

LM3464

Application Note 2071 LM3464A 4 Channel LED Driver Evaluation Board

Literature Number: SNVA449C

LM3464A 4 Channel LED Driver Evaluation Board

National Semiconductor
Application Note 2071
SH Wong
June 3, 2011

Introduction

This evaluation board demonstrates the high power efficiency and outstanding output current accuracy of the LM3464A typical application circuit. With four LED strings connected, the total output power is about 50W. The schematic, bill of material and PCB layout drawing of the LM3464A evaluation board are provided in this document. This evaluation board can be adapted to different types of power supply with changes of a few components. The PCB of this evaluation board is pin to pin compatible to both LM3464 and LM3464A with 80V and 95V maximum input voltage respectively. The information being presented in this document are also applicable to both the LM3464 and LM3464A.

The LM3464A is a 4 channel linear LED driver which combined the advantages of high power efficiency of switching regulators and low current ripple of linear current regulators. With the incorporation of the proprietary Dynamic Headroom Control (DHC) technology, the LM3464A optimizes system efficiency automatically while providing outstanding output stability and accuracy. Each LED current regulators of this board consists of an external MOSFET and a control circuit inside the LM3464A to provide the best flexibility to fulfill the needs of different applications. The LM3464A includes a built-in Low Drop-Out (LDO) voltage regulator which accepts an input voltage up to 95V (LM3464A) to provide power and voltage references to internal circuits, allowing the LM3464A to adapt to difference source voltages easily. The integrated thermal foldback control circuit protects the LED Strings from damages due to over-temperature. This eventually secures the lifetime of the entire lighting system. The LM3464A includes a fault handling mechanism which latches off output channels upon open or short circuit of the LED strings, preventing substantial damages due to failures of the LEDs. The number of output channel can be expanded by cascading several LM3464A evaluation boards to achieve high luminous output.

Standard Settings of the Evaluation Board

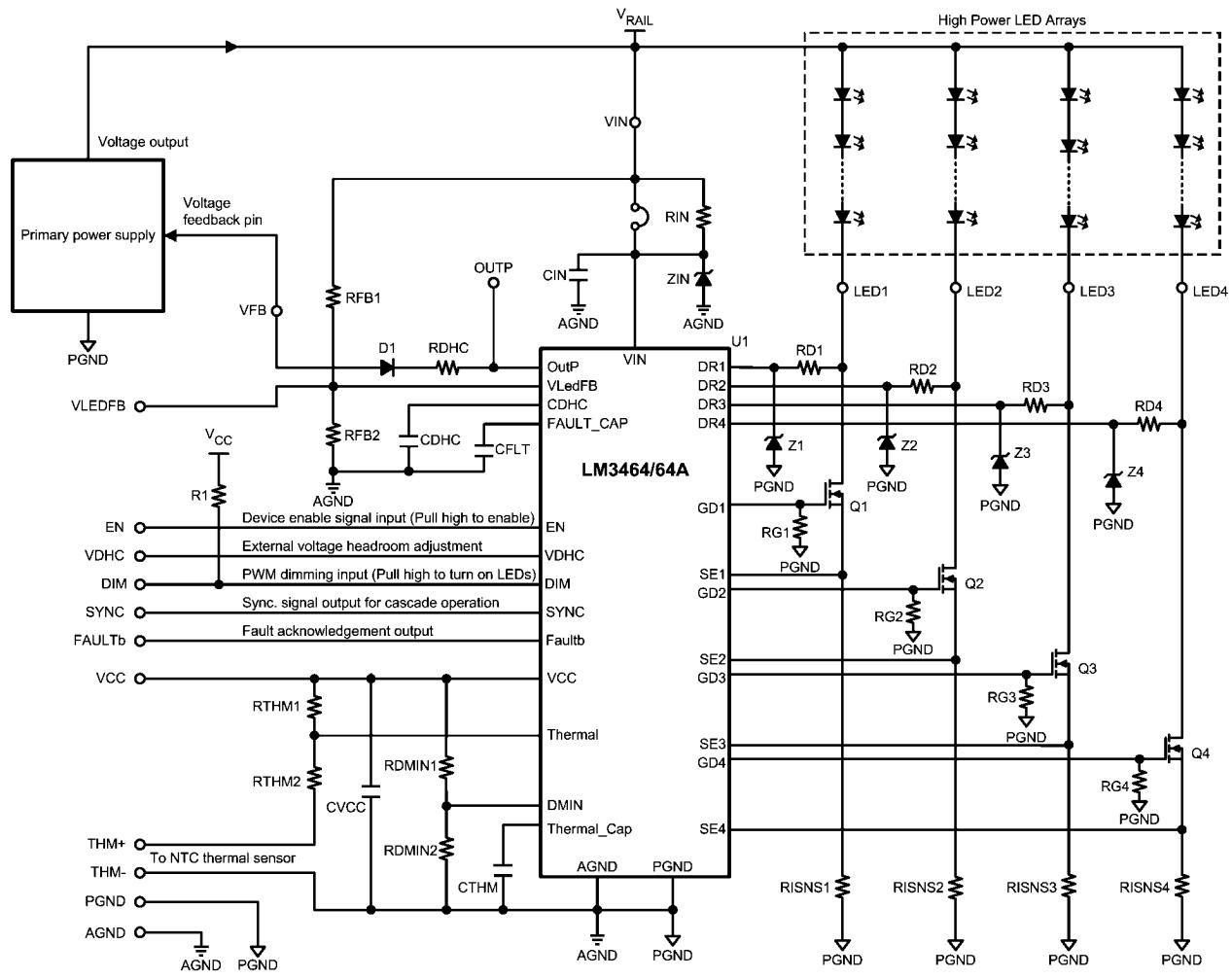
- Vin range 12V to 95V (LM3464A)
- 48V LED turn ON voltage
- 350mA LED current per channel
- 2kHz thermal foldback dimming frequency

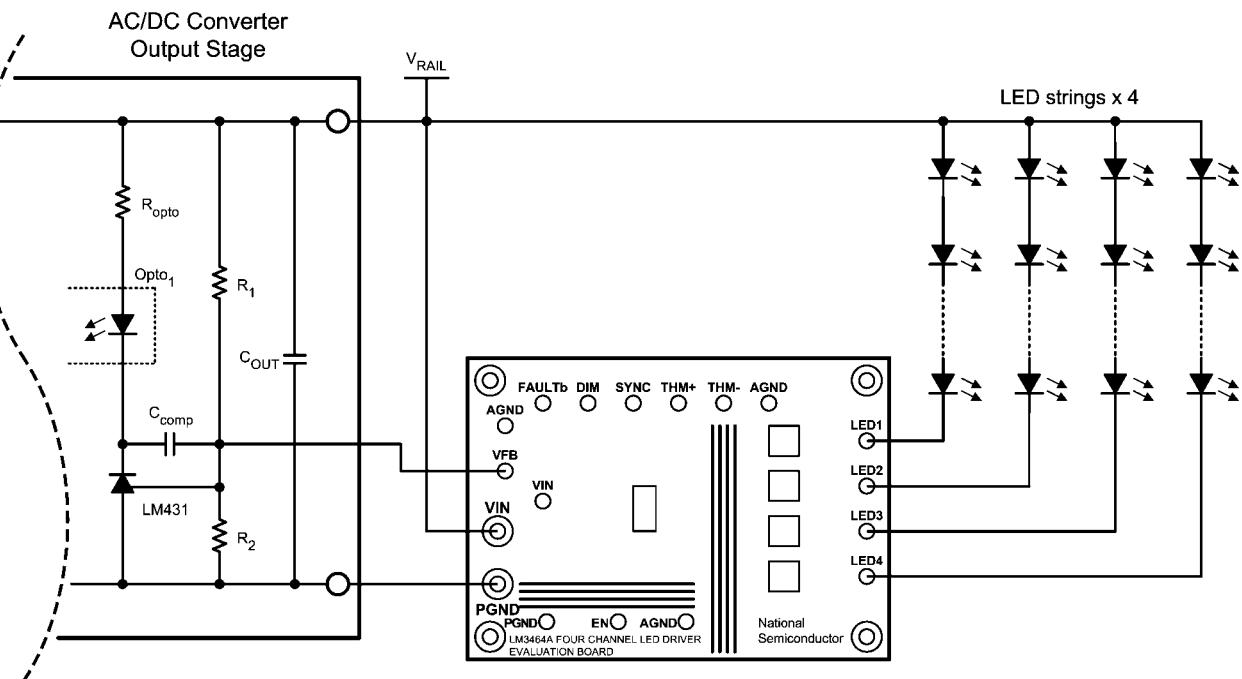
Because the LM3464A evaluation board is designed to turn on the LED strings at 48V rail voltage, applying excessive input voltage to this board will increase power dissipation on the MOSFETs and could eventually damage the circuit. In order to avoid permanent damages, it is not recommended not to apply higher than 60V input voltage to this evaluation board. This board is generally designed to drive 4 LED strings at 350mA which each sting contains 12 serial LEDs. For driving LED strings of different configuration, the value of a few components should be adjusted following the descriptions in this document.

Highlight Features

- Dynamic Headroom Control (DHC)
- Thermal foldback control
- High speed PWM dimming
- Minimum brightness limit for thermal foldback control
- Cascade operation for output channel expansion
- Vin Under-Voltage-Lockout
- Fault protection and indication
- Programmable startup voltage
- Thermal Shutdown

Evaluation Board Schematic




FIGURE 1. LM3464A Evaluation Board Schematic

Bill of Materials

AN-2071

Designation	Description	Package	Manufacturer Part #	Vendor
U1	LED Driver IC, LM3464A eTSSOP-28	eTSSOP-28	LM3464AMH	NSC
D1	Schottky Diode 40V 1.1A DO219AB	DO219AB	SL04-GS08	Vishay
Q1,Q2,Q3,Q4	MOSFET N-CH 150V 29A D-PAK	D-PAK	FDD2572	Fairchild
	MOSFET N-CH 150V 50A TO252-3	TO252-3	IPD200N15N3	Infineon
CIN	Cap MLCC 100V 2.2uF X7R 1210	1210	GRM32ER72A225KA35L	Murata
CVCC	Cap MLCC 10V 1uF X5R 0603	0603	GRM185R61A105KE36D	Murata
CDHC	Cap MLCC 50V 0.22uF X5R 0603	0603	GCM188R71H224KA64D	Murata
CFLT	Cap MLCC 50V 2.2nF X7R 0603	0603	GRM188R71H222KA01D	Murata
CTHM	Cap MLCC 50V 68nF X7R 0603	0603	GRM188R71H683KA01D	Murata
R1	Chip Resistor 8.06Kohm 1% 0603	0603	CRCW06038K06FKEA	Vishay
RTHM1	Chip Resistor 4.87Kohm 1% 0603	0603	CRCW06034K87FKEA	Vishay
RTHM2	Chip Resistor 232ohm 1% 0603	0603	CRCW0603232RFKEA	Vishay
RDMIN1	Chip Resistor 15.4Kohm 1% 0603	0603	CRCW060315K4FKEA	Vishay
RDMIN2	Chip Resistor 1.05Kohm 1% 0603	0603	CRCW06031K05FKEA	Vishay
RDHC	Chip Resistor 2.67Kohm 1% 0603	0603	CRCW06032K67FKEA	Vishay
RFB1	Chip Resistor 48.7Kohm 1% 0603	0603	CRCW060348K7FKEA	Vishay
RFB2	Chip Resistor 2.67Kohm 1% 0603	0603	CRCW06032K67FKEA	Vishay
RISNS1, RISNS2, RISNS3, RISNS4	Chip Resistor 1.13ohm 1% 0603	0603	CRCW06031R13FKEA	Vishay
RIN, RD1, RD2, RD3, RD4	Chip Resistor 0ohm 1% 0603	0603	CRCW06030000Z0EA	Vishay
VIN,PGND	Banana Jack 5.3(mm) Dia	5.3 (mm) Dia.	575-8	Keystone
FAULTb,DIM, SYNC, THM+, THM-,	Turret 2.35(mm) Dia	2.35 (mm) Dia.	1502-2	Keystone
AGND, VFB, VIN, PGND, EN	Turret 2.35(mm) Dia	2.35 (mm) Dia.	1502-2	Keystone
LED1, LED2, LED3, LED4	Turret 2.35(mm) Dia	2.35 (mm) Dia.	1502-2	Keystone
PCB	LM3464EVAL PCB 82.5 X 60 (mm)	82.5 x 60 (mm)	N/A	NSC
RG1, R2, RG3, RG4	No Connection	0603		
ZIN, Z1, Z2, Z3, Z4	No Connection	SMA		

Connectors and Test Pins

30127102

FIGURE 2. Typical Connection Diagram

Evaluation Board Quick Setup Procedures

Terminal Designation	Description
VIN	Power supply positive (+ve) connection
PGND	Power supply negative (-ve) connection
AGND	LM3464A analog signal ground
LED1	Output Channel 1 (Connect to cathode of LED string 1)
LED2	Output Channel 2 (Connect to cathode of LED string 2)
LED3	Output Channel 3 (Connect to cathode of LED string 3)
LED4	Output Channel 4 (Connect to cathode of LED string 4)
EN	LM3464A enable pin (pull down to disable)
VFB	Connect to voltage feedback node of primary power supply for DHC
FAULTb	Acknowledgement signal for arising of 'FAULT'
DIM	PWM dimming signal input (TTL signal compatible)
SYNC	Synchronization signal for cascade operation
THM+	Connect to NTC thermal sensor for thermal foldback control
THM-	Connect to NTC thermal sensor for thermal foldback control
VLEDFB	Connected to LM3464A VLedFB pin
OUTP	Connected to LM3464A OutP pin
VCC	LM3464A internal voltage regulator output
VDHC	Connected to LM3464A VDHC pin

Structure of the System

A LM3464A LED lighting system is basically consist of three main parts, the LM3464A evaluation board, an AC/DC power supply and an LED array containing four LED strings. In general, the LM3464A evaluation board can be regarded as four independent current sources that the dropout voltages on the current sources are being monitored by an internal circuit that generates the DHC signal. The LM3464A evaluation board is designed to drive 4 LED strings of 12 LEDs in series. With 350mA driving current for every LED string, the default total output power of the LM3464A evaluation board is around 60W. In order to ensure proper operation, the AC/DC power supply and LED array should be selected following the steps presented in this document.

Selection of AC/DC Power Supply

The LM3464A evaluation board can be powered by an AC/DC power supply through the banana-plug type connectors on the board as shown in figure 2. Assuming the nominal forward voltage of one LED is 3.5V, the total forward voltage of a LED string containing 12 LED is about 42V. In order to reserve extra voltage headroom to compensate the variations of the LED forward voltages due to changes of operation temperature, the LED turn ON voltage of this evaluation board is set to 48V. As this evaluation board is designed to deliver 350mA for each output channel, which is about 60W output power at 48V rail voltage, the AC/DC power supply must be able to supply no less than 60W continuous output power at 48V. Therefore, a 60W AC/DC power supply with 48V output voltage is needed.

In order to facilitate Dynamic Headroom Control (DHC), the output voltage of the AC/DC power supply is adjusted by the LM3464A. The LM3464A adjusts the output voltage of the AC/DC power supply by sinking current from the output voltage feedback node of the AC/DC converter through a resistor RDHC into the OutP pin according to the dropout voltage of the linear current regulators. The OutP pin of the LM3464A is a open drain pin that can only sink current from the voltage feedback node of the AC/DC power supply, thus the LM3464A evaluation board is only able to increase the output voltage of the AC/DC power supply to acquire wider voltage headroom.

Since the output voltage of the AC/DC converter will be increased by the LM3464A to allow dynamic head room control (DHC), the nominal output voltage of the AC/DC power supply must be reduced prior to connecting to the LM3464A evaluation board to reserve voltage headroom for DHC to take place. This is achieved by modifying the resistance of the output voltage sensing resistors of the AC/DC power supply. To adapt the AC/DC power supply to the LM3464A evaluation board, the nominal output voltage of the AC/DC power supply is recommended to be reduced from 48V to 36V. Usually, the nominal output voltage of the AC/DC power supply can be reduced by changing the resistance of the resistor divider for

output voltage feedback. Figure 2 shows the voltage feedback circuit using LM431 which has been widely used in typical AC/DC power supplies as an example.

To reduce the output voltage of the AC/DC power supply from 48V to 36V, the resistance of R_2 is increased without changing the value of R_1 . The output voltage and value of R_2 are related by the following equations:

$$R_2 = R_1 \times \frac{V_{REF(AC/DC)}}{V_{REF(AC/DC)} - V_{REF(AC/DC)}} \Omega \quad (1)$$

For $V_{REF(AC/DC)} = 2.5V$

And $V_{RAIL(nom)} = 36V$:

$$R_2 = R_1 \times \frac{2.5V}{36V - 3.5V} \Omega \quad (2)$$

In the above equations, $V_{REF(AC/DC)}$ is the reference voltage of the AC/DC converter for output voltage feedback. $V_{RAIL(nom)}$ is the objective rail voltage level being adjusted to. In this example, reducing of the rail voltage is achieved by increasing the value of R_2 . With the rail voltage is reduced to 36V, the LED strings are unable to be driven at 350mA due to insufficient voltage headroom until the DHC loop functions. In order to ensure the LED strings an regulated driving current at the time that the LED strings being turned on, the LM3464A increases the output voltage of the AC/DC power supply (V_{RAIL}) from 36V to 48V (V_{DHC_READY}) prior to turning on the LED strings. The level of V_{DHC_READY} is defined by the value of the resistors, RFB1 and RFB2. Figure 3 shows the changes of V_{RAIL} upon the AC/DC power supply is powered until the system enters steady state operation.

As the output voltage of the AC/DC power supply is depending on the current being sunk from the output voltage feedback node of the AC/DC power supply, the output voltage could increase to exceed the rated output voltage of the AC/DC power supply and damage the system if the resistance of the RDHC is too low and the OutP pin of the LM3464A is accidentally shortened to GND ($V_{OutP} = 0V$). To avoid this, the value of the RDHC must be selected appropriately following the equations below. In the equations, $V_{RAIL(peak)}$ is the maximum voltage that V_{RAIL} can reach if the OutP pin is shortened to GND. R_1 and R_2 are the resistors of the output voltage feedback resistor divider of the AC/DC power supply. When designing the values of the RDHC, it is essential to ensure that the $V_{RAIL(peak)}$ does not exceed the rated output voltage of the AC/DC power supply, otherwise the AC/DC power supply could be damaged.

$$V_{RAIL(peak)} = [(R_1 \times I_{R1}) + V_{REF(AC/DC)}] V \quad (3)$$

where

$$I_{R1} = \left[\frac{V_{REF(AC/DC)}}{R_2} + \frac{V_{REF(AC/DC)} - 0.8V}{R_{DHC}} \right] A \quad (4)$$

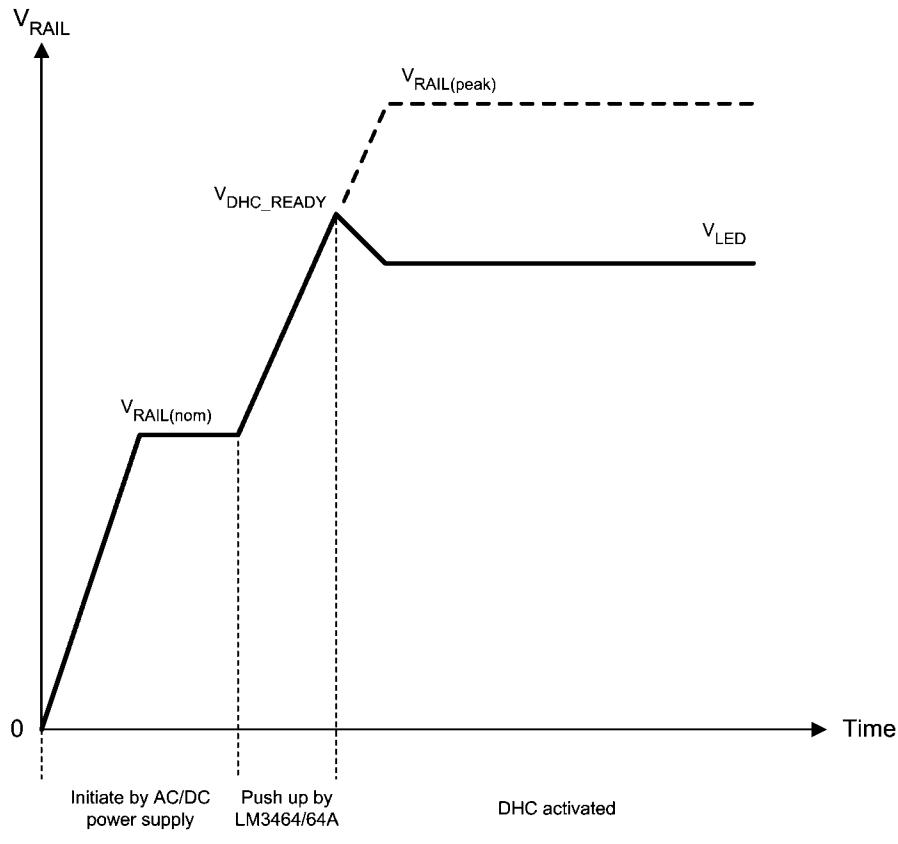
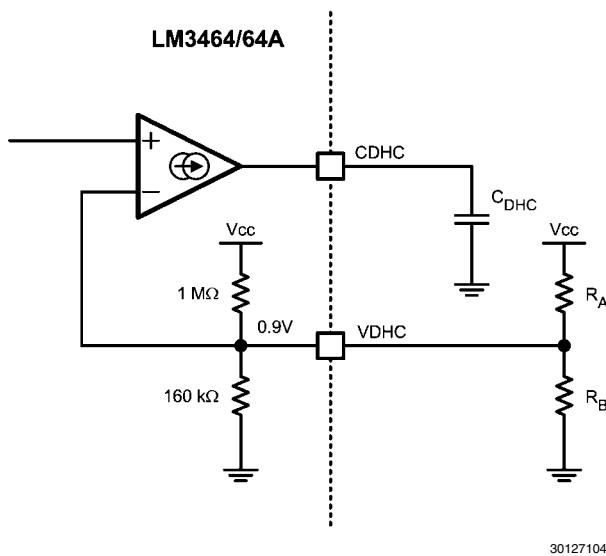


FIGURE 3. Changes of Rail Voltage Upon Power Up

30127103

Setting of V_{DHC_READY}

When V_{RAIL} reaches V_{DHC_READY} , the voltage at the VLedFB pin of the LM3464A equals 2.5V. As the voltage at the VLedFB pin reaches 2.5V, the LM3464A performs a test for no longer than 400uS to identify and exclude the idle (no LED connected) or failed (shorten / open circuit of LED string) output channels from the DHC loop. When a LED string is open circuit, the voltage drop on the current sensing resistors ($V_{SE1} - V_{SE4}$) is below 30mV. If the voltage of the SEx pin maintains below 30mV longer than the fault detection time defined by CFLT, an 'open fault' is recognized. When a LED string is short circuit, causing the drain voltage of an external MOSFET 8.4V higher than the drain voltage of any other channel and maintains longer than the fault detection time defined by CFLT, an short fault is recognized. Either a short or open fault will cause the Faultb pin to pull low. When a LED string experiences an open or short circuit, the corresponding output channel will be disabled and excluded from the DHC loop to sustain normal operation of the remaining LED strings. The LM3464A will maintain the failed channels in disable state until the EN pin is pulled low or the entire system is re-powered. When the test is completed, the LM3464A enables the output channels and provides constant current to the LED strings.


The level of V_{DHC_READY} is defined by the values of RFB1 and RFB2 on the evaluation board and can be adjusted to any level below 80V / 95V (LM3464/LM3464A) as desired. By default, the V_{DHC_READY} is set at 48V. The V_{DHC_READY} must set no more than 20V higher than the forward voltages of any LED

string connected to the system under possible temperatures, otherwise a 'short fault' may arise and results in immediate output channel latch-off to protect the MOSFETs from overheat. The V_{DHC_READY} is can be adjusted following equation (5):

$$V_{DHC_READY} = 2.5 \times \frac{R_{FB1} + R_{FB2}}{R_{FB2}} V \quad (5)$$

Adjusting Voltage Headroom

The voltage headroom of the LM3464A evaluation board can be altered by adjusting the voltage at the VDHC pin (V_{VDHC}) in the range of 0.8V to 2V. For the applications with high rail voltage ripple, the voltage headroom should be increased to secure accurate output current regulation. By default, the VDHC pin is biased internally to 0.9V as shown in figure 4.

FIGURE 4. Adjusting the VDHC Pin Voltage

To adjust V_{VDHC} on the evaluation board, an additional resistor divider (R_A and R_B) can be added across the VDHC test pad and VCC or AGND terminals on the board. The values of R_A and R_B should be below 100kΩ and 16kΩ respectively to ensure the accuracy of the headroom voltage under steady state. The V_{VDHC} is governed by the following equation:

$$V_{VDHC} = \frac{160 \text{ k}\Omega // R_B}{160 \text{ k}\Omega // R_B + 1 \text{ M}\Omega // R_A} \times V_{CC} \quad (6)$$

where

$$0.8V < V_{VDHC} < 2V \quad (7)$$

Connecting the LED Strings

The LM3464A evaluation board is designed to drive 4 common anode LEDs strings of 12 serial LEDs per string. The board includes four turret connectors, LED1, LED2, LED3 and LED4 for cathode connections of the LED strings. The anode of the LED strings should connect to the positive power output terminal of the AC/DC power supply. By default, the output current for each output channel is set at 350mA. The output currents of the LM3464A evaluation board can be programmed individually by changing the value of the resistors RISNS1, RISNS2, RISNS3 and RISNS4 accordingly. The LED driving current is governed by the following equation:

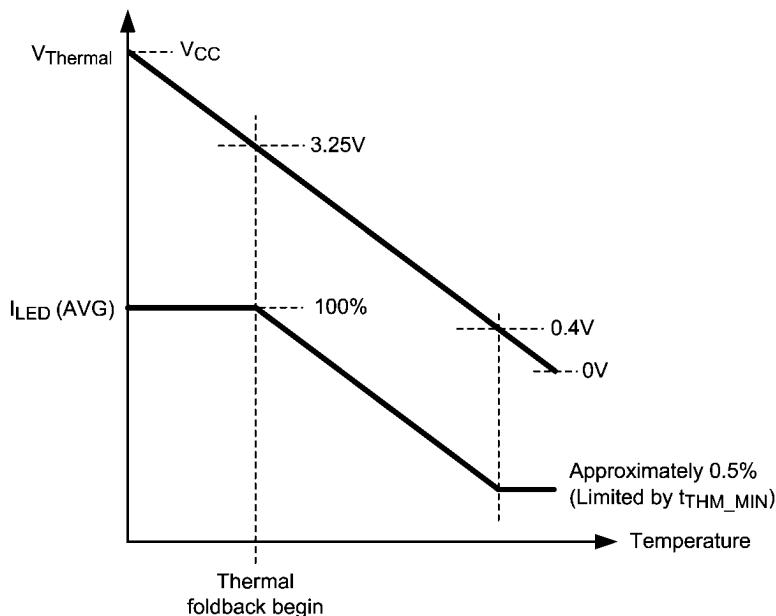
$$I_{LED} = \frac{200}{RISNS_x} \text{ mA (per ch.)} \quad (8)$$

Adjusting Frequency Response of the LM3464A Circuit

The frequency response of the LM3464A evaluation board can be adjusted by changing the value of the capacitor, C_{DHC} . Higher capacitance of C_{DHC} results in slower frequency response of the LM3464A driver stage. In order to ensure stable system operation, it is recommended to set the dominant pole of the LM3464A one decade lower than the dominant pole of the AC/DC converter. The default value of the C_{DHC} on the evaluation board is 0.22uF. For applications with slow response AC/DC power supply (e.g. converters with active PFC), the value of CDHC should be increased to make the frequency response of the board slower than the response of the AC/DC power supply. The cut-off frequency of the LM3464A driver stage is governed by the following equation:

$$f_{LM3464(-3 \text{ dB})} = \frac{1}{2\pi(1.2 \times 10^6) \times C_{DHC}} \quad (9)$$

Thermal Foldback Control


The LM3464A evaluation board features an interface that enables thermal foldback control by connecting a NTC thermal sensor to the THM+ and THM- terminals. With the NTC sensor attached to the chassis of the LEDs, the integrated thermal foldback control circuit reduces the average LED current and effectively reduces the LED temperature to prevent thermal breakdown of the LEDs. The thermal foldback control circuit reduces the LED currents by means of PWM dimming which the dimming frequency is set by the capacitor, CTHM following the equation shows below:

$$f_{\text{Thermal_foldback}} = \frac{50 \times 10^{-6}}{(3.25 - 0.4) \times C_{\text{THM}}} \text{ Hz} \quad (10)$$

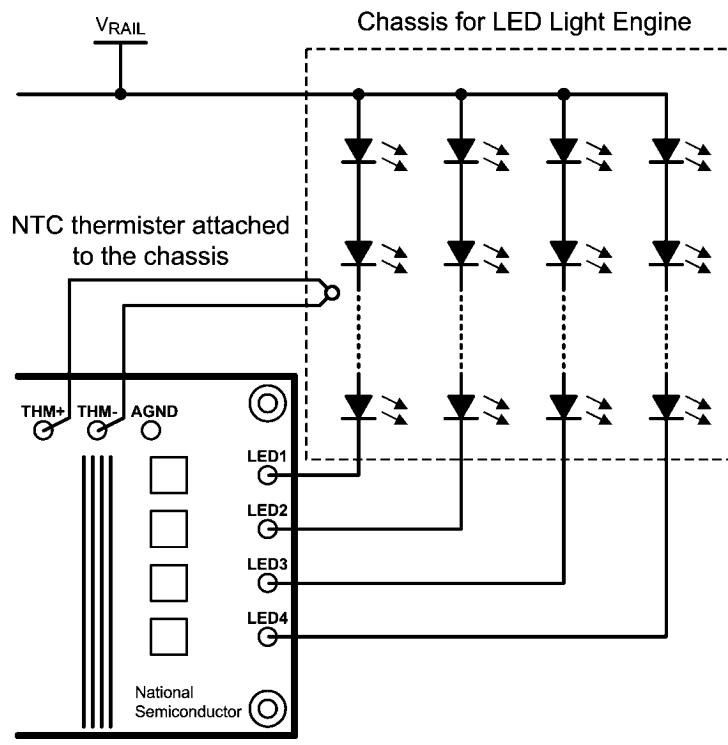
The default value of the CTHM on the LM3464A evaluation board is 68nF, which set the thermal foldback dimming frequency at 258Hz.

Thermal foldback control is activated when the voltage at the Thermal pin, V_{Thermal} is in between 3.25V and 0.4V as shown in figure 5. Thermal foldback control begins when V_{Thermal} is below 3.25V. The LED current will be reduced to zero as V_{Thermal} falls below 0.4V. The average LED current varies according to the Thermal pin voltage following the equation:

$$I_{\text{LED}(\text{Avg})} = (V_{\text{Thermal}} - 0.4) \times 0.35 \times \frac{200}{R_{\text{ISNSx}}} \text{ mA (per ch.)} \quad (11)$$

30127113

FIGURE 5. Changes of Average LED Current with Thermal Foldback Control


When the voltage at the DMIN pin is below 0.4V, the minimum on time for thermal foldback control is restricted by the value of C_{THM} . As the voltage of the Thermal pin is set below 0.4V, the on time for all output channels equals the discharge time of the C_{THM} following the equation:

$$t_{\text{THM_MIN}} = 262 \times C_{\text{THM}} \text{ in second} \quad (12)$$

Thus the minimum dimming duty cycle for thermal foldback is calculated approximately equal to 0.5%:

$$D_{\text{THM_MIN}} = (t_{\text{THM_MIN}} \times f_{\text{Thermal_foldback}}) \times 100\% \quad (13)$$

Approximately equal to 0.5%

30127114

FIGURE 6. Attaching NTC Thermistor to the LEDs

A NTC thermistor is connected to the THM+ and THM- terminals of the LM3464A evaluation board as shown in figure 6 to activate the thermal foldback control function.

Assuming that thermal foldback control is required to begin at 70°C LED chassis temperature and reduce 55% average LED current (45% dimming duty cycle) when the chassis temperature reaches 125°C. Using the NTC thermister NXFT15W-B473FA1B from MURATA, which has 4.704kΩ resistance at 70°C ($R_{NTC(70^{\circ}C)}$) and 1.436kΩ at 125°C ($R_{NTC(125^{\circ}C)}$).

$V_{Thermal}$ at 125°C (45% dimming duty cycle):

$$V_{Thermal} = [(3.25V - 0.4V) \times D_{THMFB}] + 0.4V \quad (14)$$

$$= [(3.25V - 0.4V) \times 0.45] + 0.4V \quad (15)$$

$$= 1.68V \quad (16)$$

In the above equation, $V_{Thermal}$ is the voltage at the Thermal pin and D_{THMFB} is the dimming duty cycle under thermal foldback control. When thermal foldback begins:

$$3.25V = V_{CC} \times \frac{R_{THM2} + R_{NTC(70^{\circ}C)}}{R_{THM1} + R_{THM2} + R_{NTC(70^{\circ}C)}} \quad (17)$$

$$= 6.5V \times \frac{R_{THM2} + 4.704 \text{ k}\Omega}{R_{THM1} + R_{THM2} + 4.704 \text{ k}\Omega} \quad (18)$$

$$R_{THM1} = R_{THM2} + 4.704 \text{ k}\Omega \quad (19)$$

When the temperature goes up to 125°C

$$1.68V = V_{CC} \times \frac{R_{THM2} + R_{NTC(125^{\circ}C)}}{R_{THM1} + R_{THM2} + R_{NTC(125^{\circ}C)}} \quad (20)$$

$$= 6.5V \times \frac{R_{THM2} + 1.436 \text{ k}\Omega}{R_{THM1} + R_{THM2} + 1.436 \text{ k}\Omega}$$

$$R_{THM1} = 2.87 \times R_{THM2} + 4.121 \text{ k}\Omega \quad (20)$$

By combining the equations (17) and (18), the values of RTHM1 and RTHM2 can be obtained:

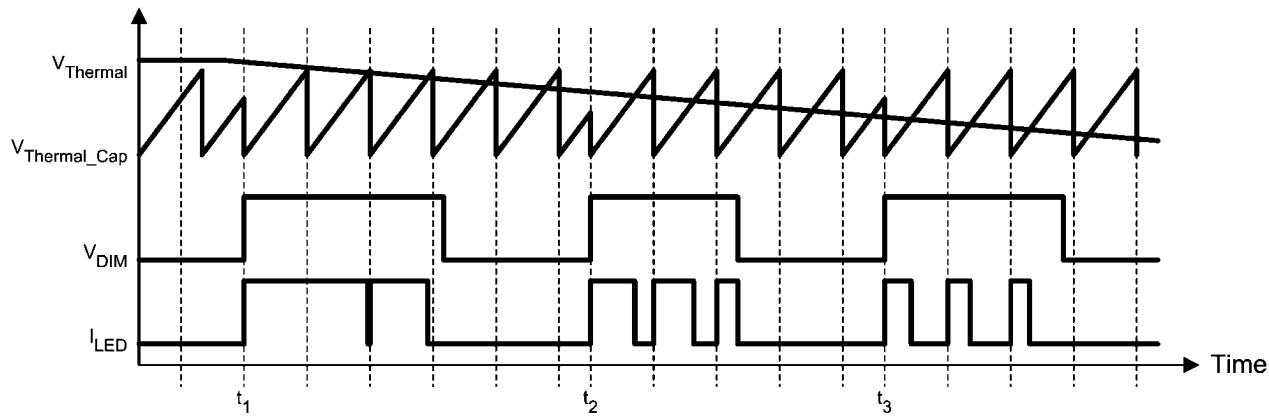
$$R_{THM1} = 230\Omega$$

$$R_{THM2} = 4.9 \text{ k}\Omega \quad (21)$$

The default values of RTHM1 and RTHM2 on the LM3464A evaluation board are 4.87kΩ and 232Ω respectively.

Minimum Dimming Duty Cycle for Thermal Foldback Control

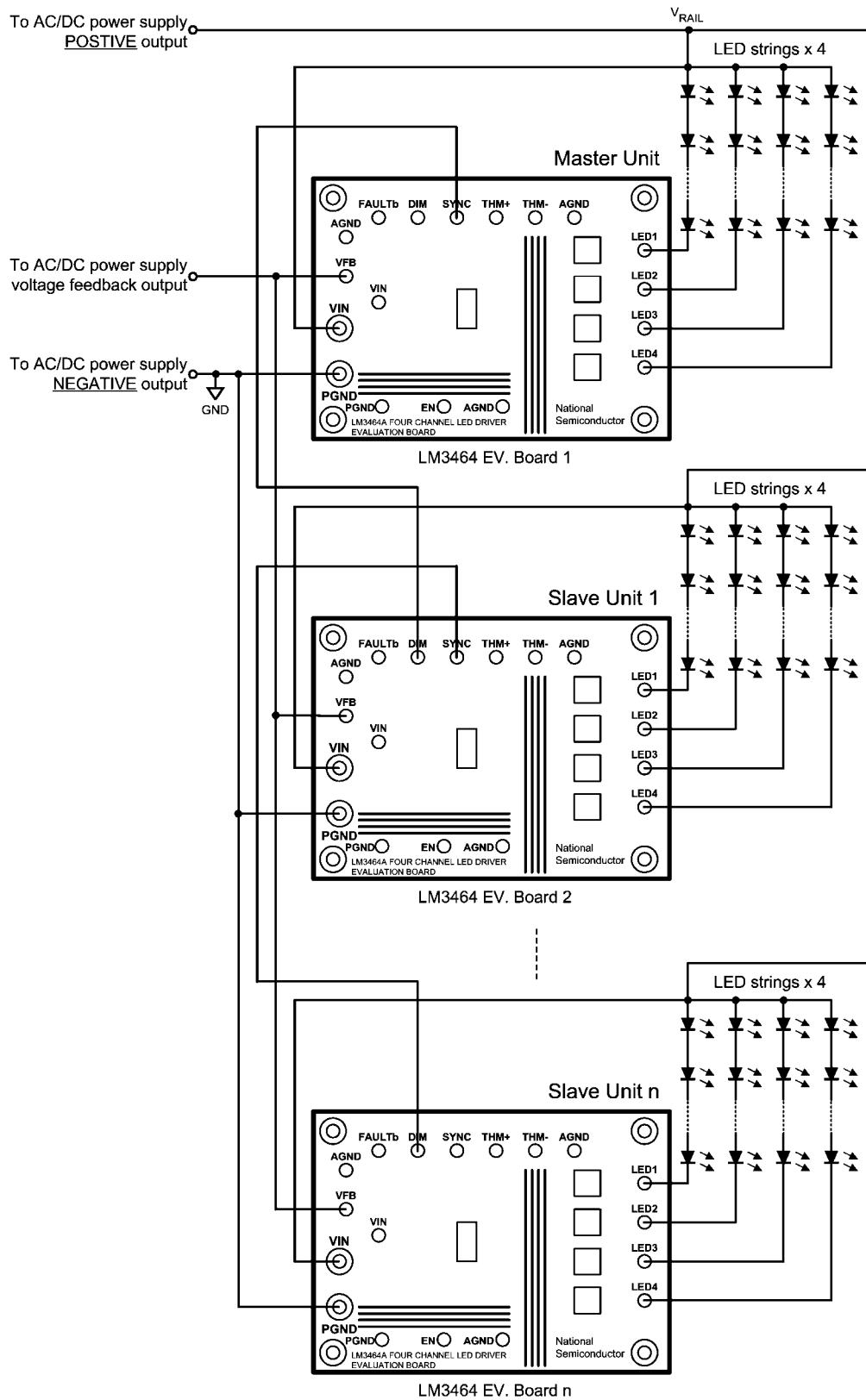
The minimum dimming duty cycle for thermal foldback control (D_{THMFB_MIN}) can be limited by setting the voltage at the DMIN pin of the LM3464A. The minimum dimming duty cycle limit overrides the minimum dimming level defined by RTHM1, RTHM2 and the NTC thermistor. This function is especially useful for the applications that require to maintain certain brightness level under high operation temperature. The level


of minimum duty cycle limit is governed by the following equation:

$$D_{MIN} = \left[\frac{1}{3.25 - 0.4} \times (V_{DMIN} - 0.4) \right] \times 100\% \quad (22)$$

PWM Dimming

PWM dimming control can be realized by applying PWM dimming signal to the DIM terminal of the board directly. When the DIM pin is pulled to logic high, all output channels are enabled. When the DIM pin is pulled to logic low (GND), all


output channels are turned OFF. In cascade operation, the DIM signal should only be applied to the MASTER unit. The LM3464A on the MASTER unit propagates the PWM dimming signal on its DIM pin to the slave units one by one through the SYNC pin. PWM dimming control is allowed when thermal foldback control is activated. When PWM dimming and thermal foldback controls are required simultaneously, the PWM dimming frequency should be set at least ten times below the thermal foldback dimming frequency. The thermal foldback dimming signal reduces the LED currents according to the voltage at the Thermal pin when the signal at the DIM pin is being pulled 'high' as shown in figure 7.

30127115

FIGURE 7. Thermal Foldback + PWM Dimming Control

Cascade Operation

30127162

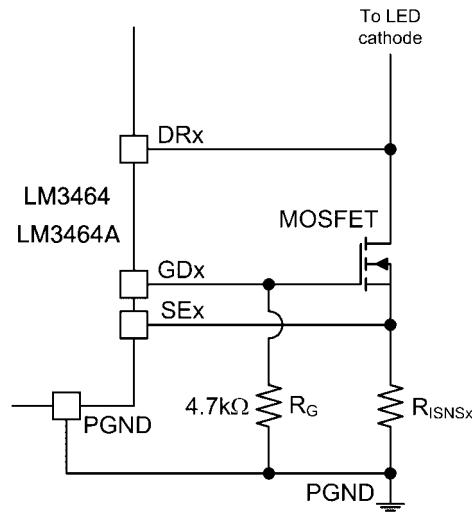
FIGURE 8. Cascading LM3464A Evaluation Boards for Output Channel Expansion

The total output power of the LED lighting system can be expanded by cascading the LM3464A evaluation boards. In cascade operation, the system involves one master unit and multiple slave units. Both master and slave units are LM3464A evaluation boards with minor modifications to program the LM3464A into master or slave modes. The connection diagram for cascade operation is shown in figure 8. The master unit is responsible to provide functions as listed in below:

1. Detect rail voltage upon system startup
2. Command slave units to turn on LEDs as its VLedFB voltage reaches 2.5V
3. Provide dimming signal to slave units according to the PWM dimming signal received at its DIM pin
4. Provide dimming signal to slave units according to the voltage of its Thermal pin

By default, the LM3464A evaluation board is set to master mode. To set the board to slave mode, the following changes to the board are required:

- Remove resistors RFB1 and RFB2
- Connect VLEDFB to VCC


When connecting the master and slaves, the following connections are required:

- Connect the VIN terminal of master and slave units together and then to the POSITIVE output of the AC/DC power supply
- Connect the PGND terminal of master and slave units together and then to the NEGATIVE output of the AC/DC power supply
- Connect the SYNC terminal of the master unit to DIM terminal of the next slave unit in the chain.
- Connect the VFB terminal of master and slave units together and then to the voltage feedback node of the AC/DC power supply.

If more than one slave unit is required, the SYNC pin of the first slave unit should connect to the DIM pin of the next slave unit to allow propagation of the control signal along the system chain.

Connection To Led Arrays

When LEDs are connected to the LM3464A driver stage through long cables, the parasitic components of the cable harness and external MOSFETs may resonant and eventually lead to unstable system operation. In applications that the cables between the LM3464A driver circuit and LED light engine are longer than 1 meter, a $4.7k\Omega$ resistor should be added across the GDx pins to GND as shown in Figure 12.

30127164

FIGURE 9. Additional Resistor Across GDx and SEx for Cable Harness Over 1m Long

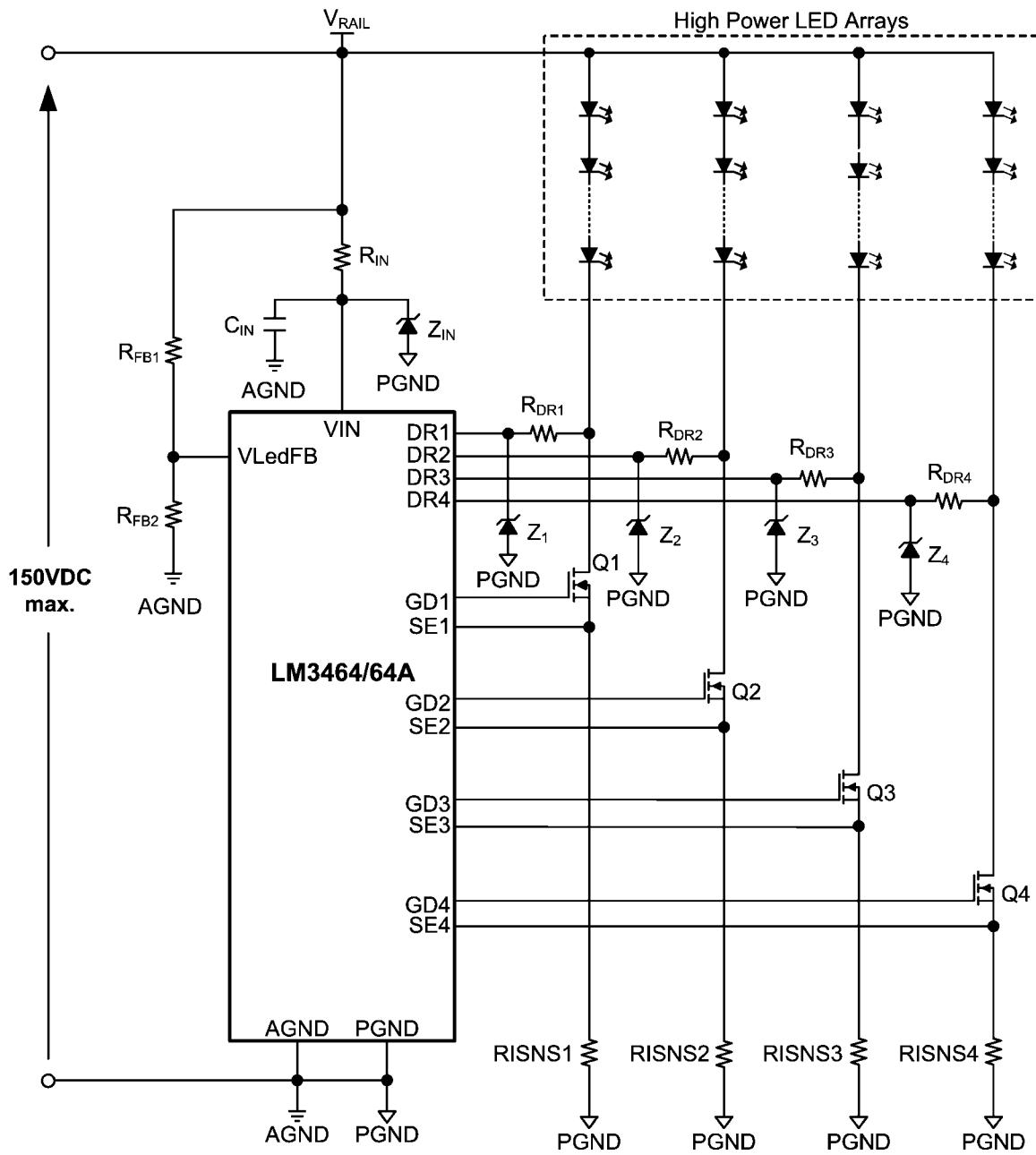


FIGURE 10. Additional Voltage Clamping Circuits for $V_{RAIL(\text{peak})} > 80\text{V}/95\text{V}$ (LM3464A)

Applications With High Rail Voltage

Since the LM3464A is rated to 95V supply voltage, applying a voltage to any pin of the device exceeding the absolute rated voltage could damage the device permanently. For the applications that the rail voltage could increase to exceed 95V, external voltage clamping circuit must be added to the Vin and DRx pins to avoid system breakdown. Figure 13 shows a typical application circuit with 150V peak rail voltage.

In figure 13, Z_1 , Z_2 , Z_3 , Z_4 and Z_{IN} are zener diodes for limiting voltages at the DRx and VIN pins of the LM3464A. The reverse voltage of the selected zener diodes must not exceed the rated voltage of the corresponding pin. For the LM3464A

evaluation board, the reverse voltage of the additional zener diodes must not exceed 95V. The resistors R_{DR1} , R_{DR2} , R_{DR3} , R_{DR4} and R_{IN} are resistors for absorbing the voltage difference across the DRx pins and V_{RAIL} .

Calculating the Values of Z_x and R_{DRx} :

Since the current being passed through the zener diodes are derived by the resistance of R_{DRx} , the value of the R_{DRx} must be calculated properly according to the reverse current of the zener diode and input current of the DRx pins of the LM3464A avoid unnecessary power dissipations. For instant, a 500mW/75V zener diode CMHZ5267B (Central Semiconductor) is used to clamp the DRx pins at 75V. Because the reverse cur-

rent of the CMHZ5267B is 1.7mA at 75V zener voltage, the maximum allowable reverse current is 6.67mA at 500mW power dissipation.

Given that the input current of the DRx pins of the LM3464A at 100V is 63uA maximum, if the DRx pin voltage is below 100V, the current flowing into the DRx pin (I_{DRx}) is below 63uA. In the following calculations, I_{DRx} is assumed to 63uA to reserve operation margin to compensate the characteristics variations of the components.

Because $V_{RAIL(peak)}$ is the possible highest voltage at the DRx pins, the maximum resistance of R_{DRx} can be calculated following this equation:

$$R_{DRx} = \frac{V_{RAIL(peak)} - V_z}{I_{DRx} + I_z}$$

Where V_z and I_z are the reverse voltage and current of the zener diode Zx respectively.

For $V_{RAIL(peak)} = 150V$, the maximum value of R_{DRx} is:

$$R_{DRx(max)} = \frac{150V - 75V}{63\mu A + 1.7mA} = 42.5k\Omega$$

And the minimum value of R_{DRx} is:

$$R_{DRx(min)} = \frac{150V - 75V}{63\mu A + 6.67mA} = 11.14k\Omega$$

Thus, the value of R_{DRx} must be selected in the range:

$$11.14k\Omega \leq R_{DRx} \leq 42.5k\Omega$$

To minimize power dissipation on the zener diodes, a standard 42.2kΩ resistor can be used for the R_{DRx} . The maximum power dissipation on the R_{DRx} is then equals to:

$$P_{RDRX(max)} = \frac{(V_{RAIL(peak)} - V_z)^2}{R_{DRx}} = \frac{(150V - 75V)^2}{42.2k\Omega}$$

$$= 133mW$$

Thus, a standard 42.2kΩ resistor with 0.25W power rating (1206 package) and 1% tolerance can be used.

Calculating the Values of Z_{IN} and R_{IN} :

Assume the VIN pin of the LM3464A is about to be clamped to 75V, a 1.5W/75V zener diode CMZ5946B from Central Semiconductor is used to ensure adequate conduction current for Z_{IN} . Because the reverse current of the CMZ5946B is 5mA at 75V, the allowable current flows through Z_{IN} is between 5mA to 20mA. Similar to the requirements of selecting the Zx and R_{DRx} , the voltage at the VIN pin of the LM3464A is clamped to 75V by a voltage clamping circuit consists of Z_{IN} and R_{IN} . Also since the maximum operating and shutdown current ($V_{EN} < 2.1V$) are 3mA and 700uA respectively, to ensure the voltage of the VIN pin is clamped close to 75V even when the LM3464A is disabled, the value of R_{IN} should be calculated following the equations below:

$$R_{IN} = \frac{V_{RAIL(peak)} - V_{ZIN}}{I_{IN} + I_{ZIN}}$$

Maximum value of R_{IN} :

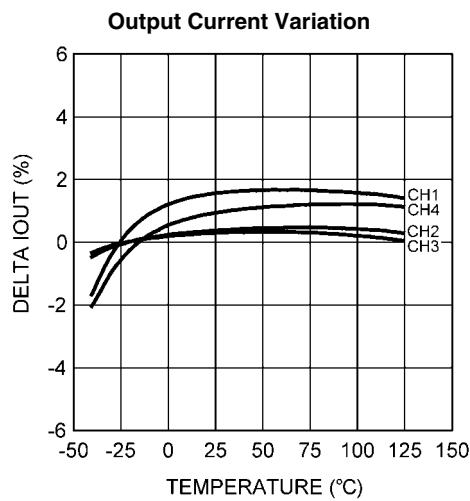
$$R_{IN(max)} = \frac{150V - 75V}{3mA + 5mA} = 9.375k\Omega$$

Minimum value of R_{IN} :

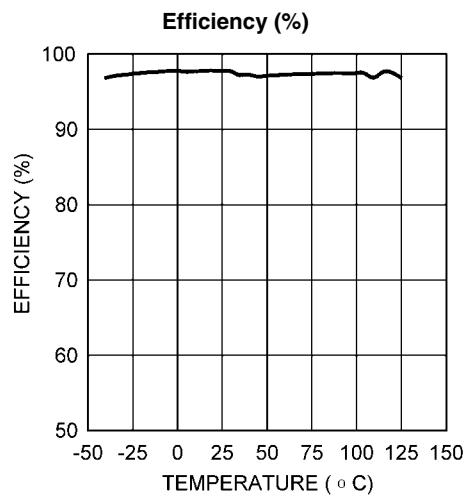
$$R_{IN(min)} = \frac{150V - 75V}{3mA + 20mA} = 3.26k\Omega$$

So the value of R_{IN} must be in the range:

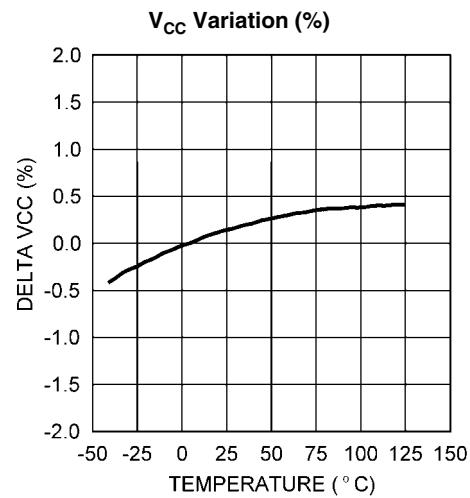
$$3.26k\Omega \leq R_{DRx} \leq 9.38k\Omega$$

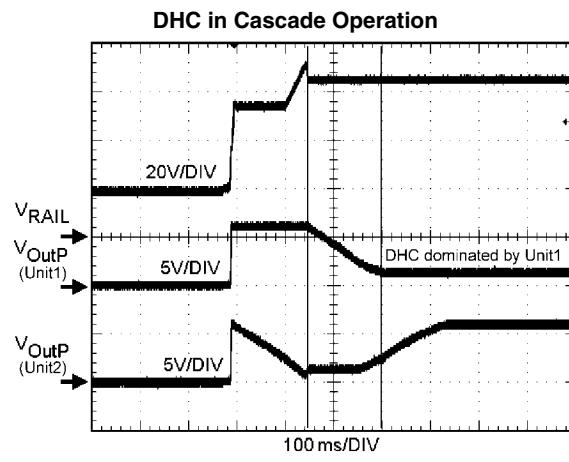

To minimize power dissipations on both the Z_{IN} and R_{IN} , a standard 9.31kΩ resistor can be selected for the R_{IN} . Then the maximum power dissipation on R_{IN} is:

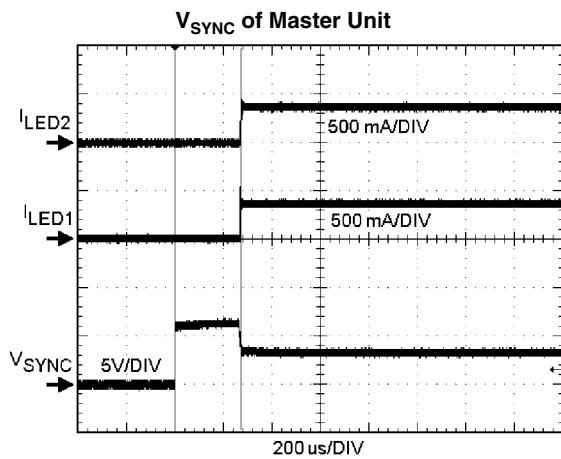
Thus, a standard 9.38kΩ resistor with 2512 package (1W) and 1% tolerance can be used.

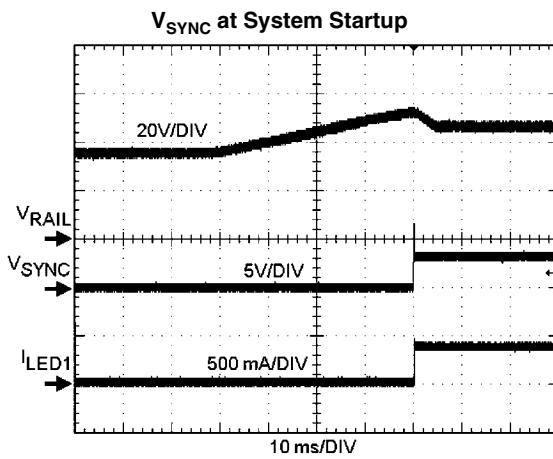

Typical Performance and Waveforms

All curves taken at $V_{IN} = 48V$ with configuration in typical application for driving twelve power LEDs with four output channels active and output current per channel = 350mA. $T_A = 25^\circ C$, unless otherwise specified.

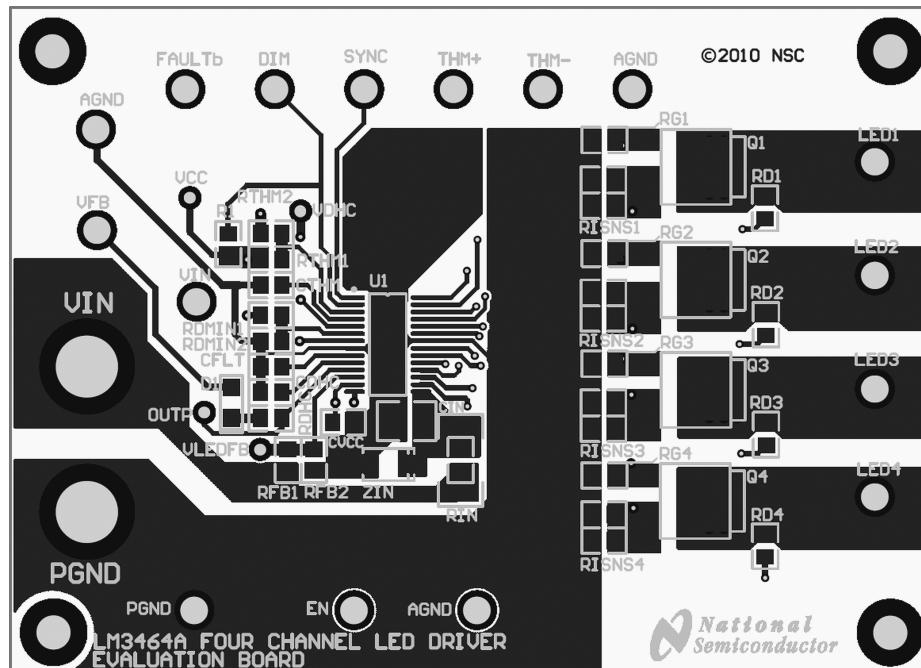

AN-2071


30127120

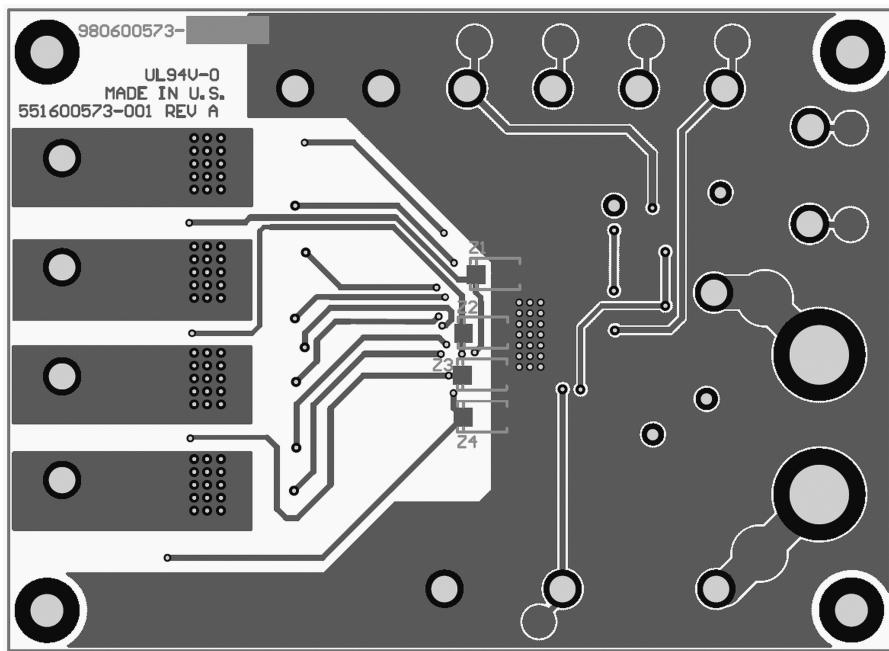

30127121


30127122

30127123



30127124


30127125

Evaluation Board Layout

30127126

FIGURE 11. Top Layer and Top Overlay

30127127

FIGURE 12. Bottom Layer and Bottom Overlay

Notes

AN-2071

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:
www.national.com

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempssensors	SolarMagic™	www.national.com/solarmagic
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor
 Americas Technical
 Support Center
 Email: support@nsc.com
 Tel: 1-800-272-9959

National Semiconductor Europe
 Technical Support Center
 Email: europe.support@nsc.com

National Semiconductor Asia
 Pacific Technical Support Center
 Email: ap.support@nsc.com

National Semiconductor Japan
 Technical Support Center
 Email: jpn.feedback@nsc.com

STANDARD TERMS FOR EVALUATION MODULES

1. *Delivery:* TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 *Limited Warranty and Related Remedies/Disclaimers:*
 - 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.
 - 2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

WARNING

Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

User shall operate the Evaluation Kit within TI's recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI's recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI's instructions for electrical ratings of interface circuits such as input, output and electrical loads.

NOTE:

EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGRADATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.

3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

3.3 Japan

3.3.1 *Notice for EVMs delivered in Japan:* Please see http://www.tij.co.jp/lsts/ti_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。

<https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-delivered-in-japan.html>

3.3.2 *Notice for Users of EVMs Considered "Radio Frequency Products" in Japan:* EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】開発キットの中には技術基準適合証明を受けていないものがあります。技術適合証明を受けていないものご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。日本テキサス・インスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

3.3.3 *Notice for EVMs for Power Line Communication:* Please see http://www.tij.co.jp/lsts/ti_ja/general/eStore/notice_02.page
電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。<https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-for-power-line-communication.html>

3.4 European Union

3.4.1 *For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):*

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

4 *EVM Use Restrictions and Warnings:*

4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.

4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.

4.3 *Safety-Related Warnings and Restrictions:*

4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.

4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.

4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.

5. *Accuracy of Information:* To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

6. *Disclaimers:*

6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.

6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.

7. *USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS.* USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.

8. *Limitations on Damages and Liability:*

8.1 *General Limitations.* IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.

8.2 *Specific Limitations.* IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMNITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.

9. *Return Policy.* Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.

10. *Governing Law:* These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025