User's Guide LM2745 and LM2748 Buck Controller Evaluation Module User's Guide

🕂 Texas Instruments

Table of Contents

1 Introduction	2
2 Additional Footprints	2
3 Typical Application Circuit	3
4 Performance Characteristics (Output Ripple Voltage and Switch Node Voltage)	4
5 PCB Layout Diagrams	6
6 Revision History	6

Trademarks

All trademarks are the property of their respective owners.

1

1 Introduction

This evaluation board describes the LM2745/LM2748 printed circuit board (PCB) design and provides an example typical application circuit. The demo board allows component design flexibility in order to demonstrate the versatility of the LM2745/LM2748 IC.

The demo board contains a voltage-mode, high-speed synchronous buck regulator controller. Though the control sections of the IC are rated for 3 V to 6 V (V_{CC}), the driver sections are designed to accept input supply rails (V_{IN}) as high as 14 V.

The demo board design regulates to an output voltage of 1.2 V at 3.5A with a switching frequency of 1 MHz from a 1-MHz clock source that has an amplitude from 0 V to V_{CC} . Note, the demo board is optimized for a 1-MHz, 14-V input voltage compensation design with V_{CC} = 3.3 V. If a slower switching frequency and input voltage is desired, consult the device-specific data sheet for control loop compensation procedures. For additional design modifications, see the *Design Consideration* section of the *LM2745/8 Synchronous Buck Controller with Pre-bias Startup, and Optional Clock Synchronization Data Sheet*.

The demo board accommodates the use of banana clips to clip onto pads on the board. If preferred, the pads inner diameters are 100 mils, for which a solder terminal can be placed (Newark 40F6004). The PCB is designed on two layers with 1-oz. copper on a 62-mil FR4 laminate.

2 Additional Footprints

An additional footprint D1 is available for a Schottky diode to be placed in parallel with the low-side MOSFET. This component can improve efficiency, due to the lower forward drop than the low-side MOSFET body diode conducting during the anti-shoot–through period. Select a Schottky diode that maintains a forward drop around 0.4 V to 0.6 V at the maximum load current (consult the I-V curve). In addition, select the reverse breakdown voltage to have sufficient margin above the maximum input voltage.

Footprint C13 is available for a multilayer ceramic capacitor (MLCC) connected flush to the source of the low-side MOSFET and drain of the high-side MOSFET, in order to provide low supply impedance. For example, component C13 is used in combination with aluminum electrolytic input filter capacitors, placed in designators C12 and C14. If MLCCs are used in designators C12 and C14, component C13 is not necessary.

3 Typical Application Circuit

The typical application circuit in Figure 3-1 provides the component designators used on the demo board.

3

4 Performance Characteristics (Output Ripple Voltage and Switch Node Voltage)

Figure 4-5. Complete Demo Board Schematic

Table 4-1. Bill of Materials (BOM)

Designator	Function	Part Description	Part Number
U1	Controller	LM2745/LM2748 TSSOP14	Texas Instruments
C5	VCC Decoupling	Cer Cap 1 µF 25 V 10% 0805	Murata GRM216R61E105KA12B
C7	Soft Start Cap	Cer Cap 12 nF 25 V 10% 0805	Vishay VJ0805Y123KXX
C8	Comp Cap	Cer Cap 1.5 nF 25 V 10% 0805	Vishay VJ0805Y152KXX
C9	Comp Cap	Cer Cap 18 pF 25 V 10% 0805	Vishay VJ0805A180KAA
C10	Cboot	Cer Cap 0.1 µF 25 V 10% 0805	Vishay VJ0805Y104KXX
C11	Comp Cap	Cer Cap 1.8 nF 25 V 10% 0805	Vishay VJ0805Y182KXX
C12	Input Filter Cap	Cer Cap 10 μF 25 V 10% 1210	AVX 12103D106MAT
C14	Input Filter Cap	Cer Cap 10 μF 25 V 10% 1210	AVX 12103D106MAT
C15	Output Filter Cap	470μF, 6.3 V, 10 mΩ ESR POScap	Sanyo 6TPD470
R1	Filter Resistor	Res 10 Ω .25W 0805	Vishay CRCW08051000F
R2	Frequency Adjust Res	Res18.7 kΩ .25W 0805	Vishay CRCW08052187F
R3	Comp Res	Res 17.4 kΩ .25W 0805	Vishay CRCW08051742F
R4	Current Limit Res	Res 3.16 kΩ .25W 0805	Vishay CRCW08053161F
R5	Comp Res	Res 2.94 kΩ .25W 0805	Vishay CRCW08052941F
R6	Res Divider, upper	Res 10.0 kΩ .25W 0805	Vishay CRCW08051002F
R7	Res Divider, lower	Res 10.0 kΩ .25W 0805	Vishay CRCW08051002F
R8	PWGD Pullup	Res 100 kΩ .25W 0805	Vishay CRCW08051003F
R11	Shutdown Pullup	Res 100 kΩ .25W 0805	Vishay CRCW080561003F
D2	Bootstrap Diode	Schottky Diode, SOD-123	MBR0530LTI
L1	Output Filter Inductor	Inductor 1 μH, 5.3Arms, 10.2 mΩ	Cooper DR73-1R0
Q1-Q2	Top and Bottom FETs	Dual N-MOSFET, V _{DS} = 20 V, 24 mΩ @ 2.5 V	Vishay 9926BDY
C _{CLK}	Sync AC Coupling Cap	Cer Cap 56 pF 25 V 10% 0805	Vishay VJ0805A560KXAA

5

5 PCB Layout Diagrams

Figure 5-2. Bottom Layer

6 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Page
2
2
•••

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated