

AN-1784 LMV1022 / LMV1023 Digital Output PDM Microphone Amplifier Demo Board

This application report describes the use of the LMV1022/LMV1023 Digital Output PDM Microphone Amplifier demo board.

	Contents	
1	Introduction	3
2	General Description	4
3	Operating Conditions	4
4	Board Features	4
5	Block Diagram	5
6	Evaluating the On-Board LMV1022 /LMV1023	5
7	Evaluating at Other Supply Voltages	6
8	Evaluation Using the DIP Socket	7
9	Evaluation of Other PDM Parts and Microphones	9
10	On-Board Clock Generator	9
11	Connections to the Audio Precision (PSIA2722)	10
12	Testing at Other Clock Frequencies	10
13	Description of Jumpers and Connectors on the LMV1022 / LMV1023 Demo Board.	11
14	Settings of the Audio Precision SYS2722/ PSIA2722	12
15	D/A Converter Daughter Board	14
16	Board Layer Views LMV1022 / LMV1023 Demo Board	16
17	Board Layer Views D/A Daughter Board	19
18	Schematic Diagrams LMV1022 / LMV1023 Demo Board	20
19	Schematic Diagram A/D Daughter Board	23
20	BOM LMV1022 / LMV1023 Demo Board	
21	BOM A/D Daughter Board	25
22	Revision History	25

List of Figures

1	LMV1022 / LMV1023 Digital Output PDM Microphone Amplifier Demo Board	3
2	LMV1022 / LMV1023 Digital Output PDM Microphone Amplifier Demo Board Block Diagram	5
3	Setting for Testing the On Board LMV1022 and LMV1023	6
4	External Controlled Supply Voltage	7
5	Settings for External Parts Connected to the Demo Board	8
6	Clock Rate and I2S Interface	10
7	External FPGA Clock	11
8	PSIA 2722 Settings	13
9	Audio Precision Digital I/O Setting	13
10	Digital Analyzer	14
11	D/A Converter Daughter Board	14
12	Connections for D/A Daughter Board	
13	Silk-screen LMV1022 / LMV1023 Demo Board	16
14	Top Layer LMV1022 / LMV1023 Demo Board	17
All trademarks	are the property of their respective owners.	

15	Bottom Layer LMV1022 / LMV1023 Demo Board	18
16	Silk-screen D/A Daughter Board	
17	Top Layer D/A Daughter Board	
18	Bottom Layer D/A Daughter Board	
19	Top Level LMV1022 / LMV1023 Demo Board	
20	On-board Parts LMV1022 / LMV1023 Demo Board	21
21	FPGA LMV1022 / LMV1023 Demo Board	22
22	A/D Daughter Board	

List of Tables

1	Default setting for evaluating the on board µSMD part	5
2	Default setting for evaluating the part in the DIP socket	
3	Dip Socket Pin Out	8
4	Default Setting for Evaluating other PDM Parts and Microphones	9
5	PDM Microphone Clock Frequency Selection	9
6	Connections to an Audio Precision	10
7	Connector/Header Function	11

1 Introduction

The LMV1022/LMV1023 demo board provides a means for easy evaluation of digital PDM microphone amplifiers like the LMV1022, LMV1023, LMV1024 and LMV1026. The demo board has the LMV1022 and the LMV1023 in the 6 pin DSBGA package mounted ready for evaluation. This demo board also provides the means by using the DIP socket (U3) to evaluate parts on DIP conversion boards and offers a four pin interface (J16) to connect other digital PDM sources like microphones containing LMV1022 alike parts.

Starting at Version 1.3, the LMV1022 / LMV1023 demo board is designed for adding a small daughter board that can convert the digitized microphone signals from the I²S interface at J19 back to analog audio. Adding the A/D daughter board enables easier demonstration of the digital microphones. The daughter board can also be used to perform measurements of the performance of the digital microphone in the analog world. The header at J22 is for the to supply to the daughter board.

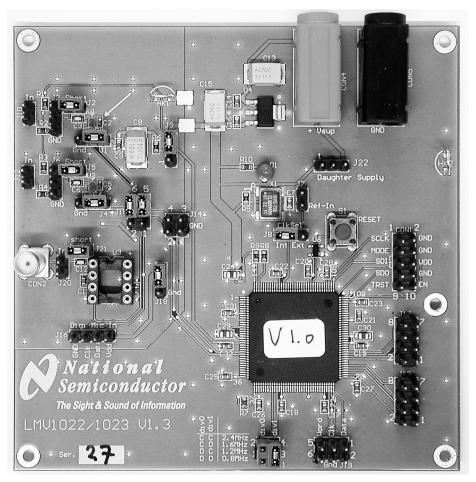


Figure 1. LMV1022 / LMV1023 Digital Output PDM Microphone Amplifier Demo Board

3

Introduction

2 General Description

The LMV1022 and LMV1023 integrate a pre-amplifier and a Sigma-Delta modulator which may be placed inside an electret condenser microphone (ECM). The output is a digital serial bit stream, ideal for 4-wire ECM. The LMV1022 and the LMV1023 are complementary stereo devices. The difference between the two devices is that the LMV1022 outputs the data on the rising edge of the clock signal while the LMV1023 does so on the falling edge. This makes these devices very suitable for stereo microphone applications, where the two microphones connect on the same bus

This next generation digital ECM containing parts like the LMV1022 and LMV1023 produces an over sampled single bit stream to be connected directly to a DSP in a digital audio system. The clock input of the LMV1022 / LMV1023 is a user adjustable clock frequency ranging between 960kHz and 2.4MHz. The LMV1022 / LMV1023 enable a very robust output of an ECM by eliminating the sensitive, low-level analog signal forming the output of a conventional JFET ECM. This also improves the RF immunity, eases system design, and reduces external components. Furthermore this different system partitioning of the Analog-to-Digital conversion enables an all-digital baseband processor in mobile communication systems.

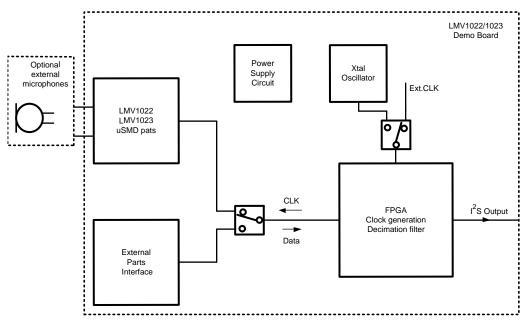
By changing the clock frequency the LMV1022 and LMV1023 can be used in a wide range of applications ranging from the limited 3.4kHz voice bandwidth to full 20kHz audio bandwidth.

3 Operating Conditions

Temperature Range	$-40^{\circ}C \le T_{A} \le 85^{\circ}C$
LMV1022 / LMV1023 Power Supply Voltage	$1.6V \le V_{DD} \le 3.6V$
Demo board Power Supply Voltage	$4.5V \le V_{sup} \le 5.5V$

4 Board Features

The LMV1022 / LMV1023 Digital Output PDM Microphone Amplifier demo board has an on board voltage regulator (U4) converting the 4.5-5.5V (≈120mA) to the internal 3.3V supply voltage required for the FPGA. The demo board is equipped with a 12MHz XTAL oscillator (X1) which can generate the FPGA clock.


The demo board provides the means of easy evaluation of connected PDM microphones at four different frequencies by using the on board clock generator. J11 is used to select which of the four clock frequencies (960kHz, 1.2MHz, 1.6MHz, or 2.4MHz) is used. For testing at other clock frequencies an external clock source can be connected on the board at J7.

The FPGA has two decimation filters implemented in hardware and converts the PDM signal from the microphones to the standard I²S signals which can easily be evaluated using test equipment like the Audio Precision.

The demo board provides two μ SMD parts already mounted on the PCB for easy evaluation of the LMV1022 and the LMV1023 It also provides an interface to connect four wire PDM microphones for testing demonstration and evaluation.

5 Block Diagram

Figure 2. LMV1022 / LMV1023 Digital Output PDM Microphone Amplifier Demo Board Block Diagram

6 Evaluating the On-Board LMV1022 /LMV1023

The output signals of the LMV1022 and LMV1023 mounted on the board can be evaluated by connecting an I²S slave to the I²S outputs on J19, for example, the programmable Serial Interface of an Audio Precision PSIA2722, (see Section 11 and Section 14).

With the settings from Table 1, stereo operation of the on board LMV102 and LMV1023 can be evaluated for an audio bandwidth of 20kHz. These settings are illustrated in Figure 3.

Designator	Function or Use	Connect
J1, J4	Power supply U1, U2	Short 2-3
J2	Input capacitor short circuit U1	Short
J3	Input for Audio test signal U1	Pin2 signal, Pin1=GND
J5	Input capacitor short circuit U2	Short
J6	Input for Audio test signal U2	Pin2 signal, Pin1=GND
J8	Clock source selection FPGA	1-2 = internal 12MHz
J9	DUT supply voltage	Internal analog supply =2-3 Short External analog supply = connected to 1-2
J11	Sample frequency 48kHz, see Table 5	2.4MHz microphone clock
J15	Selection of the source for FPGA input.	3-5 + 4-6 = both on board uSMD parts

Table 1. Default setting for evaluating the on board µSMD part

5

Evaluating at Other Supply Voltages

www.ti.com

With the above settings, the board is ready to operate the two on board parts (LMV1022 and LMV1023) at the internal 3.3V power supply. For evaluation at other supply voltages, see Section 7.

Figure 3. Setting for Testing the On Board LMV1022 and LMV1023

7 Evaluating at Other Supply Voltages

The LMV1022 and LMV1023 parts have a supply voltage range from 1.6V to 3.6V. The power supply on the demo board has a constant output voltage of 3.3V. The demo board also supports the external control of the microphone voltage. The board changes for external microphone voltages are as follows:

- 1. Remove the jumper from J9 (pin 2-3)
- Apply external supply voltage within the 1.6V to 3.6V range at J9 between pin 1 and pin 2. Pin1=GND, Pin2=+V_{DD}

See Figure 4.

6

This will automatically adjust the thresholds and levels for the digital input- and output signals for the on board FPGA I/O and the device under test

When evaluating the parts at other supply voltages than the on board 3.3V supply, the FPGA is powered from the on board 3.3V voltage regulator Via +Vsup and GND. Only the I/O part interfacing with the device under test will follow the external supply voltage for correct logical threshold voltages. This only uses a few milliampere from the external supply source.

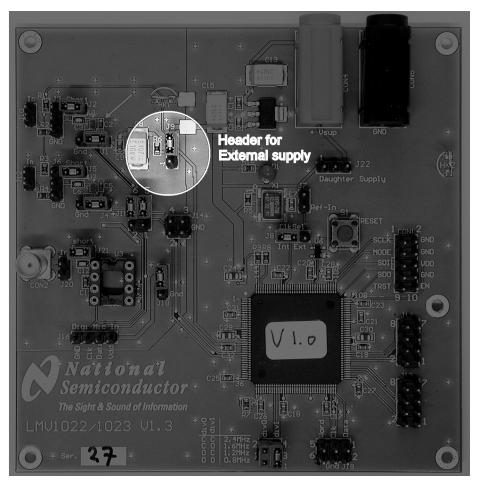


Figure 4. External Controlled Supply Voltage

8 Evaluation Using the DIP Socket

The LMV1022 / LMV1023 demo board is equipped with a DIP socket (U3). This can be used to evaluate and test parts on a conversion board or in a DIP8 socket see Table 3. The output signal from the part in the DIP socket can be evaluated by connecting an I²S slave to the I²S outputs on J19, for example, the programmable Serial Interface of an Audio Precision, PSIA2722. (see Section 11 and Section 14).

When the settings from Table 2 are used, the board is ready to operate the parts in the DIP socket at the internal 3.3V power supply. With these settings, operation of the part can be evaluated for an audio bandwidth of 20kHz (see Figure 5).

Designator	Function or Use	Connect
J8	Clock source selection FPGA	1-2 = internal 12MHz
J9	DUT supply voltage	Internal analog supply =2-3 Short External analog supply = connected to 1-2
J11	Sample frequency 48kHz, see Table 5	2.4MHz microphone clock
J15	Selection of the source for FPGA input.	1-3 + 2-4 = DIP socket U3 and PDM Microphone interface connector J16
J18	Power supply U3	Short 2-3
J20	Input for Audio test signal Part in DIP socket U3	
J21	Input capacitor short circuit U3	Short for noise measurement

Table 2. Default setting for eva	aluating the part in the DIP socket
----------------------------------	-------------------------------------

Table 2.	Default setting	for evaluating t	he part in the	DIP socket	(continued)
----------	-----------------	------------------	----------------	------------	-------------

Designator	Function or Use	Connect
CON2	Coaxial input for connection to AC audio signal generator when testing with part in DIP socket U3	

Evaluation at supply voltages other then 3.3V is possible by using the settings from Section 7.

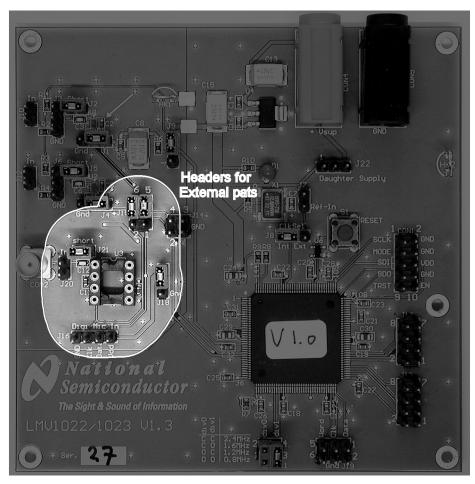


Figure 5. Settings for External Parts Connected to the Demo Board

Table	3.	Dip	Socket	Pin	Out
TUDIC	υ.		COUNCI		out

PIN	Function
1	Input
2	GND
3	V _{ref}
4	CLK
5	NC
6	V _{DD}
7	Data
8	NC

9 Evaluation of Other PDM Parts and Microphones

The settings for evaluating other PDM parts and PDM microphones are the same as for evaluation using the DIP socket, as described in Section 8. The only difference is that the signals are now connected to J16 with the signals to the proper pin:

- 1. Ground (GND)
- 2. Clock (CLK)
- 3. Data
- 4. Supply (Vdd)

With the settings from Table 4, mono and stereo operation of the part(s) connected to J19 can be evaluated at an audio bandwidth of 20kHz.

Table 4.	Default Setting for	r Evaluating other PDI	M Parts and Microphones
----------	---------------------	------------------------	-------------------------

Designator	Function or Use	Connect
J8	Clock source selection FPGA	1-2 = internal 12MHz
J9	DUT supply voltage	Internal analog supply =2-3 Short External analog supply = connected to 1-2
J11	Sample frequency 48kHz, see Table 5	2.4MHz microphone clock
J15	Selection of the source for FPGA input.	1-3 + 2-4 = DIP socket U3 and PDM Microphone interface connector J16

Evaluation at supply voltages other then 3.3V is possible using the settings from Section 7.

10 On-Board Clock Generator

The clock frequency of the PDM microphone can be selected by placing the correct jumpers on header J11 as shown in Table 5. This header can be found at the bottom side of the PCB below the FPGA. See Figure 6.

J11 Pins 1-2 / 3-4 ⁽¹⁾	Sample Frequency (kHz)	Clock Frequency (MHz)
C/C	48	2.4
C/O	32	1.6
O/C	24	1.2
0/0	16	0.8

Table 5. PDM Microphone Clock Frequency Selection

⁽¹⁾ C = header Closed, O = header Open

9

Figure 6. Clock Rate and I2S Interface

11 Connections to the Audio Precision (PSIA2722)

The demo board can be connected to the AP digital interface (PSIA2722) by using J19 and the connections as described in Table 6.

Header-pin	Audio Precision Connector	Comment
J19-1	Data in	
J19-3	Bit Clk in	
J19-5	Frame Clk in	
J19-2,4,6	GND	
J7	Master CLK	See Section 12

Table 6.	Connections	to an Audio	Precision
----------	-------------	-------------	-----------

12 Testing at Other Clock Frequencies

Header J7 can be used for applying an external clock signal to the FPGA. This will require that J8 is changed to use the external clock source 'EXT' (see Figure 7) When using the external FPGA clock there is more freedom in choosing the clock frequency used by the decimation filter and the clock frequency of the LMV1022 / LMV1023. In this mode of operation of the demo board, the formula below gives the resulting clock frequency assuming both jumpers on J11 are closed.

The duty cycle of the external clock signal must be between 45% and 55% .

(1)

www.ti.com

LMV1022 clock frequency = $\frac{\text{Applied Clock J7}}{5}$

Figure 7. External FPGA Clock

13 Description of Jumpers and Connectors on the LMV1022 / LMV1023 Demo Board.

Most of the functions that are controlled by the jumpers on the LMV1022 / LMV1023 demo board are also indicated on the PCB in silk-screen as shown in Figure 1 and Figure 13.

Designator	Function or Use	Comment
HK1, HK2	Ground connection for probes	
J1	Power supply U1	1-2 = Connect External Analog supply 2-3 = Short, Internal Analog supply
J2	Input capacitor short circuit U1	Short for noise measurement
J3	Input for Audio test signal U1	
J4	Power supply U2	1-2 = Connect External Analog supply 2-3 = Short, Internal Analog supply
J5	Input capacitor short circuit U2	Short for noise measurement
J6	Input for Audio test signal U2	From an Audio precision source.
J7	External clock input FPGA	
BL	Clock source selection FPGA	1-2 = internal 12MHz 2-3 = external clock

Table 7. Connector/Header Function

Designator	Function or Use	Comment	
9L	DUT supply voltage	1 -2 connect external supply 2-3 Short, internal supply	
J10	Microphone input part U1		
J11	Microphone Clock divider Frequency selection header.	See Table 5	
J12	Microphone input part U2		
J13	General purpose outputs	Not Used	
J14	Monitor output for digital microphone digital interface signals	1-2 = Microphone clock 3-4 = microphone Data	
J15	Selection of the source for FPGA input.	3-5 + 4-6 = on board µSMD parts $1-3 + 2-4 =$ DIP socket U3 and PDM Microphone interface connector J16	
J16	PDM Microphone interface connector	To connect one or two (stereo) PDM digital microphones (LMV1022 + LMV1023 or LMV1024 + LMV1026)	
J17	General purpose inputs	Not Used	
J18	Power supply U3	1-2 = External Analog supply 2-3 = Internal Analog supply	
J19	I ² S interface	See Table 6	
J20	Input for Audio test signal Part in DIP socket U3		
J21	Input capacitor short circuit U3	Short for noise measurement	
+RED	+ Supply voltage	4.5V < V _{sup} < 5.5V	
- Black	- Supply voltage		
CON1	JTAG interface	Programming the FPGA	
CON2	Coaxial input for connection to AC audio signal generator when testing with part in DIP socket U3		

14 Settings of the Audio Precision SYS2722/ PSIA2722

When using the AP-SYS2722, it is important to use the correct settings. These settings are shown in Figure 8.

The digital I/O must be set as shown in Figure 9.

Sometimes the PSIA has a problem getting a stable lock on the input signal; therefore, it is preferred to use the 'DIO Rate Ref' setting' for the 'Scale frequency by :' parameter.

In the digital Analyzer, the different parameters can be measured as shown in Figure 10. Make sure that The DSP audio analyzer is selected and that the input from the Digital @ ISR is selected.

	PSIA Serial Inte	rface Rec	eiver						_ 🗆 ×
	Channel Data Assig	nment					Channel Data	Structure	
	Analyzer Channel	A	В)			> 24
	Data Channel	0	1				MSB First		
	125	B	ise / Fall			Pad	Data		Pad
	Receive Data Cloc				O	bits	24 Bits	-	1 bits
	DeEmphasis: Of						L Justify	R	
	Scale Freq. By: DI				<u>ــــــــــــــــــــــــــــــــــــ</u>	24	20 16 12		4
	Rate Ref: 48								
	Indie Hei. 140	.0000 KH2				۲	Active Bits	🔿 Data B	its
	Clocks	Direction Out / In	Bit Clock Edge Sync Rise / Fall	Invert Wfm	Shift 1 bit left	Bit Wide Pulse	Setting	С	omputed Rate
	Frame Clock (Fs) (Word Clock)	0 0	• •		•		48.0000 kHz	= 48.00	00 kHz
	Channel Clock (Subframe Clock)	OUT	• •				x 2 channe	ls = 96.00	00 kHz
	Bit Clock	0 0					x 25 bits/ channe	= 2.400	00 MHz
	N*Fs	OUT					250 x Fs	= 12.00	00 MHz
	Master Clock	Tx In, B	(Out 💌				x Fs	= 12.00	00 MHz
				Logic V	oltage	Level-			
	[]			5V	3.	3V	3.3 V 2.4 V	1.8 V	
	OUTPUTS OFF								
					TTL		CMOS	<u> </u>	
(II					TIL		CIMOS		

Figure 8. PSIA 2722 Settings

40 Digital I/O	
Output	Input
Connector: PSIA	Connector: PSIA
SR Range: Auto 💌	
Sample Rate (SR): 48.0000 kHz 💌	Sample Rate-ISR: 47.9997 kHz
SSR: 46.8750 kHz	
Voltage:	Voltage:
Audio Format: Linear 💌 24	Audio Format: Bits 💌 24
PreEmphasis: Off	DeEmphasis: Off
Scale Freq. by: DIO Rate Ref 💌	Scale Freq. by: DID Rate Ref. Rate Ref: 48.0000 kHz
	Channel A: Channel B: Mode:
	188.0 mFFS 💌 102.6 mFFS 💌 1/2 Pk-Pk 💌
Rise/Fall Time: Interfering Noise:	24 20 16 12 8 4
Common Mode Sine	
Amplitude: Frequency:	
Jitter Generation	Jitter Measurement
Off EQ Curve	Jitter: O UI O Sec Status Bits
Amplitude: Frequency:	
	BW: C Pk C Avg

Figure 9. Audio Precision Digital I/O Setting

Ap Digital Analyzer					
Analyzer: DSP audio analyzer (analyzer)					
Ch A Input: Digital @ ISR 💽 Ch B					
AC Coupled 💌 Coupling AC Coupled 💌					
-23.416 dBF 💌 - Level23.280 dBF 💌					
.999533 kHz 💌 Freq 🛛 .999530 kHz 💌					
🝸 🔽 Range 🔽 🛬					
61.256 dB 💌 Reading 60.830 dB 💌					
Measurement Function : THD+N Ratio					
Range 🗸 📩					
Det: Auto 💌 RMS 💌 BP/BR Filtr Freq					
BW: 22 Hz 💌 Fs/2 💌 AGen Track 💌					
Fltr: "A" Weighting 🔽					
Digital References					
dBr 1: 100.0 mFFS 💌 Freq: 1.00000 kHz 💌					
dBr 2: 100.0 mFFS 💌 V/FS: 1.000 V 💌					

Figure 10. Digital Analyzer

15 **D/A Converter Daughter Board**

Starting at version 1.3, the LMV1022 / LMV1023 demo board provides the means to plug on a small D/A convertor daughter board. The mounted D/A daughter board is shown in Figure 11.

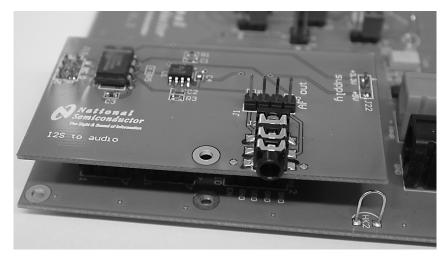


Figure 11. D/A Converter Daughter Board

The daughter board consist of a 1543 I²S stereo D/A converter and a high performance audio operational amplifier (LM4562) that are supplied from the main LMV1022 / LMV1023 demo board PCB via the J22 (only for demo boards V1.3 or higher). This board can be plugged on the headers J19 and J22 (see Figure 12 for the location of these headers). The output signal of the D/A converter board at J1 and J2 is DC coupled with a DC level of about 3V. For this reason, it is NOT advised to plug in a headphone directly in the 3.5mm jack connector. J2 is intended to be used to drive a small stereo amplifier.

The schematic for this A/D daughter board can be found in Figure 22

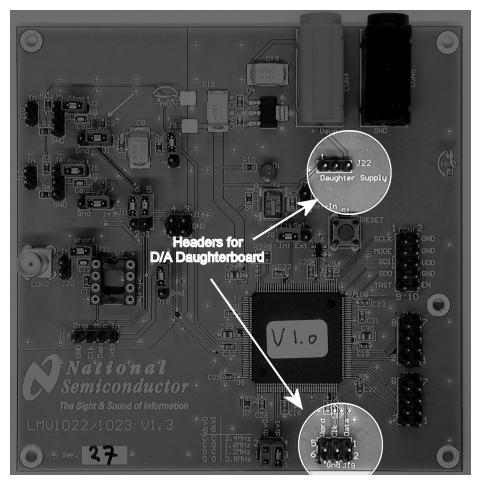


Figure 12. Connections for D/A Daughter Board

Board Layer Views LMV1022 / LMV1023 Demo Board

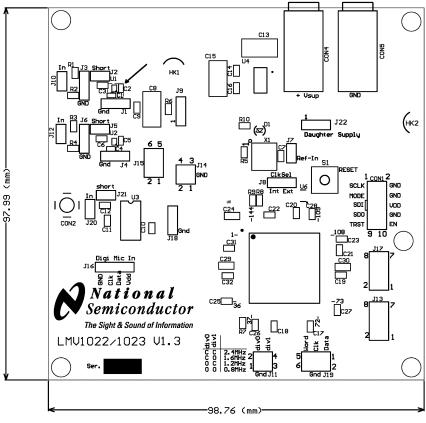


Figure 13. Silk-screen LMV1022 / LMV1023 Demo Board

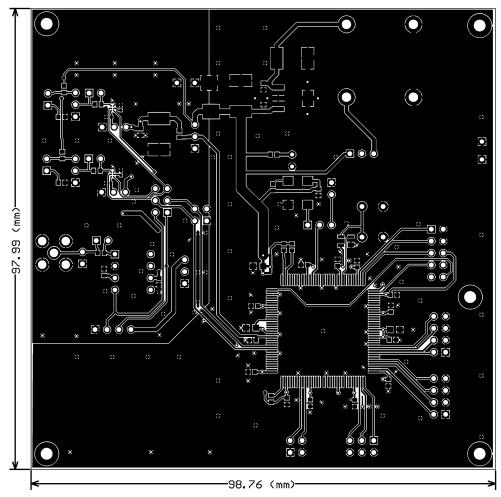


Figure 14. Top Layer LMV1022 / LMV1023 Demo Board

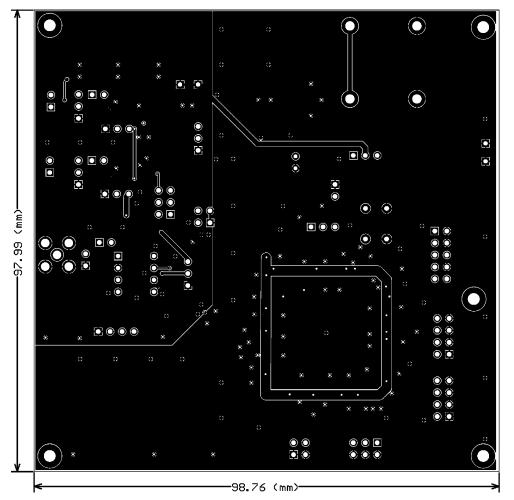


Figure 15. Bottom Layer LMV1022 / LMV1023 Demo Board

17 Board Layer Views D/A Daughter Board

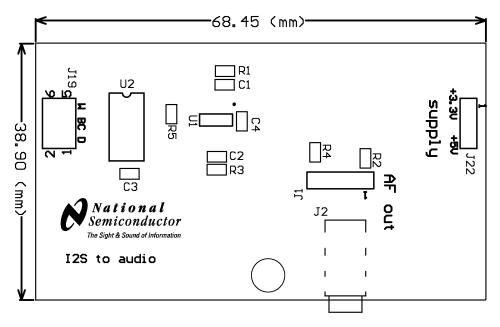


Figure 16. Silk-screen D/A Daughter Board

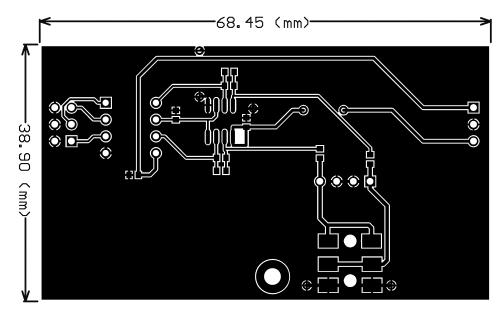


Figure 17. Top Layer D/A Daughter Board

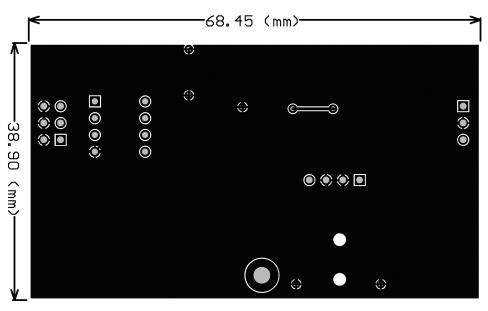


Figure 18. Bottom Layer D/A Daughter Board

18 Schematic Diagrams LMV1022 / LMV1023 Demo Board

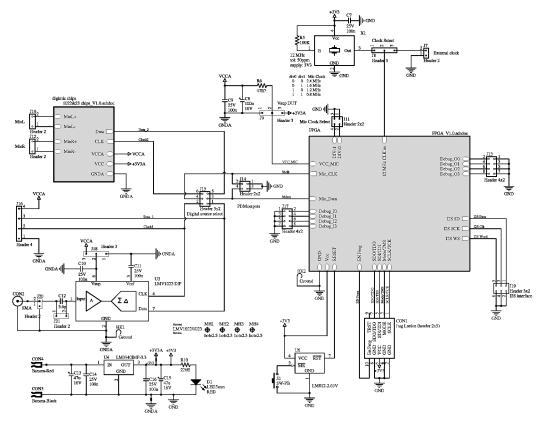


Figure 19. Top Level LMV1022 / LMV1023 Demo Board

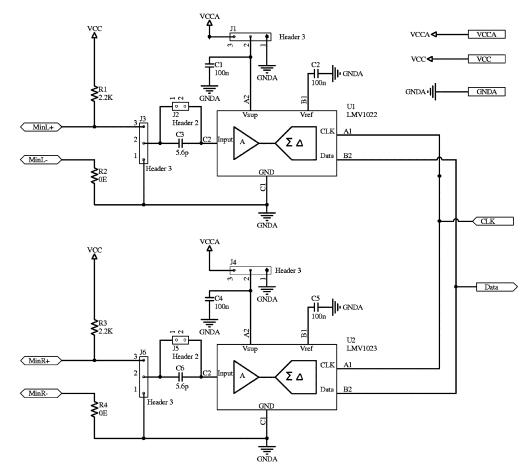


Figure 20. On-board Parts LMV1022 / LMV1023 Demo Board

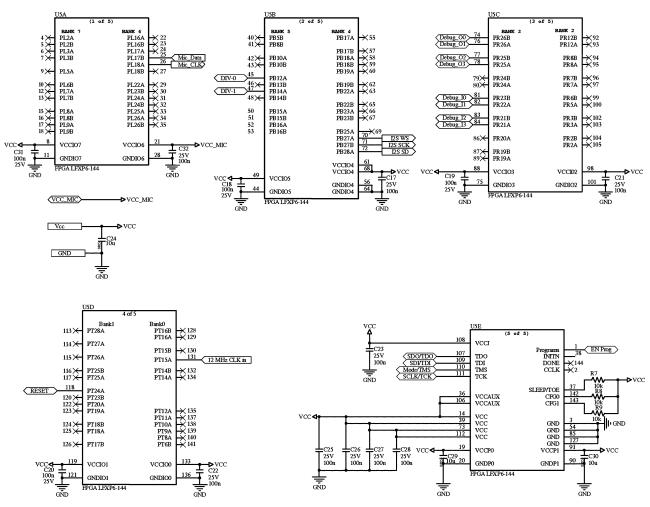


Figure 21. FPGA LMV1022 / LMV1023 Demo Board

19 Schematic Diagram A/D Daughter Board

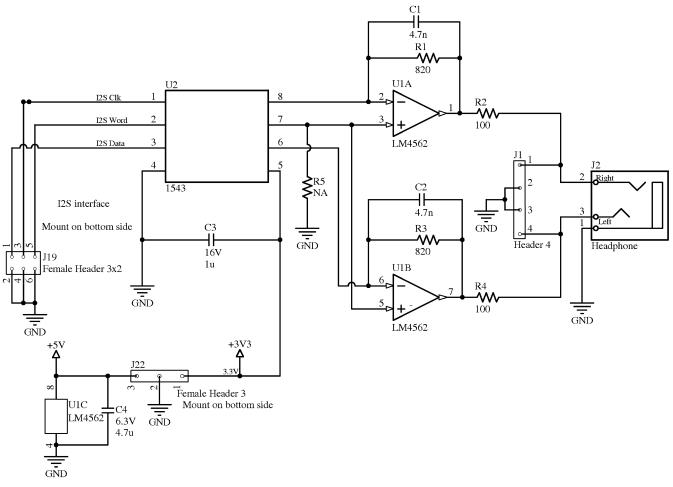


Figure 22. A/D Daughter Board

20 BOM LMV1022 / LMV1023 Demo Board

RefDes	Part Description	Value	Tolerance	Rating	Package Type
C1, C2, C4, C5	Multilayer Ceramic Capacitor	100nF	20%	10V	0402
C3, C6, C12	Ceramic Capacitor	5.6pF	10%	16V	0603
C7, C9, C10, C11, C14, C16, C17, C18, C19, C20, C21, C22, C23, C25, C26, C27, C28, C31, C32	Multilayer Ceramic Capacitor	100nF	20%	25V	0603
C8	Tantalum Capacitor	100µF		16V	Case D
C13, C15	Tantalum Capacitor	47µF		16V	Case D
C24, C29, C30	Multilayer Ceramic Capacitor	10µF		16V	0805
CON1	Jtag Lattice (header 2x5)				Header 2x5
CON2	SMA				SMA
CON4	Banana-Red				
CON5	Banana-Black				
D1	LED3mm				
HK1, HK2	Ground connection (jumper 5mm high)				
J1, J3, J4, J6, J8, J9, J18	Header 3				HDR1X3
J2, J5, J7, J10, J12, J20, J21	Header 2				HDR1X2
J11, J14	Header 2x2				HDR2X4
J13, J17	Header 4x2				HDR2X3
J15, J19	Header 3x2				Header 3x2
J16	Header 4				HDR1X4
J22	Daughter Supply				HDR1X3
R1, R3	Resistor SMD	2.2ΚΩ	5%		0603
R2, R4	Resistor SMD	0Ω			0603
R5	Resistor SMD	100ΚΩ	5%		0603
R6	Resistor SMD	47Ω	5%		0603
R6	Resistor SMD	10kΩ	5%		0603
R10	Resistor SMD	220Ω	5%		0603
S1	Push button switch				SW-PB
U1	LMV1022				DSBGA-6x0.5pitch
U2	LMV1023				DSBGA-6x0.5pitch
U3	DIP part socket				DIP-8
U4	LM3940IMP-3.3				SOT232
U5	FPGA LFXP6-144				SQFP50P2250 X 2250 X 165-144M
U6	LM812-2.63V				SOT143
X1	Xtal Osc 12 MHz				CMAC CFPS

21 BOM A/D Daughter Board

RefDes	Part Description	Value	Tolerance	Rating	Package Type
C1, C2	Multilayer Ceramic Capacitor	4.7nF	±10%	16V	0603
C3	Multilayer Ceramic Capacitor	1µF	±20%	16V	0603
C4	Multilayer Ceramic Capacitor	4.7µF	±20%	6.3V	0603
J1	Header 4x1				HDR1X4
J2	3,5 mm stereo output				3.5mm stereo
J19	Female Header 3x2				HDR2X3
J22	Female Header 3x1				HDR1X3
R1, R3	Resistor	820Ω	±5%		0603
R2, R4	Resistor	100Ω	±5%		0603
R5	Resistor	N.A.			0603
U1	High Performance Opapm	LM4562			SOIC_1.27 pitch
U2	I2S DAC	TDA1543			DIP-8

22 Revision History

ſ	Rev	Date	Description
	1.0	03/06/08	Initial release.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated