LM22670,LM22671,LM22672,LM22673,LM22674, LM22675,LM22676,LM22677,LM22678,LM22679, LM22680,LM3150,LM3151,LM3152,LM3153, LMZ10503,LMZ10503EXT,LMZ10504, LMZ10504EXT,LMZ10505,LMZ10505EXT, LMZ12001,LMZ12001EXT,LMZ12002, LMZ12002EXT,LMZ12003,LMZ12003EXT, LMZ12008,LMZ12010,LMZ13608,LMZ13610, LMZ14201,LMZ14201EXT,LMZ14201H,LMZ14202, LMZ14202EXT,LMZ14202H,LMZ14203, LMZ14203EXT,LMZ14203H,LMZ22003,LMZ22005, LMZ22008,LMZ22010,LMZ23603,LMZ23605

SIMPLE SWITCHER?< Design Guide

Literature Number: SNVA556

SIMPLE SWITCHER® Design Guide

national.com/switcher

Accelerate your design time with circuit and PCB design tips and recommendations.

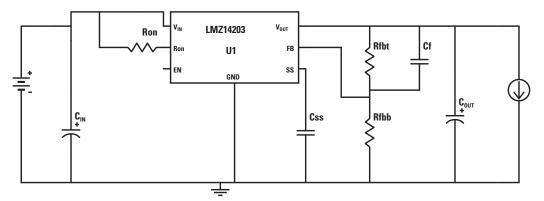
Table of Contents

1. Introduction

2. Power Module Designs

LMZ1420x POL (Point Of Load) Designs (6 to 42 V_{IN} , up to 6 V_{OUT} , up to 3A)	4
LMZ14203 Inverting Design (11 to 37 V_{IN} , as low as -5 V_{OUT} , up to 2.5A)	6
LM1200x POL Designs (4.5 to 20 V_{IN} , up to 6 V_{OUT} , up to 3A)	8
LMZ1420xH High Output Voltage Designs (6 to 42 V _{IN} , 5V to over 24 V _{OUT} , up to 3A)	10
LMZ10505 POL Designs (2.97 to 5.5 $V_{\rm IN}$, up to 5 $V_{\rm OUT}$ at 5A)	12
LMZ23603/5 POL Designs (6 to 36 $V_{\rm IN}$, up to 6 $V_{\rm OUT}$ at up to 5A)	14
LMZ22008/10 POL Designs (6 to 20 V_{IN} , up to 6 V_{OUT} at up to 10A)	16
LMZ12008/10 POL Designs (6 to 20 V _{IN} , up to 6 V _{OUT} at up to 10A)	18

3. Discrete Regulators and Controller Designs


LM2267x/LM22680 Designs (4.5 to 42 $V_{\rm IN}$, 1.5 to 30 $V_{\rm OUT}$ up to 5A load current)	
LM22670 Inverting Design (6 to 35 V_{IN} -5 V_{OUT} , up to 1.5A)	
LM315x Designs (4.5 to 42 $V_{\rm IN}$ 1.2 to 24 $V_{\rm OUT}$ up to 10A load current)	
LM557x/LM2557x Designs (6 to 75 V_{IN} , 1.5 to 30 V_{OUT} ; V_{OUT} up to 3A load current)	

This design guide covers various designs using a select set of SIMPLE SWITCHER® products. For each product, the first section contains schematic, bill of material, technical tips and links to WEBENCH® designs. The second page shows the PCB layout and component placement suggestions to ensure a robust design. For more details please refer to the device datasheets and other documentation referenced.

Two different product families are introduced: The SIMPLE SWITCHER power modules and SIMPLE SWITCHER discrete regulators and controller. The SIMPLE SWITCHER power modules offer the greatest ease of use and fastest design time while the SIMPLE SWITCHER discrete regulators and controllers offer the most design flexibility. For more information comparing the two families consult *Power Designer 129: Comparing the Merits of Integrated Power Modules versus Discrete Regulators.*

Both families are supported by the WEBENCH design tool, which creates custom power supply designs depending on the application requirements and provides the bill of material needed to create those designs.

LMZ14203 PCB Design

recommended as they are stable across a larger

prevents early turn on of the IC as the main supply

voltage ramps up. If the supply voltage should rise

and fall at the UVLO voltage then the LMZ14203's

output may droop. Digital loads such as FPGAs are

Datasheets for: LMZ14203, LMZ14202, and LMZ14201

• AN-2024: LMZ1420x / LMZ1200x Evaluation Board

• AN-2052: National Semiconductor's SIMPLE

SWITCHER Power Modules and EMI

• The R_{ENT} & R_{ENB} circuit ensures robustness and

highly sensitive to this and a monotonic rise.

· For further details refer to the Design

Documentation section.

Design Documentation

temperature range than others.

Design Considerations

- The bulk C_{IN} input capacitor supplies the instantaneous current demands of the IC and must be sized to satisfy the input ripple current requirement. Low ESR or ceramic capacitors are suggested to minimize input voltage ripple. An optional high frequency 1 μF ceramic cap can be placed farther away to reduce noise.
- For C_{OUT}, low ESR capacitors such as ceramics are recommended. This reduces output ripple but make sure to account for a DC bias derating when sizing the capacitor. C0G, X7R or X5R dielectrics are

Component Values (BOM)

The following table summarizes the values chosen for the designs listed here.

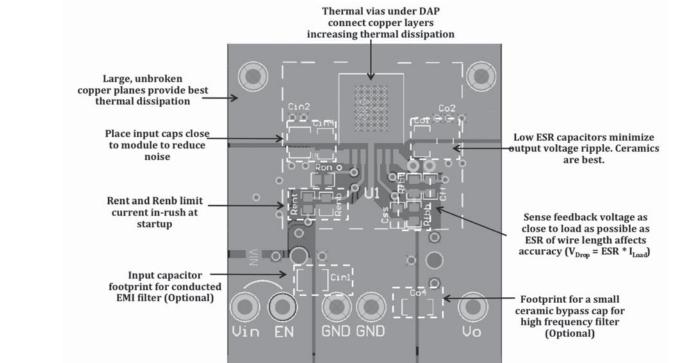
1.00 kΩ

4.22 kΩ

1.13 kΩ

8.45 kΩ

39.2 kΩ


Common Components across all designs

C _{IN}		C _{OUT}	C _{SS}		C _F		R _{ENT}
10 µF, X5R,	, 50V	100 µF, X5R, 6	.3V 22 nF, 2	X7R, 16V	22 nF, X7R 16	3V	6V 68.1kΩ
Design-Sp	oecific C	Components					
V _{IN}	V _{OUT}	R _{FBT}	R _{FBB}	R _{ON}			
8 to 42V	5V	5.62 kΩ	1.07 kΩ	100 k	D		
6 to 42V	3.3V	3.32 kΩ	1.07 kΩ	61.9 k	Ω		
6 to 30V	2.5V	2.26 kΩ	1.07 kΩ	47.5 k	Ω		
6 to 25V	1.8V	1.87 kΩ	1.50 kΩ	32.4 k	Ω		

28.0 kΩ

22.6 kΩ

24.9 kΩ

PCB effects on Thermal Performance

The SIMPLE SWITCHER power module's TO-PM0D7 package is very effective at heat transfer and PCB design has a great impact on the overall thermal performance of the device. Commonly referred to as θ_{JA} , this measures the device's temperature rise for a given power dissipation. Below are suggestions to follow when designing your PCB. For more details please refer to the datasheet and suggested further reading provided at the end.

- Solder the package's exposed pad DAP to ground plane
- Use copper planes with a 2-ounce copper weight
- Connect the copper planes with thermal vias
- Larger unbroken PCB area provide better thermal dissipation

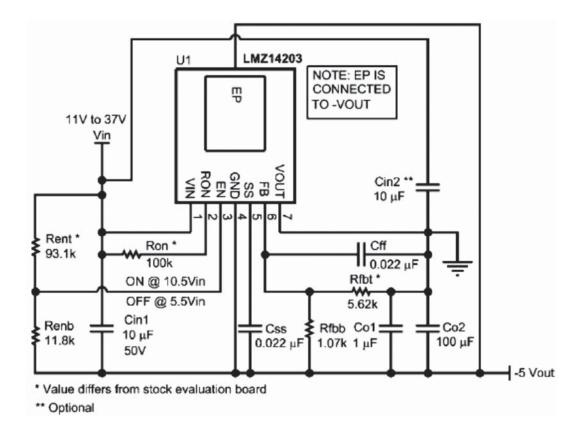
Suggested Further Reading

- AN-2026: The effect of PCB Design on the Thermal Performance of SIMPLE SWITCHER Power Module
- AN-2020: Thermal Design by Insight, Not Hindsight
- AN-2078; PCB Layout For National Semiconductor's SIMPLE SWITCHER Power Module
- AN-2024: LMZ1420x / LMZ1200x Evaluation Board

6 to 21V

6 to 19V

6 to 18V


1.5V

1.2V

0.8V

national.com/switcher

LMZ14203 Inverting Buck-Boost PCB Design

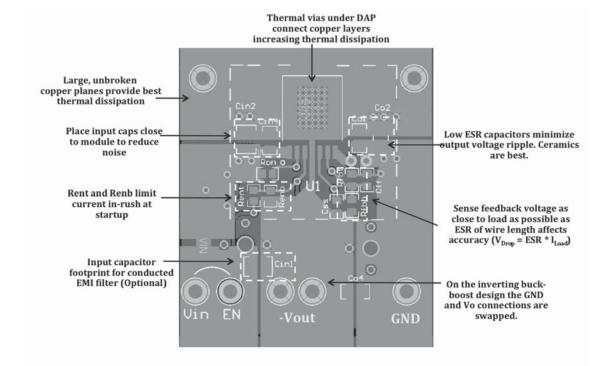
Design Documentation

• Datasheets for: LMZ14203, LMZ14202, and LMZ14201

AN-2027: Inverting Application for the LMZ14203

AN-2024: LMZ1420x / LMZ1200x Evaluation Board

SIMPLE SWITCHER Power Module

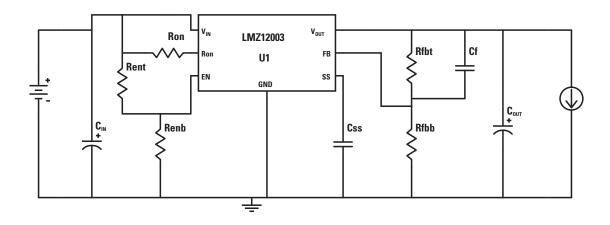

Design Considerations

The LMZ14203 inverting design largely follow the LMZ14203 design. As seen in the schematic, the major difference is where the ground and V_{OUT} connections are made. In addition, while the R_{ENT} & R_{ENB} circuit can still be used, hysteresis occurs which maybe undesirable.

For further details refer to the Design Documentation section.

Component Values (BOM)

V _{IN}	V _{OUT}	C _{IN}	C _{OUT}	C _{SS}	C _F	R _{ent}	R _{enb}	R _{fbt}	R _{fbb}	R _{on}
11V to 37V	-5V	10 µF, 50V X7R	100 µF, 6.3V X5R	22nF, 16V X7R	22nF, 16V X7R	93.1 kΩ	11.8 kΩ	5.62 kΩ	1. 07 kΩ	100 kΩ
11V to 37V	-3.3V	10 µF, 50V X7R	100 µF, 6.3V X5R	22nF, 16V X7R	22nF, 16V X7R	93.1 kΩ	11.8 kΩ	3.32 kΩ	1.07 kΩ	100 kΩ


PCB effects on Thermal Performance

The SIMPLE SWITCHER Power Module's TO-PMOD7 package is very effective at heat transfer and PCB design has a great impact on the overall thermal performance of the device. Commonly referred to as θ_{JA} , this measures the device's temperature rise for a given power dissipation. Below are suggestions to follow when designing your PCB. For more details please refer to the datasheet and suggested further reading provided at the end.

- Solder the package's exposed pad DAP to ground plane
- · Use copper planes with a 2-ounce copper weight
- Connect the copper planes with thermal vias
- Larger unbroken PCB area provide better thermal dissipation

- AN-2027: Inverting Application for the LMZ14203 SSPM
- AN-2026: The effect of PCB Design on the Thermal Performance of SIMPLE SWITCHER Power Module
- AN-2020: Thermal Design by Insight, Not Hindsight
- AN-2078: PCB Layout For National Semiconductor's SIMPLE SWITCHER Power Module

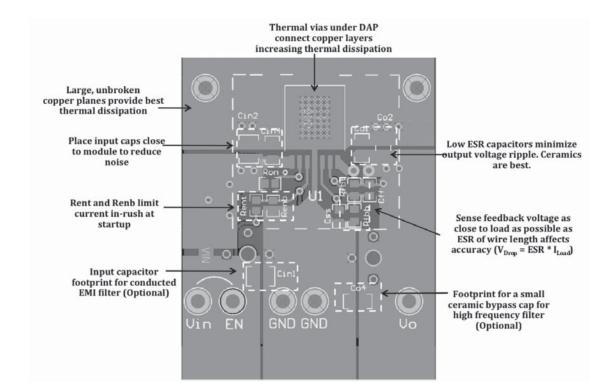
LMZ1200x PCB Design

Design Considerations/Performance

- The bulk C_{IN} input capacitor supplies the instantaneous current demands of the IC and must be sized to satisfy the input ripple current requirement. Low ESR or ceramic capacitors are suggested to minimize input voltage ripple. An optional high frequency 1 μ F ceramic cap can be placed farther away to reduce noise.
- For C_{OUT}, low ESR capacitors such as ceramics are recommended. This reduces output ripple but make sure to account for a DC bias derating when sizing the capacitor. COG, X7R or X5R dielectrics are recommended as they are stable across a larger temperature range than others.

Component Values (BOM)

Common Components across all designs


C _{IN}	C _{OUT}	C _{SS}	C _F	R _{ENT}	R _{ENB}		
10 µF, X5R, 50V	100 µF, X5R, 6.3V	22 nF, X7R, 16V	22 nF, X7R 16V	32.4 kΩ	11.8 kΩ		
Design-Specific Components							
VIN		R _{ERR}	R _{ON}				

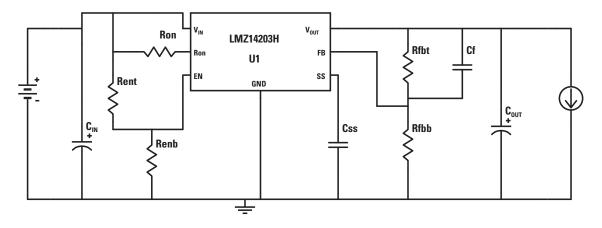
V _{IN}	V _{OUT}	R _{FBT}	R _{FBB}	R _{ON}
8 to 20V	5V	5.62 kΩ	1.07 kΩ	100 kΩ
6 to 20V	3.3V	3.32 kΩ	1.07 kΩ	61.9 kΩ
5.5 to 20V	2.5V	2.26 kΩ	1.07 kΩ	47.5 kΩ
4.5 to 20V	1.8V	1.87 kΩ	1.50 kΩ	32.4 kΩ
4.5 to 20V	1.5V	1.00 kΩ	1.13 kΩ	28.0 kΩ
4.5 to 19V	1.2V	4.22 kΩ	8.45 kΩ	22.6 kΩ
4.5 to 18V	0.8V	0	39.2 kΩ	24.9 kΩ

- The R_{ENT} & R_{ENB} circuit ensures robustness and prevents early turn on of the IC as the main supply voltage ramps up. If the supply voltage should rise and fall at the UVLO voltage then the LMZ12003's output may droop. Digital loads such as FPGAs are highly sensitive to this and a monotonic rise.
- For further details refer to the Design Documentation section.

Design Documentation

- Datasheets for: LMZ12003 , LMZ12002, and LMZ12001
- AN-2024: LMZ1420x/LMZ1200x Evaluation Board
- AN-2052: National Semiconductor's SIMPLE SWITCHER Power Modules and EMI

PCB effects on Thermal Performance


The TO-PMOD-7 package of the SIMPLE SWITCHER Power Module is so effective at heat transfer PCB design has a great impact on the overall thermal performance of the device. Commonly referred to as θ_{JA} , this number measures the temperature rise of the device gets for a given power dissipation. Below are guidelines when designing your PCB. For more details please refer to the datasheet and other references provided at the end.

- Solder the package's exposed pad DAP to ground plane
- Use copper planes with a 2-ounce copper weight
- Connect the copper planes with thermal vias
- Larger unbroken PCB area provide better thermal dissipation

- AN-2026: The effect of PCB Design on the Thermal Performance of SIMPLE SWITCHER Power Module
- AN-2020: Thermal Design by Insight, Not Hindsight
- AN-2078: PCB Layout For National Semiconductor's SIMPLE SWITCHER Power Module
- AN-2024: LMZ1420x / LMZ1200x Evaluation Board

LMZ1420xH Designs

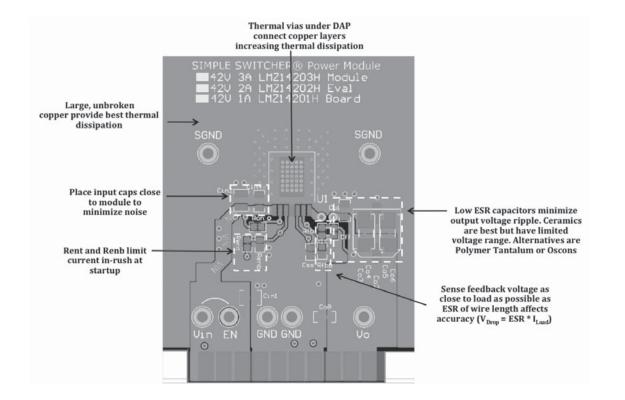
LMZ1420xH PCB Designs

Design Considerations/Performance

- The bulk C_{IN} input capacitor supplies the instantaneous current demands of the IC and must be sized to satisfy the input ripple current requirement. Low ESR or ceramic capacitors are suggested to minimize input voltage ripple. An optional high frequency 1 μ F ceramic cap can be placed farther away to reduce noise.
- For C_{OUT}, low ESR capacitors such as ceramics are recommended. However, ceramics have a limited voltage range and often a polymer electrolytic must be used instead. Be aware that using high ESR caps may inadvertently trigger OVP.
- The R_{ENT} & R_{ENB} circuit ensures robustness and prevents early turn on of the IC as the main supply voltage ramps up. If the supply voltage should rise and fall at the UVLO voltage then the LMZ14203H's output may droop. Digital loads such as FPGAs are highly sensitive to this and a monotonic rise.
- For further details refer to the Design Documentation section

Design Documentation

- Datasheets for: LMZ14203H, LMZ14202H, and LMZ14201H
- AN-2089: LMZ1420xH Evaluation Board
- AN-2052: National Semiconductor's SIMPLE SWITCHER Power Modules and EMI


Component Values (BOM)

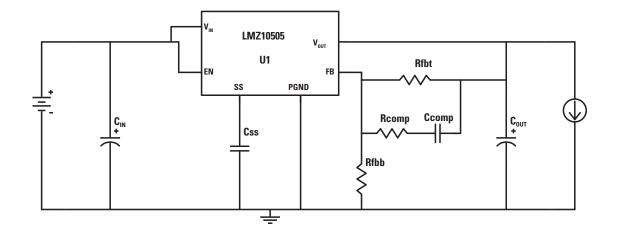
The following table summarizes the values chosen for the designs listed here.

Common Components across all designs

C _{IN}	C _{SS}	C _F	R _{ENT}	R _{FBT}	R _{ENB}	
4.7 μF, 100V, X7R	10 nF, 25V, X7R	22 nF, 50V, X7R	68.1 kΩ	3 4 kΩ	11.8 kΩ	
Design-Specific Components						

V _{IN}	V _{OUT}	C _{OUT}	R _{ENB}	R _{FBB}	R _{ON}
8 to 42V	5	100 µF, 6.3V, X5R	11.8 kΩ	6.49 kΩ	97.6 kΩ
18 to 42V	12	47 μF, 35V, X5R	4.75 kΩ	2.43 kΩ	187 kΩ
18 to 42V	15	33 μF, 35V, Tantalum	4.75 kΩ	1.91 kΩ	357 kΩ
24 to 42V	18	33 μF, 35V, Tantalum	3.57 kΩ	1.58 kΩ	287 kΩ
30 to 42V	24	47 μF, 35V, AL Polymer	2.8 kΩ	1.18 kΩ	487 kΩ

PCB effects on Thermal Performance


The TO-PMOD7 package of the SIMPLE SWITCHER power module is so effective at heat transfer PCB design has a great impact on the overall thermal performance of the device. Commonly referred to as θ_{JA} , this number measures the temperature rise of the device gets for a given power dissipation. Below are guidelines when designing your PCB. For more details please refer to the datasheet and other references provided at the end.

- Solder the package's exposed pad DAP to ground plane
- Use copper planes with a 2-ounce copper weight
- Connect the copper planes with thermal vias
- Larger unbroken PCB area provide better thermal dissipation

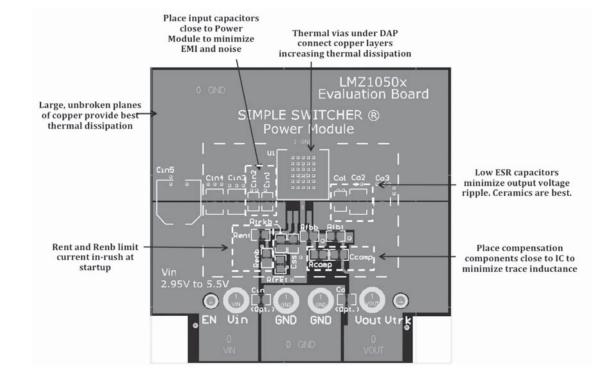
- AN-2026: The effect of PCB Design on the Thermal Performance of SIMPLE SWITCHER Power Module
- AN-2020: Thermal Design by Insight, Not Hindsight
- AN-2078: PCB Layout For National Semiconductor's SIMPLE SWITCHER Power Module
- AN-2024: LMZ1420x / LMZ1200x Evaluation Board

LMZ10505 Designs

LMZ10505 PCB Design

Design Considerations/Performance

- The bulk C_{IN} input capacitor supplies the instantaneous current demands of the IC and must be sized to satisfy the input ripple current requirement. Low ESR or ceramic capacitors are suggested to minimize input voltage ripple.
- For C_{OUT}, low ESR capacitors such as ceramics are recommended. This reduces output ripple but make sure to account for a DC bias derating when sizing the capacitor. COG, X7R or X5R dielectrics are recommended as they are stable across a larger temperature range than others.
- The LMZ10505 features an internal Type II compensation network. To optimize load transient performance, add a resistor and capacitor (Type III compensation) network across the upper feedback resistor. Choosing these components changes the crossover frequency of the converter and affects responsiveness to load transients. These components also affect phase margin which is a measure of the stability of the power supply to load transients.
- For further details refer to the Design Documentation section


Design Documentation

- Datasheets: LMZ10505, LMZ10504, LMZ10503
- AN-2013: LMZ1050x SIMPLE SWITCHER Power Module Quick Compensation Guide

Component Values (BOM)

The following table summarizes the values chosen for the designs listed here.

V _{IN}	V _{OUT}	I _{out}	C _{IN}	C _{OUT}	C _{SS}	C _{COMP}	R _{COMP}	R _{fbt}	R _{FBB}
5v	0.9	5A	10 uF, 10V X5R	100 uF, 6.3V X5R	2.7 nF, 50V X7R	390 pF, 50V X7R	511Ω	43.2 kΩ	340 kΩ
5V	1.2	5A	10 uF, 10V X5R	100 uF, 6.3V X5R	2.7 nF, 50V X7R	390 pF, 50V X7R	511Ω	43.2 kΩ	86.6 kΩ
5V	1.5	5A	10 uF, 10V X5R	100 uF, 6.3V X5R	2.7 nF, 50V X7R	220 pF, 50V X7R	909Ω	61.9 kΩ	54.9 kΩ
5V	1.8	5A	4.7 μF, 50V X5R	47 μF, 6.3V X5R	2.7 nF, 50V X7R	180 pF, 50V X7R	523Ω	52.3 kΩ	64.9 kΩ
5V	2.5	5A	4.7 μF, 50V X5R	47 μF, 6.3V X5R	2.7 nF, 50V X7R	100 pF, 50V X7R	931Ω	82.5 kΩ	39.2 kΩ
5V	3.3	5A	4.7 μF, 50V X5R	47 μF, 16V X5R	2.7 nF, 50V X7R	100 pF, 50V X7R	931 Ω	82.5 kΩ	26.7 kΩ

PCB effects on Thermal Performance

The TO-PMOD7 package of the SIMPLE SWITCHER power module is so effective at heat transfer PCB design has a great impact on the overall thermal performance of the device. Commonly referred to as θ_{JA} , this number measures the temperature rise of the device gets for a given power dissipation. Below are guidelines when designing your PCB. For more details please refer to the datasheet and other references provided at the end.

- Solder the package's exposed pad DAP to ground plane
- Use copper planes with a 2-ounce copper weight
- Connect the copper planes with thermal vias
- Larger unbroken PCB area provide better thermal dissipation

- AN-2026: The effect of PCB Design on the Thermal Performance of SIMPLE SWITCHER Power Module
- AN-2020: Thermal Design by Insight, Not Hindsight
- AN-2078: PCB Layout For National Semiconductor's SIMPLE SWITCHER Power Module
- AN-2022: LMZ1050x Evaluation Board

LMZ23603/5 Designs

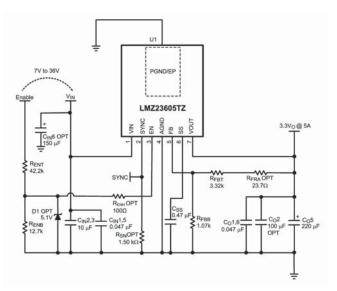
LMZ23605 PCB Design

Design Considerations

- The C_{IN} input capacitor supplies the instantaneous current demands of the IC and must be sized to satisfy the input ripple current requirement. Low ESR or ceramic capacitors are suggested to minimize input voltage ripple. An optional high frequency 1 μ F ceramic cap can be placed farther away to reduce noise.
- For C_{OUT}, low ESR capacitors such as ceramics are recommended. This reduces output ripple but make sure to account for a DC bias derating when sizing the capacitor. COG, X7R or X5R dielectrics are recommended as they are stable across a larger temperature range than others.
- The R_{ENT} & R_{ENB} circuit ensures robustness and prevents early turn on of the IC as the main supply voltage ramps up. If the supply voltage should rise and fall at the UVLO voltage then the LMZ23605's output may droop. Digital loads such as FPGAs are highly sensitive to this and a monotonic rise.
- For further details refer to the Design Documentation section

Component Values (BOM)

Common Components across all designs

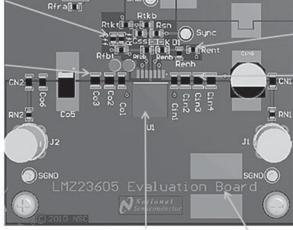

C _{IN}	C _{OUT}	C _{ss}	R _{SN}	R _{ENT}	R _{ENB}	R _{ENH}
10 µF, X7R, 50V	100 µF, X7R, 6.3V	0.47 μF, X7R, 16V	1.5 kΩ	42.2 kΩ	12.7 kΩ	100Ω

Common Components across all designs

C _{IN} (opt)	C _{OUT} (opt)	R _{FRA} (opt)	D1 (opt)
150 µF, CAP, AL, 50V	220 µF, SP-CAP, 6.3V	23.7Ω	0.5W, 5.1V

Design-specific components

V _{IN}	V _{OUT}	R _{FBT}	R _{FBB}				
10 to 36V	6V	15.4 kΩ	2.37 kΩ				
9 to 36V	5V	5.62 kΩ	1.07 kΩ				
7 to 36V	3.3V	3.32 kΩ	1.07 kΩ				
6 to 36V	2.5V	2.26 kΩ	1.07 kΩ				
6 to 36V	1.8V	1.87 kΩ	1.5 kΩ				
6 to 36V	1.5V	1.00 kΩ	1.13 kΩ				
6 to 36V	1.2V	1.07 kΩ	2.05 kΩ				
6 to 36V	1.0V	1.62 kΩ	6.49 kΩ				
6 to 36V	0.8V	0	8.06 kΩ				



Design Documentation

- Datasheets for: LMZ23605 and LMZ23603
- AN-2085: LMZ2360x / LMZ2200x Evaluation Board
- AN-2125: LMZ23605 Demonstration Board

Sense feedback voltage as close to load as possible as ESR of wire length affects accuracy

Low ESR caps minimize output voltage ripple. Ceramics are best.

 \odot

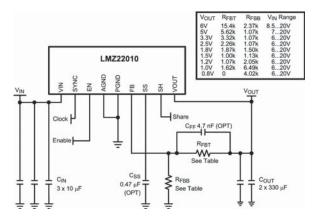
Rent and Renb limit current in-rush at startup

Place input caps close to module to reduce noise

Thermal vias under DAP connect copper layers increasing thermal dissipation Large, unbroken copper planes provide best thermal dissipation

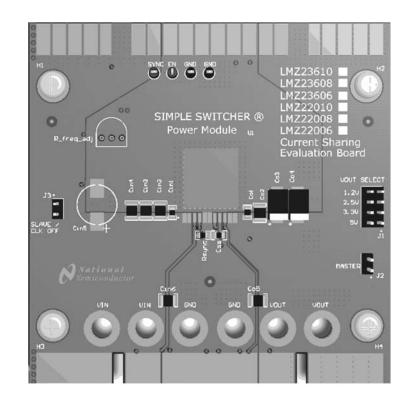
PCB effects on Thermal Performance

The SIMPLE SWITCHER power module's TO-PMOD7 package is very effective at heat transfer and PCB design has a great impact on the overall thermal performance of the device. Commonly referred to as θ_{JA} , this measures the device's temperature rise for a given power dissipation. Below are suggestions to follow when designing your PCB. For more details please refer to the datasheet and suggested further reading provided at the end.


- Solder the package's exposed pad DAP to ground plane
- Use copper planes with a 2-ounce copper weight
- Connect the copper planes with thermal vias
- Larger unbroken PCB area provide better thermal dissipation

- AN-2026: The effect of PCB Design on the Thermal Performance of SIMPLE SWITCHER Power Module
- AN-2020: Thermal Design by Insight, Not Hindsight
- AN-2078: PCB Layout For National Semiconductor's SIMPLE SWITCHER Power Module
- AN-2085: LMZ2360x / LMZ2200x Evaluation Board
- AN-2125: LMZ23605 Demonstration Board

LMZ22008/10 PCB Design


Design Considerations

- The C_{IN} input capacitor supplies the instantaneous current demands of the IC and must be sized to satisfy the input ripple current requirement. Low ESR or ceramic capacitors are suggested to minimize input voltage ripple. An optional high frequency 1µF ceramic cap can be placed farther away to reduce noise.
- For C_{OUT}, low ESR capacitors such as Poscap or SP caps are recommended. This reduces output ripple but make sure to account for a DC bias derating when sizing the capacitor.
- The R_{ENT} & R_{ENB} circuit ensures robustness and prevents early turn on of the IC as the main supply voltage ramps up. If the supply voltage should rise and fall at the UVLO voltage then the LMZ22008/10's output may droop. Digital loads such as FPGAs are highly sensitive to this and a monotonic rise.
- For further details refer to the Design Documentation section

Design Documentation

- Datasheets for: LMZ22010 and LMZ22008
- AN-2093: LMZ236xx / LMZ20xx Evaluation Board

Component Values (BOM)

Common Components across all designs

C _{IN}	C _{OUT}	C _{ss}	R _{SN}	R _{ENT}	R _{ENB}	R _{ENH}	
3 x 10uF, 50V	2 x 330uF, 6.3V	0.47uF, 16V	1.5K	42.2K	12.7K	NA	

Common Components across all designs

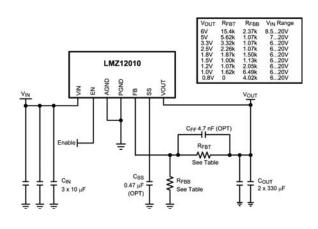
C _{IN} (opt)	C _{OUT} (opt)	D1 (opt)
150 µF, CAP, AL, 50V	2 x 47uF, 10V	5.1V, 0.5W

Design-specific components

V _{IN}	V _{OUT}	R _{FBT}	R _{FBB}
8.5 to 20V	6V	15.4 kΩ	2.37 kΩ
7 to 20V	5V	5.62 kΩ	1.07 kΩ
6 to 20V	3.3V	3.32 kΩ	1.07 kΩ
6 to 20V	2.5V	2.26 kΩ	1.07 kΩ
6 to 20V	1.8V	1.87 kΩ	1.5 kΩ
6 to 20V	1.5V	1.00 kΩ	1.13 kΩ
6 to 20V	1.2V	1.07 kΩ	2.05 kΩ
6 to 20V	1.0V	1.62 kΩ	6.49 kΩ
6 to 20V	0.8V	0	4.02 kΩ

PCB effects on Thermal Performance

The SIMPLE SWITCHER Power Module's TO-PMOD11 package is very effective at heat transfer and PCB design has a great impact on the overall thermal performance of the device. Commonly referred to as θ_{JA} , this measures the device's temperature rise for a given power dissipation. Below are suggestions to follow when designing your PCB. For more details please refer to the datasheet and suggested further reading provided at the end.


- Solder the package's exposed pad DAP to ground plane
- Use copper planes with a 2-ounce copper weight
- Connect the copper planes with thermal vias
- Larger unbroken PCB area provide better thermal dissipation

- AN-2026: The effect of PCB Design on the Thermal Performance of SIMPLE SWITCHER Power Module
- AN-2020: Thermal Design by Insight, Not Hindsight
- AN-2078: PCB Layout For National Semiconductor's SIMPLE SWITCHER Power Module
- AN-2093: LMZ236xx / LMZ20xx Evaluation Board

LMZ12008/10 PCB Design

Design Considerations

- The C_{IN} input capacitor supplies the instantaneous current demands of the IC and must be sized to satisfy the input ripple current requirement. Low ESR or ceramic capacitors are suggested to minimize input voltage ripple. An optional high frequency 1 μF ceramic cap can be placed farther away to reduce noise.
- For C_{OUT}, low ESR capacitors such as Poscap or SP caps are recommended. This reduces output ripple but make sure to account for a DC bias derating when sizing the capacitor.
- The R_{ENT} & R_{ENB} circuit ensures robustness and prevents early turn on of the IC as the main supply voltage ramps up. If the supply voltage should rise and fall at the UVLO voltage then the LMZ12008/10's output may droop. Digital loads such as FPGAs are highly sensitive to this and a monotonic rise.
- For further details refer to the Design Documentation section

Design Documentation

- Datasheets for: LMZ12010 and LMZ12008
- AN-xxxx: LMZ136xx / LMZ10xx Demonstration Board

Component Values (BOM)

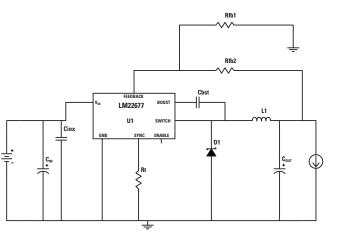
Common components across all designs (R_{ENT} and R_{ENB} – On EVB but not required)

C _{IN}	C _{OUT}	C _{ss}	R _{SN}	R _{ENT}	R _{ENB}	R _{enh}	
3 x 10uF, 50V	2 x 330uF, 6.3V	0.47uF, 16V	1.5K	42.2K	12.7K	NA	

Common Components across all designs

C _{IN} (opt)	C _{OUT} (opt)	R _{FRA} (opt)	D1 (opt)	
2 x 0.047uF, 50V	2 x 47uF, 10V	NA	5.1V, 0.5W	

Design specific components


V _{IN}	V _{OUT}	R _{FBT}	R _{FBB}
8.5 to 20V	6V	15.4 kΩ	2.37 kΩ
7 to 20V	5V	5.62 kΩ	1.07 kΩ
6 to 20V	3.3V	3.32 kΩ	1.07 kΩ
6 to 20V	2.5V	2.26 kΩ	1.07 kΩ
6 to 20V	1.8V	1.87 kΩ	1.5 kΩ
6 to 20V	1.5V	1.00 kΩ	1.13 kΩ
6 to 20V	1.2V	1.07 kΩ	2.05 kΩ
6 to 20V	1.0V	1.62 kΩ	6.49 kΩ
6 to 20V	0.8V	0	4.02 kΩ

PCB effects on Thermal Performance

The SIMPLE SWITCHER power module's TO-PMOD11 package is very effective at heat transfer and PCB design has a great impact on the overall thermal performance of the device. Commonly referred to as θ_{JA} , this measures the device's temperature rise for a given power dissipation. Below are suggestions to follow when designing your PCB. For more details please refer to the datasheet and suggested further reading provided at the end.

- Solder the package's exposed pad DAP to ground plane
- Use copper planes with a 2-ounce copper weight
- · Connect the copper planes with thermal vias
- Larger unbroken PCB area provide better thermal dissipation

- AN-2026: The effect of PCB Design on the Thermal Performance of SIMPLE SWITCHER Power Module
- AN-2020: Thermal Design by Insight, Not Hindsight
- AN-2078: PCB Layout For National Semiconductor's SIMPLE SWITCHER Power Module
- AN-xxxx: LMZ136xx / LMZ10xx Demonstration Board

Design Considerations/Performance

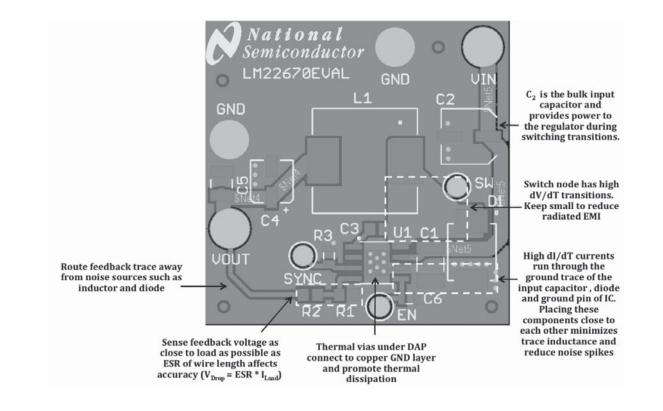
- The bulk C_{IN} input capacitor supplies the instantaneous current demands of the IC and must be sized to satisfy the input ripple current requirement. Low ESR or ceramic capacitors are suggested to minimize input voltage ripple.
- For C_{OUT}, low ESR capacitors such as ceramics are recommended. This reduces output ripple but make sure to account for a DC bias derating when sizing the capacitor. COG, X7R or X5R dielectrics are recommended as they are stable across a larger temperature range than others. Higher value capacitors can be placed in parallel to provide bulk capacitance during transient load steps.

Component Values (BOM)

The following table summarizes the values chosen for the designs listed here.

Common Components across all designs

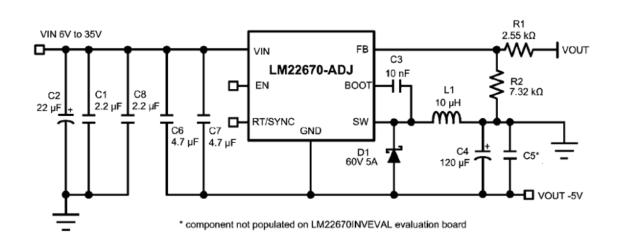
C _{BST}	C _{INX}	D1
10 nF, 50V, X7R	1 uF, 100V, X7R	100V, Schottky Diode


Design-Specific Components

V _{IN}	V _{OUT}	C _{IN}	C _{OUT}	L1	R _{FB1}	R _{FB2}	Rt
4.5 to 42	1.5	150 µF, 200V AL-EI	680 µF, 2.5V AL Polymer	4.7 μH	1 kΩ	169Ω	113 kΩ
4.5 to 42	1.8	150 µF, 200V AL-EI	680 µF, 2.5V AL Polymer	4.7 μΗ	1 kΩ	402Ω	102 kΩ
4.5 to 42	2.5	150 µF, 200V AL-EI	470 µF, 4V AL Polymer	4.7 μH	1 kΩ	953Ω	82.5 kΩ
4.5 to 42	3.3	68 μF, 200V AL-EI	180 µF, 6.3V AL Polymer	10 µH	1 kΩ	1.58 kΩ	182 kΩ
7 to 42	5	150 µF, 200V AL-EI	68 µF, 10V AL Polymer	10 µH	1 kΩ	2.87 kΩ	100 kΩ
18 to 42	12	100 µF, 250V AL-EI	33 μF, 16V AL-EI	18 µH	1 kΩ	8.45 kΩ	113 kΩ
24 to 42	15	2.2 µF, 100V AL-EI	100 µF, 25V AL-EI	22 µH	1 kΩ	10.7 kΩ	118 kΩ
36 to 42	18	4.7 μF, 100V AL-EI	22 µF, 35V AL-EI	22 µH	1 kΩ	13 kΩ	110 kΩ
36 to 42	24	2.2 µF, 100V AL-EI	100 µF, 35V AL-EI	22 µH	1 kΩ	17.8 kΩ	165 kΩ

- The re-circulating diode, D1, should be a Schottky due to its reverse recovery characteristics and low forward voltage drop. This helps improve efficiency of the converter.
- The schematic and PCB layout shown are for the LM22677 but apply to all LM2267x/LM22680 devices.
 For BOM component choice using devices other than LM22677 please use the WEBENCH links below to run the designs.
- For further details refer to the Design Documentation section

Design Documentation


- Datasheets: LM22670, LM22671, LM22672, LM22673, LM22674, LM22675, LM22676, LM22677, LM22678, LM22679, LM22680
- AN2024: LMZ1420x/LMZ1200x Evaluation Board
- AN-1246: Stresses in Wide Input DC-DC Converters

- AN-1892: LM22677 Evaluation Board
- AN-1891: LM22679 Evaluation Board
- AN-1894: LM22673 Evaluation Board
- AN-1885: LM22670 Evaluation Board
- AN-1911: LM22680 Evaluation Board
- AN-1896: LM22672 Evaluation Board
- AN-1895: LM22671 Evaluation Board
- AN-1229: SIMPLE SWITCHER PCB Layout Guidelines
- AN-1149: Layout Guidelines for Switching Power Supplies
- Online Seminar: PCB Layout for Switchers
- AN-1157: Positive to Negative Buck-Boost converter using LM267x

LM2267x/LM22680 Inverting Buck-Boost Design

LM2267x/LM22680 Inverting Buck-Boost PCB Design

Design Documentation

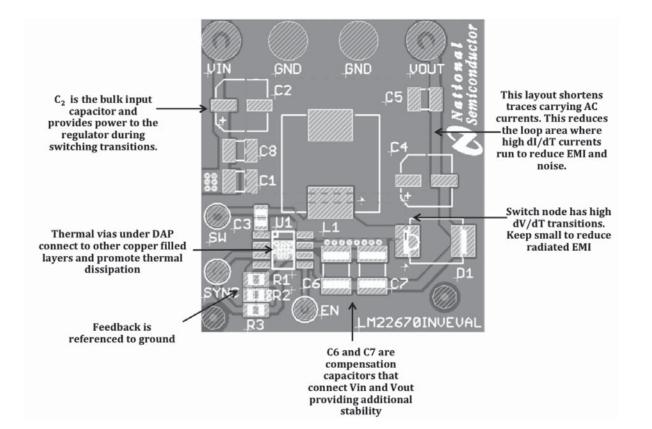
LM22679, LM22680

Topology

Datasheets: LM22670, LM22671, LM22672, LM22673,

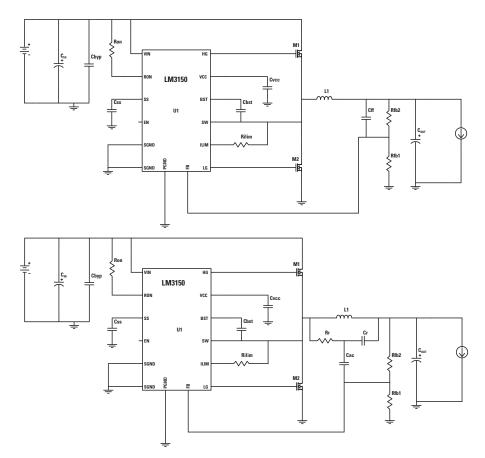
LM22674, LM22675, LM22676, LM22677, LM22678,

AN-1888: LM22670 Evaluation Board Inverting


Design Considerations/Performance

- The LM22680 inverting buck-boost schematic shown above is similar to the LM22680 standard buck design but with some critical differences.
 C6 and C7 are additional capacitors connecting the input to the negative output to provide additional phase margin for stability. The GND pin of the IC is also connected to -V_{OUT} and the feedback pin's references to ground.
- The design presented here can apply to any of the LM2267x/LM22680 family.
- For further details refer to the Design Documentation section.

Component Values (BOM)


The following table summarizes the values chosen for the designs listed here.

C _{IN1}	C _{IN2}	C _{IN6}	C _{IN7}	C _{IN8}	L1	C _{B00T3}	C _{OUT4}	R1	R2
2.2 µF 50V, X7R	22 µF, 63V, AL-EI	4.7 μF, X7R, 50V	4.7 μF, 50V, X7R	2.2 μF, 50V, X7R	10 µH	10 nF 50V, X7R	120 µF AL Polymer, 6.3V	2 .55 kΩ	7.32 kΩ

- AN-1888: LM22670 Evaluation Board Inverting Topology and Application Notes
- AN-1229: SIMPLE SWITCHER PCB Layout Guidelines
- AN-1149: Layout Guidelines for Switching Power Supplies
- Online Seminar: PCB Layout for Switchers

LM315x Designs

Use top schematic for 5V and below. Use bottom schematic for 12V and above.

Design Considerations/Performance

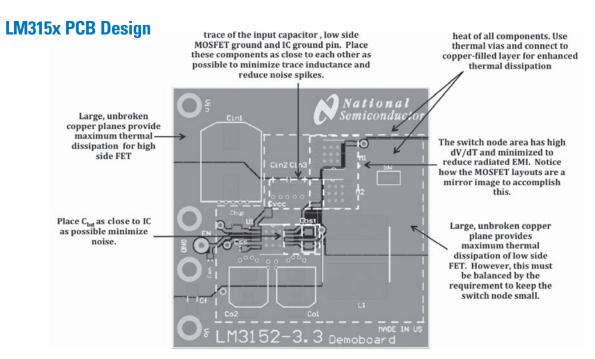
- Two schematics are presented depending on the desired output voltage. The schematic used when the output voltage is 12V or above uses Rr and Cr to generate the necessary ripple voltage while the Cac capacitor AC couples the signal to the feedback pin for proper regulation.
- When selecting M1 and M2, choosing low Rdson FETs is necessary to minimize conduction losses. However, pay attention to the FETs' gate charge (Qg) requirements and the switching frequency to ensure that switching losses does not result in excessive power dissipation.
- The schematic and PCB layout shown are for the LM3150 but apply to all LM315x devices. For BOM component choice using devices other than LM3150 please use the WEBENCH links below to run the designs.
- For further details refer to the Design Documentation section.

Design Documentation

- Datasheet: LM3150, LM3151, LM3152, and LM3153.
- AN1628: Minimizing FET Losses in a High Input Rail Buck Converter
- AN1628: Minimizing FET Losses in a High Input Rail Buck Converter (Chinese)
- AN1481: Controlling Output Ripple and Achieving ESR Independence in COT designs

Component Values (BOM)

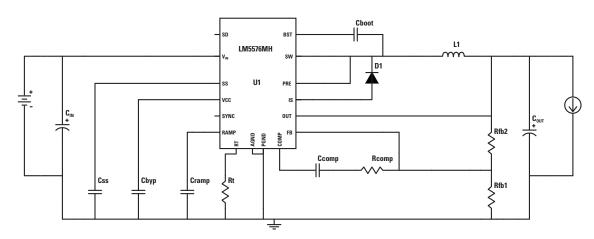
The following table summarizes the values chosen for the designs listed here.


Common Components across all designs

C _{BST}	C _{BYP}	C _{SS}	M1	M2
470 nF, 16V X7R	100 nF, 100V X7R	15 nF, 50V X7R	VdsMax=80V 100A	VdsMax=80V 100A

Design-Specific Components

V _{IN}	V _{OUT}	I _{out}	C _{FF}	C _{IN}	C _{OUT}	C _{VCC}	L1	R _{FB1}	R _{FB2}	R _{ilim}	R _{ON}
6 to 42V	1.2V	5A	2.7 nF, 50V X7R	27.872 µF, 56V	1 mF, 2.5V Tantalum	1 uF, 10V X7R	6 µH	10 kΩ	10 kΩ	2.05 kΩ	51.1 kΩ
6 to 42V	1.5V	5A	2.2 nF 50V X7R	30.126 µF, 56V	680 µF, 4V Tantalum	1 uF, 10V X7R	6 µH	10 kΩ	15 kΩ	2.05 kΩ	59 kΩ
6 to 42V	1.8	5A	1.6 nF, 50V X7R	32.266 µF, 56V	470 µF, 6.3V Tantalum	1 uF, 10V X7R	6 µH	10 kΩ	20 kΩ	2.05 kΩ	66.5 kΩ
6 to 42V	2.5	5A	1.1 nF, 50V X7R	35.746 µF, 56V	330 µF, 6.3V Tantalum	1 uF, 10V X7R	6.8 µH	10 kΩ	31.6 kΩ	2.05 kΩ	78.7 kΩ
6 to 42V	3.3	5A	820 pF, 50V X7R	37.401 µF, 56V	220 µF, 6.3V Tantalum	1 uF, 10V X7R	10 µH	10 kΩ	45.3 kΩ	2.05 kΩ	84.5 kΩ
7 to 42	5	5A	560 pF, 50V X7R	29.742 µF, 50V	68 µF, 20V Tantalum	1 uF, 10V X7R	10 µH	10 kΩ	73.2 kΩ	2.1 kΩ	95.3 kΩ


V _{IN}	V _{out}	I _{out}	C _{FF}	C _{IN}	C _{OUT}	cv _{cc}	L1	R _{FB1}	R _{FB2}	R _{ILIM}	R _{on}	R _R	C _R	C _{AC}
20 to 42	12	5A	DNS	2.2 μF, 100V X7R	10 µF, 16V X7R	2.2 μF, 10V X7R	10 µH	10 kΩ	191 kΩ	4.87 kΩ	187 kΩ	4.87 MΩ	180 pF, 50V X7R	560pF, 50V X7R
20 to 42	18	5A	DNS	10 µF, 63V X7R	22 µF, 25V X7R	2.2 µF, 10V X7R	39 µH	9.76 kΩ	287 kΩ	1.91 kΩ	1.02 MΩ	5.9 MΩ	560 pF, 50V X7R	1.8nF, 50V X7R
36 to 42	24	5A	DNS	4.7 μF, 100V X7R	10 µF, 50V X7R	2.2 μF, 10V X7R	18 µH	10 kΩ	392 kΩ	2.05 kΩ	487 kΩ	3.16 MΩ	220 pF, 50V X7R	680pF, 50V X7R
36 to 42	30	5A	DNS	2.2 μF, 100V X7R	10 µF, 50V X7R	2.2 μF, 10V X7R	22 µH	10kΩ	487 kΩ	1.91 kΩ	1.15 MΩ	2.67 MΩ	390 pF, 50V X7R	1.2nF, 100V X7R

- AN-1900: LM3150 Evaluation Boards
- AN-1229: SIMPLE SWITCHER PCB Layout Guidelines
- AN-1149: Layout Guidelines for Switching Power Supplies
- Online Seminar: PCB Layout for Switchers

LM557x Designs

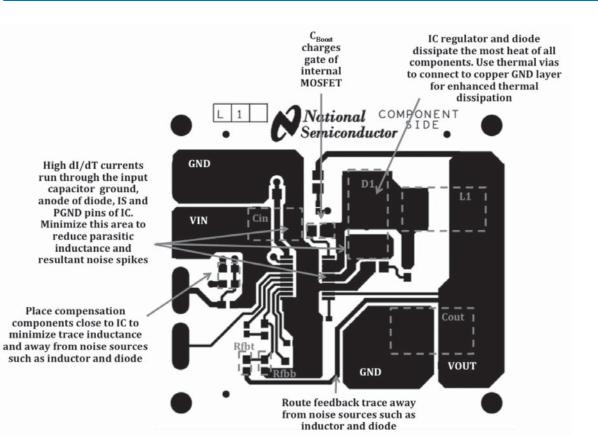
LM557x PCB Design

Design Considerations/Performance

- The schematic and PCB layout shown are for the LM5576 but apply to all LM557x devices. For BOM component choice please use the WEBENCH links provided to create the designs.
- For further details refer to the Design Documentation section.

Design Documentation

- Datasheets for: LM5576, LM5575, and LM5574
- AN-1570: LM5576 Evaluation Board
- AN-1569: LM5575 Evaluation Board
- AN-1568: LM5574 Evaluation Board
- Understanding and Applying Current-Mode Control Theory
- Current Mode Modeling Reference Guide


Component Values (BOM)

The following table summarizes the values chosen for the designs listed here. Common Components across all designs

SB001	СВАЬ	- SS	וט
22 nF, X7R, 50V	100 nF, X7R, 25V	10 nF, X7R, 50V	100V, Schottky

Design Specific Components

V _{IN}	V _{out}	C _{COMP}	C _{RAMP}	L1	R _{comp}	C _{COMP2}	C _{IN}	C _{out}	C _{RAMP}	R _{FB1}	R _{FB2}	Rt	R _{ramp}
7V to 75V	1.5V	4.7 nF, X7R, 50V	120 pF, 50V	12 µH	1 2.44 kΩ	680 pF, X7, 50V	4.7 μF, X7R,100V	680 µF, 2.5V, Tantalum	120 pF, 50V, COG	1 kΩ	226Ω	24.3 kΩ	Not used
7V to 75V	1.8V	2.2 nF, X7R, 50V	150 pF, 50V	15 µH	23.7 kΩ	560 pF, X7R, 50V	4.7 μF, X7R, 100V	560 µF, 2.5V, AL-Polymer	150 pF, 50V, COG	1 kΩ	475Ω	21.5 khΩ	Not used
7V to 75V	2.5V	2.7 nF, X7R, 50V	150 pF, 50V	15 µH	21.5 kΩ	270 pF, X7R, 50V	1 μF, X7R,100V	220 µF, 4V, AL-Polymer	150 pF, 50V, COG	1.02 kΩ	1.05 kΩ	20.5 kΩ	Not used
7V to 75V	3.3V	1.8 nF, X7R, 50V	180 pF, 50V	18 µH	28.7 kΩ	150 pF, C0G, 50V		180 µF, 6.3V, AL-Polymer	180 pF, 50V, COG	1 kΩ	1.69 kΩ	20.5 kΩ	Not used
7V to 75V	5V	2.2 nF, X7R, 50V	330 pF, 50V	33 µH	34 kΩ	82 pF, COG, 50V	15 μF, X7R,100V	180 µF, 16V, AL-Polymer	330 pF, 50V, X7R	1 kΩ	3.09 kΩ	34 kΩ	Not used
36V to 75V	12V	1.5 nF, X7R, 50V	470 pF, 50V	47 µH	36.5 kΩ	Not used	1 μF, X7R,100V	22 μF, 16V, X5R	470 pF, 50V, X7R	1.02 kΩ	8.87 kΩ	20.5 kΩ	Not used
36V to 75V	15V	330 pF, X7R, 50V	560 pF, 50V	56 µH	158 kΩ	150 pF, C0G,50V	1 μF, X7R,100V	150 μF, 25V, AL-El	560 pF, 50V, X7R	1 kΩ	11.3 kΩ	20.5 kΩ	Not used
36V to 75V	18V	820 pF, X7R, 50V	680 pF, 50V	68 µH	69.8 kΩ	180 pF, COG, 50V	1 μF, X7R,100V	27 μF, 25V, AL-El	680 pF, 50V, X7R	1 kΩ	13.7 kΩ	20.5 kΩ	110 kΩ
36V to 75V	24V	1 nF, X7R, 50V	1 nF, 50V	100 µН	57.6 kΩ	220 pF, COG, 50V	1 μF, X7R,100V	33 μF, 35V, AL-El	1 nF, 50V, X7R	1 kΩ	18.7 kΩ	20.5 kΩ	75 kΩ
42V to 75V	30V	470 pF, X7R, 50V	1 nF, 50V	100 µН	124 kΩ	150 pF, COG, 50V		56 μF, 50V, AL-El	1 nF, 50V, ,X7R	1 kΩ	23.7 kΩ	20.5 kΩ	57.6 kΩ

- AN-1570: LM5576 Evaluation Board
- AN-1569: LM5575 Evaluation Board
- AN-1568: LM5574 Evaluation Board
- RD-128 Reference Design Document
- AN-1566: Techniques for Thermal Analysis of Switching Power Supply Designs
- AN-1229: SIMPLE SWITCHER PCB Layout Guidelines
- AN-1149: Layout Guidelines for Switching Power Supplies
- Online Seminar: PCB Layout for Switchers

LMZ1-Series Power Modules

		Output Current	Incus	0 divetable	Peak Operating Junction	k Operating Junction	ak Operating Junction		EMI EN55022/ Class B Certifi	
	Product ID	Output Current (A) Max.	Input Voltage (V)	Adjustable Output Voltage (V)		Temperature (°C)	Features	Radiated	Conducted*	Packaging
	LMZ10503/04/05	3/4/5	2.95 to 5.5	0.8 to 5	96	-40 to 125	EN, SS	~	 ✓ 	TO-PMOD-7
	LMZ12001/02/03	1/2/3	4.5 to 20	0.8 to 6	92	-40 to 125	EN, SS	~	~	TO-PMOD-7
	LMZ14201/02/03	1/2/3	6 to 42	0.8 to 6	90	-40 to 125	EN, SS	~	~	TO-PMOD-7
	LMZ12008/10	8/10	6 to 20	0.8 to 6	92	-40 to 125	EN, SS	~	~	TO-PMOD-11
1_	LMZ13608/10	8/10	6 to 36	0.8 to 6	92	-40 to 125	EN, SS	~	~	TO-PMOD-11

NEW

NEW-

Extended Temperature and High Output Voltage Power Modules

	Output Current	Input	Adjustable Output Voltage	Peak Efficiency	Operating Junction		EMI EN55022/CISPR22 Class B Certification		Mil Std-883	
Product ID	(A) Max.	Voltage (V)	(V)	(%)	Temperature (°C)	Features	Radiated	Conducted*	Testing	Packaging
LMZ10503/04/05EXT	3/4/5	2.95 to 5.5	0.8 to 5	96	-55 to 125	EN, SS	 ✓ 	~	~	TO-PMOD-7
LMZ12001/02/03EXT	1/2/3	4.5 to 20	0.8 to 6	92	-55 to 125	EN, SS	~	~	~	TO-PMOD-7
LMZ14201/02/03EXT	1/2/3	6 to 42	0.8 to 6	90	-55 to 125	EN, SS	~	~	~	TO-PMOD-7
LMZ14201H/02H/03H	1/2/3	6 to 42	5 to 24	97	-40 to 125	EN, SS	 ✓ 	v	—	TO-PMOD-7

LMZ2-Series Power Modules

		Output				EMI EN55022/ Class B Certifi			
	Product ID	Current (A) Max.	Input Voltage (V)		Junction Temperature (°C)	Features	Radiated	Conducted*	Packaging
Γ	LMZ22003/5	3/5	6 to 20	0.8 to 5	-40 to 125	EN, SS, Freq Sync	~	~	TO-PMOD-7
	LMZ23603/5	3/5	6 to 36	0.8 to 6	-40 to 125	EN, SS, Freq Sync	~	~	TO-PMOD-7
	LMZ22008/10	8/10	6 to 20	0.8 to 6	-40 to 125	EN, SS, Freq Sync, Current Share	~	~	TO-PMOD-11
L	LMZ23608/10	8/10	6 to 36	0.8 to 6	-40 to 125	EN, SS, Freq Sync, Current Share	~	~	TO-PMOD-11

*Additional input filter required

Non-Synchronous Regulators

Product ID	Output Current (A)	Input Voltage (V)	Adjustable Output Voltage (V)	Frequency Range (kHz)	Adj.	On/Off Pin	PWM Mode	Packaging
LM22671/74	0.5	4.5 to 42	1.285 to 37	200 to 1000 Adj	✓/-	~	Voltage	PSOP-8
LM22672/75	1	4.5 to 42	1.285 to 37	200 to 1000 Adj	~ /-	~	Voltage	PSOP-8
LM22680	2	4.5 to 42	1.285 to 37	200 to 1000 Adj	~	~	Voltage	PSOP-8
LM22670/73/76	3	4.5 to 42	1.285 to 37	200 to 1000 Adj	✓/-/-	_/⁄/	Voltage	T0263-7 Thin, PS0P-8
LM22677/78/79	5	4.5 to 42	1.285 to 37	200 to 1000 Adj	v /-/-	v / v /-	Voltage	T0263-7 Thin
LM25574	0.5	6 to 42	1.23 to 40	50 to 1000, Sync	~	 ✓ 	Current	TSSOP-16
LM25575	1.5	6 to 42	1.23 to 40	50 to 1000, Sync	~	~	Current	eTSSOP-16
LM25576	3	6 to 42	1.23 to 40	50 to 1000, Sync	~	~	Current	eTSSOP-20
LM5574	0.5	6 to 75	1.23 to 70	50, Sync	~	 ✓ 	Current	TSSOP-16
LM5575	1.5	6 to 75	1.23 to 70	50, Sync	~	~	Current	eTSSOP-16
LM5576	3	6 to 75	1.23 to 70	50, Sync	~	~	Current	eTSSOP-20

Synchronous Regulators

Product ID	Output Current (A)	Input Voltage (V)	Adjustable Output Voltage (V)	Frequency Range (kHz)	Sync	PWM Mode	Packaging
LM3103	0.75	4.5 to 42	0.6 to 38	up to 1000 Adj	—	СОТ	eTSSOP-16
LM3100	1.5	4.5 to 36	0.8 to 32	up to 1000 Adj	—	СОТ	eTSSOP-20
LM3102	2.5	4.5 to 42	0.8 to 38	up to 1000 Adj	—	COT	eTSSOP-20
LM2852	2	2.85 to 5.5	0.8 to 3.3	500, 1500	—	Voltage Mode	eTSSOP-14
LM2853	3	3 to 5.5	0.8 to 3.3	550	—	Voltage Mode	eTSSOP-14
LM2854	4	2.95 to 5.5	0.8 to 5	500, 1000	—	Voltage Mode	eTSSOP-16

Synchronous Controllers

Product ID	Input Voltage (V)	Output Min (V)	Output Max (V)	Feedback Tolerance (%)	Frequency Range (kHz) and Sync	Packaging
LM3150	6 to 42	0.6	Adj	1.50	up to 1000 Adj	eTSSOP-14
LM3151	6 to 42	3.3	3.3	1.50	250	eTSSOP-14
LM3152	6 to 33	3.3	3.3	1.50	500	eTSSOP-14
LM3153	6 to 18	3.3	3.3	1.50	750	eTSSOP-14

© National Semiconductor Corporation, January 2011. National, 🔗, Powerwise and WEBENCH are registered trademarks of National Semiconductor. All other product names are trademark or registered trademarks of their respective holders. All rights reserved.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated