R11 first, you can calculate the required value of R 8 to generate the required slope compensation.

$$
\left.\begin{array}{rl}
\mathrm{V}_{\text {slope }} & =\left(\mathrm{I}_{\mathrm{m}}+\frac{\mathrm{I}_{\mathrm{PK}}+\mathrm{C} 30}{}\right. \\
2 \mathrm{~N}
\end{array}\right) \mathrm{R} 42
$$

Leading-edge blanking circuit

The typical current sense signal for a converter using peak-current-mode control is shown in Figure 4. As shown, during time T 1 there is a leading current spike. This is partly caused by the parasitic gate-to-source capacitance of the power stage switch Q4 and the voltage divider formed off the gate drive by R4 and R7. This leading-edge spike can cause the peak-currentmode signal to terminate the gate drive prematurely. To remove this instability, a leading-edge blanking circuit was constructed.

Electronic components Q4, R40, R42, and C10 form a leading-edge blanking circuit. This circuit is used to clamp leading-edge current spikes. The timing of the leading-edge blanking can be adjusted by modifying the size of timing capacitor C10:

$$
\mathrm{C} 10=\frac{\mathrm{t}_{\text {blank }}}{2(\mathrm{R} 40+\mathrm{R} 42)}
$$

Control loop for the dc/dc converter

Figure 5 shows the control block dia-

Figure 4. Typical current sense signal

Figure 5. de/dc converter control loop

 gram for the control loop of the dc/dc converter. $\mathrm{G}_{\mathrm{c}(\mathrm{s})}$ is the compensation network's transfer function (TF), $\mathrm{G}_{\text {opto(s) }}$ is the optoisolator gain TF, $\mathrm{G}_{\mathrm{co}(\mathrm{s})}$ is the control-to-output gain TF , and $\mathrm{H}_{(\mathrm{s})}$ is the divider gain TF. To estimate the frequency response of each gain block, the following equations can be used. $f_{\text {opto_pole }}$ is the frequency where the optoisolator gain is -3 dB from its dc operating point; and $\mathrm{V}_{\text {VREF_TL431 }}$ is the internal reference voltage of the TL431 shunt regulator. $\mathrm{R}_{\text {load }}$ represents the typical load impedance for the design.$$
\begin{gathered}
H_{(s)}=\frac{R 27}{R 27+R 32}=\frac{V_{\text {VREF_TL431 }}}{V_{\text {OUTB }}} \\
\mathrm{G}_{\text {opto(s) }}=\frac{\mathrm{R} 13}{\mathrm{R} 36} \times \frac{1}{1+\frac{\mathrm{s}}{2 \pi \mathrm{f}_{\text {opto_pole }}}} \\
\mathrm{G}_{\mathrm{c}(\mathrm{~s})}=\frac{\mathrm{s} \times \mathrm{R} 35 \times \mathrm{C} 14+1}{\mathrm{~s} \times \mathrm{C} 14 \times \mathrm{R} 31 \times(1+\mathrm{s} \times \mathrm{R} 35 \times \mathrm{C} 15)} \times \frac{\mathrm{R} 13}{\mathrm{R} 36} \times \frac{1}{1+\frac{\mathrm{s}}{2 \pi f_{\text {opto_pole }}}} \\
\mathrm{G}_{\mathrm{co}(\mathrm{~s})}=\frac{\mathrm{V}_{\mathrm{OUTB}}}{\mathrm{~V}_{\mathrm{c}}}=\frac{\mathrm{R}_{\text {load }}}{\mathrm{R} 4} \times \frac{\mathrm{N}_{\mathrm{p}}}{\mathrm{~N}_{\mathrm{s}}} \times \frac{1+\mathrm{s} \times \mathrm{C} 30 \times \mathrm{ESR}}{1+\mathrm{s} \times \mathrm{C} 30 \times \mathrm{R}_{\text {load }}}
\end{gathered}
$$

Figure 6 shows the circuitry that was used for the voltage feedback loop. D13 is a TL431 shunt regulator that can function as an operational amplifier to provide feedback control when set up in this configuration.

Figure 6. Voltage feedback loop

Initially the resistor values for the divider gain, $\mathrm{H}_{(\mathrm{s})}$, must be selected. The following equation can be used to size these resistors, where $\mathrm{V}_{\text {OUTB }}$ is the desired output voltage and $V_{\text {VREF_TL431 }}$ is the internal reference of the TL431.

$$
\mathrm{R} 32=\frac{\mathrm{R} 27\left(\mathrm{~V}_{\text {OUTB }}-\mathrm{V}_{\text {VREF_TL431 }}\right)}{\mathrm{V}_{\text {VREF_TL431 }}}
$$

It is important to bias the TL431 and the optoisolator correctly for proper operation. Resistors R16 and R13 provide the minimum bias currents for the TL431 and the optoisolator, respectively, and can be selected with the following equations. The optoisolator was configured to have a dc gain of roughly 20 dB , and the optoisolator had a crossover frequency of roughly 80 kHz . Figure 7 shows the small signal frequency response of the optoisolator.

$$
\begin{gathered}
\mathrm{R} 16=\frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{I}_{\text {TL431_min }}} \\
\mathrm{R} 13=\frac{\mathrm{V}_{\text {REF }}-\mathrm{V}_{\text {VERR(max) }}}{\mathrm{I}_{\mathrm{op}_{_} \min }}
\end{gathered}
$$

Before attempting to compensate the control loop, $\mathrm{T}_{\mathrm{s}(\mathrm{f})}$, we must define some design goals for the closed-loop frequency response. Typically the loop is designed to cross over at a frequency below one-sixth of the switching frequency (see Reference 3). For this design example to have good transient response, the design goal was to have the loop gain crossover frequency (f_{c}) at roughly 1 kHz , which is less than one-sixth of the switching frequency $\left(f_{S B}\right)$. The following equation describes the frequency response of the system loop gain, $\mathrm{T}_{\mathrm{s}(\mathrm{f})}$, in decibels.

$$
\mathrm{T}_{\mathrm{s}(\mathrm{f})}=\mathrm{G}_{\mathrm{c}(\mathrm{~s})_{\mathrm{dB}}}+\mathrm{G}_{\mathrm{co}(\mathrm{~s})_{\mathrm{dB}}}+\mathrm{H}_{(\mathrm{s})_{\mathrm{dB}}}
$$

The compensation network that is used $\left(\mathrm{G}_{\mathrm{c}(\mathrm{s})}\right)$ has three poles and one zero. One pole occurs at the origin, and a second pole is caused by the limitations of the optoisolator. The third pole is set at one-half the switching frequency to attenuate the high frequency gain. The zero

Figure 7. Optoisolator frequency response

is set at the desired crossover frequency. The following equations can be used to select R35, C14, and C15 of $\mathrm{G}_{\mathrm{c}(\mathrm{s})}$ to obtain the desired design goals.

$$
\begin{gathered}
\mathrm{H}_{(\mathrm{s})_{\mathrm{dB}}}=20 \log \left(\mathrm{H}_{(\mathrm{s})}\right) \\
\mathrm{R} 35=\mathrm{R} 32 \times 10 \frac{-\left(\mathrm{G}_{\mathrm{co(s})_{\mathrm{dB}}}+\mathrm{G}_{\mathrm{opto(s)})_{\mathrm{dB}}}+\mathrm{H}_{\left(\mathrm{s}_{\mathrm{dB}}\right)}\right)}{20} \\
\mathrm{C} 14=\frac{1}{2 \times \pi \times \mathrm{R} 35 \times \mathrm{f}_{\mathrm{c}}} \\
\mathrm{C} 15=\frac{1}{2 \times \pi \times \mathrm{R} 35 \times \frac{\mathrm{f}_{\mathrm{S}}}{2}}
\end{gathered}
$$

Figure 8 shows the measured loop gain frequency response, $\mathrm{T}_{\mathrm{s}(\mathrm{f})}$. The frequency response characteristics in Figure 8 show that f_{c} was roughly equal to 800 Hz with a phase margin of roughly 50°. It is important to note that the equations used to compensate the control loop by selecting C14, C15, and R35 are estimates and the values may have to be adjusted to get the appropriate compensation.

Figure 8. Frequency loop response, $\mathrm{T}_{\text {s(f) }}$

Summary

In this design example we reviewed the design of a $100-\mathrm{W}$ PFC ac/dc preregulator with an auxiliary 12-V, 8-W bias supply. The UCC2851x family of combination PWM controllers is perfect for offline applications that require PFC and auxiliary power supplies to meet different system requirements. The design performance of this two-stage power converter is shown in Figures 9-12.

References

For more information related to this article, you can download an Acrobat Reader file at www-s.ti.com/sc/techlit/ litnumber and replace "litnumber" with the TI Lit. \# for the materials listed below.

Document Title

1. Laszlo Balogh, "Design Review: 140W,

Multiple Output High Density DC/DC
Converter," p. 6-9
TI Lit. \#
'slup117'
2. Laszlo Balogh, "Unitrode - UC3854A/B and UC3855A/B Provide Power Limiting With Sinusoidal Input Current for PFC Front Ends," Unitrode Design Note slua196
3. Lloyd Dixon, "Control Loop Cookbook," p. 5-17
xon, "Optimizing the
. Lloyd Dixon, "Optimizing the Design of a High Power Factor Switching Preregulator," pp. 7-11-7-12 \qquad "slup093:
5. James P. Noon, "A $250 \mathrm{kHz}, 500 \mathrm{~W}$ Power Factor Correction Circuit Employing Zero Voltage Transitions," pp. 1-11-1-14 \qquad 'slup106'
6. "Practical Considerations in Current Mode Power Supplies," Unitrode Application Note ----!slua110"
7. "Advanced PFC/PWM Combination Controllers," Data Sheet \qquad
8. "UCC28517 EVM User's Guide"

Figure 9. Output A THD vs. output power

Figure 10. Output A efficiency vs. output power

Figure 11. Output A PF vs. output power

Figure 12. Output B efficiency vs. output power

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

```
Products
Amplifiers
Data Converters
DSP
Interface
Logic
Power Mgmt
Microcontrollers
Applications
Audio
Automotive
Broadband
Digital control
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
------------
' amplifier.ti.com '
dataconverter.ti.com
dsp.ti.com
interface.tí.com
interface.ti.com
logic.ti.com
power.ti.com
`microcontroller.ti.com;
Imicrocontroller.ti.com
```

TI Worldwide Technical Support

Internet

TI Semiconductor Product Information Center Home Page
isupporteticicom '
TI Semiconductor KnowledgeBase Home Page

Product Information Centers

Americas			
Phone	+1 (972) 644-5580 Fax		+1(972) 927-6377
Internet/Email		icās.htm-	
Europe, Middle East, and Africa			
Phone			
Belgium (English)	+32 (0) 27455432	Netherlands (English) +31 (0) 546879545	
Finland (English)	+358(0) 925173948	Russia	+7(0) 957850415
France	+33 (0) 130701164	Spain	+34902354028
Germany	+49 (0) 8161803311	Sweden (English)	+46 (0) 858755522
Israel (English)	18009490107	United Kingdom	+44 (0) 1604663399
Italy	800791137		
Fax	+(49) (0) 8161802045		
Internet			
Japan			
Fax			
International	+81-3-3344-5317	Domestic	0120-81-0036
Internet/Email			
International			
Domestic	LWw.tij.co.jp/pic		
Asia			
Phone			
International	+886-2-23786800		
Domestic	Toll-Free Number Toll-Free Number		
Australia	1-800-999-084	New Zealand	0800-446-934
China	800-820-8682	Philippines	1-800-765-7404
Hong Kong	800-96-5941	Singapore	800-886-1028
Indonesia	001-803-8861-1006	Taiwan	0800-006800
Korea	080-551-2804	Thailand	001-800-886-0010
Malaysia	1-800-80-3973		
Fax	886-2-2378-6808 Email - support.ti.com/sc/pic/asia.htm"		tiasia@ti.com ti-china@ti.com
Internet			

C011905

Safe Harbor Statement: This publication may contain forwardlooking statements that involve a number of risks and uncertainties. These "forward-looking statements" are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forwardlooking statements generally can be identified by phrases such as Tl or its management "believes," "expects," "anticipates," "foresees," "forecasts," "estimates" or other words or phrases of similar import. Similarly, such statements herein that describe the company's products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI's most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.
Trademarks: All trademarks are the property of their respective owners.

Mailing Address: Texas Instruments
Post Office Box 655303
Dallas, Texas 75265
© 2005 Texas Instruments Incorporated

