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Analog Applications Journal is a collection of analog application articles
designed to give readers a basic understanding of TI products and to provide
simple but practical examples for typical applications. Written not only for
design engineers but also for engineering managers, technicians, system
designers and marketing and sales personnel, the book emphasizes general
application concepts over lengthy mathematical analyses.

These applications are not intended as “how-to” instructions for specific
circuits but as examples of how devices could be used to solve specific design
requirements. Readers will find tutorial information as well as practical
engineering solutions on components from the following categories:

• Data Acquisition

• Power Management

• Interface (Data Transmission)

• Amplifiers: Op Amps

Where applicable, readers will also find software routines and program
structures. Finally, Analog Applications Journal includes helpful hints and
rules of thumb to guide readers in preparing for their design.

Introduction

Introduction
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A DAC for all precision occasions

Introduction 
Analog-to-digital converters (ADC) routinely
convert analog signals such as temperature,
pressure, sound, or images to a precise digital
representation. Microcontrollers and micro-
processors store, massage, and transmit this
digital information throughout a system. There
are also times when precision digital-to-analog
converters (DAC) convert the digital representa-
tion of these real-world events back into the
analog domain. Three of the DAC topologies that
achieve this feat are the R-2R MDAC, R-2R back-
DAC, and the string DAC. These three topolo-
gies service applications such as automatic test
equipment, instrumentation, portable equip-
ment, and digitally controlled calibration. 

The R-2R MDAC 
Automatic test equipment or instrumentation typically
uses the R-2R multiplying DAC (MDAC, Figure 1). The
external operational amplifier augments the DAC function
by providing the opportunity for differing supply voltages
and high output currents. MDAC manufacturers are able
to design high resolution devices (16 bit) with ±1 LSB
integral non-linearity (INL) and differential non-linearity
(DNL) specifications. With an appropriate external ampli-
fier, the MDAC exhibits fast settling time (< 0.3 ms) with 
a multiplying bandwidth that can be greater than 10 MHz.

The MDAC generates a current that is proportional to
an input digital code. The external amplifier, along with
RFB (internal in the MDAC), converts the DAC’s current-
output signal to a usable voltage level. It would seem that
a simple current-to-voltage conversion is easy to imple-
ment with a DAC, an amplifier, and a resistor. However,
this application circuit has a set of stability issues. 

By Bonnie C. Baker, Senior Applications Engineer

R R

External
Op Amp

LSBMSB

2R 2R 2R 2R 2R

RFB

VREF

R

Figure 1. An R-2R multiplying DAC
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MDAC

CDIF OPA

CCM

Figure 2a. MDAC model

The output model of the MDAC contains a current
source, variable resistor, and variable capacitor (Figure 2a).
The output resistance and capacitance of the MDAC is
dependent on the input code to the DAC. Programming
the MDAC to zero causes the output resistance (RD) to be
near infinite. If you program the MDAC to full scale or all
ones, RD is equal to RFB. The output capacitance (CD)
changes according to the number of internal gate-source
junctions across the MDAC output. At full scale, the
MDAC output capacitance is equal to the data sheet 
specification. When programmed to zero scale, the MDAC
output capacitance is equal to approximately half the 
full-scale value. As we calculate the worst-case stability
condition, we will use the full-scale output values of RD
and CD. 

To maintain precision, most MDACs have a feedback
resistor (RFB) on-chip. The feedback capacitor, CF, is
external and discrete. The unity gain bandwidth (fU) of

http://www.ti.com/aaj
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the operational amplifier, as well as the input-differential
capacitance (CDIF) and common-mode capacitance (CCM),
directly affect the stability of this circuit. 

At the input of the amplifier, the total capacitance in
this system is equal to CIN = CD + CDIF + CCM. The pole
and zero in the feedback loop of the amplifier are equal 
to (see Figure 2b and c):

[feedback circuit zero]

[feedback circuit pole]

You determine the system stability by keeping the 
difference of the rate of change of the operational 
amplifier open-loop gain curve and the closed-loop gain
curve at 20 dB/decade. You can do this by selecting an
amplifier with unity gain bandwidth (fU) less than f1 or
higher than f2 (Figure 2b and c). 

From here, it is easy to design a stable circuit. If f1 is
higher than the unity gain crossing of the amplifier fU, 
the following formula applies to this design.

If f2 is lower than the intersection of the open-loop gain
curve and the closed-loop gain curve, use this formula. 

These calculated values of CF are a starting point. As
you test your circuit, parasitics, device manufacturing
variations, etc. can prompt you to modify the value of CF. 

Making the MDAC analog voltage signal stable is criti-
cal. However, there are other issues to take into account.
At the risk of covering this topic too briefly, consider
issues such as amplifier noise, input bias current, and off-
set voltage, as well as MDAC resolution and glitch energy. 

The MDAC is a low-noise solution for a variety of appli-
cations. The voltage-reference, current-output change
with digital codes to the MDAC is constant. The trade-off
for this advantage is varying ground currents with digital
input codes. Typically, you will find MDACs in digital gain
and attenuation control circuits as well as waveform
generators.

The R-2R back-DAC
You usually use the R-2R back-DAC (Figure 3) in industrial
applications. Some other applications for the R-2R 
back-DAC include instrumentation and digitally controlled
calibration. With the R-2R back-DAC, each new update
switches the 2R legs to either the voltage reference high
(VREF-H) or the voltage reference low (VREF-L). Notice
that the arrangement of the R-2R ladder is upside down 
as compared to the MDAC. This is where the name 
“back-DAC” came from. This architecture is simple to
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with a low-bandwidth amplifier
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Figure 3. An R-2R Back-DAC

manufacture, assuming the resistors for each current
source can be properly adjusted. 

Gate-switch timing skews manifest themselves at the
output of the MDAC and back-DAC as glitches. The glitch
is most prevalent during the MSB transition, when bits are
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Figure 2b. Model’s frequency response 
with a high-bandwidth amplifier
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switching from 7FFFh to 8000h (for a 16-bit DAC). The 
R-2R back-DAC, like the MDAC, typically has excellent
low noise, INL, and DNL performance, with medium 
settling-time capability.

DAC glitches result from capacitive-charge injection
from the internal, asynchronous gate switching. The DAC
glitch for R-2R DACs typically has two lobes (Figure 4a),
while string topologies typically have a single-lobe glitch
impulse (Figure 4b).

The units of a glitch impulse is volts/seconds. Glitch
impulses are most dramatic between consecutive codes
where a major code transition occurs. In Figure 4a the
total glitch impulse equals G2 minus G1, where G1 and G2
are the calculated areas. In Figure 4b the total glitch
impulse equals the shaded area of G1. In most systems,
you can ignore the glitches that occur at the output of a
DAC during code transition; however, in a control loop,
glitch impulses are typically undesirable. In a control sys-
tem, the DAC glitch impulse from a one-bit code transi-
tion, where the MSB is switching, confuses the loop by
momentarily sending an erroneous output-voltage signal. 

The glitch-impulse area in Figure 4a occurs during the
DAC’s output-voltage transition region as it switches from
one code to another. As the 16-bit DAC switches from
8000h to 7FFFh (or half the full-scale output voltage), 
the output glitch impulse becomes noticeable to the

extent that it appears as if the DAC is momentarily 
non-monotonic. Secondary glitches occur around the 
one-fourth full-scale and three-fourths full-scale voltages.
If the control system is fast enough to respond to this
glitch, the circuit may oscillate.

You can try to reduce the impact of this glitch impulse
by using a low-pass filter at the output of the DAC.
However, while a low-pass filter reduces the glitch-impulse
amplitude, it increases the glitch time. For example, 
consider a glitch-impulse response of the 16-bit DAC 
is equal to 96 nV-s, with a peak voltage of 60 mV and 
duration of 1.6 µs. You can filter this glitch impulse so that
the peak voltage is 30 mV with duration of 3.2 µs. You can
also add sampling circuitry on the output of the DAC and
time it with DAC conversions. This technique may work
for lower resolution, slow DACs; however, the sampling
mechanism may create more problems by adding to the
analog errors and conversion time. The best way to over-
come larger glitch impulses is to select a string DAC with
lower glitch-impulse errors from the start.

The R-2R back-DAC has medium settling time capability;
however, you can build high-performance circuits with its
superior INL and DNL performance. Texas Instruments
achieves higher accuracy specifications with final test
trimming. The R-2R ladder also facilitates low-noise per-
formance from the DAC. 

String DAC topology
The string DAC is best suited for portable instrumenta-
tion, closed-loop servo control, and process control. 
Figure 5 shows a model of a 3-bit string DAC. In this 
figure, the digital input code 101b is decoded to 5/8 VREF.
The string DAC’s output-stage amplifier isolates the 
internal resistive elements from output loads. The string
DAC is a low-power solution that guarantees monotonicity

Glitch-Impulse
Area, G2

Glitch-Impulse
Area, G1

Voltage (V)

Time (s)

Code: 7FFF

Code: 8000

Glitch-Impulse = G2 – G1

Figure 4a. Glitch impulse of a DAC producing
two regions of code transition error 

Glitch-Impulse
Area, G1Voltage (V)

Time (s)

Code: 7FFF

Code: 8000

Glitch-Impulse =  G1

Figure 4b. Glitch impulse of DAC
producing one region of overshoot
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Figure 5. String DAC topology
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with good DNL performance across the entire input code
range. The glitch energy is typically lower than other
types of DACs; however, the INL performance is generally
larger and dependent on resistive, on-chip matching. On
the other hand, a DAC in a control loop lessens the impact
of high linearity. The noise of string DACs is also relatively
high because of the resistive string-array impedance.

The string DAC operates with low power and very low
glitch energy. An on-chip output buffer simplifies the
interface to this device. 

DAC calibration
With any of the three DACs in this article, you may see

a need to calibrate the analog output for higher precision
results. If you calibrate any DAC, you initially determine
the code-to-voltage error at one-third of the output range
and again at two-thirds of the output range. The range
between one-third full scale (FS) and two-thirds FS avoids
the output amplifier errors near the power supply rails.
You achieve the calibration of the offset and gain errors
with the formula VOUT = a +bVIN (“a” is the offset error
and “b” is the gain error). You can calibrate your DAC in
the digital domain with the help of an ADC that is more
accurate than the target specifications of a DAC. 

A more challenging DAC calibration activity is to adjust
the linearity of the converter’s entire output range. Once
again, you will require an ADC that has four times the
resolution of the DAC. You can calibrate every DAC code
with 8, 10, or 12 bits of resolution. In this environment
there are fewer DAC codes to calibrate and the memory
requirements are lower. The accuracy of the calibrating
low-bit ADC is not as demanding, allowing faster ADC
conversion times. For DACs with resolution of 14+ bits,
the total number of codes becomes unmanageable in
terms of processor memory. Additionally, you will need to
use a slower ADC with higher accuracy, such as a delta-
sigma converter. Higher cost and slower speeds will
encourage you to consider alternative DAC calibration
strategies.

An effective alternative to linearizing every DAC code is to
select several small groups of codes. The plot in Figure 6a
shows an example of the integral non-linearity of a 16-bit
string DAC. The universal formula for calculating any DAC
correction code is 

where INLV and INLW are the INL error of the v and w
code. x is a code between codes v and w. If (v – w) is
equal to an integer that is a power of two, you can imple-
ment the division with right shifts, reducing the processor
calculation time and complexity. Figure 6b illustrates the
benefit of this linearization technique using 1024 code
groupings, 64 codes per group.

This technique is best suited for DACs that are mono-
tonic, with INL error in excess of ±8 LSB. Additionally,
you must exercise care when selecting the size of the code
sets. If there are large, sudden jumps from one code to the

DAC INL INL INL
v x

v wCOR V V W= + − × −
−

( ) ,

8

6

4

2

0

–2

–4

–6

–8

DA
C 

IN
L,

 L
SB

DAC Code
0 10K 20K 30K 40K 50K 60K 65K

Figure 6b. A correction step of 64 LSB (1024 out
of the 65,536 points) reduces the INL error to less
than ± 3 LSB
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Figure 6a. INL of a 16-bit string DAC

next, as may be with R-2R architectures, this technique
may prove to be counterproductive instead of an improve-
ment in DAC performance. The string DAC topology is
best suited for this calibration technique because it is
inherently monotonic (a requirement for this technique)
and jumps from one code to the next are relatively small
as compared to other DAC topologies.

Conclusion
A precision DAC uses a limited number of discrete digital
input codes to produce a corresponding number of discrete
analog output values. For a DAC, 1 LSB corresponds to
the height of a step between successive analog outputs,
with the value defined in the same way as for the ADC.
The MDAC, R-2R back-DAC, and string DAC architectures
do not encompass all of the possible DAC topologies, but if
you know about these topologies you will have a good
start on knowing the basics. 
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New current-mode PWM controllers 
support boost, flyback, SEPIC and 
LED-driver applications

Introduction 
With their wide input voltage range, the TPS40210 and
TPS40211 PWM controllers are targeted for isolated and
non-isolated power converters used in industrial, automo-
tive, and battery-powered applications. The full freedom in
selecting the power stage and its compensation—as well
as the advanced features, such as programmable soft start,
adjustable/synchronizable oscillator frequency and internal
slope compensation—supports the use of the devices in
many applications. The basic converter architecture can
provide different power levels by simply changing the
power stage. While the TPS40210 is designed for general-
purpose applications, the TPS40211 is tailored for driving
high-brightness LEDs.

Boost converter application 
The devices and their basic configuration are described

in detail in Reference 1.

SEPIC converter application 
The SEPIC-converter shown in Figure 1 allows the input

voltage to be smaller, larger, or equal to the targeted out-
put voltage. The topology requires two single inductors 
or one coupled inductor, L1, and a capacitor C9, which is
responsible for the energy transfer. The filter formed by
L2 and C11 is optional. It reduces the output ripple volt-
age to 50 mVp-p in the example shown. When operating
the converter at 1 MHz, the size of the power stage
(inductors/capacitors) can be minimized. However, 

By Jürgen Schneider, Systems Engineer Power Solutions

RC
SS
DIS/EN
COMP
FB

VIN+
8 V to 36 V

VOUT+
12 V/3 A

U1
TPS40210

PwPd

R2
150 k

C3
4.7 n

C4
100 p

C5
1 µ

C6
100 p

C8
100 n

C9

2 x 
3.3 µ

R5
0.01

R4  1 k R7
6.19 k

C10
2 x 22 µ

C11
1 µ

L1   4.7 µ
L2
1 µ

C12
330 µ

R6
100 k

Q1 Si7850DP
on heatsink

for IOUT > 1 A
x x
A B

A BOptional filter
to reduce ripple

C2
220 n

R1
200 k

C1
100 p

F
Switching

 = 1 MHz
VDD
VBP

GDRV
ISNS
GND

D1
MBRB2060CT

C7
3.3 µ

Figure 1. SEPIC 1-MHz converter with 8- to 36-V input and 12-V/3-A output

due to the increased switching loss at this high frequency,
a greater than 1-A continuous output current requires Q1 
to be mounted on a heat sink. Operation without a heat
sink is possible at a reduced switching frequency and/or
reduced maximum input voltage.

With a 2-A current output and a 1-MHz switching 
frequency, converter efficiency was measured as follows:
90% with a 12-V source, 88% with a 24-V source, and 
85% with a 36-V source.

Features
• Input voltage: 4.5 to 52 V 

• Current-mode architecture

• Switching frequency: 35-kHz to 1-MHz 
(programmable and synchronizable)

• Programmable soft start (closed loop)

• Reference voltage: 700 mV for TPS40210 
and 260 mV for TPS40211

• Internal slope compensation

• Threshold for overcurrent detection: 150 mV

• Internal 8-V regulator and N-channel MOSFET 
driver 

• Quiescent current when disabled: 10 µA

• MSOP10 PowerPAD™ and 3-mm x 3-mm 
SON package 

http://www.ti.com/aaj
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Flyback converter application
Figure 2 shows the TPS40210 controller configured in 
a flyback-converter topology for a dual-output isolated 
supply. Key components include the transformer (T1), 
the snubbers (R5, C7, D1, R8, C9, R10, R11, C12 and
C13), the optocoupler (U2), the secondary-side reference
and error amplifier (U3), the bias resistor (R15) belonging
to U3, the loop compensation (C19, C20 and R16), the
output-voltage divider (R17 and R18), and the secondary-
side soft-start and overshoot control (D5, R14 and C18).
The circuit shown directly controls the positive output 
rail (VOUT+) only. Negative-rail regulation is based on 
the cross regulation between the two secondary windings
of T1. When the negative output does not have a load, 
R12 and D4 provide a basic load.

High-brightness LED-driver application
DC/DC regulators are usually designed to provide a con-

stant-voltage output; however, LED applications require a
constant-current output. In Figure 3, R1 is used to sense
the LED current. The losses in R1 are minimized with the
TPS40211 because of its low 250-mV reference voltage.
D1 protects against output overvoltage in the event of 
an LED-string open circuit. The brightness can be 
programmed by altering R1, current injection into the 
FB pin, or by PWM dimming. See Reference 1 for more 
information.

RC
SS
DIS/EN
COMP
FS

VIN+
10 V to 14 V

VOUT+
+ 12 V/0.5 A

VOUT–
– 12 V/0.5 A

U1
TPS40210

PwPd

C3
47 p

C2
100 n

C1
220 p

R1
30 k

R4
1 k

C10
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C17
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C16
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U2
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U3
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D5***
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Q1
Si4850EY
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When good grounds turn bad—isolate!
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Industrial communication via fieldbus-transceiver systems
often requires long transmission lines. Designers, unaware
of the large ground-potential differences (GPDs) between
remote bus locations, either rely on the local earth ground
as a reliable signal return path or directly connect remote
grounds to each other—thus creating noisy ground loops.
In both cases the integrity of the transmission signal is
compromised, which can lead to system lockup and, at
worst, destroy the bus transceivers.

To make designers aware of these design pitfalls, this
article explains where GPDs originate in the electrical
installation, how ground loops are created unintentionally,
and how isolation circumvents both conditions to yield a
robust data-transmission system.

Linking grounds
The link between the direct-current (DC) ground of a local
electronic circuit and the earth reference potential of the
mains is usually provided by the local power supply 
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Figure 1. Simplified block diagram of an SMPS

converting the line voltage into the required DC output.
Figure 1 shows a simplified block diagram of a low-cost
switched-mode power supply (SMPS) typically used in
personal computers, laser printers, and other equipment.
Here the DC ground of the SMPS output is referenced to
the protective earth (PE) conductor of the mains via the
SMPS chassis. This direct link, therefore, acts as a sense
conductor, establishing the PE voltage as the local DC
ground potential.

Linear and nonlinear loads
Large office and industrial buildings operate a vast number
of nonlinear loads such as PCs, laser printers, solid-state
heater controls, fluorescent tubes, uninterruptible power
supplies, and variable-speed drives. In comparison to linear
loads such as incandescent lamps, whose phase currents
maintain a sinusoidal waveform, nonlinear loads distort
phase currents, introducing large harmonic content (see
Figure 2).

Fundamental

Distorted-
Current

Waveform Third Harmonic Fifth Harmonic

= + +

Figure 2. Distorted phase current and its frequency components
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While the third and fifth harmonics of the fundamen-
tal 60-Hz line frequency make up the lion’s share of
the harmonic content, the vector sum of all frequency
components (including the 60-Hz fundamental) can
reach peak values that exceed the amplitude of the
fundamental phase current by more than 100%.

All neutral conductors merge into one neutral con-
ductor of large diameter within the distribution panel,
running towards the transformer (Figure 5). In the
case of linear loads, the neutral currents of multi-
phase systems cancel each other to a certain extent.
Only a fraction of the total neutral current remains
due to loading imbalance (Figure 3).

For nonlinear loads, however, the individual currents
add up to a total neutral current consisting primarily
of third harmonics (Figure 4). The large neutral cur-
rents of nonlinear loads, therefore, cause significantly
higher voltage drops across the line resistance of the
electrical installation than those of linear loads.

Earthing systems
Most electrical installations use either the TN-C or
the TN-C-S earthing system, both shown in Figure 5.

“TN” means the neutral is grounded to earth
(French terre) at the transformer. The letter “C”
indicates the combined use of PE and neutral lines
via one conductor, designated as “PEN.” The PEN
runs through the entire system up to a distribution
point (i.e., a subpanel) close to the loads, where it is
split into separate PE and neutral conductors that
directly connect to the loads.
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L1
PEN

L3
PEN

Load A1 Load Am

Load B1 Load Bn

L3

PEN

RLS
RL-N RL-N

RL-N
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PEN

Figure 5. TN-C system (a) with typically higher GPDs
than TN-C-S system (b)
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Figure 3. Multiphase currents with a linear load

(a) Sinusoidal phase currents (b) Total neutral current due to
load imbalance
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Figure 4. Total neutral current consists mainly of third harmonics
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however, are in the millivolts range or lower and are thus
significantly lower than in TN-C systems.

GPDs are not a problem for an electronic circuit limited
to operation from only one local supply. GPDs do become
of concern in the design of a communication link between
two remote circuits (i.e., fieldbus-transceiver stations),
each operating from a different supply.

Designing a remote data link
When designing a remote data link, the designer must
assume GPDs exist. These voltages add as common-mode
noise, Vn, to the transmitter output. Even if the total super-
imposed signal is within the receiver’s input common-
mode range, relying on the local earth ground as a reliable
path for the return current remains dangerous (see Figure
6a). This applies even to “super” RS-485 transceivers such
as the Texas Instruments SN65HVD2x family, whose input
common-mode range stretches from –20 V to +25 V.

Any modifications of the electrical installation (i.e., dur-
ing regular maintenance work) are out of the designer’s
control. The modifications can increase the GPD to the
extent that the receiver’s input common-mode range is
either sporadically or permanently exceeded. Thus, a data
link that works perfectly today might cease operation
sometime in the future.

Removing the GPD by directly connecting remote
grounds through a ground wire is also not recommended
(Figure 6b). Bear in mind that the electrical installation
constitutes a highly complex resistance network consisting

VCC1 VCC1 VCC1VCC2 VCC2 VCC2

Electrical Installation

Electrical Installation

Electrical Installation

1

1

1

2

2

2
GPD

3

3

3

Vn VnVn

High Loop Current Low Loop Current

100 Ω 100 Ω
Ground Loop

Ground LoopCircuit
Ground

Circuit
Ground

Figure 6. Design pitfalls

(a) High GPD (b) High loop current (c) Reduced loop current yet highly sensitive to
induced noise from large ground loop

Although TN-C represents an old earthing system, it has
regained interest because it is less costly than a system
requiring an additional PE conductor. The TN-C method,
however, has a major drawback. Because the split into PE
and neutral lines occurs close to a load, the voltage poten-
tial at the local PE connection includes the large voltage
drops across the line resistance, RL-N, of long neutral con-
ductors. These voltage drops are caused by high neutral
currents from nonlinear loads. The TN-C system, therefore,
has the potential to cause large GPDs between remote
grounds in the tens of volts.

The TN-C-S system reduces GPDs by starting an extra
PE conductor within the distribution panel. Additionally,
the star connection of the system’s neutral and PE con-
ductors receives a second grounding to earth, reducing
the equipotential at this point and counteracting the
otherwise large voltage drop at the PEN across the source
line resistance, RLS.

According to the United States National Electrical Code
(NEC), the PE conductor is supposed to be currentless
under normal operation. However, most nonlinear loads
leak currents in the lower milliamperes into the PE con-
ductor. This amount, although small for one circuit, easily
reaches amperes when hundreds of circuits contribute
into the same line.

Although negligible in comparison with neutral currents,
leakage currents do create potential differences between
remote ground locations due to the voltage drops across
the line resistance of the PE conductors. These GPDs,

http://www.ti.com/aaj


Texas Instruments IncorporatedInterface (Data Transmission)

14

Analog Applications JournalHigh-Performance Analog Products www.ti.com/aaj 3Q 2008

of multiple cross-connected line and grounding resistances
caused by multiphase systems, different cable lengths, and
various grounding electrode paths (Figure 7).

A direct connection between remote grounds shunts
this network while creating a current loop. The initial GPD
tries to compensate its collapse by driving a large loop
current through the low-impedance ground wire. The loop
current couples to the data-line circuit and generates
noise voltage that is superimposed on the transmission
(common-mode) signal. This again carries the risk of a
highly unreliable data-transmission system.

To allow for a direct connection of remote grounds, the
RS-485 standard recommends the separation of the device
ground and the local system ground via the insertion of
resistors (Figure 6c). While this approach reduces loop
current, the existence of a large ground loop keeps the
data link sensitive to noise generated somewhere else
along the loop. Thus, a robust data link still has not yet
been established. The most robust RS-485 data link over a
long distance, withstanding GPDs of up to hundreds and
thousands of volts, is via galvanic isolation of the signal
and supply lines of a bus transceiver from its local signal
and supply sources (Figure 8).

Supply isolators such as isolated DC/DC converters, and
signal isolators such as digital capacitive isolators, avoid
the creation of current loops and prevent current flow
between remote system grounds with GPDs of up to 
several thousand volts.

Without a reference to ground, the bus transceivers
would be operating from a floating supply. Thus, current
or voltage surges caused by lightning, ground faults, or
other noisy environments would be able to lift the floating

bus common to dangerously high levels. These events
won’t destroy components connected to the bus, as their
signal and supply levels are referenced to the bus common
and ride on the varying common reference potential.
However, where the transmission wires connect to PCB
connectors at the various transceiver nodes, the high volt-
ages, if not removed, can lead to arcing and destroy PCB
components close to the connector. To suppress current
and voltage transients on the bus common, it is necessary
to reference the bus common at one point to the system
ground. This location usually is at a non-isolated trans-
ceiver node, which provides the single-ground reference
for the entire bus system.

1

2 3

Figure 7. Example of resistance complexity 
of grounding paths
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Figure 8. Isolation of two remote transceiver stations with single-ground reference
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While Figure 8 shows the detailed connection of two
remote transceiver nodes, Figure 9 shows an example of
an isolated data-transmission system using multiple trans-
ceivers. Here all but one transceiver connect to the bus via
isolation. The non-isolated transceiver on the left provides
the single-ground reference for the entire bus.

Conclusion
Designing remote data links requires the isolation of supply
and signal lines of fieldbus-transceiver stations to circum-
vent the detrimental effects of GPDs and ground loops on
the signal integrity and the components.

While some of the figures in this article illustrate differen-
tial data transmission, the principles discussed also hold
true for single-ended transmission systems such as the 
RS-232.

Related Web site
interface.ti.com
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Figure 9. Isolation of multiple fieldbus-transceiver stations
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Cascading of input serializers boosts 
channel density for digital inputs

Introduction 
Programmable logic controllers (PLCs) play an  integral
role in industrial automation. They allow inputs from 
digital as well as analog sensors and provide outputs to
drive actuators. The digital inputs represent a significant
share of those I/Os, accepting inputs from end switches,
proximity switches, fuel sensors, light barriers, over-
temperature sensors and many others.

The traditional approach
There are several types of digital inputs; the 
IEC-61131-2-standard defines those most commonly used.

Traditionally, digital inputs used discrete components
and required a parallel processor interface. Current 
limitation was achieved by a series of high-power resistors.
Resistor-capacitor (RC) filters reduced bouncing of
mechanical switches, while a per-channel optocoupler 
connected to the parallel processor interface. This design,
however, requires bulky components, many isolation 
channels, and a large footprint host controller to allow 
for the parallel inputs. It also creates significant power 
dissipation.

With a typical resistor chain providing about 2.2 kΩ, 
the current at the nominal 24 V rises to 11 mA and results
in power consumptions of 260 mW or 400 mW at 30 V.
Considering that this dissipation may occur simultaneously
for all input channels — along with the bulky components
and the processor interface — it severely limits channel
density.

By Frank Dehmelt, Systems Engineer Analog Products
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Figure 1. 8-channel digital input using HVS882 and ISO7241

A new approach
TI’s SN65HVS88x product family addresses these limita-
tions and more. The digital input serializer (as the name
implies) serializes the inputs into a single SPI data stream
and reduces the number of isolators by 50%.

The resistors and LEDs shown in Figure 1 are required
by the IEC-61131-2-standard; they can be omitted for
inputs that do not require conformance with this standard.
Regardless, the integrated current limit allows use of a
lower power resistor.

The input current is fed to an output pin, which allows
to drive  an external LED to indicate the current state 
of the input. Without the LED, this pin simply connects 
to ground.

The HVS88x family allows for the cascading of several
devices, all sharing the same SPI interface. For a 32-chan-
nel input, it still provides a four-channel isolation, saving
87% of ISO channels.

And what about power dissipation with a 32-channel
interface? We previously calculated a worst-case dissipa-
tion of 400 mW/channel totaling almost 13 W: this is too
much for a PLC slice which is about the size of a deck of
cards. The HVS88x family allows the designer to set cur-
rent limitation anywhere between 200 µA and 5.2 mA. 
For a type-1 or type-3 switch, choose a limit in the 3-mA
range, limiting the per-channel dissipation to 90 mW at 
30 V. This reduces power dissipation by more than 75% 
vs. a discrete approach. 
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The designer can further reduce the number of external
components by using the integrated debounce filter, set to
filter pulses of less than 3 ms or 1 ms in duration. For the
fastest acquisition of glitch-free switches, bypass the filter
as well.

The parts operate from the 24-V nominal field supply
and generate the internally used 5 V themselves. This 
supply is also available to drive external circuitry such as
the field side of the isolation barrier on the SPI interface.

The HVS88x family allows high-density digital inputs by
serialization, cascading, a significant reduction of power
dissipation, and elimination of external components. 
Production material, samples, and evaluation boards 
are available.

Related device
ISO721 – High-speed digital isolator
www.ti.com/iso721

Related Web sites
interface.ti.com
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Figure 2. Simplified 32-channel digital input with cascading,
using four HVS88x serializers and one ISO7241 digital isolator

PARAMETER SN65HVS880 SN65HVS882

Serialization Yes Yes

Cascading Yes Yes

Current Limitation Yes 
(0.2 to 5.2 mA)

Yes 
(0.2 to 5.2 mA)

Debounce Filter Yes 
(0 ms, 1 ms, 3 ms)

Yes 
(0 ms, 1 ms, 3 ms)

VCC 18 V to 30 V 10 V to 34 V

Undervoltage Indicator Yes (~15 V) No

5-V Output Yes Yes

Input Voltage Range 0 V to 30 V 0 V to 34 V

Temperature Range –40°C to 85°C –40°C to 125°C

Over-Temperature Protection Yes Yes

Table 1. The SN65HVS88x digital input serializer family 
digital isolator
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A new filter topology for analog 
high-pass filters

The analog circuit designer today has liter-
ally dozens of circuit topologies available to
implement filters, from the venerable
Sallen-Key (SK) filter, in use for well over
fifty years,1 to more esoteric and hard-to-
pronounce filters such as the Mikhael-
Bhattacharyya (MB) filter or the Padukone-
Mulawka-Ghausi (PMG) filter.2 Each of
these filters has advantages and disadvan-
tages relative to its cousins. Nearly all of the
filter topologies used today were developed
in the 1950s, ’60s, and ’70s.2–6. Can we
come up with a filter topology that has an advantage over
all the many topologies that have been in use for decades?
For some specific needs, the new topology presented here
has some unique advantages.

Almost all the common high-pass filters (HPFs) tend to
have one thing in common—capacitors in series with the
forward signal path. For most applications, having capaci-
tors in the signal path is not a problem. However, there
are applications where such capacitors can be problematic.
For example, in broadband low-noise circuits such as many
audio circuits, there is a need to keep resistance values,
and thus noise, low. These applications also often call for
high-pass functions that roll off at low frequencies, below
10 Hz in some audio applications. These cases can thus
call for very large capacitor values. Large-value capacitors
tend to be very expensive or have voltage coefficients and
other non-idealities that can ruin the fidelity of the signals
being passed through them.

Another limitation of the HPFs commonly used is that
the entire filter circuit is implemented separately and

placed either before or after another circuit functional
block. Sometimes a filter in front and one after a block is
needed. The technique we will discuss here allows an
engineer to design a circuit without consideration of the
high-pass function required. After the circuit is designed,
another circuit can be “wrapped around” the original one
that will cause the overall circuit to have a high-pass func-
tion without affecting the operation of the original circuit
at frequencies above the high-pass rolloff.

Adding a high-pass function to block DC offsets
Figure 1 is a simplified schematic of a circuit with a gain
block driving a high-order low-pass filter (LPF) in a signal-
processing application. In this example there is an offset in
the input signal and an offset caused by the filter, both of
which must be removed. Typically a designer would place
a capacitor in series with the input and the output as
shown in Figure 2. For many applications this approach is
just fine; but for some applications, this simple AC-coupling
scheme can cause problems. Besides the reasons already

Texas Instruments IncorporatedAmplifiers: Op Amps

By Mark Fortunato
Analog Field Applications Manager
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discussed, the characteristics of these high-
pass stages may adversely affect the signal-
processing function that is the primary 
purpose of the overall circuit. Each of these
AC-coupling stages creates a single real
(i.e., simple) pole at the frequency deter-
mined by the applicable RC time constant.
Especially as the number of AC-coupling
stages in the signal chain increases, the
composite high-pass function is unlikely to
be the optimal one for the full circuit and
system. More commonly, a filter with com-
plex pole pairs is necessary to optimize the
HPF response.

Using servo feedback rather than
blocking capacitors
In our example, let’s assume that the input
signal presents the largest of the offsets
and that the filter’s output offset, though
small, is objectionable for the latter stages.
Let’s further assume that the desirable HPF
function is that of a single pole. If we elimi-
nate the input AC-coupling filter, the output
filter will certainly remove all DC offsets for
the subsequent stages; but then that input
offset will cause the signal applied to and
processed by the filter to be significantly
shifted “off center,” which can cause signifi-
cant distortion.

An old technique referred to as “servo
feedback” is often used in cases like this.
This technique provides AC coupling,
removing all offsets at the output of the 
circuit without putting any circuitry in
series with the amplifier/filter chain of
Figure 1. Servo feedback is fully covered 
in Reference 7.

The feedback path added in Figure 3 is
an inverting integrator. The integrator out-
put is fed to the inverting terminal of the
input amplifier so that the overall loop has
negative feedback. Assuming that the rolloff of the LPF is
at least a decade above the desired high-pass rolloff, we
can treat the LPF as a flat gain block for the purposes of
calculating the high-pass response. A simple analysis
shows that we have added a high-pass function with the
transfer function

(1)

where GLPF is the absolute value of the LPF gain. GLPF is a
high-pass function with a 3-dB (pole) frequency of
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Since the LPF in this circuit has a gain of –1, we get the
frequency response shown in Figure 3 with a pole frequency
of 15.92 Hz.

This servo technique solves the problem of putting
capacitors in series with the signal path, eliminates the
need for multiple high-pass stages, and allows a designer
to add a high-pass function to a gain/low-pass block with-
out modifying the block itself. However, this technique is
capable of implementing only simple poles and thus does

f

R

R
G

R C

LPF

=

1

2

3 12π
.

R
10 k

1
Ω

C
1 µF

1

R
10 k

2
Ω

R
10 k

3
Ω

OpAmp1

OpAmp3

Input

High-Order, Inverting,
Unity-Gain LPF

+

+

–
Output

–

Figure 3. Single-pole HPF using servo feedback
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not allow us to create complex pole pairs. Therefore we
need a similar technique that will provide a complex second-
order function.

A new circuit topology implements a 
complex pole pair
Figure 4 shows just such a circuit, drawn two different
ways. Figure 4a shows a gain block with the frequency-
dependent part of the circuit wrapped around it like the
first-order servo filter discussed earlier. Figure 4a is very
similar to the previous schematics except that there are
two integrators in the feedback path, one of which has an

added resistor included to set the Q of the second-order
function. Figure 4b shows the identical circuit just shifted
around to be in-line. Anyone familiar with three-op-amp
biquad circuits such as the Kerwin-Huelsman-Newcomb
(KHN) and Tow-Thomas (TT) filters will see a distinct
similarity. In fact, this topology is the same as the TT filter
except that, rather than having a resistor in parallel with
C1, it has R2 in series with C2.

The end result of this subtle change from the TT filter is
that, whereas the TT filter implements an LPF and a band-
pass filter (BPF) but no HPF, this circuit can implement
an HPF and a BPF but no LPF. In our new circuit the HPF
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output is the node labeled “Output” in both Figures 4 and 5.
Figure 5 identifies the BPF output as “BPFOUT.”

The transfer function, pole frequency, and Q for our
new HPF are respectively given by

(3)
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Using sensitivity analysis as covered in References 2, 5, 6,
and 8, we find that, as with the KHN and TT filters, all
sensitivities of f0 or Q to the passive components are 1 or
lower. It is quite difficult to get lower sensitivities.

Of course, this filter could be used as a separate filter
block like any other HPF topology. In the first example
given earlier, we could add a three-op-amp circuit like this
to the front of the gain block/filter section and another fol-
lowing the filter. In this case, our new HPF topology would
have no real advantage over the KHN filter, and the only
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Figure 5. Transfer functions for the new filter
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advantage it would have over any other common topology
is that it can implement an HPF with no capacitors in the
forward signal path.

The unique feature that this filter provides is that it is
easily applied around a gain block to add a high-pass func-
tion without putting any additional circuitry in the forward
signal path. Later we will see that there is a variation of
this circuit that works with an inverting amplifier while
feeding back to the non-inverting terminal, and that there
are other variations that work with non-inverting gain
blocks. All of these variations feed back to only one input.

Applying this technique to a non-inverting
amplifier
If the gain block to which we want to add a high-pass
function is non-inverting, we can use the variation of the
topology shown in Figure 6.

The transfer function for this circuit, Equation 6, is
identical to that of the circuit in Figure 5, except that the
gain term is (R4 + R5)/R4 rather than –R5/R1:

(6)

Since the rest of Equation 6 is the same as Equation 3, the
pole frequency and Q for this HPF variation are also given
by Equations 4 and 5.

Maintaining gain-bandwidth product with an
inverting amplifier
In Figure 5 we demonstrated this filter technique for an
inverting amplifier. Note that both the input signal and the
feedback signal are applied to the inverting terminal via R1
and R4, respectively. While the addition of R4 to add the
HPF feedback has no effect on the nominal forward gain
for the gain block, it does increase the division ratio of the
feedback path of the gain block from

(7)

where R1 || R4 represents that R1 is parallel to R4. This
change in local feedback around op amp 1 has the effect
of decreasing the effective gain-bandwidth product
(GBWP) of the op amp by the same amount. In our case,
R1 = R4, which means the GBWP will be decreased by 33%.

For an inverting amplifier, rather than feeding back to the
inverting terminal as in Figure 5, we can feed back to the
non-inverting terminal, thus avoiding decreasing the effec-
tive GBWP of the op amp. Figure 7 shows this variation.

Notice that R2 is missing in this configuration. Recall that
R2 was needed to add a zero to the feedback path, which
allowed the Q to be set to a reasonable value; without R2,
the Q of the circuit would always be very high. In this
circuit we get a zero by reconfiguring the op amp 3 stage
from inverting to non-inverting. This reconfiguration was
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necessary to keep the feedback negative. The resulting
transfer function, along with the pole frequency and Q, are
respectively given by
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With this configuration there is no component that can
independently set the Q. Also, since R1 and R5 set the gain
of the forward amplifier, we cannot use them to set the
pole frequency or the Q. Instead, C1, C2, R3, and R6 have
to be manipulated to set both the pole frequency and the
Q. Fortunately, f0 is a function of the product of these 
four component values, while Q is a function of the ratio 
of the resistors and the ratio of the capacitors. These
mathematical relationships make it fairly easy to choose the
right component values. We can simply set R3 = R6 and 
C1 = C2, then choose their values to set f0. Then the desired
Q can be set by altering the ratio of the resistors and/or
the capacitors while keeping their products constant.

Implementing higher-order HPF functions
Since the new second-order filter topology and the older
first-order servo technique can both be used to wrap a
high-pass function around a gain block and/or an LPF
function, we can use any number of these in a signal chain
to create a composite HPF function of any practical order
we want.

Figure 8 shows how we have created a third-order filter
by combining the first-order servo feedback HPF function
from Figure 5 with the second-order circuit from Figure 7.

While many DC-blocking applications can be readily
handled with the insertion of capacitors in the signal path,
and many others can be satisfied with older circuit topolo-
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Figure 8. Combining two sections for a third-order HPF
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gies, the first-order servo feedback HPF and the new 
second-order HPF we have described can provide a great
advantage in some applications due to their unique features.
These features include the ease of adding to gain/LPF
blocks without adding circuitry in the signal path or modi-
fying the gain/LPF blocks, and the ability to implement
HPF functions without capacitors in the signal path. The
combination of the two topologies provides the ability to
implement HPFs of higher orders while maintaining these
advantages.
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