SCANSTA101

Literature Number: SNLA198

SCANSTA101 Quick Reference

Registers

Address	Register	Active Bits	Reset Value
0x00	Start	5	0x0000
0x01	Status	10	0x0000
0x02	Interrupt Control	8	0x0000
0x03	Interrupt Status	8	0x0000
0x04	Setup	8	0x0043
0x05	Clock Divider	6	0x0000
0x07	LFSR Exponent	3	0x0000
0x08	LFSR LSB Seed	16	0x0000
0x09	LFSR MSB Seed	16	0x0000
0x0A	LFSR LSB Result	16	0x0000
0x0B	LFSR MSB Result	16	0x0000
0x0C	Index	16	0x0000
0x11	Vector Index	16	0x0000
0x13	Header/Trailer Index	16	0x0000
0x15	Macro Index	16	0x0000
0x17	Sequencer Index	16	0x0000
0x19	Bridge Support	16	0x0000

Memory Map

R/W Address	Function	Base Address (Long Words)	Long Word Index	Index Register
0x0D	TD0_SM	0x00	0x000 to 0x1BF	0x0C
0x0E	TDI_SM	0x1C0	0x000 to 0x1BF	0x0C
0x0F	Expected	0x380	0x000 to 0x1BF	0x0C
0x10	Mask	0x540	0x000 to 0x1BF	0x0C
0x12	Vector 1 Vector 2 Vector 3 Vector 4	0x700 0x700 0x700 0x700	0x0 to 0x1 0x2 to 0x3 0x4 to 0x5 0x6 to 0x7	0x11
0x14	Data header Data trailer Instruction header Instruction trailer	0x708 0x728 0x748 0x768	0x00 to 1x1F 0x20 to 0x3F 0x40 to 0x5F 0x60 to 0x7F	0x13
0x16	Macro 1 to Macro 16	0x788 to 0x797	0x0 to 0xF	0x15
0x18	Sequencer	0x798	0x00 to 0x1F	0x17
0x1A	Scan Bridge support	0x7B8	0x00 to 0x3F	0x19

Vector Structure

The vector is two long words (64 bits) long.

Bits	Function	Comment
0x00 to 0x1F	Data length (long words)	Maximum of 2 ¹⁷ long words or 4 Gbits
0x20 to 0x27	Macro number	0 to 255 (only macros 0 to 15 are valid)
0x28 to 0x2E	Reserved	Reserved
0x2F	Preloaded data / load on the fly	Preloaded – 1 load on the fly – 0
0x30 to 0x3F	Reserved	Reserved

Macro Structure

Macro controls the TMS_SM line. The macro is 1 long word (32 bits) long.

Bits	Function	Comment
0x00 to 0x06	First 7 TMS_SM bits	Most significant bits are shifted out
0x07	TMS_SM loop bit	Loop bit for SHIFT or BIST macro
0x08	TMS_SM bit at terminal count	Output at terminal count for SHIFT macro
0x09 to 0x0F	Last 7 TMS_SM bits	Least significant bits are shifted out
0x10 to 0x11	Macro type bits	See macro type table
0x12 to 0x14	Header/trailer usage	See header/trailer usage table
0x15	Macro structure bit 7 enable	Ignored for SHIFT macros
0x16	Macro structure bit 8 enable	Ignored for SHIFT macros
0x17	Sync bit support enable	Sync bit length in setup register
0x18 to 0x1A	Pre-shift TCK_SM count	Count of bits 0x00 to 0x06 to be used
0x1B to 0x1D	Post-shift TCK_SM count	Count of bits 0x09 to 0x0F to be used
0x1E	Use mask	Use mask – 1 Compare all bits – 0
0x1F	Compare	Compare TDI_SM to expected

Macro Type

Macro type is set by bits 0x11:0x10 in the macro structure.

Bit 0x11	Bit 0x10	Macro Type	Comment
0	0	BIST	Loop-on-loop bit for vector count – no data
0	1	SHIFT	Loop-on-loop bit for vector count – data from TDO_SM memory
1	0	SHIFT w / capture	Loop-on-loop bit for vector count – data from TDO_SM memory – data to TDI_SM memory
1	1	STATE	No loop – no data

Header/Trailer Usage

A macro can call out an instruction shift or a data shift, but not both.

Bit 2	Bit 1	Bit 0	Function
0	0	0	Ignore headers and trailers
0	0	1	Use instruction header
0	1	0	Use instruction trailer
0	1	1	Use instruction header and trailer
1	0	0	Use data header
1	0	1	Use data trailer
1	1	0	Use data header and trailer
1	1	1	Reserved

Header/Trailer Structure

The headers and trailers are 32 long words (1024 bits) long

Bits	Function	Comment
0x00 to 0x1F	Hata lanath (hite)	Must be > 0 if use header/trailer bits are set in macro
0x20 to 0x3FF	Header/trailer data	Max 922 bits

SCANSTA101 Quick Reference

Sequencer Structure

Bits	Function	Comment
0x00 to 0x1F	Sequence repeat count	Max of 255
0x20 to 0x2F	Vector repeat count	First vector
0x30 to 0x3F	Vector number	First vector
xx	Vector repeat count and vector number	Repeat for each vector to be used in sequence
0x3E0 to 0x3EF	Vector repeat count	Vector 255 (if used)
0x3F0 to 0x3FF	Vector number	Vector 255 (if used)

Scan Bridge Support Structure

Only Mode Register 0 in the Scan Bridge is used.

Bits	Function	Comment
0x00 to 0x0F	Number levels	Levels of Scan Bridge support
0x10 to 0x17	Scan Bridge address	Level 0
0x18 to 0x1F	Scan Bridge LSPs	Level 0
0x20 to 0x27	Scan Bridge address	Level 1
0x28 to 0x2F	Scan Bridge LSPs	Level 1
xx	Scan Bridge address and LSPs	Additional hierarchical levels
0x7F0 to 0x7F7	Scan Bridge address	Level 125 (if used)
0x7F8 to 0x7FF	Scan Bridge LSPs	Level 125 (if used)

Use Mask/Compare

Use mask/compare is set by bits 0x1F:0x1E in the macro structure.

Bit 0x1F	Bit 0x1E	Description
0	0	Do not compare
Х	1	Compare with mask
1	0	Compare without mask

National Semiconductor

2900 Semiconductor Drive Santa Clara, CA 95051 1 800 272 9959

Visit our website at: national.com

Mailing address:

PO Box 58090 Santa Clara, CA 95052

For more information, send email to: support@nsc.com

Start Register

To begin scan operations, write the start register with a valid vector number.

Bits	Туре	Field
2:0	RW	Use vector <2:0> - only vectors 1 to 4 are valid
7:3	RO	Reserved for future vector expansion
8	RW	Use sequencer (preloaded data)
12:9	RO	Reserved
13	RW	Onboard memory BIST
15:14	R0	Reserved

Setup Register

Bits	Туре	Field
1:0	RW	Test loop back
2	RW	Reset – synchronous processor-commanded reset
3	RW	TRST – Scan Master test reset
4	RW	Scan Bridge support initiate/release
5	RW	Debug mode
6	RW	Default TDO value on BIST or STATE macro
9:7	RW	Sync-bit length <9:7>
11:10	RW	TDO_SM control (use bit 6)
14:11	R0	Reserved
15	RW	16/32-bit mode

Status Register

Write to status register only for test and debug. Disable writes to register during normal operation.

Bits	Туре	Field
2:0	RW	Using vector <2:0>
7:3	R0	Reserved for vector expansion
8	RW	Using sequencer
9	RW	TDI status half-full
10	RW	TDI status full
11	RW	TDO status empty
12	RW	TDO status half-empty
13	RW	Memory BIST result
14	R0	BIST running
15	RW	Results of compare (1 = match)

Interrupt Control/Status Registers

Control register enables interrupts. Status register reports interrupt status.

Bits	Туре	Field
2:0	RW	Vector <2:0> interrupt
7:3	R0	Reserved for vector expansion
8	RW	Sequencer interrupt
9	RW	TDI half-full interrupt
10	RW	TDI full interrupt
11	RW	TDO empty interrupt
12	RW	TDO half-empty interrupt
15:13	R0	Reserved

Pin Descriptions

i ili Descriptions				
Pin Name	1/0	Description		
D(15:0)	1/0	Bidirectional data bus		
A(4:0)	1	Address bus		
SCK	I	System clock		
INT	0	Interrupt output		
ŌĒ	1	Output enable		
DTACK	0	Data transfer handshake		
R/W	I	Processor read/write		
STB	I	Data transfer handshake		
CE	1	Chip-enable data transfer handshake		
RST	1	Asynchronous reset		
TD0	0	TDO for SCANSTA101 TAP		
TDI	1	TDI for SCANSTA101 TAP		
TMS	1	TMS for SCANSTA101 TAP		
TCK	1	TCK for SCANSTA101 TAP		
TRST	I	TRST for SCANSTA101 TAP		
TDI_SM	ı	Scan Master test data input		
TD0_SM	0	Scan Master test data output		
TMS_SM	0	Scan Master test mode select		
TCK_SM	0	Scan Master test clock output		
TRST0_SM	0	Scan Master test reset output		
TRIST_SM	0	Indicates TDO_SM is TRI-STATE®		

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page <u>e2e.ti.com</u>