# User's Guide LMK5B33216EVM User's Guide

## Texas Instruments

### ABSTRACT

The LMK5B33216EVM is an evaluation module for the LMK5B33216 Network Clock Generator and Synchronizer. The EVM can be used for device evaluation, compliance testing, and system prototyping.

### **Table of Contents**

| 1 Introduction                                                 | 2  |
|----------------------------------------------------------------|----|
| 2 EVM Quick Start                                              | 4  |
| 3 EVM Configuration                                            | 6  |
| 3.1 Power Supply                                               |    |
| 3.2 Logic Inputs and Outputs                                   | 9  |
| 3.3 Switching Between I2C and SPI                              | 10 |
| 3.4 Generating SYSREF Request                                  | 11 |
| 3.5 XO Input                                                   | 11 |
| 3.6 Reference Clock Inputs                                     | 13 |
| 3.7 Clock Outputs                                              | 13 |
| 3.8 Status Outputs and LEDS                                    |    |
| 3.9 Requirements for Making Measurements                       |    |
| 3.10 Typical Phase Noise Characteristics                       |    |
| 4 EVM Schematics                                               |    |
| 4.1 Power Supply Schematic                                     | 15 |
| 4.2 Alternative Power Supply Schematic                         |    |
| 4.3 Power Distribution Schematic                               |    |
| 4.4 LMK5B33216 and Input Reference Inputs IN0 to IN1 Schematic |    |
| 4.5 Clock Outputs OUT0 to OUT3 Schematic                       |    |
| 4.6 Clock Outputs OUT4 to OUT9 Schematic                       | 19 |
| 4.7 Clock Outputs OUT10 to OUT15 Schematic                     |    |
| 4.8 XO Schematic                                               |    |
| 4.9 Logic I/O Interfaces Schematic                             |    |
| 4.10 USB2ANY Schematic                                         | 23 |
| 5 EVM Bill of Materials                                        |    |
| 5.1 Loop Filter and Vibration Nonsensitive Capacitors          |    |
| 6 Appendix A - TICS Pro LMK5B33216 Software                    |    |
| 6.1 Using the Start Page                                       |    |
| 6.2 Using the Status Page                                      |    |
| 6.3 Using the Input Page                                       |    |
| 6.4 Using APLL1, APLL2, and APLL3 Pages                        |    |
| 6.5 Using the DPLL1, DPLL2, and DPLL3 Pages                    |    |
| 6.6 Using the Validation Page                                  |    |
| 6.7 Using the GPIO Page                                        |    |
| 6.8 Using the Outputs Page                                     |    |
| 6.9 EEPROM Page                                                |    |
| 6.10 Design Report Page                                        |    |
| 7 Revision History                                             | 47 |

### Trademarks

All trademarks are the property of their respective owners.



### **1** Introduction

### Overview

The LMK5B33216EVM is an evaluation module for the LMK5B33216 Network Clock Generator and Synchronizer. The EVM can be used for device evaluation, compliance testing, and system prototyping. The LMK5B33216 integrates three Analog PLLs (APLL) and three Digital PLLs (DPLL) with programmable loop bandwidth. The EVM includes SMA connectors for clock inputs, optional off-board APLL reference input, and clock outputs to interface the device with  $50-\Omega$  test equipment. The onboard TCXO allows the LMK5B33216 to be evaluated in free-running, locked, or holdover mode of operation. The EVM can be configured through the onboard USB microcontroller (MCU) interface using a PC with TI's TICS Pro software graphical user interface (GUI). TICS Pro can be used to program the LMK5B33216 registers.

### Features

• LMK5B33216

### What is Included

- LMK5B33216EVM
- 3-ft. mini-USB cable (MPN 3021003-03)

### What is Needed

- Windows PC with <u>TICS Pro Software GUI</u>
- Test Equipment
  - DC power supply (12 V, 1A)

### What is Recommended

- Test equipment:
  - Source signal analyzer
  - Signal generator / reference clock
  - Real-time oscilloscope
  - Precision frequency counter

Figure 1-1 shows the jumper position with red markings. Figure 1-1 shows the DIP switch positions in either green boxes (for ON) or red boxes (for OFF) in the appropriate location.

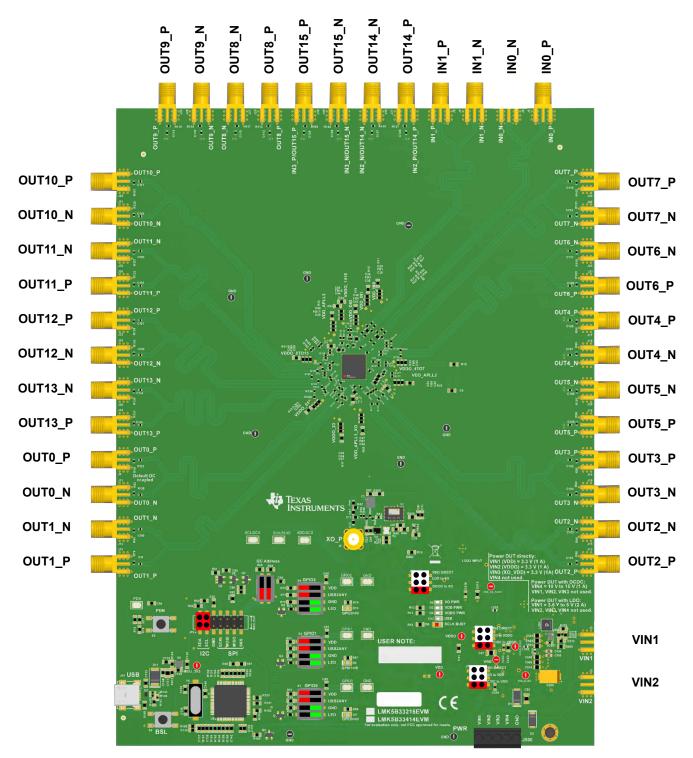



Figure 1-1. LMK5B33216EVM Default Setting of Jumpers and DIP Switches

### 2 EVM Quick Start

Table 2-1 describes the default jumper positions for the EVM to power the device from a single 12-V supply provided to VIN4. In positional information about jumpers, "adjacent designator" means the jumper is placed adjacent to the designator. "Opposite designator" means the jumper is placed opposite of the designator.

| CATEGORY                | REFERENCE<br>DESIGNATOR | POSITION                      | DESCRIPTION                                                           |
|-------------------------|-------------------------|-------------------------------|-----------------------------------------------------------------------|
| Power                   | JP1                     | 1-2 (opposite designator)     | LMK5B33216 VDD = 3.3 V from DCDC1 provided by U500 on top of the PCB. |
|                         | JP2                     | 1-2 (opposite designator)     | LMK5B33216 VDDO = 3.3 V from DCDC1 by U500 on top of the PCB.         |
|                         | JP4                     | 1-2 (opposite designator)     | XO VCC = 3.3 V from DCDC1 provided by U500 on top of PCB.             |
| Communication           | JP5                     | 1-2, 3-4                      | Connect I <sup>2</sup> C from onboard USB2ANY to LMK5B33216           |
|                         | S3                      | S3[1:2] = OFF                 | SCS_ADD = no pullup or pulldown.                                      |
| LMK5B33216 Control Pins | S1, S2, S4              | Sx[1,2] = OFF<br>Sx[3,4] = ON | Enable 3.9k pulldown on GPIO0, GPIO1, and GPIO2                       |

### Table 2-1. Default Jumper and DIP Switch Settings

To begin using the LMK5B33216, follow the steps below.

### Hardware Setup

- 1. Verify the EVM default jumper and DIP switch settings shown in Figure 1-1.
- 2. Connect the 12-V external power DC power supply (1-A limit) to:
  - a. VIN4 and GND terminals on header J500 (pins 4and 5, see Figure 3-2.)
- 3. Connect references:
  - a. 25-MHz reference clock to IN0\_P/N and/or,
  - b. 25-MHz reference clock to IN1\_P/N
- 4. Connect the USB cable to the USB port at J41.

### Software Setup

- 1. If not already installed, install TICS Pro software from TI website: TICS Pro Software
- 2. If the MATLAB R2015b (9.0)\* 64-bit runtime is not already installed, download and install from MathWorks website. While optional for programming and evaluating the default profile settings, the Matlab Runtime is necessary for any application that needs to modify the DPLL loop filter settings. See Matlab Runtime.
- 3. Start TICS Pro software.
- 4. Select the LMK5B33216 profile from Select Device → Network Synchronizer Clock (Digital PLLs) → LMK5B33216.
- 5. Confirm communications with the board by:
  - a. Click USB communications from the menu bar.
  - b. Click Interface to launch the Communication Setup pop-up window.
  - c. Check these fields in the Communication Setup pop-up window:
    - i. Ensure USB2ANY is selected as the interface.
    - ii. In case of multiple USB2ANY, select desired interface. If a USB2ANY is currently in use in another TICS Pro, you must release that interface by changing its interface setting to *DemoMode*.
    - iii. Click *Identify* to blink LED shown in Figure 2-1. This confirms you are connected to the board you expect. Be aware that USB2ANY devices connected to the PC but not attached to by a TICS Pro



instance may blink at a slow rate of 1 second on, 1 second off continuously. After clicking the *Identify* button, the LED will flash quickly at about 0.5 second on, 0.5 second off for about 5 seconds.

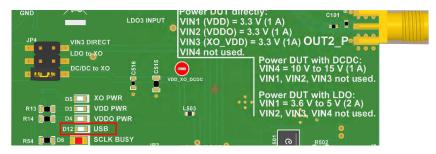



Figure 2-1. USB LED

### Program the LMK5B33216

- 1. Toggle the switch S5 (PDN/RESET).
- 2. Program all the registers:
  - a. Press the Write All Regs button in toolbar,
  - b. Select USB Communications in the menu bar, then select Write All Registers, or
  - c. Press Ctrl + L.
- 3. Check the current consumption (maximum 1.3 A).
- 4. Check LMK5B33216 Status as shown in Figure 2-2.
  - a. Go to the *Status* page of the GUI.
  - b. Click Read Status Bits.
  - c. Make sure to clear the latched bits. To clear latched bits:
    - i. Press the Clear Latched Bits button.
    - ii. Select Read Status Bits.
  - d. Wait to confirm the change. It may take some time for the DPLL status bits to reflect lock.

|             | INTR Source<br>Live Status | INTR Flag Polarity<br>0 = Normal Polarity                                                              | INTR Latched Bits                                                                                            | INTR Status Mask<br>0 = Route to Interrupt                                                                   | Latch Mode v                                                                      |
|-------------|----------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Read Status | (read only)                | 1 = Inverted Polarity                                                                                  | Clear Latched Bits                                                                                           | 1 = Mask (ignore)                                                                                            | VINT_EN OR V                                                                      |
| APLLS       | LOL_PLL1                   | LOL_PLL1_POL<br>LOL_PLL2_POL<br>LOS_FDET_X0_POL                                                        | LOL_PLL1_INTR<br>LOL_PLL2_INTR<br>LOS_FDET_X0_INTR                                                           | LOL_PLL1_MASK<br>LOL_PLL2_MASK<br>LOS_FDET_X0_MASK                                                           | Apply OR operator to<br>non-MASKed xxxx_INTR bit<br>for output to pin.            |
| _           |                            |                                                                                                        |                                                                                                              |                                                                                                              | Active Reference/Holdove                                                          |
|             |                            | LOR_MISSCLK1_POL<br>LOR_FREQ1_POL<br>LOR_PH1_POL                                                       | LOR_MISSCLK1_INTR<br>LOR_FREQ1_INTR<br>LOR_PH1_INTR                                                          | LOR_MISSCLK1_MASK                                                                                            | 2: REF1                                                                           |
| DPLL1       | LOPL_DPLL1                 | REFSWITCH1_POL<br>LOPL_DPLL1_POL<br>LOFL_DPLL1_POL<br>HLDOVR1_POL<br>HIST1_POL                         | REFSWITCH1_INTR<br>LOPL_DPLL1_INTR<br>LOPL_DPLL1_INTR<br>HLDOVR1_INTR<br>HLDOVR1_INTR                        | REFSWITCH1_MASK<br>LOPL_DPLL1_MASK<br>LOFL_DPLL1_MASK<br>LOFL_DPLL1_MASK<br>HLDOVR1_MASK                     | Reference Validated<br>REF0_VALID_STATUS<br>REF1_VALID_STATUS<br>REF0_FDET_STATUS |
| DPLL2       | LOPL_DPLL2                 | LOR_MISSCLK2_POL<br>LOR_FREQ2_POL<br>LOR_FH2_POL<br>REFSWITCH2_POL<br>LOPL_DPLL2_POL<br>LOPL_DPLL2_POL | LOR_MISSCLK2_INTR<br>LOR_FREQ2_INTR<br>LOR_PH2_INTR<br>REFSWITCH2_INTR<br>LOPL_DPLL2_INTR<br>LOPL_DPLL2_INTR | LOR_MISSCLK2_MASK<br>LOR_FREQ2_MASK<br>LOR_PH2_MASK<br>REFSWITCH2_MASK<br>LOPL_DPLL2_MASK<br>LOPL_DPLL2_MASK | REF1_FDET_STATUS                                                                  |
|             | HLDOVR2                    | HLDOVR2_POL                                                                                            | HLDOVR2_INTR                                                                                                 | HLDOVR2_MASK                                                                                                 |                                                                                   |
| DPLL3       | CLOPL_DPLL3                | LOR_MISSCLK3_POL<br>LOR_FREQ3_POL<br>LOR_PH3_POL<br>REFSWITCH3_POL<br>LOPL_DPLL3_POL                   | LOR_MISSCLK3_INTR<br>LOR_FREQ3_INTR<br>LOR_PH3_INTR<br>REFSWITCH3_INTR<br>LOPL_DPLL3_INTR                    | LOR_MISSCLK3_MASK<br>LOR_FREQ3_MASK<br>LOR_PH3_MASK<br>REFSWITCH3_MASK<br>LOPL_DPLL3_MASK                    | Other Status Registers                                                            |
|             | LOFL_DPLL3                 | LOFL_DPLL3_POL<br>HLDOVR3_POL<br>HIST3_POL                                                             | LOFL_DPLL3_INTR<br>HLDOVR3_INTR                                                                              | LOFL_DPLL3_MASK<br>HLDOVR3_MASK                                                                              | Bypass Status Controls<br>XO_FDET_BYP                                             |

Figure 2-2. Read Status Bits

#### <u>Measure</u>

Measurements can now be made at the clock outputs.

### 3 EVM Configuration

The LMK5B33216 is a highly-configurable clock chip with multiple power domains, PLL domains, and clock input and output domains. To support a wide range of LMK5B33216 use cases, the EVM was designed with more flexibility and functionality than needed to implement the chip in a customer system application.

This section describes the power, logic, and clock input and output interfaces on the EVM, as well as how to connect, set up, and operate the EVM. Refer to Figure 4-1.

| ITEM NO. |   | REFERENCE<br>DESIGNATORS                                                                                                                | DESCRIPTION                                                                                                                                                           |
|----------|---|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        |   | U1                                                                                                                                      | LMK5B33216                                                                                                                                                            |
| 2        |   | J500 (VIN4 terminal block header)                                                                                                       | External Supply, +12-V DC using default configuration.                                                                                                                |
| 3        |   | Y1                                                                                                                                      | Onboard TCXO. Y1 will provide improved<br>holdover stability and allow narrower DPLL<br>loop bandwidths to be used in comparison to<br>the external XO input.         |
|          | В | 8L                                                                                                                                      | SMA connector for external XO. To use the external XO, remove the jumper from JP4.                                                                                    |
| 4        |   | J4/5, J6/7                                                                                                                              | SMA Ports for Clock Inputs (IN0_P/N and IN1_P/N).<br>IN0_N is not populated and IN0_P is configured for single ended input. IN1 is configured for differential input. |
| 5        |   | J9/11, J10/12, J13/15, J14/16, J17/19,<br>J18/20, J21/J23, J22/24, J25/27, J26/28,<br>J29/31, J30/32, J33/35, J34/36, J37/39,<br>J38/40 | SMA Ports for Clock Outputs                                                                                                                                           |
| 6        |   | S5                                                                                                                                      | Normally open. Push button for device power<br>down (PDN pin). R76 enables control of the<br>PDN pin through the GUI.<br>R76 is installed by default.                 |
| 7        |   | JP5                                                                                                                                     | Jumper header for I <sup>2</sup> C/SPI interface (MCU to LMK5B33216)                                                                                                  |
| 8        |   | D6                                                                                                                                      | SCL or SCK busy indication LED.                                                                                                                                       |
| 9        |   | J41                                                                                                                                     | USB Port for MCU                                                                                                                                                      |

#### Table 3-1. Key Components Reference Designators and Descriptions



EVM Configuration

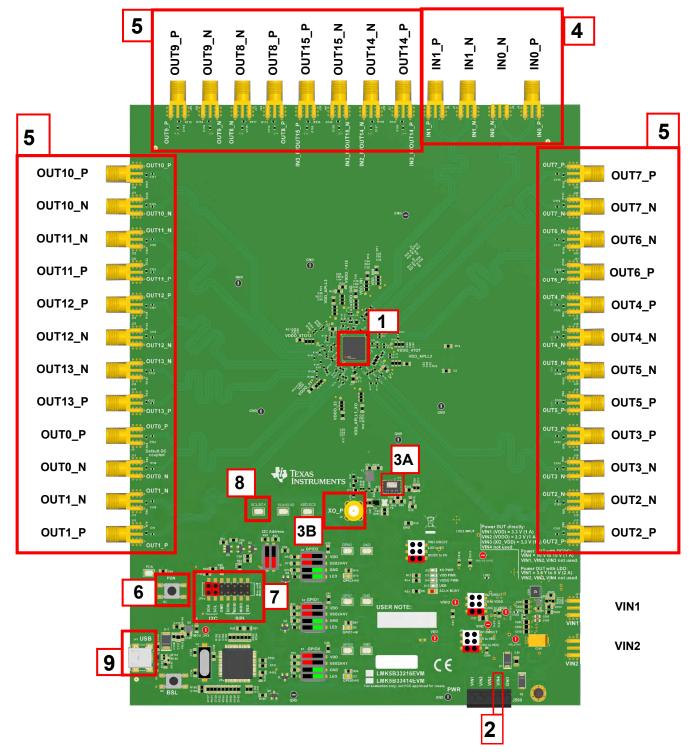



Figure 3-1. Key Components - EVM Top Side

7



### 3.1 Power Supply

The LMK5B33216 has VDD and VDDO supply pins that operate from 3.3 V ± 5%.

J500 is the main power terminal to the external power supply. Power SMA port VIN1 (J2) provides an alternative connector style to apply power through coax cable. By default this SMA connector is not populated.

On the EVM, there are three methods for supplying power.

- 1. The default power configuration uses the onboard DC/DC supply (U500) to power all VDD and VDDO pins as well as the onboard XO from an external 12-V supply input to VIN4 on J500.
- 2. The LDO power configuration uses three separate LDO regulators (U9, U10, and U11) to power the VDD, VDDO, and XO from an external 5-V supply input to VIN1 on J500 (or J2).
- 3. The direct power configuration allows for separate voltage supplies for the VDD, VDDO, and XO. In the direct power configuration mode, an external 3.3-V supply is provided to VIN1 to power the VDD pins, an external 3.3-V supply is provided to VIN2 to power the VDDO pins, and an external 3.3-V supply is provided to VIN2 to power the VDDO pins, and an external 3.3-V supply is provided to VIN3 to power the onboard XO.



Not every power connection is used or required to operate the EVM. Other power configurations are possible. See the power schematics in Figure 4-1 and Figure 4-3.

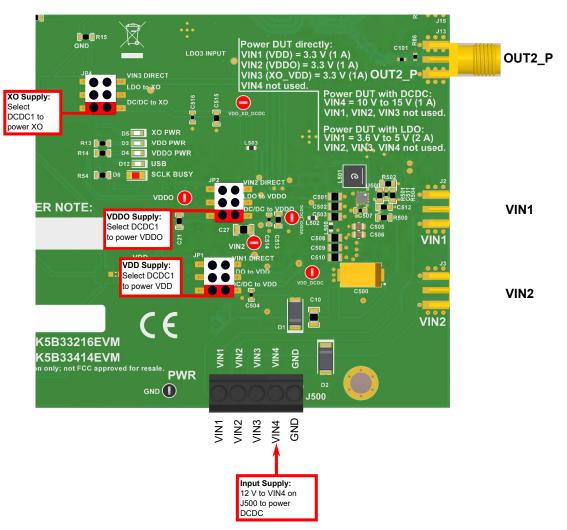





Figure 3-2 shows the default power jumper locations and settings. Table 3-2 shows the suggested power configurations for the LMK5B33216.



|            |      | ONBOARD DC/DC SUPPLY<br>(DEFAULT)                                                                                                                                                                 | ONBOARD LDO REGULATORS                                                                                                                                                                                   | DIRECT EXTERNAL SUPPLIES                                                                                                                                                                                                                                                     |  |
|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CONNECTION | NAME | VDD = 3.3 V (DCDC1)<br>VDDO = 3.3 V (DCDC1)<br>XO = 3.3 V (DCDC1)                                                                                                                                 | VDD = 3.3 V (LDO1)<br>VDDO = 3.3 V (LDO2)<br>XO = 3.3 V (LDO3)                                                                                                                                           | VDD = 3.3 V (EXT. VIN1)<br>VDDO = 3.3 V (EXT. VIN2)<br>XO = 3.3 V (EXT. VIN3)                                                                                                                                                                                                |  |
| J500       | PWR  | <ul> <li>Pin 1 (VIN1): n/a</li> <li>Pin 2 (VIN2): n/a</li> <li>Pin 3 (VIN3): n/a</li> <li>Pin 4 (VIN4): Connect to external 12-V supply</li> <li>Pin 5 (GND): Connect to supply ground</li> </ul> | <ul> <li>Pin 1 (VIN1): Connect to<br/>external 5-V supply</li> <li>Pin 2 (VIN2): n/a</li> <li>Pin 3 (VIN3): n/a</li> <li>Pin 4 (VIN4): n/a</li> <li>Pin 5 (GND): Connect to<br/>supply ground</li> </ul> | <ul> <li>Pin 1 (VIN1): Connect to<br/>external 3.3-V supply</li> <li>Pin 2 (VIN2): Connect to<br/>external 3.3-V supply</li> <li>Pin 3 (VIN3): Connect to<br/>external 3.3-V supply</li> <li>Pin 4 (VIN4): n/a</li> <li>Pin 5 (GND): Connect to<br/>supply ground</li> </ul> |  |
| JP1        | VDD  | Tie pins 1-2 (opposite to<br>designator) to select 3.3 V<br>from DCDC1 to VDD Plane                                                                                                               | Tie pins 3-4 (middle pins) to<br>select 3.3 V from LDO1 to<br>VDD Plane                                                                                                                                  | <ul> <li>Tie pins 5-6 (adjacent to<br/>designator) to select external<br/>VIN1 to VDD Plane</li> </ul>                                                                                                                                                                       |  |
| JP2        | VDDO | Tie pins 1-2 (opposite to<br>designator) to select 3.3 V<br>from DCDC1 to VDDO Plane                                                                                                              | Tie pins 3-4 (middle pins) to<br>select 3.3 V from LDO2 to<br>VDDO Plane                                                                                                                                 | Tie pins 5-6 (adjacent to<br>designator) to select external<br>VIN2 to VDDO Plane                                                                                                                                                                                            |  |
| JP4        | хо   | Tie pins 1-2 (opposite to<br>designator) to select 3.3 V<br>from DCDC1 to XO supply                                                                                                               | Tie pins 3-4 (middle pins) to<br>select 3.3 V from LDO3 to<br>XO supply                                                                                                                                  | <ul> <li>Tie pins 5-6 (adjacent to<br/>designator) to select external<br/>VIN3 to XO supply</li> </ul>                                                                                                                                                                       |  |

#### Table 3-2. Suggested Power Configurations

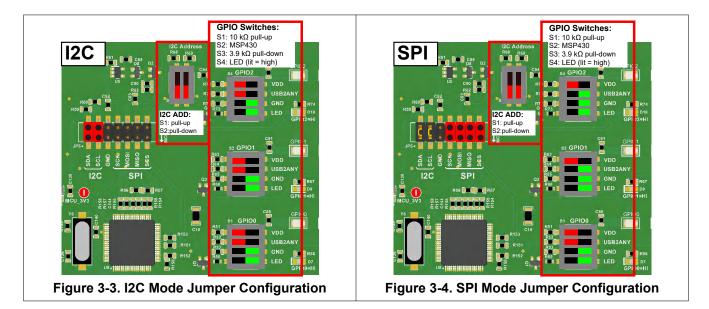
### 3.2 Logic Inputs and Outputs

The logic I/O pins of the LMK5B33216 support different functions depending on the device start-up mode chosen by the GPIO1 input level upon POR.

The default logic input pin states are determined by onboard pullup or pulldown resistors, but some input pins can be driven to high or low state by the MCU output or DIP switch control. The MCU can be controlled from a PC running TICS Pro software to program the device registers through I2C or SPI and also drive the LMK5B33216 logic inputs. To allow the MCU to control the pin input, SW[2] of the DIP switch correlating with controlled GPIO must be set to on.

See Table 3-3 for the logic pin mapping tables for the device start-up modes.

#### Table 3-3. Device Start-Up Modes


| GPIO1 INPUT LEVEL <sup>(1)</sup> | START-UP MODE         |
|----------------------------------|-----------------------|
| Low                              | l <sup>2</sup> C Mode |
| High                             | SPI Mode              |

(1) The input levels on these pins are sampled only during POR.



### 3.3 Switching Between I2C and SPI

To switch the EVM between I2C and SPI modes, the switches and jumpers must be configured as follows:



In SPI mode, GPIO2 must also be configured as *STATUS or INT*, *SPI Readback Data (SDO)*, *Active High*, and *CMOS* to support SPI readback.

| GPIC  | ) Controls                |                      |               | STATUS_MUX_           | DIV2_EN             |
|-------|---------------------------|----------------------|---------------|-----------------------|---------------------|
| CRICO | GPIO0_IN_FLT_EN           | Active High          | ¥             | NMOS open drain       | n (external pull- ~ |
| GPIOO | STATUS or INT, Acts as st | tatus or interrupt ~ | Interrupt (IN | TR). Derived from INT | FLAG + *            |
| GPI01 | GPIO1_IN_FLT_EN           | Active High          | Y             | NMOS open drain       | n (external pull- প |
| GPIOT | STATUS or INT, Acts as s  | tatus or interrupt ~ | Interrupt (IN | TR). Derived from INT | FLAG + Y            |
| 00100 | GPIO2_IN_FLT_EN           | Active High          | Ŷ             | CMOS                  | Ŷ                   |
| GPIO2 | STATUS or INT, Acts as s  | tatus or interrupt ~ | SPI Readba    | ck Data (SDO)         | *                   |

Figure 3-5. GPIO2 Setting for SPI Mode

Communication protocols must be set in TICS Pro. From the menu bar, select USB communications  $\rightarrow$  Interface to get the Communication Setup window and change the protocol.

| Interface   | Select USB2ANY   |                              |           |              |
|-------------|------------------|------------------------------|-----------|--------------|
| USB2ANY     | F57E1B5106000E00 | <ul> <li>Identify</li> </ul> | Protocol  | 12C ~        |
| TiHera FTDI | USB Connected    | Bit Rate (kbps)              | Sca       | n I2C Bus    |
| O DemoMode  | oob oon needed   | 400 ~                        | Set I2C A | ddress 0x 64 |





### 3.4 Generating SYSREF Request

A software request, GPIO0, or GPIO1 can be used to generate a SYSREF request. The TICS Pro software and EVM is designed to use GPIO2 for SPI readback (SDO). Accordingly, GPIO2 is not listed in the pins as it is dedicated for SPI readback. In user application, any GPIO pin may be used.

Connect the desired GPIO pin to the MCU by setting S2 as ON on the switch block for the desired GPIO. Then, make sure the GPIO pin is configured for SYSREF\_REQ on the GPIO tab of the GUI. A SYSREF Request can now be issued by toggling the GPIO buttons in the *Pins* section of the *User Controls* tab.

| GPIC  | O Controls               |                      |              |              |   |
|-------|--------------------------|----------------------|--------------|--------------|---|
| GPI00 | GPIOD IN FLT EN          | Active High          | *            | CMOS         | ~ |
| GPIOU | SYSREF_REQ, Can requ     | est SYSREF pul 👻     | XO Loss of S | Signal (LOS) | ¥ |
| GPIO1 | GPIO1_IN_FLT_EN          | Active High          | *            | CMOS         | v |
| GPIOT | STATUS or INT, Acts as s | tatus or interrupt 👒 | XO Loss of S | Signal (LOS) | Ŷ |
| -     | GPIO2_IN_FLT_EN          | Active High          | *            | CMOS         | * |
| GPIO2 | STATUS or INT, Acts as s | tatus or interrupt 👻 | XO Loss of S | Signal (LOS) | ÷ |

Figure 3-7. GPIO Setting for SYSREF Request

| Pins         |  |
|--------------|--|
| Program Pins |  |
| ✓ PD#        |  |
| GPIO0        |  |
| GPIO1        |  |

Figure 3-8. GPIO Pin Selection for SYSREF

### 3.5 XO Input

The LMK5B33216 has an XO input (XO pin) to accept a reference clock for the Fractional-N APLLs. The XO input determines the output frequency accuracy and stability in free-run or holdover modes. For synchronization applications like SyncE or IEEE 1588, the XO input would typically be driven by a low-frequency TCXO or OCXO that conforms to the frequency accuracy and holdover stability requirements of the application. For proper DPLL operation, the XO frequency must have a non-integer frequency relationship with the VCO output frequency of any APLLs that uses the XO input as its reference. The non-integer relationship should be greater than 0.05 away from an integer boundary (meaning > 0.05 and < 0.95). When configuring the LMK5B33216 as a clock generator (DPLL not used), then the XO frequency can have an integer relationship with the APLL output frequency.

The XO input of the LMK5B33216 has programmable on-chip input termination and AC-coupled input biasing options to support any clock interface type.



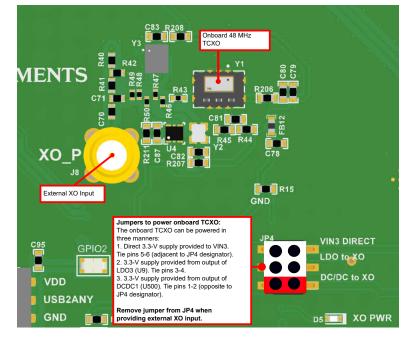



Figure 3-9. XO Input

### 3.5.1 48-MHz TCXO (Default)

By default, the EVM is populated with a 48-MHz, 3.3-V LVCMOS, low-jitter TCXO, designated as Y1 (3.2 mm x 2.5 mm), which drives the XO input of the LMK5B33216 with the onboard termination and AC coupling. See Figure 3-9. All LMK5B33216 EVMs have a TXC 7N48071001 48-MHz TCXO populated on Y1. Y1 can be used to evaluate various frequency configurations.

#### 3.5.2 External Clock Input

Another option is to feed an external clock to the SMA port (J8) to drive the XO input. See Figure 3-9. This path can be connected to the XO input pins. Y1 should be powered down when using the external XO input path. To power down Y1 and use an external XO input, the jumper on JP4 must be removed. Suggested XO frequencies for best device performance are frequencies of 38.88 and 48 MHz.

### 3.5.3 Additional XO Input Options

For flexibility, the EVM provides additional XO input options (use one at a time). C70 allows an external reference to be provided at SMA connector XO (J8). C71 allows one of the onboard XO/TCXO/OCXO footprints to be used.

By default, Y1 is populated with a 48-MHz TCXO and selected with the populated R43 and R206. R43 provides the output clock of Y1 to the XO pin of the LMK5B33414 and R206 provides power to Y1.

Additional PCB footprints are available to install alternate components for performance evaluation of specific oscillators. These additional footprints are Y2 (2.5 x 2.0 mm), Y3 (3.2 mm x 2.5 mm), Y4 (9.7 mm x 7.5 mm), Y5 (25 mm x 22 mm), and U4 (2.5 mm x 2 mm).

When using Y2, Y3, Y4, Y5, or U4, R43 and R206 must be removed to power down and isolate the output of Y1. When populating Y2, R46 must be populated to provide Y2's output to the XO pin. When populating Y3, R47 must be populated to provide Y3's output to the XO pin. When populating Y4, R48 must be populated to provide Y4's output to the XO pin. When populating Y5, R49 must be populated to provide Y5's output to the XO pin. When populating Y5, R49 must be populated to provide Y5's output to the XO pin. When populating U4, R50 must be populated to provide U4's output to the XO pin. Section 4.8 shows the components described above.

Take care if more than one device is installed to remove resistors to power down unused oscillators and isolate their outputs as described above.



### 3.5.4 APLL Reference Options

The LMK5B33216 APLLs may accept any other APLL output as a reference instead of the XO. The BAW on APLL3 provides a good option for a high-frequency cascaded APLL reference. Figure 6-2 shows how to configure the APLL reference to be cascaded from another APLL.

### **3.6 Reference Clock Inputs**

The LMK5B33216 has two DPLL reference clock input pairs (IN0\_P/N and IN1\_P/N) with configurable input priority and input selection modes. The inputs have programmable input type, termination, and biasing options to support any clock interface type.

External LVCMOS or Differential reference clock inputs can be applied to the SMA ports, labeled IN0\_P/N and IN1\_P/N. All SMA inputs are routed through  $50-\Omega$  single-ended traces and DC-coupled to the corresponding IN0\_P/N and IN1\_P/N pins of the LMK5B33216. Single-ended signals should be connected to the noninverting input, IN0\_P or IN1\_P. EVM default intends IN0 for single-ended input as the IN0\_N SMA connector is not populated.

### 3.7 Clock Outputs

The LMK5B33216 has 16 clock output pairs (OUT[0:15]\_P/N).

OUT0 is configured as DC-coupled for LVCMOS evaluation purposes. OUT1, OUT2, and OUT3 have 50  $\Omega$  to GND followed by an AC-coupling capacitor for HCSL evaluation purposes.OUT4 to OUT15 are AC-coupled to the SMA ports for LVDS and HSDS evaluation purposes.

#### WARNING

DC-coupled clocks should not be directly connected to RF equipment which cannot accept DC voltage greater than 0 V. For example, spectrum analyzers and phase noise analyzers.

### 3.8 Status Outputs and LEDS

Status outputs signals can be configured on the GPIO0, GPIO1, and GPIO2 pins. The status output types are 3.3-V LVCMOS or NMOS open-drain.

### **3.9 Requirements for Making Measurements**

When performing measurements with the LMK5B33216EVM, the following procedures must be completed:

 Ensure all required outputs have proper termination components installed to match the desired output types. Figure 3-10 shows the recommended output terminations for each output format.

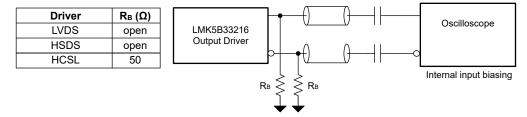
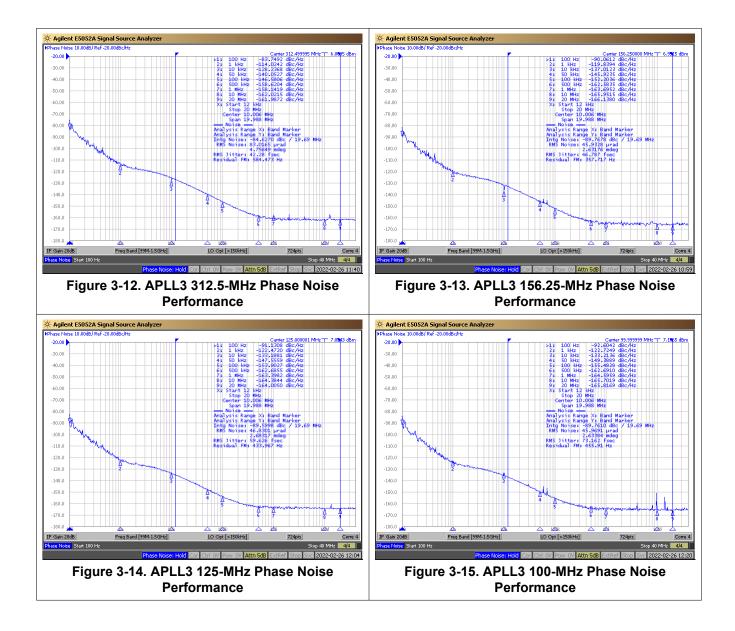



Figure 3-10. Output Termination Recommendations

1. Ensure all enabled outputs that are not connected to any test equipment have a 50- $\Omega$  SMA termination. Figure 3-11 shows an example of a 50  $\Omega$  SMA termination.



Figure 3-11. 50-Ω SMA Termination




### 3.10 Typical Phase Noise Characteristics

These plots show the typical phase noise performance for common frequencies outputted from the BAW (VCO3).

The EVM configuration used to obtain these measurements is as follows:

- 1. XO frequency = 48 MHz (Onboard TCXO)
- 2. Outputs were configured as HSDS outputs following the methods described in Section 3.9.





EVM Schematics

### **4 EVM Schematics**

### 4.1 Power Supply Schematic

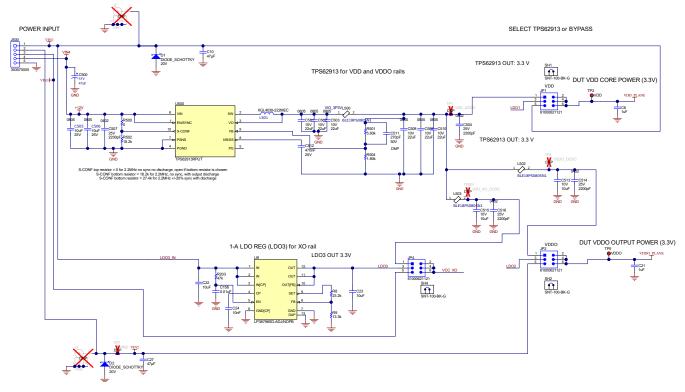
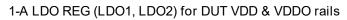
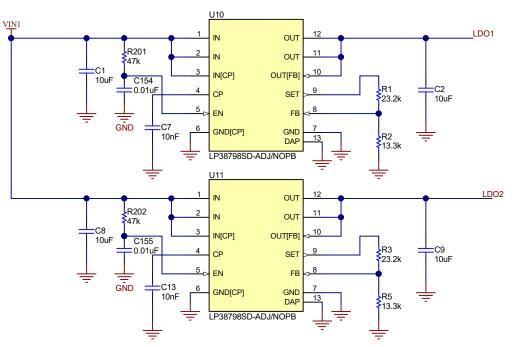
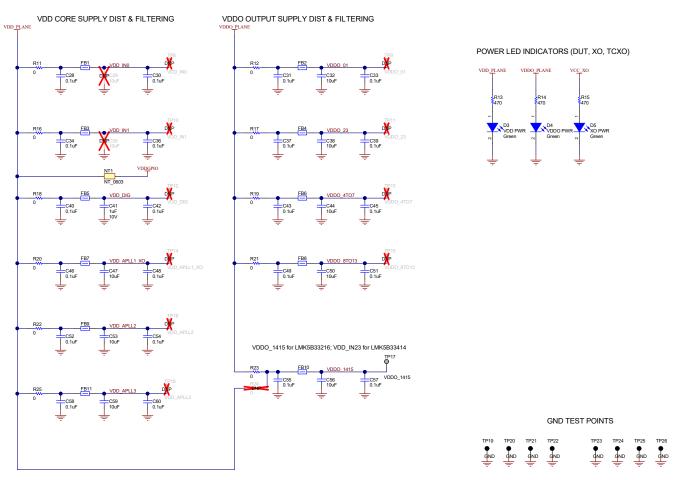




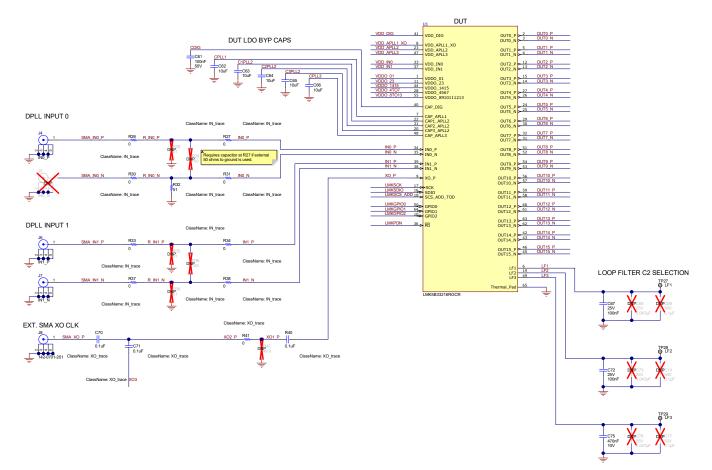

Figure 4-1. Power Supplies

### 4.2 Alternative Power Supply Schematic








### 4.3 Power Distribution Schematic









### 4.4 LMK5B33216 and Input Reference Inputs IN0 to IN1 Schematic

Figure 4-4. LMK5B33216 and Input Reference Inputs IN0 to IN1



### 4.5 Clock Outputs OUT0 to OUT3 Schematic

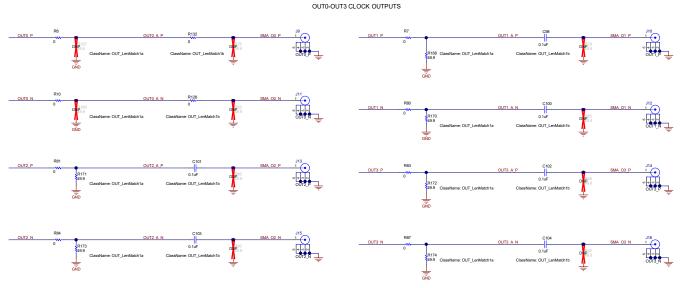



Figure 4-5. Clock Outputs OUT0 to OUT3



### 4.6 Clock Outputs OUT4 to OUT9 Schematic

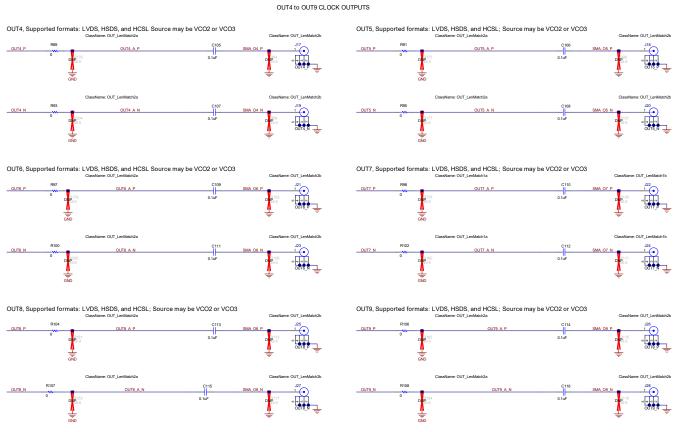



Figure 4-6. Clock Outputs OUT4 to OUT9



### 4.7 Clock Outputs OUT10 to OUT15 Schematic

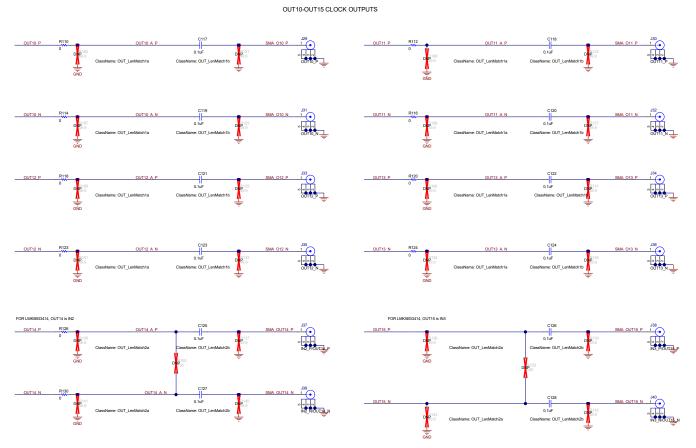



Figure 4-7. Clock Outputs OUT10 to OUT15



### 4.8 XO Schematic

3.3V LVCMOS XO (multiple footprints)

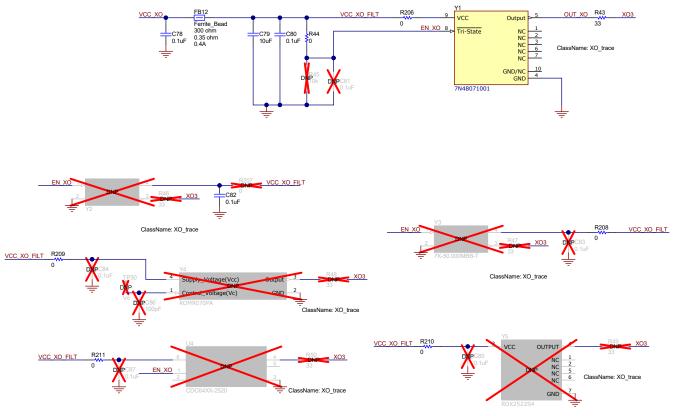



Figure 4-8. XO

### 4.9 Logic I/O Interfaces Schematic

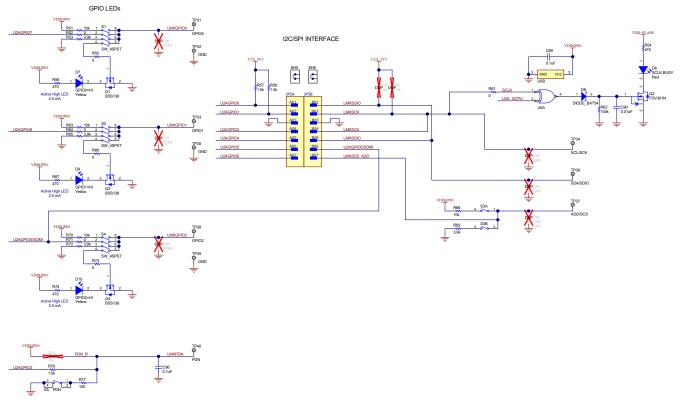



Figure 4-9. Logic I/O Interfaces



### 4.10 USB2ANY Schematic

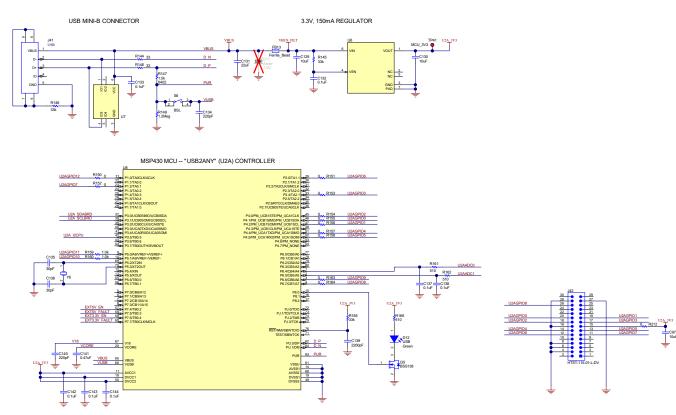



Figure 4-10. USB MCU



### **5 EVM Bill of Materials**

### Table 5-1. EVM Bill of Materials (BOM)

|                                                                                                                                                                                                                       |     |        | DESCRIPTION PARTNUMBER MANUFACTURE              |                     |              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|-------------------------------------------------|---------------------|--------------|--|
| DESIGNATOR                                                                                                                                                                                                            | QTY | VALUE  | DESCRIPTION                                     | PARTNUMBER          | MANUFACTURER |  |
| C1, C2, C7, C8,<br>C9, C13, C22,<br>C23, C24, C32,<br>C38, C44, C47,<br>C50, C53, C56,<br>C59, C62, C63,<br>C64, C65, C66,<br>C79, C97, C129,<br>C130                                                                 | 26  | 10uF   | CAP, CERM, 10 uF, 10 V, +/- 20%,<br>X5R, 0603   | C1608X5R1A106M080AC | TDK          |  |
| C6, C21, C41                                                                                                                                                                                                          | 3   | 1uF    | CAP, CERM, 1 uF, 10 V, +/- 10%, X5R, 0603       | C0603C105K8PACTU    | Kemet        |  |
| C10, C27                                                                                                                                                                                                              | 2   | 47uF   | CAP, CERM, 47 μF, 10 V,+/- 20%,<br>X5R, 0805    | GRM21BR61A476ME15L  | MuRata       |  |
| C28, C31, C34,<br>C37, C40, C43,<br>C46, C49, C52,<br>C55, C58, C67,<br>C70, C71, C72,<br>C78, C80, C82,<br>C96, R40                                                                                                  | 20  | 0.1uF  | CAP, CERM, 0.1 uF, 25 V, +/- 5%,<br>X7R, 0603   | C0603C104J3RACTU    | Kemet        |  |
| C30, C33, C36,<br>C39, C42, C45,<br>C48, C51, C54,<br>C57, C60                                                                                                                                                        | 11  | 0.1uF  | CAP, CERM, 0.1 uF, 10 V, +/- 10%,<br>X5R, 0402  | C1005X5R1A104K050BA | ТDК          |  |
| C61                                                                                                                                                                                                                   | 1   | 0.1uF  | CAP, CERM, 0.1 uF, 50 V, +/- 10%,<br>X7R, 0603  | C1608X7R1H104K080AA | ТДК          |  |
| C75, C141                                                                                                                                                                                                             | 2   | 0.47uF | CAP, CERM, 0.47 uF, 10 V, +/- 10%,<br>X7R, 0603 | GRM188R71A474KA61D  | MuRata       |  |
| C89, C132, C133,<br>C137, C138,<br>C142, C143, C144                                                                                                                                                                   | 8   | 0.1uF  | CAP, CERM, 0.1 uF, 16 V, +/- 5%,<br>X7R, 0603   | C0603C104J4RACTU    | Kemet        |  |
| C90, C154, C155,<br>C156                                                                                                                                                                                              | 4   | 0.01uF | CAP, CERM, 0.01 uF, 50 V, +/- 5%,<br>X7R, 0603  | C0603C103J5RACTU    | Kemet        |  |
| C98, C100, C101,<br>C102, C103,<br>C104, C105,<br>C106, C107,<br>C108, C109,<br>C110, C111, C112,<br>C113, C114, C115,<br>C116, C117, C118,<br>C119, C120,<br>C121, C122,<br>C123, C124,<br>C125, C126,<br>C127, C128 |     | 0.1uF  | CAP, CERM, 0.1 uF, 25 V, +/- 10%,<br>X7R, 0402  | GRM155R71E104KE14D  | MuRata       |  |
| C131                                                                                                                                                                                                                  | 1   | 22uF   | CAP, CERM, 22 uF, 10 V, +/- 20%,<br>X5R, 0805   | LMK212BJ226MG-T     | Taiyo Yuden  |  |

| Table 5-1. EVM Bill of Materials (BOM) (continued)                                                                                                                                    |     |         |                                                           |                     |                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-----------------------------------------------------------|---------------------|------------------------------------|
| DESIGNATOR                                                                                                                                                                            | QTY | VALUE   | DESCRIPTION                                               | PARTNUMBER          | MANUFACTURER                       |
| C134, C140                                                                                                                                                                            | 2   | 220pF   | CAP, CERM, 220 pF, 50 V, +/- 1%,<br>C0G/NP0, 0603         | 06035A221FAT2A      | AVX                                |
| C135, C136                                                                                                                                                                            | 2   | 30pF    | CAP, CERM, 30 pF, 100 V, +/- 5%,<br>C0G/NP0, 0603         | GRM1885C2A300JA01D  | MuRata                             |
| C139                                                                                                                                                                                  | 1   | 2200pF  | CAP, CERM, 2200 pF, 50 V, +/- 10%,<br>X7R, 0603           | C0603C222K5RACTU    | Kemet                              |
| C500                                                                                                                                                                                  | 1   | 47uF    | CAP, TA, 47 uF, 35 V, +/- 10%, 0.3<br>ohm, SMD            | T495X476K035ATE300  | Kemet                              |
| C501, C502,<br>C503, C508,<br>C509, C510                                                                                                                                              | 6   | 22uF    | CAP, CERM, 22 uF, 10 V, +/- 20%,<br>X7S, 0805             | C2012X7S1A226M125AC | TDK                                |
| C504, C507,<br>C514, C516                                                                                                                                                             | 4   | 2200pF  | CAP, CERM, 2200 pF, 25 V, +/- 10%,<br>X7R, 0402           | GRM155R71E222KA01D  | MuRata                             |
| C505, C506                                                                                                                                                                            | 2   |         | 10μF ±10% 25V Ceramic Capacitor<br>X7S 0805 (2012 Metric) | C2012X7S1E106K125AC | TDK                                |
| C511                                                                                                                                                                                  | 1   |         | CAP CER 270PF 50V NP0 0402                                | UMK105CG271JV-F     | Taiyo Yuden                        |
| C512                                                                                                                                                                                  | 1   | 0.47uF  | CAP, CERM, 0.47 µF, 25 V,+/- 10%,<br>X7R, 0603            | C1608X7R1E474K080AE | TDK                                |
| C513, C515                                                                                                                                                                            | 2   | 10uF    | CAP, CERM, 10 uF, 10 V, +/- 20%,<br>X7R, 0603             | GRM188Z71A106MA73D  | MuRata                             |
| D1, D2                                                                                                                                                                                | 2   | 20V     | Diode, Schottky, 20 V, 2 A, SMA                           | B220A-13-F          | Diodes Inc.                        |
| D3, D4, D5, D12                                                                                                                                                                       | 4   | Green   | LED, Green, SMD                                           | LTST-C190GKT        | Lite-On                            |
| D6                                                                                                                                                                                    | 1   | Red     | LED, Red, SMD                                             | LTST-C170KRKT       | Lite-On                            |
| D7, D9, D10                                                                                                                                                                           | 3   | Yellow  | LED, Yellow , SMD                                         | LTST-C170KSKT       | Lite-On                            |
| D8                                                                                                                                                                                    | 1   | 30V     | Diode, Schottky, 30 V, 0.2 A, SOT-23                      | BAT54-7-F           | Diodes Inc.                        |
| FB1, FB2, FB3,<br>FB4, FB5, FB6,<br>FB7, FB8, FB9,<br>FB10, FB11                                                                                                                      | 11  | 220 ohm | Ferrite Bead, 220 ohm @ 100 MHz,<br>2.5 A, 0603           | BLM18SG221TN1D      | MuRata                             |
| FB12                                                                                                                                                                                  | 1   | 300 ohm | Ferrite Bead, 300 ohm @ 100 MHz,<br>0.4 A, 1.6x0.8x0.95mm | LI0603D301R-10      | Laird-Signal Integrity<br>Products |
| FB13                                                                                                                                                                                  | 1   | 60 ohm  | Ferrite Bead, 60 ohm @ 100 MHz, 3.5<br>A, 0603            | MPZ1608S600ATAH0    | ТДК                                |
| FID1, FID2, FID3,<br>FID4, FID5, FID6                                                                                                                                                 | 6   |         | Fiducial mark. There is nothing to buy or mount.          | N/A                 | N/A                                |
| H1, H2, H3, H4,<br>H5, H6                                                                                                                                                             | 6   |         | BUMPER CYLIN 0.312" DIA                                   | SJ61A6              | 3M                                 |
| J4, J6, J7, J9, J10,<br>J11, J12, J13, J14,<br>J15, J16, J17, J18,<br>J19, J20, J21, J22,<br>J23, J24, J25, J26,<br>J27, J28, J29, J30,<br>J31, J32, J33, J34,<br>J35, J36, J37, J38, |     |         | CONN SMA JACK STR EDGE MNT                                | CON-SMA-EDGE-S      | RF Solutions Ltd.                  |



|                                                                                                                                                                                                                 |     | Tabl  | e 5-1. EVM Bill of Materials (BOM                                                               | I) (continued)   |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-------------------------------------------------------------------------------------------------|------------------|----------------------------|
| DESIGNATOR                                                                                                                                                                                                      | QTY | VALUE | DESCRIPTION                                                                                     | PARTNUMBER       | MANUFACTURER               |
| J8                                                                                                                                                                                                              | 1   |       | Connector, SMA, TH                                                                              | 142-0701-201     | Cinch Connectivity         |
| J41                                                                                                                                                                                                             | 1   |       | Connector, Receptacle, Mini-USB Type<br>B, R/A, Top Mount SMT                                   | 1734035-2        | TE Connectivity            |
| J42                                                                                                                                                                                                             | 1   |       | Header, 2.54mm, 15x2, Gold, SMD                                                                 | HTST-115-01-L-DV | Samtec                     |
| J500                                                                                                                                                                                                            | 1   |       | Terminal Block, 3.5mm, 5x1, Tin, TH                                                             | 393570005        | Molex                      |
| JP1, JP2, JP4                                                                                                                                                                                                   | 3   |       | Header, 2.54mm, 3x2, Gold, SMT                                                                  | 61000621121      | Wurth Elektronik           |
| JP5                                                                                                                                                                                                             | 1   |       | Connector Header Surface Mount 14 position 0.100" (2.54mm)                                      | 54202-G0807LF    | Amphenol ICC               |
| L500, L502, L503                                                                                                                                                                                                | 3   |       | Bead inductor BLE series, 8A                                                                    | BLE18PS080SN1    | Murata                     |
| L501                                                                                                                                                                                                            | 1   |       | Inductor Power Shielded Wirewound<br>2.2uH 20% 1MHz Composite 8.7A<br>15mOhm DCR Automotive T/R | XGL4030-222MEC   | Coilcraft                  |
| LBL1                                                                                                                                                                                                            | 1   |       | Thermal Transfer Printable Labels,<br>0.650" W x 0.200" H - 10,000 per roll                     | THT-14-423-10    | Brady                      |
| Q1, Q3, Q4, Q5                                                                                                                                                                                                  | 4   | 50V   | MOSFET, N-CH, 50 V, 0.22 A, SOT-23                                                              | BSS138           | Fairchild<br>Semiconductor |
| Q2                                                                                                                                                                                                              | 1   | 25V   | MOSFET, N-CH, 25 V, 0.22 A, SOT-23                                                              | FDV301N          | Fairchild<br>Semiconductor |
| R1, R3, R8                                                                                                                                                                                                      | 3   | 23.2k | RES, 23.2 k, 1%, 0.1 W, AEC-Q200<br>Grade 0, 0603                                               | Vishay-Dale      |                            |
| R2, R5, R9                                                                                                                                                                                                      | 3   | 13.3k | RES, 13.3 k, 1%, 0.1 W, AEC-Q200<br>Grade 0, 0603                                               | CRCW060313K3FKEA | Vishay-Dale                |
| R6, R7, R10, R80,<br>R81, R83, R84,<br>R87, R89, R91,<br>R93, R95, R97,<br>R98, R100, R102,<br>R104, R106,<br>R107, R108,<br>R110, R112, R114,<br>R116, R118, R120,<br>R123, R124,<br>R126, R128,<br>R130, R132 | 32  | 0     | RES, 0, 5%, 0.063 W, AEC-Q200<br>Grade 0, 0402                                                  | RK73Z1ETTP       | KOA Speer                  |
| R11, R12, R16,<br>R17, R18, R19,<br>R20, R21, R22,<br>R23, R25, R41,<br>R52, R55, R61,<br>R64, R66, R71,<br>R73, R150, R151,<br>R152, R153,<br>R154, R155,<br>R156, R157,<br>R158, R163,<br>R164, R212          | 31  | 0     | RES, 0, 5%, 0.1 W, AEC-Q200 Grade<br>0, 0603                                                    | CRCW06030000Z0EA | Vishay-Dale                |

|                                              |     | Tab    | le 5-1. EVM Bill of Materials (BOI                 | M) (continued)     |                          |  |  |
|----------------------------------------------|-----|--------|----------------------------------------------------|--------------------|--------------------------|--|--|
| DESIGNATOR                                   | QTY | VALUE  | DESCRIPTION                                        | PARTNUMBER         | MANUFACTURER             |  |  |
| R13, R14, R15,<br>R54, R56, R67,<br>R74      | 7   | 470    | RES, 470, 5%, 0.1 W, AEC-Q200<br>Grade 0, 0603     | CRCW0603470RJNEA   | Vishay-Dale              |  |  |
| R26, R27, R30,<br>R31, R33, R34,<br>R37, R38 | 8   | 0      | RES, 0, 0%, 0.2 W, AEC-Q200 Grade<br>0, 0402       | CRCW04020000Z0EDHP | Vishay-Dale              |  |  |
| R32                                          | 1   | 51     | RES, 51, 5%, 0.0625 W, 0402                        | RC0402JR-0751RL    | Yageo America            |  |  |
| R43, R144, R146                              | 3   | 33     | RES, 33, 5%, 0.063 W, AEC-Q200<br>Grade 0, 0402    | CRCW040233R0JNED   | Vishay-Dale              |  |  |
| R44, R500                                    | 2   | 0      | RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603          | ERJ-3GEY0R00V      | Panasonic                |  |  |
| R51, R63, R68,<br>R70                        | 4   | 10k    | RES, 10 k, 5%, 0.1 W, AEC-Q200<br>Grade 0, 0603    |                    |                          |  |  |
| R53, R65, R69,<br>R72                        | 4   | 3.9k   | RES, 3.9 k, 5%, 0.1 W, AEC-Q200<br>Grade 0, 0603   | CRCW06033K90JNEA   | Vishay-Dale              |  |  |
| R57, R58                                     | 2   | 1.5k   | RES, 1.5 k, 5%, 0.1 W, AEC-Q200<br>Grade 0, 0603   | CRCW06031K50JNEA   | Vishay-Dale              |  |  |
| R62                                          | 1   | 100k   | RES, 100 k, 5%, 0.1 W, AEC-Q200<br>Grade 0, 0603   | CRCW0603100KJNEA   | Vishay-Dale              |  |  |
| R76, R159, R160                              | 3   | 1.0k   | RES, 1.0 k, 5%, 0.1 W, AEC-Q200<br>Grade 0, 0603   | CRCW06031K00JNEA   | Vishay-Dale              |  |  |
| R77                                          | 1   | 100    | RES, 100, 5%, 0.25 W, AEC-Q200<br>Grade 0, 0603    | ESR03EZPJ101       | Rohm                     |  |  |
| R145, R148, R165                             | 3   | 33k    | RES, 33 k, 5%, 0.1 W, AEC-Q200<br>Grade 0, 0603    | CRCW060333K0JNEA   | Vishay-Dale              |  |  |
| R147                                         | 1   | 1.5k   | RES, 1.5 k, 5%, 0.063 W, AEC-Q200<br>Grade 0, 0402 | CRCW04021K50JNED   | Vishay-Dale              |  |  |
| R149                                         | 1   | 1.2Meg | RES, 1.2 M, 5%, 0.1 W, AEC-Q200<br>Grade 0, 0603   | CRCW06031M20JNEA   | Vishay-Dale              |  |  |
| R161, R162, R166                             | 3   | 510    | RES, 510, 5%, 0.1 W, AEC-Q200<br>Grade 0, 0603     | CRCW0603510RJNEA   | Vishay-Dale              |  |  |
| R168, R170,<br>R171, R172,<br>R173, R174     | 6   | 49.9   | RES, 49.9, 1%, 0.1 W, AEC-Q200<br>Grade 0, 0402    | ERJ-2RKF49R9X      | Panasonic                |  |  |
| R201, R202, R203                             | 3   | 47k    | RES, 47 k, 5%, 0.1 W, AEC-Q200<br>Grade 0, 0603    | CRCW060347K0JNEA   | Vishay-Dale              |  |  |
| R206, R208,<br>R209, R210, R211              | 5   | 0      | RES, 0, 5%, 0.1 W, 0603                            | RC0603JR-070RL     | Yageo                    |  |  |
| R501                                         | 1   | 5.60k  | RES, 5.60 k, 0.1%, 0.1 W, 0603                     | RG1608P-562-B-T5   | Susumu Co Ltd            |  |  |
| R502                                         | 1   | 18.2k  | RES, 18.2 k, 1%, 0.1 W, AEC-Q200<br>Grade 0, 0603  | CRCW060318K2FKEA   | Vishay-Dale              |  |  |
| R504                                         | 1   | 1.80k  | RES, 1.80 k, 0.1%, 0.1 W, 0603                     | RT0603BRD071K8L    | Yageo America            |  |  |
| S1, S2, S4                                   | 3   |        | Switch, SPST 4 Pos, Top Actuated, SMT              | 219-4LPST          | CTS<br>Electrocomponents |  |  |
| S3                                           | 1   |        | Switch, Slide, SPST 2 poles, SMT                   | 219-2LPST          | CTS<br>Electrocomponents |  |  |



| DEDIGUATE                                                              | 071 |         | le 5-1. EVM Bill of Materials (BON                                                                                                                 |                                                                         |                   |  |
|------------------------------------------------------------------------|-----|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------|--|
| DESIGNATOR                                                             | QTY | VALUE   | DESCRIPTION                                                                                                                                        | PARTNUMBER                                                              | MANUFACTURER      |  |
| S5, S6                                                                 | 2   |         | Switch, Tactile, SPST-NO, 0.05A, 12V, SMT                                                                                                          | FSM4JSMA                                                                | TE Connectivity   |  |
| SH1, SH2, SH4,<br>SH5, SH6                                             | 5   | 1x2     | Shunt, 100mil, Gold plated, Black                                                                                                                  | SNT-100-BK-G                                                            | Samtec            |  |
| TP2, TP5, TP41                                                         | 3   |         | Test Point, Miniature, Red, TH                                                                                                                     | 5000                                                                    | Keystone          |  |
| TP19, TP20,<br>TP21, TP22,<br>TP23, TP24,<br>TP25, TP26                | 8   |         | Test Point, Miniature, Black, TH                                                                                                                   | Keystone                                                                |                   |  |
| TP31, TP32,<br>TP33, TP34,<br>TP35, TP36,<br>TP37, TP38,<br>TP39, TP40 | 10  |         | Test Point, Miniature, SMT                                                                                                                         | Keystone                                                                |                   |  |
| U1                                                                     | 1   |         | Ultra-Low Jitter Clock Synchronizer<br>with JESD204B for Wireless<br>Communications                                                                | Texas Instruments                                                       |                   |  |
| U5                                                                     | 1   |         | Single 2-Input Exclusive-OR Gate,<br>DBV0005A (SOT-23-5)                                                                                           | Texas Instruments                                                       |                   |  |
| U6                                                                     | 1   |         | 150-mA Ultra-Low Noise LDO for<br>RF and Analog Circuits Requires<br>No Bypass Capacitor, NGF0006A<br>(WSON-6)                                     | Texas Instruments                                                       |                   |  |
| U7                                                                     | 1   |         | 4-Channel ESD Protection Array<br>for High-Speed Data Interfaces,<br>DRY0006A (USON-6)                                                             | Texas Instruments                                                       |                   |  |
| U8                                                                     | 1   |         | 25 MHz Mixed Signal Microcontroller<br>with 128 KB Flash, 8192 B SRAM and<br>63 GPIOs, -40 to 85 degC, 80-pin QFP<br>(PN), Green (RoHS & no Sb/Br) | with 128 KB Flash, 8192 B SRAM and 63 GPIOs, -40 to 85 degC, 80-pin QFP |                   |  |
| U9, U10, U11                                                           | 3   |         | 800-mA Ultra-Low-Noise, High-PSRR<br>LDO, DNT0012B (WSON-12)                                                                                       | LP38798SD-ADJ/NOPB                                                      | Texas Instruments |  |
| U500                                                                   | 1   |         | 3A Low Noise and Low Ripple buck converter, RPU0010A (VQFN-10)                                                                                     | TPS62913RPUT                                                            | Texas Instruments |  |
| Y1                                                                     | 1   |         | SMD TCXO 7.0 * 5.0 48.000000MHz                                                                                                                    | 7N48071001                                                              | TXC               |  |
| Y6                                                                     | 1   |         | Crystal, 24.000 MHz, 20pF, SMD                                                                                                                     | ECS-240-20-5PX-TR                                                       | ECS Inc.          |  |
| C29, C35                                                               | 0   | 10uF    | CAP, CERM, 10 uF, 10 V, +/- 20%,<br>X5R, 0603                                                                                                      | C1608X5R1A106M080AC                                                     | TDK               |  |
| C68, C73, C76                                                          | 0   | 0.047uF | CAP, CERM, 0.047 µF, 25 V,+/- 5%,<br>C0G/NP0, AEC-Q200 Grade 1, 0805                                                                               | C0805C473J3GACTU                                                        | Kemet             |  |
| C69, C74, C77                                                          | 0   | 0.1uF   | CAP, CERM, 0.1 µF, 50 V,+/- 5%, C0G/<br>NP0, 1210                                                                                                  | C3225C0G1H104J250AA                                                     | TDK               |  |
| C81, C83, C84,<br>C85, C87                                             | 0   | 0.1uF   | CAP, CERM, 0.1 uF, 25 V, +/- 5%,<br>X7R, 0603                                                                                                      | C0603C104J3RACTU                                                        | Kemet             |  |
| C86, C88, C91,<br>C95                                                  | 0   | 100pF   | CAP, CERM, 100 pF, 50 V, +/- 5%,<br>C0G/NP0, 0603                                                                                                  | 06035A101JAT2A                                                          | AVX               |  |

| DECICNIATOD                                                                                                                                                                                                                                                                                                                                                                                                                               | OTY | 1/01115 | DESCRIPTION                                       |                  | MANUEAOTUDED      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|---------------------------------------------------|------------------|-------------------|--|--|
| DESIGNATOR                                                                                                                                                                                                                                                                                                                                                                                                                                | QTY | VALUE   | DESCRIPTION                                       | PARTNUMBER       | MANUFACTURER      |  |  |
| C92, C93, C94                                                                                                                                                                                                                                                                                                                                                                                                                             | 0   | 33pF    | CAP, CERM, 33 pF, 100 V, +/- 5%,<br>C0G/NP0, 0603 | 06031A330JAT2A   | AVX               |  |  |
| D11                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0   | 7.5V    | Diode, Zener, 7.5 V, 550 mW, SMB                  | 1SMB5922BT3G     | ON Semiconductor  |  |  |
| J2, J3, J5                                                                                                                                                                                                                                                                                                                                                                                                                                | 0   |         | CONN SMA JACK STR EDGE MNT                        | CON-SMA-EDGE-S   | RF Solutions Ltd. |  |  |
| R24                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0   | 0       | RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603         | CRCW06030000Z0EA | Vishay-Dale       |  |  |
| R28, R35, R39                                                                                                                                                                                                                                                                                                                                                                                                                             | 0   | 51      | RES, 51, 5%, 0.0625 W, 0402                       | RC0402JR-0751RL  | Yageo America     |  |  |
| R29, R36                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0   | 100     | RES, 100, 1%, 0.1 W, AEC-Q200<br>Grade 0, 0603    | CRCW0603100RFKEA | Vishay-Dale       |  |  |
| R42                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0   | 49.9    | RES, 49.9, 1%, 0.1 W, AEC-Q200<br>Grade 0, 0603   | CRCW060349R9FKEA | Vishay-Dale       |  |  |
| R45, R75                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0   | 10k     | RES, 10 k, 5%, 0.1 W, AEC-Q200<br>Grade 0, 0603   | CRCW060310K0JNEA | Vishay-Dale       |  |  |
| R46, R47, R48,<br>R49, R50                                                                                                                                                                                                                                                                                                                                                                                                                | 0   | 33      | RES, 33, 5%, 0.063 W, AEC-Q200<br>Grade 0, 0402   | CRCW040233R0JNED | Vishay-Dale       |  |  |
| R59, R60                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0   | 1.5k    | RES, 1.5 k, 5%, 0.1 W, AEC-Q200<br>Grade 0, 0603  | CRCW06031K50JNEA | Vishay-Dale       |  |  |
| R78, R79, R82,<br>R85, R86, R88,<br>R90, R92, R94,<br>R96, R99, R101,<br>R103, R105,<br>R109, R111, R113,<br>R115, R117, R119,<br>R121, R122,<br>R125, R127,<br>R129, R131,<br>R133, R134,<br>R135, R136,<br>R137, R138,<br>R139, R140,<br>R141, R142,<br>R143, R167,<br>R169, R175,<br>R176, R177,<br>R178, R179,<br>R180, R181,<br>R182, R183,<br>R184, R185,<br>R186, R187,<br>R186, R187,<br>R180, R191,<br>R190, R191,<br>R204, R205 | 0   | 49.9    | RES, 49.9, 1%, 0.1 W, AEC-Q200<br>Grade 0, 0402   | ERJ-2RKF49R9X    | Panasonic         |  |  |
| R192, R193                                                                                                                                                                                                                                                                                                                                                                                                                                | 0   | 100     | RES, 100, 1%, 0.063 W, AEC-Q200<br>Grade 0, 0402  | CRCW0402100RFKED | Vishay-Dale       |  |  |
| R207                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0   | 0       | RES, 0, 5%, 0.1 W, 0603                           | RC0603JR-070RL   | Yageo             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0   |         | Test Point, Miniature, Red, TH                    | 5000             | Keystone          |  |  |
| TP1, TP4, TP7,<br>TP501                                                                                                                                                                                                                                                                                                                                                                                                                   |     |         |                                                   |                  |                   |  |  |



| Table 5-1. EVM Bill of Materials (BOM) (continued) |     |       |                                                          |                |                   |  |  |  |
|----------------------------------------------------|-----|-------|----------------------------------------------------------|----------------|-------------------|--|--|--|
| DESIGNATOR                                         | QTY | VALUE | DESCRIPTION                                              | PARTNUMBER     | MANUFACTURER      |  |  |  |
| U4                                                 | 0   |       | CDC64XX-2520, DLF0006A (VSON-6)                          | CDC64XX-2520   | Texas Instruments |  |  |  |
| Y2                                                 | 0   |       | Crystal, 48 MHz, 15 pF, SMD                              | 8W48072003     | TXC Corporation   |  |  |  |
| Y3                                                 | 0   |       | Crystal, Sealed Locked 50 MHz, 15pF, SMD                 | 7X-50.000MBB-T | TXC Corporation   |  |  |  |
| Y4                                                 | 0   |       | MERCURY+ 38.88MHz OCXO CMOS<br>Oscillator 2.7 ~ 5V 4-SMD | ROM9070PA      | Rakon             |  |  |  |
| Y5                                                 | 0   |       | STANDARD OCXO 10MHz Frequency                            | ROX2522S4      | Rakon             |  |  |  |

30 LMK5B33216EVM User's Guide

### 5.1 Loop Filter and Vibration Nonsensitive Capacitors

The capacitors used on the EVM use are X7R which are ferromagnetic and therefore sensitive to vibration due to the piezoelectric effect. It is recommended to use non-ferromagnetic capacitors such as NP0, C0G, or Tantalum for applications in which optimal performance is required in the presence of vibration.

At and below 47 nF, C0G/NP0 capacitors are available in 0805 sized packages. For values 0.1 µF and above Tantalum capacitors may be considered for vibration immune loop filter components.

### Table 5-2. Examples of Substitute Capacitors Which are Vibration Immune

| CAPACITOR VALUE | VIBRATION SENSITIVE, X7R | VIBRATION IMMUNE                                                     |  |  |  |  |  |  |  |
|-----------------|--------------------------|----------------------------------------------------------------------|--|--|--|--|--|--|--|
| 3.3 nF          | C0603C332K5RACTU, 0603   | GRM1885C1H332JA01D, C0G/NP0, 0603                                    |  |  |  |  |  |  |  |
| 33 nF           | C0603C333J3RACTU, 0603   | C2012C0G1H333J125AA, C0G/NP0, 0805                                   |  |  |  |  |  |  |  |
| 47 nF           | 06035C473JAT2A, 0603     | C0805X473G3GEC7800, C0G/NP0, 0805<br>C0805C473J3GACTU, C0G/NP0, 0805 |  |  |  |  |  |  |  |
| 0.1 µF          | C0603C104J3RACTU, 0603   | GRM31C5C1E104JA01L, C0G/NP0, 1206<br>TAJR104K020RNJ, Tantalum, 0805  |  |  |  |  |  |  |  |
| 0.47 µF         | GRM188R71A474KA61D, 0603 | F921C474MPA, Tantalum, 0805                                          |  |  |  |  |  |  |  |



### 6 Appendix A - TICS Pro LMK5B33216 Software

### 6.1 Using the Start Page

The Start page can be used to configure the PLLs for specific VCO frequencies and DPLL operation.

LMK5B33216 User Controls Raw Registers Getting Started Start Page Design Report EEPROM ▲ Inputs ZDM SYNC/SYSREF/1-PPS Outputs Status Validation GPIO ▷ APLL DPLL Burst Mode

### Figure 6-1. Start Page Location

#### 6.1.1 Step 1

Set up the XO\_P input frequency and interface type. Set up the input to the APLL by specifying the reference to each PLL and associated settings for PLL phase detector frequency.

### 6.1.2 Step 2

In Step 2, set up the clock input frequencies and the interface type. Cascaded APLLs can also be assigned from this page using the PLL R-divider and phase detector preview to the right.

| Freq. (MHz)         Interface Type           XO_P         48.0         8: CMOS |                                              | Interface Type                   | Note: VCO Feedback frequencies<br>may not be properly updated until after |                  |        | R Divider &    | APLL Phase         |       |
|--------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|---------------------------------------------------------------------------|------------------|--------|----------------|--------------------|-------|
|                                                                                |                                              | 8: CMOS Y                        |                                                                           | encies are calcu |        | Doubler        | Detector Frequency |       |
|                                                                                | Range: 10 to 100 M                           | Hz                               |                                                                           | PLL1             |        | 13             | 00 4500 40         |       |
| Step 2: Clo                                                                    | ck Inpute                                    |                                  |                                                                           | VCO3 feedb       | back Y | Lange          | 96.153846          | MHz   |
| Step 2. 010                                                                    | Freq. (MHz)                                  | Interface Type                   |                                                                           | 1250.0           | MHz    | Bypass<br>DBLR |                    |       |
| INO (REFO)                                                                     | 25.0                                         | 12: S-E (int. 50 ohm) *          |                                                                           | PLL2             |        | 40             | -                  | _     |
| IN1 (REF1)                                                                     | 25.0                                         | 3: LVDS/HSDS (AC-DIFF, int. 10 ~ |                                                                           | VCO3 feed        | back 👻 | 13 🔹           | 96.153846          | MHz   |
|                                                                                | a) Range: Up to 750<br>b) Enter '0' when the |                                  |                                                                           | 1250.0           | MHz    | Bypass<br>DBLR |                    |       |
|                                                                                |                                              |                                  |                                                                           | PLL3             |        | 2              | 96.0               | MHz   |
|                                                                                |                                              |                                  |                                                                           | xo               | ~      | ✓ Bypass       |                    | in iz |
|                                                                                |                                              |                                  |                                                                           | 48.0             | MHz    | J DBLR         |                    |       |

Figure 6-2. Step 1 and 2: XO Input and Clock Inputs



### 6.1.3 Step 3

Set the clock input select mode for the DPLLs, input priority, and maximum TDC frequency. The recommended Input Select Mode is *Auto Revertive*. REF0 and REF1 shown below correspond with IN0 and IN1, respectively. REF4 and REF5 priorities can be set if the DPLLs input will be fed from one of the APLL post divider frequencies. The corresponding APLL is listed next to the REF4 and REF5. The REF with the highest priority will be fed as the DPLL input.

| DPLL1 Use DF                                      | PLL1         |                 | DPLL2   | Use DPI           | LL2       |                  | DPLL3   | DPLL3 Use DPLL3                          |           |                |  |
|---------------------------------------------------|--------------|-----------------|---------|-------------------|-----------|------------------|---------|------------------------------------------|-----------|----------------|--|
| Input Select Mode                                 | Auto Reve    | rtive ~         | Inpu    | Input Select Mode |           | Auto revertive v |         | Input Select Mode                        |           | tive ~         |  |
| Manual Selection                                  | REF0         | ~               | Ma      | nual Selection    | REF0      | ~                | Ma      | nual Selection                           | REF0      | *              |  |
| Pin / Register Select                             | Register     | ~               | Pin / R | egister Select    | Register  | ~                | Pin / R | egister Select                           | Register  | *              |  |
| Auto Select                                       | Priority     | Doubler         |         | Auto Select       | Priority  | Doubler          |         | Auto Select                              | Priority  | Doubler        |  |
| REF0 Not available                                | e for s 👻    | Enable          | REF0    | 2nd               | ~         | Enable           | REF0    | 2nd                                      | ~         | Enable         |  |
| REF1 Not available                                | e for s \vee | Enable          | REF1    | 1st               | *         | Enable           | REF1    | 1st                                      | ~         | Enable         |  |
| REF4 Not available                                | e for s Y    | n/a (from PLL2) | REF4    | Not available     | e for s Y | n/a (from PLL1)  | REF4    | Not available                            | e for s Y | n/a (from PLL1 |  |
| REF5 Not available                                | e for s 👻    | n/a (from PLL3) | REF5    | Not available     | e fors 👻  | n/a (from PLL3)  | REF5    | Not available                            | e for s 👻 | n/a (from PLL2 |  |
| Maximum TDC<br>Frequency (MHz)<br>Actual DPLL TDC | 11           |                 | Freq    | uency (MHz)       | 11        |                  | Freq    | aximum TDC<br>uency (MHz)<br>al DPLL TDC | 26        |                |  |

Figure 6-3. Step 3: DPLL Clock Input Selection

### 6.1.4 Step 4

Set the clock output for ZDM. The PLL will drive the PLL source mux for the selected output set for ZDM. Step 4: DPLL Zero Delay Selection

| DPLL1 ZDM | ZDM disabled | ~ | ZDM disabled | Generalized ZDM DPLL diagram           |
|-----------|--------------|---|--------------|----------------------------------------|
| DPLL2 ZDM | ZDM disabled | ~ |              | DPLL Reference DPLL (APLL) OUTO, OUTA, |
| DPLL3 ZDM | ZDM disabled | ~ |              | TDC VCO or OUT10                       |

Figure 6-4. Step 4: Zero Delay Mode



### 6.1.5 Step 5

Enter desired target frequencies for each of the outputs as well as desired output format, output source, whether the output is SYSREF, and whether the output is being used or not.

Press Calculate VCO Frequency Options to generate a list of possible VCO frequency combinations.

| b) Selec<br>c) When<br>d) Gene<br>e) Calcu<br>f) Export | t the target frequence<br>t the output format.<br>applicable select V<br>rate possible VCO fi<br>late the N-divider set<br>t clock output setting | Unused outpoor to specify<br>requencies and<br>ettings and Di<br>as to the device | nd cho<br>PLL-co<br>ce. "Ac | ould be disab<br>on mode. Vo<br>ose from ava<br>prrected PPM<br>ctual Freq. (M | led to reduce<br>os is a function<br>illable options<br>offsets.<br>IHz)" boxes w | of output swir<br>(or set overrid | ng ai<br>es).           | nd V <sub>OS</sub> setting<br>gly.                 |         |         |                  |                         |         |                              |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|-------------------------|----------------------------------------------------|---------|---------|------------------|-------------------------|---------|------------------------------|
|                                                         | Target Freq. (MHz)<br>100.0                                                                                                                       | Output Sou<br>PLL3                                                                | v                           | Output For                                                                     | -V. P/N = Or                                                                      |                                   | ~                       | Outp<br>Setting 1, Vc                              | ut VcM  |         | YSREF?           | Actual Freq<br>~100.000 |         |                              |
| OUT1                                                    | 100.0                                                                                                                                             | PLL3                                                                              | ~                           | HCSL 750                                                                       |                                                                                   |                                   | ~                       | Setting 1, Vo                                      |         |         | 0                | ~100.0000               | 000     |                              |
|                                                         | 100.0                                                                                                                                             | 1 220                                                                             | -                           |                                                                                |                                                                                   |                                   | ~                       |                                                    |         |         | -                | ~100.0000               | 000     |                              |
| 0012                                                    |                                                                                                                                                   | PLL3                                                                              | ~                           | HCSL 750                                                                       | mv                                                                                |                                   | ~                       | Setting 1, Vo                                      | m = Nor | ne v    |                  | _                       |         |                              |
| OUT3                                                    | 100.0                                                                                                                                             |                                                                                   | -                           | HCSL 750                                                                       | mV                                                                                |                                   | ~                       | Setting 1, Vo                                      | m = Nor | ne V    |                  | ~100.0000               | 000     |                              |
| OUT4                                                    | 161.1328125                                                                                                                                       |                                                                                   |                             | HSDS 800                                                                       | mV, Vcm =                                                                         | 0.55 V                            | ~                       | Setting 1, Vo                                      | m = Nor | ne V    |                  | ~161.1328               | 812     |                              |
| OUT5                                                    | 161.1328125                                                                                                                                       |                                                                                   |                             | HSDS 800 mV, Vcm = 0.55 V ~                                                    |                                                                                   |                                   | ×                       | Setting 1, Vo                                      | m = Nor | ne V    |                  | ~161.1328               | 812     |                              |
| OUT6                                                    | 322.265625                                                                                                                                        | PLL2                                                                              | *                           | HSDS 800 mV, Vcm = 0.55 V                                                      |                                                                                   |                                   | v                       | Setting 1, Vo                                      | m = Nor | ne V    |                  | ~322.2656               | 625     |                              |
| OUT7                                                    | 322.265625                                                                                                                                        |                                                                                   |                             | HSDS 800                                                                       | 0.55 V                                                                            | *                                 | Setting 1, Vcm = None V |                                                    | ne V    |         | ~322.2656        | 625                     |         |                              |
| OUTS                                                    | 156.25                                                                                                                                            |                                                                                   |                             | HSDS 800                                                                       | mV, Vcm =                                                                         | 0.55 V                            | ~                       | Setting 1, Vo                                      | m = Nor | ne V    |                  | ~156.2500               | 000     |                              |
| OUT9                                                    | 156.25                                                                                                                                            |                                                                                   |                             | HSDS 800                                                                       | mV, Vcm =                                                                         | 0.55 V                            | ×                       | Setting 1, Vo                                      | m = Nor | ne V    |                  | ~156.2500               | 000     |                              |
| OUT10                                                   | 156.25                                                                                                                                            |                                                                                   |                             | HSDS 800                                                                       | mV, Vcm =                                                                         | 0.55 V                            | v                       | Setting 1, Vcm = None V<br>Setting 1, Vcm = None V |         | ne V    |                  | ~156.2500               | 000     |                              |
| OUT11                                                   | 156.25                                                                                                                                            | PLL3                                                                              | ~                           | HSDS 800                                                                       | mV, Vcm =                                                                         | 0.55 V                            | ~                       |                                                    |         | ne V    |                  | ~156.2500               | 000     |                              |
| OUT12                                                   | 312.5                                                                                                                                             |                                                                                   |                             | HSDS 800                                                                       | mV, Vcm =                                                                         | 0.55 V                            | ~                       | Setting 1, Vcm = None V                            |         | ne V    |                  | ~312.500000             |         |                              |
| OUT13                                                   | 312.5                                                                                                                                             |                                                                                   |                             | HSDS 800                                                                       | mV, Vcm =                                                                         | 0.55 V                            | ~                       | Setting 1, Vo                                      | m = Nor | ne V    |                  | ~312.5000               | 000     |                              |
| OUT14                                                   | 155.52                                                                                                                                            |                                                                                   |                             | HSDS 800                                                                       | mV, Vcm =                                                                         | 0.55 V                            | ~                       | Setting 1, Vo                                      | m = Nor | ne V    |                  | ~155.5200               | 000     |                              |
| OUT15                                                   | 155.52                                                                                                                                            | PLL1 P1                                                                           | v                           | HSDS 800                                                                       | mV, Vcm =                                                                         | 0.55 V                            | *                       | Setting 1, Vcm = None V                            |         | ne V    |                  | ~155.5200               | 000     |                              |
| VCO fre                                                 | equency options ca                                                                                                                                | Iculated. S                                                                       | elect d                     | desired frequ                                                                  | encies then                                                                       | press "Copy                       | to S                    | Selected VCO                                       | Freque  | ncy"    |                  |                         |         |                              |
|                                                         | Calculate VCO                                                                                                                                     | Frequency (                                                                       | Option                      | IS                                                                             | Copy                                                                              | o Selected V                      | co                      | Frequency                                          |         |         | elected to Devic |                         |         | Output Clock<br>is to Device |
| CO1 Fre                                                 | equency Options                                                                                                                                   | VCO2 Free                                                                         | quency                      | Options                                                                        | Ena                                                                               | ble User Over                     | rride                   |                                                    |         |         |                  |                         |         | CO ppm erro                  |
| 4976.6                                                  | 4                                                                                                                                                 | 5800.78                                                                           | 125                         |                                                                                | VCO Freq                                                                          | uency User Ov                     | erri                    | de:                                                |         | Integer |                  | lumerator               |         |                              |
| 5132.1                                                  |                                                                                                                                                   | -                                                                                 |                             |                                                                                | VCO1                                                                              | 4976.64                           |                         | MHz                                                | VC01    | 51      | 83239            | 91874878                | 7.24938 | 030185E-09                   |
| 5287.6                                                  | 8                                                                                                                                                 |                                                                                   |                             |                                                                                | VCO2                                                                              | 5800,78125                        | j.                      | MHz                                                | VCO2    | 60      | 36077            | 7252864                 | 0       |                              |
|                                                         |                                                                                                                                                   |                                                                                   |                             |                                                                                | VCO3                                                                              | 2500.0                            |                         | MHz                                                | VCO3    | 26      | 45812            | 2984491                 | 1.16415 | 321827E-0                    |

| Output Mute Options |                   |                   |
|---------------------|-------------------|-------------------|
| PLL1                | PLL2              | PLL3              |
| MUTE_APLL1_LOCK     | MUTE_APLL2_LOCK   |                   |
| MUTE_DPLL1_FRLOCK   | MUTE_DPLL2_FRLOCK | MUTE_DPLL3_FRLOCK |
| MUTE_DPLL1_PHLOCK   | MUTE_DPLL2_PHLOCK | MUTE_DPLL3_PHLOCK |

| Figure | 6-5. | Step 5: | Clock | Outputs |
|--------|------|---------|-------|---------|
|--------|------|---------|-------|---------|

Select a desired combination of VCO frequencies from the list of calculated values. If a specific VCO frequency is not in this list, a manual override can occur by selecting the *Enable User Override* checkbox and typing in the desired VCO frequencies. The *Copy to Selected VCO Frequency* box can also be used to copy the VCO frequency in the list selections to the VCO overrides.

Press the *Assign Selected VCO Settings to Device* button to update the VCO frequencies, then press the *Apply Output Clock Settings to Device* button. By default, the analog PLL frequencies are shown. The DPLL calculated frequency from step 6, however, will result in exact output frequencies.



After the output frequency plan is calculated, ensure that a valid XO input is fed into the device so the APLLs can lock and generate the required frequencies. The device will not output any clocks until all enabled APLLs are locked.

#### 6.1.6 Step 6

For step 6, simply enter the desired DPLL loop bandwidth.

**Note** Any time an approximate symbol is shown, a tool tip will allow exact output frequency to be seen by mousing over the control.

#### Step 6: PLLs

| Update red fields to control the DPLL characteristics.                                                      | DPLL1                  |                                  | DPLL2                  |                                  | DPLL3                      |                            |  |
|-------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------|------------------------|----------------------------------|----------------------------|----------------------------|--|
| The transfer function and error function allowed                                                            | VCO1 F                 | VCO1 Freq. (MHz)<br>~4976.640000 |                        | VCO2 Freq. (MHz)<br>~5800.781250 |                            | VCO3 Freq. (MHz)<br>2500.0 |  |
| peaking can be left at the default values, if there is                                                      | ~4976.                 |                                  |                        |                                  |                            |                            |  |
| no application requirement specifying these values.                                                         | Range: 4.8e9 to 5.35e9 |                                  | Range: 5.6e9 to 5.95e9 |                                  | Range: 2600 MMziz/+5050ppm |                            |  |
| Running the script will yield attenuation values (in dB) for the specified transfer/error function offsets. | Target                 | Actual                           | Target                 | Actual                           | Target                     | Actual                     |  |
| DPLL LBW (Hz)                                                                                               | 1,                     | 1.015                            | 100                    | 101.428                          | 100                        | 100.805                    |  |
| DPLL Transfer Function Allowed Peaking (dB)                                                                 | 0.1                    | _                                | 0.1                    | _                                | 0.1                        |                            |  |
| DPLL Error Function Allowed Peaking (dB)                                                                    | 1                      |                                  | 1                      | —                                | 1                          | ·                          |  |
| DCO Step Size (ppb)                                                                                         | 0.1                    | n/a                              | 0.1                    | n/a                              | 0.1                        | n/a                        |  |
|                                                                                                             | Offset (Hz)            |                                  |                        |                                  |                            |                            |  |
| Transfer Function Attenuation                                                                               | 100                    | -79.46 dB                        | 100                    | -3.03 dB                         | 100                        | -3.03 dB                   |  |
| Error Function Attenuation                                                                                  | 100                    | -6.0 dB                          | 100                    | -1.49 dB                         | 100                        | -1.12 dB                   |  |

Figure 6-6. Step 6: PLLs

### 6.1.7 Step 7

To calculate the DPLL divider settings, select which DPLL loop filters and dividers to calculate and press the *Run Script* button. The software will now run and calculate the necessary settings.

| When red fields are changed, click<br>for selected DPLLs below. | Calculate DPLL Settings to generate updated DPLL settin |
|-----------------------------------------------------------------|---------------------------------------------------------|
| Calc DPLL1                                                      | Due Seriet                                              |
| Calc DPLL2                                                      | Run Script                                              |
| Calc DPLL3                                                      | Bypass run script warning                               |

Figure 6-7. Step 7: Run Script

### 6.2 Using the Status Page

The Status page shows fields pertaining to the current status of the device. To update these fields, click the *Read Status Bits* button or the *Read RO Regs* button in the toolbar. The *Read RO Regs* button will read all read only registers which provides more information on other pages including the status fields but can take longer to read back. The read status bits just reads the status bits for this page.

For the DPLL to lock, a reference must be validated and selected in the *Active Reference/Holdover* and *Reference Validated* portions of the window shown in Figure 6-8.

As the DPLL locks, it is expected to see the LOPL\_DPLLx as the last bit to become clear when the phase lock is acquired.

When INT\_EN = 1, any live status flag which occurs will latch to the INTR Latched bit columns. These will remain asserted until the *Clear Latched Bits* button is pressed. This gives additional insight into the behavior of the device.

| Read Status (read only)                                 |                 | INTR Flag Polarity                                                 | INTR Latched Bits                                   | INTR Status Mask                                                       | Latch Mode v                                                  |       |
|---------------------------------------------------------|-----------------|--------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------|-------|
|                                                         |                 | 0 = Normal Polarity<br>1 = Inverted Polarity                       | Clear Latched Bits                                  | 0 = Route to Interrupt<br>1 = Mask (ignore)                            | ✓ INT_EN OR                                                   |       |
| APLLS LOL_PLL1<br>LOL_PLL2<br>LOS_FDET_XO               |                 | LOL_PLL1_POL                                                       | LOL_PLL1_INTR                                       | LOL_PLL1_MASK                                                          |                                                               |       |
|                                                         | LOL_PLL2        | LOL_PLL2_POL                                                       | LOL_PLL2_INTR                                       | LOL_PLL2_MASK                                                          | Apply OR operator to<br>non-MASKed xxxx_INTR bit              |       |
|                                                         | LOS_FDET_XO_POL | LOS_FDET_XO_INTR                                                   | LOS_FDET_XO_MASK                                    | for output to pin.                                                     |                                                               |       |
|                                                         |                 |                                                                    |                                                     |                                                                        | Active Reference/Holdove                                      |       |
| DPLL1 COPL_DPLL1<br>LOPL_DPLL1<br>LOFL_DPLL1<br>HLDOVR1 |                 | LOR_MISSCLK1_POL<br>LOR_FREQ1_POL<br>LOR_PH1_POL<br>REFSWITCH1 POL | LOR_MISSCLK1_INTR<br>LOR_FREQ1_INTR<br>LOR_PH1_INTR | LOR_MISSCLK1_MASK<br>LOR_FREQ1_MASK<br>LOR_PH1_MASK<br>REFSWITCH1_MASK | 2: REF1                                                       | ~     |
|                                                         |                 |                                                                    |                                                     |                                                                        | 2: REF1                                                       | ~     |
|                                                         |                 |                                                                    |                                                     |                                                                        | 2: REF1                                                       |       |
|                                                         |                 |                                                                    | REFSWITCH1 INTR                                     |                                                                        | Reference Validated<br>REF0_VALID_STATUS<br>REF1_VALID_STATUS |       |
|                                                         |                 | LOPL DPLL1 POL                                                     | LOPL DPLL1 INTR                                     | LOPL_DPLL1_MASK                                                        |                                                               |       |
|                                                         |                 | LOFL DPLL1 POL                                                     | LOFL DPLL1 INTR                                     | LOFL DPLL1 MASK                                                        |                                                               |       |
|                                                         | HLDOVR1 POL     | HLDOVR1 INTR                                                       | HLDOVR1 MASK                                        |                                                                        |                                                               |       |
|                                                         |                 | HIST1_POL                                                          | HIST1_INTR                                          | HIST1_MASK                                                             | REFO FDET STATU                                               | ATUS  |
|                                                         |                 | LOR MISSCLK2 POL                                                   | LOR MISSCLK2 INTR                                   | LOR MISSCLK2 MASK                                                      | REF0_PH_STATUS                                                |       |
|                                                         |                 | LOR FREQ2 POL                                                      | LOR FREQ2 INTR                                      | LOR FREQ2 MASK                                                         |                                                               |       |
|                                                         |                 | LOR PH2 POL                                                        | LOR PH2 INTR                                        | LOR PH2 MASK                                                           | REF1_FDET_STAT                                                |       |
|                                                         |                 | REFSWITCH2 POL                                                     | REFSWITCH2 INTR                                     | REFSWITCH2 MASK                                                        | LI KEFI_FH_SIAIUS                                             |       |
|                                                         | LOPL DPLL2      | LOPL DPLL2 POL                                                     | LOPL DPLL2 INTR                                     | LOPL DPLL2 MASK                                                        | -                                                             |       |
|                                                         | LOFL DPLL2      | LOFL DPLL2 POL                                                     | LOFL DPLL2 INTR                                     | LOFL DPLL2 MASK                                                        |                                                               |       |
|                                                         | HLDOVR2         | HLDOVR2_POL                                                        | HLDOVR2_INTR                                        | HLDOVR2_MASK                                                           |                                                               |       |
|                                                         |                 | HIST2_POL                                                          | HIST2_INTR                                          | HIST2_MASK                                                             |                                                               |       |
|                                                         |                 | LOR_MISSCLK3_POL                                                   | LOR_MISSCLK3_INTR                                   | LOR_MISSCLK3_MASK                                                      |                                                               |       |
|                                                         |                 | LOR_FREQ3_POL                                                      | LOR_FREQ3_INTR                                      | LOR_FREQ3_MASK                                                         |                                                               |       |
|                                                         |                 | LOR_PH3_POL                                                        | LOR_PH3_INTR                                        | LOR_PH3_MASK                                                           | Other Status Register<br>✓ PLL1_VM_INSIDE                     |       |
|                                                         |                 | REFSWITCH3_POL                                                     | REFSWITCH3_INTR                                     | REFSWITCH3_MASK                                                        | ✓ PLL2_VM_INSIDE<br>✓ PLL2_VM_INSIDE                          |       |
|                                                         | LOPL_DPLL3      | LOPL_DPLL3_POL                                                     | LOPL_DPLL3_INTR                                     | LOPL_DPLL3_MASK                                                        |                                                               |       |
|                                                         | LOFL_DPLL3      | LOFL_DPLL3_POL                                                     | LOFL_DPLL3_INTR                                     | LOFL_DPLL3_MASK                                                        |                                                               |       |
| -                                                       | HLDOVR3         | HLDOVR3_POL                                                        | HLDOVR3_INTR                                        | HLDOVR3_MASK                                                           | Bypass Status Con                                             | trols |
|                                                         |                 | HIST3_POL                                                          | HIST3_INTR                                          | HIST3_MASK                                                             | XO_FDET_BYP                                                   |       |

### Figure 6-8. Status Page

### 6.3 Using the Input Page

The Input page provides a high-level view of all the inputs for the device, the APLL frequencies, and DPLL frequencies of the device.

When the DPLL dividers and loop filter are calculated by running the script in step 7 on the start page, this page displays the DPLL divider values which set the DPLL frequency. Here it is shown that the DPLL frequency is the exact desired frequency.

Each DPLL supports two sets of DPLL dividers which can be selected. At this time, the tool calculates the divider for FB Config 1 only. To use two different feedback dividers, the following procedure should be preformed:

- 1. Div #1 settings may be copied into Div #2 settings and selected for use by the DPLL Div Select control.
- 2. The references that require the Div #2 settings should be set to FB Config 2.
- 3. A second calculation can be run (re-perform a run script, step 7 on start page, of the DPLL) which will repopulate Div #1 settings with the new values for FB Config 1.
  - a. Div #2 settings will remain the same as the ones initial copied over in step 1.



When using both feedback dividers, it is not required that the TDC rates are exactly the same, only that they are within  $\pm 5\%$  for the two DPLL feedback configurations.

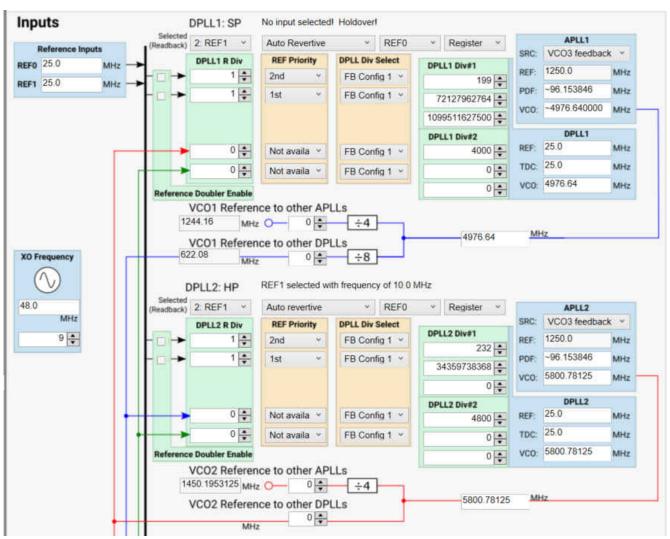
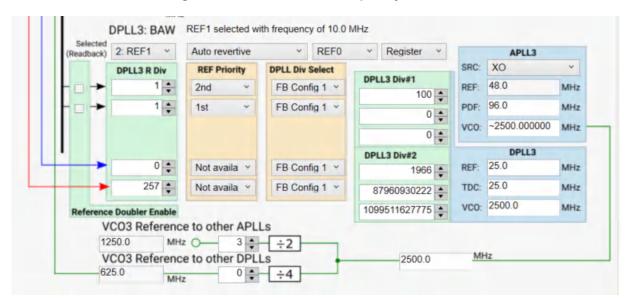




Figure 6-9. APLL or DPLL Frequency Selection



## Figure 6-10. PLL3 Input



## 6.3.1 Cascaded Configurations

Cascaded configurations can be created using the input page, where the relevant VCO buffers and dividers will automatically be enabled by inferring the state of source selection registers.

At least one PLL must always be active and set to XO reference source for cascaded configurations to be valid. APLL start-up priority will automatically choose XO-source APLLs to start up before all other PLLs whenever possible. Start-up priority cannot be properly inferred, therfeore users must set this priority themselves in the *User Controls* page if in pin-selection mode. In the example image below, APLL3 is referenced to the XO input and APLL1 and APLL2 are referenced from APLL3. Priority is controlled in ascending order, with 0 first and 2 last. APLLs can share priorities; if all APLL priorities are set to 0, all APLLs will start up simultaneously.



### Figure 6-11. Cascade APLL Start Priorities

### 6.3.1.1 Cascade VCO to APLL Reference

Cascading APLLs is controlled by the APLL source box, shown in Figure 6-12. This box is programmed bitwise and is automatically set when generating a frequency plan. The XO\_OUT\_BUF\_EN register in the *Input Control* section of the *User Controls* tab is automatically set to enable or disable the XO Output Buffer. The PLLx\_RDIV\_XO\_EN is automatically checked/unchecked in each APLLx tab depending on whether each APLL is using the XO input.

| VC01      | Reference to c | other APLLs |   |
|-----------|----------------|-------------|---|
| ~1244.160 | 0000 MHz O     | 0 🗧 🕂 4     | T |
| VCO2 F    | Reference to o | ther APLLs  | 1 |
| ~1450.195 | 312 MHz O-     | 0 ‡ ÷4      | - |
| VCO3 Re   | ference to oth | ner APLLs   |   |
| 1250.0    | MHz O          | 3 🌲 🕂 2     | - |

Located on Inputs page

### Figure 6-12. APLL Source Box

## 6.4 Using APLL1, APLL2, and APLL3 Pages

The APLL pages can be used to see detailed information on APLL behavior including the output dividers. It is possible to type a VCO frequency into the PLL1 VCO frequency box (as shown in red circle) to have the fractional N value re-calculated.

When the DPLL is not used, the APLLs support an APLL-only mode with a programmable 24-bit denominator. Support for this mode is currently not implemented in the TICS Pro software.

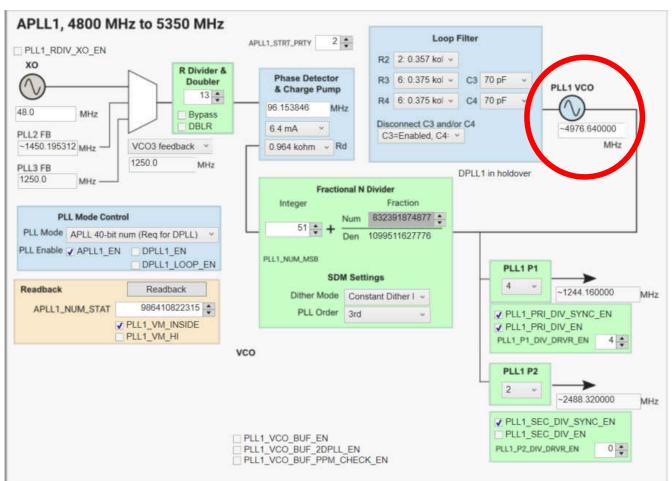



Figure 6-13. APLL1 Page

Figure 6-14 shows the post divider for PLL2. Figure 6-15 shows the post divider for PLL3. PLL3 supports all outputs of the LMK5B33216.



## 6.4.1 APLL DCO

To use the DCO shift controls on a given APLL, enter the DCO ppb step value into the *DCO Step Size (ppb)* box shown below. The entered step size will be used to calculate a numerator deviation and a 2s complement numerator deviation. To perform the shift, the increment or decrement button must be pressed. An increment will write the numerator deviation to the DPLLx\_FREE\_RUN control which will result in a positive frequency shift in the amount specified by the *DCO Step Size (ppb)*. An decrement will write the 2s complement numerator deviation to the DPLLx\_FREE\_RUN control which will result in a negative frequency shift in the amount specified by the *DCO Step Size (ppb)*.



The slew rate at which the adjustment will occur is set on the DPLLx\_HOLD\_SLEW\_STEP control. Ensure the DPLLx\_HOLD\_SLEW\_STEP is **NOT** equal to 0, otherwise the adjustment will not occur. Recommended DPLLx\_HOLD\_SLEW\_STEP value is 63 (maximum value). A value of 63 will result in the fastest adjustment.

| APLL loop bandwidth. The change is applied in steps at<br>the rate of phase/frequency change.<br>2. In relative mode, every DPLL_FREE_RUN write adds t<br>APLLX_NUM_STAT.                                                                                                                                                                | ctive numerator in either relative or absolute mode, the rate of cl<br>the rate defined by a numerator delta every timer value. This er<br>to the effective APLL numerator. The effective APLL numerator ca<br>ided to the programmed APLL numerator. The effective APLL num                                                                                                                                                                                                                                                                                                                                                        | nables further limiting of<br>an be read from RO field                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| PLL1 DCO Freq. Control Relative Frequency Adjustment                                                                                                                                                                                                                                                                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                           |
| DCO - Relative DCO Adjust (enter either desired DCO step size o<br>DCO Step Size (ppb) Actual Step Size (ppb)<br>0.01 n/a                                                                                                                                                                                                                | numerator deviation value) numerator deviation 0  numerator deviation 2s complement 0  Decrement 0  Decrement 0  Decrement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Frequency shift due to<br>DCO adjustment<br>(ppb offset)<br>0                                                                             |
| DCO - Absolute DCO Adjust of APLL1 numerator value<br>Use the relative DCO step size to calculate what the DPLL1_I<br>For a negative ppb offset, use the 2s complement value.<br>DPLL1_FREE_RUN Actual APLL1 Numerator<br>0 + 8323918748                                                                                                 | FREE_RUN value should be for a desired ppb offset.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Effective APLL1 Numerator                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                          | DPLL1_HOLD_SLEW_STEP DPLL1_HOLD_TIMER<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 = 1.60 us                                                                                                                               |
| PLL2 DCO Freq. Control Relative Frequency Adjustment                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frequency shift due to<br>DCO adjustment<br>(ppb offset)<br>0                                                                             |
| DCO - Relative DCO Adjust (enter either desired DCO step size o<br>DCO Step Size (ppb) Actual Step Size (ppb)                                                                                                                                                                                                                            | or numerator deviation value)         numerator deviation         0 •         numerator deviation         2x complement         0 •         Decrement                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DCO adjustment<br>(ppb offset)<br>0<br>Effective APLL2 Numerator                                                                          |
| DCO - Relative DCO Adjust (enter either desired DCO step size of DCO Step Size (ppb) Actual Step Size (ppb) 0.01 n/a<br>DCO - Absolute DCO Adjust of APLL2 numerator value Use the relative DCO step size to calculate what the DPLL2_IFFor a negative ppb offset, use the 2s complement value.<br>DPLL2_FREE_RUN Actual APLL2 Numerator | or numerator deviation value)         numerator deviation         0         numerator deviation         2s complement         0         0         Press         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | DCO adjustment<br>(ppb offset)<br>0<br>Effective APLL2 Numerator<br>0<br>SLDW_STEP - 63 with small timer offsetter<br>disables stew imiti |
| DCO - Relative DCO Adjust (enter either desired DCO step size of DCO Step Size (ppb) Actual Step Size (ppb) 0.01 n/a<br>DCO - Absolute DCO Adjust of APLL2 numerator value Use the relative DCO step size to calculate what the DPLL2_IFFOF a negative ppb offset, use the 2s complement value.<br>DPLL2_FREE_RUN Actual APLL2 Numerator | or numerator deviation value)         numerator deviation         0         numerator deviation         2a complement         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0     | (ppb offset)<br>0<br>Effective APLL2 Numerator<br>0<br>SLDW_STEP - 63 with small timer effective<br>disables size limits                  |

### Figure 6-16. APLL DCO Controls

## 6.5 Using the DPLL1, DPLL2, and DPLL3 Pages

The DPLL pages contain many advanced controls that are normally set during the Run Script calculation.

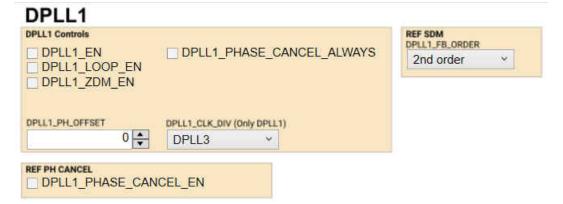



Figure 6-17. Primary DPLL Controls



## 6.5.1 DPLL DCO

To use the DCO shift controls on a given DPLL, enter the DCO ppb step value into the *DCO Step Size (ppb) box* shown below. The entered step size will be used to calculate a frequency deviation that will be applied to the DPLL numerator. This frequency deviation is shown in the DPLLx\_FDEV control. To perform the shift, the increment or decrement button must be pressed.

| band<br>2. In<br>write<br>3. W<br>(DPL                                                                                                                                                                                              | hen performing a DCO adjustment to the DP<br>width.<br>register relative mode, a relative adjustmer<br>to the address.                                                                                                                                                                                                    | nt of the DPLLx_FB_NUM is made by progra<br>a relative adjustment of the DPLLx_FB_NU                                                                                                                                                         | e mode, the rate of change is limited by the Di<br>amming a deviation amount (DPLLx_FDEV) fo<br>JM is made by programming a devation amou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r each                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| PLL1 DCO Freq. Con                                                                                                                                                                                                                  | trol Relative: Incr/Decr via GPIO pins                                                                                                                                                                                                                                                                                    | * Selected Input: 0. Holdove                                                                                                                                                                                                                 | r Y FB Config: FB Config 1 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                          |
|                                                                                                                                                                                                                                     | ust (enter either desired DCO step size or DPLI                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                              | DPLL1_FDEV_EN GPI0_FDEV_EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frequency shift due to                                                                   |
| DCO Step Size (ppb)                                                                                                                                                                                                                 | Actual (ppb)                                                                                                                                                                                                                                                                                                              | DPLL1_FDEV                                                                                                                                                                                                                                   | Increment Decrement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DCO adjustment<br>(ppb error)                                                            |
|                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                           | hi h                                                                                                                                                                                                     | Reconception of the reconc | 0                                                                                        |
| Error from original                                                                                                                                                                                                                 | ljust (enter either desired ppb error or DPLL1 N                                                                                                                                                                                                                                                                          | lumerator value)                                                                                                                                                                                                                             | Original DPLL1 Numerator<br>Not calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |
| DPLL1 frequency (ppb)<br>0                                                                                                                                                                                                          | Actual (ppb)<br>Not calculated                                                                                                                                                                                                                                                                                            | Actual DPLL1 Numerator                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |
| 0                                                                                                                                                                                                                                   | Not calculated                                                                                                                                                                                                                                                                                                            | → 0÷                                                                                                                                                                                                                                         | Reload Original DPLL Numerator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                          |
| DPLL2 DCO Freq. Co                                                                                                                                                                                                                  | ntrol Relative: Incr/Decr via GPIO pins                                                                                                                                                                                                                                                                                   | <ul> <li>Selected Input: 2: REF1</li> </ul>                                                                                                                                                                                                  | * FB Config: FB Config 1 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |
| DCO - Relative DCO Ad<br>DCO Step Size (ppb)<br>0.1                                                                                                                                                                                 | ntrol Relative: Incr/Decr via GPIO pins<br>Just (enter either desired DCO step size or DPL<br>Actual (ppb)<br>n/a<br>djust (enter either desired ppb error or DPLL2 )                                                                                                                                                     | DPLL2_FDEV                                                                                                                                                                                                                                   | DPLL2_FDEV_EN GPI0_FDEV_EN Increment Original DPLL2 Numerator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Frequency shift due t<br>DCO adjustment<br>(ppb error)<br>0                              |
| DCO - Relative DCO Ad<br>DCO Step Size (ppb)<br>0.1<br>DCO - Absolute DCO A                                                                                                                                                         | Just (enter either desired DCO step size or DPL<br>Actual (ppb)<br>n/a<br>djust (enter either desired ppb error or DPLL2 N                                                                                                                                                                                                | LL2 numerator frequency deviation number)<br>DPLL2_FDEV<br>0<br>Numerator value)<br>Actual DPLL2 Numerator                                                                                                                                   | DPLL2_FDEV_EN GPI0_FDEV_EN<br>Increment Decrement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ppb error)                                                                              |
| DCO - Relative DCO Ad<br>DCO Step Size (ppb)<br>0.1<br>DCO - Absolute DCO A<br>Error from original                                                                                                                                  | Just (enter either desired DCO step size or DPL<br>Actual (ppb)<br>n/a<br>djust (enter either desired ppb error or DPLL2 N                                                                                                                                                                                                | LL2 numerator frequency deviation number)<br>DPLL2_FDEV<br>0 •<br>Numerator value)                                                                                                                                                           | DPLL2_FDEV_EN GPI0_FDEV_EN Increment Original DPLL2 Numerator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DCO adjustment<br>(ppb error)                                                            |
| DCO - Relative DCO Ad<br>DCO Step Size (ppb)<br>0.1<br>DCO - Absolute DCO A<br>Error from original<br>DPLL2 frequency (ppb<br>0<br>DPLL3 DCO Freq. Co<br>DCO - Relative DCO A<br>DCO Step Size (ppb)<br>0.1<br>DCO - Absolute DCO A | Just (enter either desired DCO step size or DPL<br>Actual (ppb)<br>n/a<br>djust (enter either desired ppb error or DPLL2 h<br>) Actual (ppb)                                                                                                                                                                              | LL2 numerator frequency deviation number)<br>DPLL2_FDEV<br>0<br>Numerator value)<br>Actual DPLL2 Numerator<br>0<br>Selected Input: 2 REF1<br>LL3 numerator frequency deviation number)<br>DPLL3_FDEV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | DPLL2_FDEV_EN GPI0_FDEV_EN Increment Decrement Original DPLL2 Numerator Not calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DCO adjustmen<br>(ppb error)<br>0<br>Frequency shift d                                   |
| DCO - Relative DCO Ad<br>DCO Step Size (ppb)<br>0.1<br>DCO - Absolute DCO A<br>Error from original<br>DPLL2 frequency (ppb)<br>0<br>DPLL3 DCO Freq. Co<br>DCO - Relative DCO A<br>DCO Step Size (ppb)<br>[0.1                       | Just (enter either desired DCO step size or DPL<br>Actual (ppb)<br>n/a<br>djust (enter either desired ppb error or DPLL2 M<br>Actual (ppb)<br>Not calculated<br>Metrol Relative: Incr/Decr via GPIO pins<br>djust (enter either desired DCO step size or DPL<br>Actual (ppb)<br>n/a<br>Actual (ppb)<br>n/a<br>Actual (pb) | LL2 numerator frequency deviation number)<br>DPLL2_FDEV<br>0<br>Numerator value)<br>Actual DPLL2 Numerator<br>0<br>Selected Input: 2 REF1<br>LL3 numerator frequency deviation number)<br>DPLL3_FDEV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | DPLL2_FDEV_EN GPIO_FDEV_EN     Increment Decrement     Original DPLL2 Numerator     Not calculated     Reload Original DPLL Numerator     FB Config: FB Config 1      FB Config: FB Config 1     PLL3_FDEV_EN GPIO_FDEV_EN     Increment Decrement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DCO adjustment<br>(ppb error)<br>0<br>Frequency shift du<br>DCO adjustmen<br>(ppb error) |

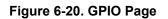
Figure 6-18. DPLL DCO Controls



## 6.6 Using the Validation Page

The Validation page allows the user to enable/disable different detectors for reference validation along with DPLL frequency and phase lock requirements. Press the *Reassign All* button at the top of the page to recalculate the validation values.

| Enal<br>EFO 2<br>EF1 2<br>1 PPS Ph |                                  | ne Enabl  | e Valid*<br>(ppm)<br>100<br>100<br>*The mi | thvalid<br>(ppm)<br>150<br>150 |                    | y Avera<br>(cour<br>1 | ige 1<br>nt)<br>2<br>2<br>2 | Meas time<br>08 ms<br>08 ms<br>ency Detect Ti | Enable  | Clk Window D                | T <sub>EARLY</sub> End<br>6.80 ns 6<br>6.80 ns 6 | Missing (<br>able Missin<br>Clocks<br>2 1<br>2 1<br>maximum refer | Clk Window<br>g Mary<br>s S | gin T <sub>LATE</sub><br>3 🔹 84.80 m<br>3 🔹 84.80 m<br>error. |
|------------------------------------|----------------------------------|-----------|--------------------------------------------|--------------------------------|--------------------|-----------------------|-----------------------------|-----------------------------------------------|---------|-----------------------------|--------------------------------------------------|-------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------|
| EF1 🖌                              | ✓ 1.6 s                          | · .       | 100<br>*The mi                             | 150<br>inimum re               | 10                 | 1                     | • 2                         | 08 ms                                         |         | 1 🛊 3                       | 6.80 ns 5                                        | 2 1<br>naximum refer                                              | rence ppm e                 | 84.80 m<br>error.                                             |
| 1 PPS Ph                           | hase Detector                    | r         | *The mi                                    | inimum re                      | commend            | -                     | -                           | - 497 P                                       |         | 1050                        |                                                  | DPLL1                                                             | rence ppm e<br>Phase Loc    | error.<br>ck Detect                                           |
|                                    |                                  |           |                                            |                                |                    | ded valid             | Frequ                       | l<br>ency Detect Ti                           | hreshol | d = maximum XI              | 0 ppm error + m                                  | DPLL1                                                             | Phase Loc                   | ck Detect                                                     |
| FO D                               | 0                                | n/a; REFO |                                            | 1                              | Frequer<br>k (ppm) |                       |                             | ect<br>) Average (c                           |         | DPLL1_LOC<br>Accuracy (ppm) |                                                  | EN Lock                                                           | 071-                        | 1 Country                                                     |
| FO 🔲                               | 0                                | n/a; REF0 | ) > 2 kHz                                  | Loci<br>90                     | k (ppm)            | Unloc<br>120          | к (ррп                      |                                               | count)  | Accuracy (ppm)              | T <sub>MEAS</sub>                                | Lock                                                              | 1                           | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                      |
| EF1                                | 0                                | n/a; REF1 | > 2 kHz                                    |                                |                    |                       |                             | -                                             | _ LICA  |                             | 1.000                                            | 00110                                                             | Phase Loc                   | The second second second                                      |
|                                    | Phase Detecto                    |           |                                            | DPI 1 2                        | Frequer            |                       | k Del                       |                                               |         | DPLL2 LOC                   | KDET PPM I                                       | 0.000000                                                          | Threshold                   | Tutat                                                         |
|                                    | equency. Thre<br>the jitter of t |           |                                            |                                | k (ppm)            | 1000 C. 100 C.        | 0.072433                    | i) Average (c                                 |         | Accuracy (ppm)              | 0.000.000.000.000                                | Lock                                                              | 07.07                       |                                                               |
|                                    | iods of the XC                   |           |                                            | 90                             |                    | 120                   |                             |                                               | 1 🛊     | 10                          | n/a                                              | Unlock                                                            | 11 maria                    | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                      |
|                                    |                                  |           |                                            |                                |                    |                       |                             |                                               |         |                             |                                                  | DPLL3                                                             | Phase Loc                   | ck Detect                                                     |
|                                    |                                  |           |                                            | DPLL3                          | Frequer            | ncy Loo               | k Det                       | ect                                           | 3       | DPLL3_LOC                   | KDET_PPM_I                                       | EN                                                                | Threshold                   | TMEAU                                                         |
|                                    |                                  |           |                                            | Loci                           | k (ppm)            | Unloci                | k (ppn                      | ) Average (c                                  | count)  | Accuracy (ppm)              | T <sub>NEAS</sub>                                | Lock                                                              | 29 🛊                        | 284.84 ps                                                     |
|                                    |                                  |           |                                            | 90                             |                    | 120                   |                             |                                               | 1 🛊     | 10                          | 960.00 us                                        | Unlock                                                            | 31                          | 1.14 ns                                                       |
|                                    |                                  |           |                                            | DPL                            | 3 DLD or F         | BAW Los               | k D                         | PLL3 DLD                                      |         |                             |                                                  |                                                                   |                             |                                                               |


## Figure 6-19. Validation Page

## 6.7 Using the GPIO Page

The GPIO page allows users to configure the GPIO0, GPIO1, and GPIO2 pins.

When using SPI readback on the EVM, GPIO2 must be configured as *STATUS or INT...* and *SDO output*. When using the device in  $I^2C$  mode, refer to Section 3.3.

| GPIC  | ) Controls               |                      |               | STATUS_MUX_DIV2_EN         |       |
|-------|--------------------------|----------------------|---------------|----------------------------|-------|
| GPIO0 | GPIO0_IN_FLT_EN          | Active High          | *             | NMOS open drain (external  | pull- |
| GPIOU | STATUS or INT, Acts as s | tatus or interrupt ~ | SPI Readba    | ck Data (SDO)              | ~     |
| GPI01 | GPIO1_IN_FLT_EN          | Active High          | ¥             | NMOS open drain (external  | pull- |
| GPIOT | STATUS or INT, Acts as s | tatus or interrupt ~ | SPI Readba    | ck Data (SDO)              | ~     |
| opios | GPIO2_IN_FLT_EN          | Active High          | ~             | NMOS open drain (external  | pull  |
| GPIO2 | STATUS or INT, Acts as s | tatus or interrupt ~ | Interrupt (IN | TR). Derived from INT_FLAG | Y     |





## 6.7.1 SYNC/SYSREF/1-PPS Page

The SYNC/SYSREF/1-PPS page shows all the SYSREF block settings and allows for a continuous SYSREF or 1-PPS clock to be configured to be outputted from GPIO1 or GPIO2.

The SYSREF divider output signals can be replicated on either GPIO1 and GPIO2 to provide additional single ended 3.3V CMOS clocks after startup if desired. To configure the SYSREF/1PPS output replication the GPIO must be enabled as an output (GPIOx\_OUTEN = 1) and one of the SYSREF output to GPIO replication sources must be active. The SYSREF replication source comes from any one of the SYSREF dividers in use from OUT0/1, OUT4/5, OUT6/7, OUT/9, OUT10/11 or OUT12/13 by register programming (OUT\_x\_y\_SR\_GPIO\_EN = 1 and GPIO\_SYSREF\_SEL to the appropriate OUT\_x\_y). The GPIOx replicated SYSREF output will be a continuous frequency. Pulsed SYSREF mode is not supported for the GPIOx replica outputs.

| SYSREF Mode       Pulser Count       Divide       Divide Delay       Divide Delay       Delay         V OUT_0_1_SR_DIV_SYNC_EN       None       1       180       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                              | control<br>C_EN<br>C_SW              |             | SYSREF control<br>Software reques | t for SYSREF p | nolina                         | SREF_REQ_S                                                                                                      |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------|-----------------------------------|----------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|
| SYSREF Mode       Pulser Count       Divide Delay       Divide Delay |                                      |             | SYSR                              | EF re-sample s | ource:                         |                                                                                                                 | iest v          |
| OUT_4_5_SR_DIV_SYNC_EN       None       1       180       0       0       0       ADL         OUT_6_7_SR_DIV_SYNC_EN       None       1       90       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th>F</th> <th>SYSREF Mode</th> <th>Pulser Count</th> <th></th> <th>Contraction of the Advancement</th> <th>Contraction of the second s</th> <th>Analog<br/>Delay</th>                                                                                                                                              | F                                    | SYSREF Mode | Pulser Count                      |                | Contraction of the Advancement | Contraction of the second s | Analog<br>Delay |
| OUT_6_7_SR_DIV_SYNC_EN       None       1       90       0       0       0       1       ADU         OUT_8_9_SR_DIV_SYNC_EN       None       1       64       0       0       0       1       ADU         OUT_10_11_SR_DIV_SYNC_EN       None       1       64       0       0       0       1       ADU         OUT_12_13_SR_DIV_SYNC_EN       None       1       64       0       0       1       ADU         OUT_12_13_SR_GPIO_EN       None       1       0       0       0       1       ADU         OUT_0_1_SR_GPIO_EN       0UT_0_1       0       0       0       0       1       ADU         OUT_0_1_SR_GPIO_EN       0UT_0_1       0       0       0       0       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                               | _0_1_SR_DIV_SYNC_EN                  | None        | 1 🜲                               | 180 🌩          | 0                              | 0                                                                                                               | ADLY EN         |
| OUT_8_9_SR_DIV_SYNC_EN       None       1       64       0       0       Image: ADL         OUT_10_11_SR_DIV_SYNC_EN       None       1       64       0       0       Image: ADL         OUT_12_13_SR_DIV_SYNC_EN       None       1       64       0       0       Image: ADL         OUT_12_13_SR_GPIO_SYNC_EN       None       1       64       0       0       Image: ADL         Out_01_1_SR_GPIO_EN       0       0       0       Image: ADL       Image: ADL       Image: ADL         OUT_0_1_SR_GPIO_EN       0       0       0       Image: ADL       Image: ADL       Image: ADL         OUT_6_7_SR_GPIO_EN       0       0       Image: ADL       Image: ADL       Image: ADL       Image: ADL       Image: ADL         OUT_6_7_SR_GPIO_EN       0                                                                                                                                                                                                                                                           | 4_5_SR_DIV_SYNC_EN                   | None •      | 1 🤤                               | 180 🌲          | 0 🜲                            | 0                                                                                                               |                 |
| OUT_10_11_SR_DIV_SYNC_EN   OUT_12_13_SR_DIV_SYNC_EN   None   1   64   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 <td< td=""><td>6_7_SR_DIV_SYNC_EN</td><td>None</td><td>1 😜</td><td>90 🛖</td><td>0</td><td>0</td><td>ADLY EN</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6_7_SR_DIV_SYNC_EN                   | None        | 1 😜                               | 90 🛖           | 0                              | 0                                                                                                               | ADLY EN         |
| OUT_12_13_SR_DIV_SYNC_EN       None       1       64       0       0       add         Continuous SYSREF or 1-PPS to GPIO         Note: even if SYSREF pulser is selected, GPIO         output will be continuous.         Select source:       OUT_0_1       ~         OUT_6_7_SR_GPIO_EN         OUT_6_7_SR_GPIO_EN         OUT_8_9_SR_GPIO_EN         OUT_10_11_SR_GPIO_EN         OUT_10_11_SR_GPIO_EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8_9_SR_DIV_SYNC_EN                   | None        | 1 🜩                               | 64 🌲           | 0 🔹                            | 0                                                                                                               | ADLY EN         |
| Continuous SYSREF or 1-PPS to GPIO<br>Note: even if SYSREF pulser is selected, GPIO<br>output will be continuous.<br>Select source: OUT_0_1 ~<br>OUT_0_1_SR_GPIO_EN<br>OUT_4_5_SR_GPIO_EN<br>OUT_6_7_SR_GPIO_EN<br>OUT_6_7_SR_GPIO_EN<br>OUT_8_9_SR_GPIO_EN<br>OUT_10_11_SR_GPIO_EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10_11_SR_DIV_SYNC_EN                 | None        | 1 🜩                               | 64 🌲           | 0 🜲                            | 0 💠                                                                                                             |                 |
| Note: even if SYSREF pulser is selected, GPIO<br>output will be continuous.<br>Select source: OUT_0_1<br>OUT_0_1_SR_GPIO_EN<br>OUT_4_5_SR_GPIO_EN<br>OUT_6_7_SR_GPIO_EN<br>OUT_8_9_SR_GPIO_EN<br>OUT_10_11_SR_GPIO_EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12_13_SR_DIV_SYNC_EN                 | None        | 1 🛟                               | 64 🌲           | 0                              | 0                                                                                                               | ADLY EN         |
| OUT_0_1_SR_GPIO_EN<br>OUT_4_5_SR_GPIO_EN<br>OUT_6_7_SR_GPIO_EN<br>OUT_8_9_SR_GPIO_EN<br>OUT_10_11_SR_GPIO_EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ven if SYSREF pulser is selected, GF | 77-0        |                                   |                |                                |                                                                                                                 |                 |
| OUT_4_5_SR_GPIO_EN     OUT_6_7_SR_GPIO_EN     OUT_8_9_SR_GPIO_EN     OUT_10_11_SR_GPIO_EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | source: OUT 0 1                      | ~           |                                   |                |                                |                                                                                                                 |                 |
| OUT_6_7_SR_GPIO_EN<br>OUT_8_9_SR_GPIO_EN<br>OUT_10_11_SR_GPIO_EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [_0_1_SR_GPIO_EN                     |             |                                   |                |                                |                                                                                                                 |                 |
| OUT_8_9_SR_GPIO_EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4_5_SR_GPIO_EN                       |             |                                   |                |                                |                                                                                                                 |                 |
| OUT_10_11_SR_GPIO_EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [_6_7_SR_GPIO_EN                     |             |                                   |                |                                |                                                                                                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _8_9_SR_GPIO_EN                      |             |                                   |                |                                |                                                                                                                 |                 |
| OUT 12 13 SR GPIO EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R 676 R 18 67                        |             |                                   |                |                                |                                                                                                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12_13_SR_GPIO_EN                     |             |                                   |                |                                |                                                                                                                 |                 |

## Figure 6-21. SYNC/SYSREF/1-PPS Page

## 6.8 Using the Outputs Page

Configure GPIO2 for buffered output

The Outputs page shows all the possible source frequencies to the output channels. To simplify settings fields necessary to providing an output frequency, a source mux lists all possible sources for each output. Be sure to enable or disable the desired outputs on the right-hand side of the screen.

There are many detailed output pages beneath the Outputs page that show the individual controls for each set of outputs.

The black line between OUT2 to OUT3, OUT4 to OUT7, OUT8 to OUT13, and OUT14 to OUT15 signifies that all these outputs should source from the same VCO.

| Outputs                |                         | Source/Channel Muxes         |                |     | Digital/Analog<br>Delay | Channel<br>Dividers | Output Drivers          |                          | ower       |
|------------------------|-------------------------|------------------------------|----------------|-----|-------------------------|---------------------|-------------------------|--------------------------|------------|
| Reference Inputs       | -                       | PLL3 Y                       | - 40:CHDIV0    | ~   | 0                       | 25                  | 400 mV ~                | Disable<br>100.0         | OUTO       |
| IN1 25.0               | <b>I</b> Γ <sup>∎</sup> | 1 223                        | 40.0110100     |     |                         |                     | Setting 1 ×             | ✓ OUT_0_EN               | MHz        |
| 2                      |                         | PLL3 v                       | - 20:CHDIV1    | *   | 0                       | 25 🔹                | HCSL (750 ) Y           | 100.0                    | OUT        |
|                        |                         |                              | SYSREF         | 0 🔹 | 0 🔹                     | 180 🔹               | Setting 1 ×             | OUT_1_EN                 |            |
| 0: OFF Y               |                         | 0:PLL3                       | - 3:CHDIV      | *   | 0 *                     | 25                  | HCSL (750 + *           | 100.0                    | OUT:       |
| Selected Ref Frequency |                         | Use same sou<br>for OUT2 and |                |     |                         |                     | Setting 1 v             | OUT_2_EN                 |            |
| 0.0 MHz                |                         | 0:PLL3                       | - 3:CHDIV      | ×   | 0                       | 25 🔹                | HCSL (750 + Y           | 100.0                    | MHz        |
| ¥0.5                   |                         |                              | _              | _   |                         | - Intern            | Setting 1 Y             | OUT_3_EN                 | OUT        |
| X0 Frequency<br>48.0   | ₽                       |                              | 12:CHDIV       | ~   | 0 🗘                     | 4                   | 800 mV ×<br>Setting 1 × | ~161.132812              | OUT<br>MHz |
| MHz                    |                         | PLL2 ~                       |                |     |                         |                     | Setting 1               | a second                 |            |
| PLL1                   |                         | Use same<br>source for       | 12:CHDIV       | ¥   |                         |                     | 800 mV ~                | ~161.132812              | MHz        |
| ~4976.640000           |                         | OUT4 to<br>OUT7              | SYSREF         | 0 🔶 | 0                       | 180 🔹               | Setting 1 Y             | ✓ OUT_5_EN               |            |
| PLL1 P1                | l i                     |                              | 12:CHDIV       | -   | 0                       | 2 📫                 | 800 mV ~                | ~322.265625              | OUT        |
| 4 ~                    |                         | PLL2 Y                       |                |     |                         |                     | Setting 1 ×             | ✓ OUT_6_EN               |            |
| PLL1 P2                |                         |                              | 12:CHDIV       | ~   |                         | l                   | 800 mV ~                | ~322.265625              | OUT        |
| 2 *                    |                         |                              | SYSREF         | 0 🔹 | 0                       | 90 🔺                | Setting 1 v             | OUT_7_EN                 |            |
| PLL2<br>~5800.781250   |                         |                              | 12:CHDIV       | ~   | 0                       | 16                  | 800 mV ~                | 156.25                   | OUT        |
|                        | 1                       | PLL3 ~                       |                |     |                         | -                   | Setting 1 ~             | OUT_8_EN                 |            |
| 9 v                    |                         | Use same source for          | 12:CHDIV       | ~   |                         | l                   | 800 mV ~                | 156.25                   | OUT        |
|                        |                         | OUT4 to<br>OUT7              | SYSREF         | 0 🛊 | 0 🔺                     | 64 🜲                | Setting 1 ×             | ✓ OUT_9_EN               |            |
|                        | i i                     |                              | 12:CHDIV       | ~ - | 0                       | 16                  | 800 mV ~                | 156.25                   | OUT        |
|                        |                         | PLL3 Y                       |                |     |                         |                     | Setting 1 v             | OUT_10_EN                |            |
| PLL3<br>2500.0         |                         |                              | 12:CHDIV       | ~   |                         | l                   | 800 mV ~                | 156.25                   | OUT        |
| PLL3 P1                | 1                       |                              | SYSREF         | 0 🛟 | 0                       | 64 🜲                | Setting 1 v             | OUT_11_EN                |            |
| 1 *                    |                         |                              | 12:CHDIV       | ~   | 0                       | 8 🔹 🛉               | 800 mV ~                | 312.5                    | OUT        |
|                        |                         | PLL3 ~                       |                |     |                         |                     | Setting 1 ×             | OUT_12_EN                |            |
|                        |                         |                              | 12:CHDIV       | ~   |                         | l                   | 800 mV ~                | 312.5                    | OUT        |
|                        |                         |                              | SYSREF         | 0 🔹 | 0                       | 64 🐥                | Setting 1 Y             | ✓ OUT_13_EN              |            |
|                        |                         | 21/001 05                    | 2.01004        |     | 0.*                     | 8 *                 | 800 mV                  | ~155.520000              | OUT        |
|                        | -                       | 2:VCO1_PF<br>Use same sou    |                | Ť   | 0 *                     | 8 *                 | 800 mV ×<br>Setting 1 × | ✓ 155.520000 ✓ OUT 14 EN |            |
|                        |                         | for OUT14 and                | 115            |     | 0.000                   |                     | county .                |                          | OUT        |
|                        |                         | 2:VCO1_PF                    | RI ~ - 3:CHDIV | ~   | 0 +                     | 8 🛊                 | 800 mV ~                | -155.520000              | MHz        |
|                        |                         |                              |                |     |                         |                     | Setting 1 Y             | ✓ OUT_15_EN              |            |

Figure 6-22. Outputs Page



## 6.9 EEPROM Page

The EEPROM page is used to write the currently loaded device settings into the device EEPROM. To program the EEPROM, press the *Program EEPROM* button.

|                                                    | Read EEPROM/NVM Status                                                                                                                               | EEPROM programming log or programming sequence will populate here |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| CRC Error S                                        | atus Stored CRC 0                                                                                                                                    |                                                                   |
| C Target Address                                   | MSB 25 EEREV 0                                                                                                                                       |                                                                   |
|                                                    | Device start-up behavior                                                                                                                             |                                                                   |
|                                                    | n, GPIO0 & 2 add to this value on POR                                                                                                                |                                                                   |
| Enable EEPRC                                       | DM overlay on POR                                                                                                                                    |                                                                   |
|                                                    | Write EEPROM                                                                                                                                         |                                                                   |
|                                                    | Program EEPROM                                                                                                                                       |                                                                   |
| efore execution<br>is recommend<br>ne PD# pin to e | ster Programming Sequence Generation<br>g the register programming sequence,<br>led to have just powered up or toggle<br>nsure known register state. |                                                                   |
| Design Name:                                       | Enter Design Name                                                                                                                                    |                                                                   |
| A Real Property of the second second               | Enter User Notes                                                                                                                                     |                                                                   |
| User Notes:                                        |                                                                                                                                                      |                                                                   |
|                                                    | ter programming sequence using:                                                                                                                      |                                                                   |

Figure 6-23. EEPROM Page



## 6.10 Design Report Page

The Design Report Page shows an overview of the current profile settings.

| Design Report                  |                                     |  |
|--------------------------------|-------------------------------------|--|
| Generate Design Report         | Save design report text to file     |  |
| == Design Report == Press Gene | rate Design Report to update report |  |
|                                |                                     |  |
|                                |                                     |  |
|                                |                                     |  |
|                                |                                     |  |
|                                |                                     |  |
|                                |                                     |  |
|                                |                                     |  |
|                                |                                     |  |
|                                |                                     |  |
|                                |                                     |  |
|                                |                                     |  |
|                                |                                     |  |
|                                |                                     |  |

## Figure 6-24. Design Report Page

# **7 Revision History**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| С | hanges from Revision * (February 2022) to Revision A (July 2022)                        | Page          |
|---|-----------------------------------------------------------------------------------------|---------------|
| • | Added a DCDC supply option to the EVM image, schematic images, BOM table, and Power Sup | oply section8 |
| • | Added Additional XO Input Options section                                               | 12            |
| • | Changed TICS Pro GUI images to the latest LMK5B33216 TICS Pro profile                   | 32            |
| • | Changed APLL DCO page description                                                       |               |
| • | Changed SYNC/SYSREF/1-PPS page description                                              | 44            |
|   | Changed EEPROM page description                                                         |               |
| • | Changed Design Report page description                                                  | 47            |

#### STANDARD TERMS FOR EVALUATION MODULES

- 1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.
  - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software
  - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 Limited Warranty and Related Remedies/Disclaimers:
  - 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
  - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.
  - 2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

# WARNING

Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

User shall operate the Evaluation Kit within TI's recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI's recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI's instructions for electrical ratings of interface circuits such as input, output and electrical loads.

NOTE:

EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGREDATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.

3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

**FCC NOTICE:** This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

#### CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

#### FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

#### FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.
- 3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

#### Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

#### Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

#### **Concerning EVMs Including Detachable Antennas:**

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

#### Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

- 3.3 Japan
  - 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti\_ja/general/eStore/notice\_01.page 日本国内に 輸入される評価用キット、ボードについては、次のところをご覧ください。 http://www.tij.co.jp/lsds/ti\_ja/general/eStore/notice\_01.page
  - 3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

- 1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
- 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けて

いないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの 措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。
- なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

ンスツルメンツ株式会社

#### 東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

- 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti\_ja/general/eStore/notice\_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/lsds/ti\_ja/general/eStore/notice\_02.page
- 3.4 European Union
  - 3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

#### 4 EVM Use Restrictions and Warnings:

- 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
- 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.
- 4.3 Safety-Related Warnings and Restrictions:
  - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.
  - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and inability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.
- 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.
- 5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.
- 6. Disclaimers:
  - 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
  - 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.
- 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.

www.ti.com

- 8. Limitations on Damages and Liability:
  - 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.
  - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
- 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.
- 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated