

Auto-Frequency Mode Setting for Improved Boost Efficiency in White LED Backlight Drivers

Travis Eichhorn

ABSTRACT

As the load current of a boost converter is reduced, the ratio of conduction losses to switching losses begins to lower. Conduction losses are losses that are a function of current. Switching losses are losses that are a function of switching frequency. As this ratio is reduced the boost switching losses begin to dominate the total circuit losses. When this happens, the benefit of lowering the boost switching frequency is more advantageous than the benefit of inductor ripple current reduction (higher boost frequency).

1 What is Auto-Frequency Mode?

To optimize efficiency by taking advantage of the reduced switching losses vs boost switching frequency, some of TI's white-LED backlight drivers have the ability to automatically change their boost switching frequency based on the programmed LED current. This mode, called auto-frequency mode, operates by using 2 programmable registers: Auto Frequency High Threshold Register and Auto Frequency Low Threshold Register. The high threshold determines the switchover from the high frequency (1 MHz) to an intermediate frequency (500 kHz). The low threshold determines the switchover from (500 kHz) to the low frequency (250 kHz). Both the High and Low Threshold Registers accept an 8-bit code, which corresponds to a current between 0 and the maximum LED string current of the device. The programmed values in the Auto-Frequency Registers are compared against the 8 most significant bits (MSB's) of the brightness code. When the brightness code falls below the threshold the boost switching frequency automatically switches to the lower frequency setting. Currently, all devices which incorporate the auto-frequency function operate with an 11-bit brightness code. The 11-bit brightness code is a function of both the I2C programmed code (programmable via an MSB register (8 bits) + an LSB register (3 bits)) and the 11 bit representation of the PWM input duty cycle. The brightness code is I2C (code) × PWM(D) rounded to 11 bits. The auto-frequency thresholds are compared against the MSBs of the brightness code.

1.1 Auto Frequency vs Variable Frequency

The programmable auto-frequency mode was chosen vs having a device with a constant variable frequency for two main reasons:

- Discrete steps in frequency are easier to make stable using current-mode control
- Discrete steps in frequency are more predictable, thus making them easier to design around for EMI purposes.

1

Devices With Auto-Frequency

2 Devices With Auto-Frequency

The following devices contain the Auto-Frequency mode:

		# of LED			Auto	Auto	Frequency Options	
Device	Description # of LED Channels Max VOUT Inductor		Frequency High	Frequency Low	Nominal	Frequency Shifted		
LM369 22	White LED Driver	2	28 V	10 µH/22 µH				
LM369 23	White LED Driver	3	28 V	10 µH/22 µH	0x15	0x16 250kHz/5		220kHz/440k
LM369 22H	White LED Driver	2	38 V	4.7 μH to 15 μH	0015 07			
LM369 23H	White LED Driver	3	38 V	4.7 μH to 15 μH			250kHz/500k	
LM362 72	White LED Driver + Bias Supply	2	28 V	4.7 μH to 15 μH			Hz/1MHz	Hz/880kHz
LM362 73	White LED Driver + Bias Supply	3	28 V	4.7 μH to 15 μH	0x07	0x06		
LM362 72	White LED Driver + Bias Supply	4	28 V	4.7 μH to 15 μH				

Table 1. Auto-Frequency Mode Devices

Note: When both the Auto Frequency Low and Auto Frequency High Registers are set to 0x00, the device operates at a fixed frequency (either 1 MHz or 500 kHz), depending on the user programmed fix frequency setting.

2.1 Frequency Shift

For each device with auto-frequency mode, there is an optional frequency shift. The frequency shift causes the programmed frequency and all auto-frequency forced lower frequencies to be shifted down by approximately 12%. This is beneficial in the situation where the programmed frequency lands in a region that causes interference.

2.2 Auto-Frequency and Mapping Mode

Each auto-frequency-enabled device has a linear and an exponential current mapping mode. Linearmapped mode forces the LED current to follow a proportional response for each 11-bit LSB change in I2C (BRT) × PWM Duty Cycle. In exponential-mapped mode the LED current follows an exponential response of 0.3% per each 11-bit LSB change in I2C (BRT) × PWM duty cycle. Due to this different mapping, the equivalent brightness code that corresponds to a specific LED current is different whether in linear mode or in exponential mode. This results in a different auto-frequency threshold for the same LED current, depending on the mapping mode (see Table 3 and Table 4).

For example, assume the optimal auto-frequency thresholds is 10 mA/string for the high threshold and 5 mA/string for the low threshold. Using the LM36923H ($I_{LED MAX} = 25$ mA) we get the following:

Linear Mode: 5mA per string corresponds to 51d (0x33) for Auto-Frequency Low and 10mA per string corresponds to 102d (0x66) for Auto Frequency High. These can be found by (1)

$$Code(D) = \frac{ILED}{ILED_MAX} \times 255$$

Exponential Mode: 5mA/string corresponds to 189d (0xBD) for Auto-Frequency low and 10mA/string corresponds to 218d (0xDA) for Auto-Frequency high. These can be found by (2)

$$Code (D) = \frac{LN\left(\frac{ILED \times 500}{ILED_MAX}\right)}{0.02432}$$

2

(1)

2.3 Auto-Frequency and PWM

One advantage of the devices with Auto-Frequency mode (see Table 1) is their ability to automatically optimize the switching frequency based on both the programmed I2C brightness code and the PWM input duty cycle. If PWM is enabled, the LED current becomes a function of I2C (BRT) × PWM (Duty Cycle). In these devices the PWM input is sampled and converted to an 11-bit code. This 11-bit code is multiplied with the 11-bit I2C brightness code and the result is rounded to 11 bits. This 11-bit result is then considered the effective brightness code. Table 2 shows an example of the effective brightness code with and without PWM enabled. The last column (MSB's of Effective Brightness Code) is used in the comparison against the Auto-Frequency Threshold Registers.

I2C Brightness Register (MSB)	I2C Brightness Register (LSB)	11 Bit I2C Brightness Code	PWM	PWM Input	Effective Brightness Code	MSBs of Effective Brightness Code
0xCC	0x05	0x665	Disabled	Don't Care	0x665	0xCC
0xCC	0x05	0x665	Enabled	D = 40%	0x665 × 0.4 = 0x28F	0x51

Table 2. Auto Frequency Comparison Example	Table 2.	Auto	Frequency	Comparison	Example
--	----------	------	-----------	------------	---------

To help illustrate the Auto-Frequency mode, Figure 1 shows the functional block diagram for the current control in the Auto-Frequency enabled back-light drivers.

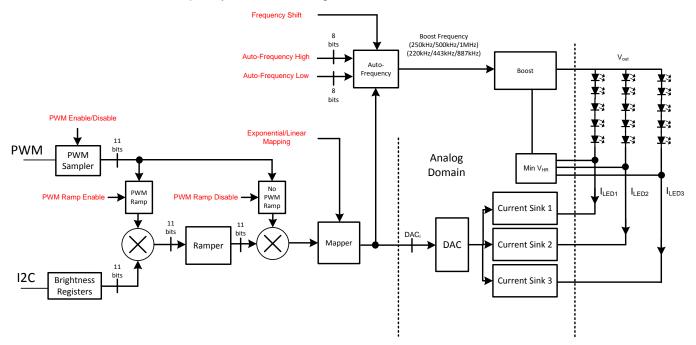


Figure 1. Current Control Block Diagram

3 Auto-Frequency Thresholds vs Operating Conditions

Various operating conditions can affect the optimum threshold for the Auto-Frequency switch point. These are primarily (input voltage, diode capacitance, and inductor DC resistance). Figure 2, Figure 3, and Figure 4 show the variation from nominal when each of these operating conditions are varied. The nominal operating conditions are with (the LM36923H configured with 2P8S (V_F = 3.25V/LED), L = 4.7 μ H (R_L = 0.1 Ω), C_D = 20 pF).

3

Auto-Frequency Thresholds vs Operating Conditions

3.1 Auto-Frequency Threshold vs Input Voltage

Varying (V_{N}) effects the optimal auto-frequency thresholds mostly from the variation in the inductor peakto-peak ripple current and the boost duty cycle. Both of these change the amount of conduction losses in the inductor, power switch, and diode. Figure 2, shows the variation in optimum auto-frequency thresholds of the LM36923H for a typical Li+ voltage range: 3 V (minimum), 3.7 V (typical), and 4.2 V (maximum).

Typically the auto-frequency threshold would be selected at the nominal (or average) operating input voltage. For single cell Li+ input range this is 3.7 V.

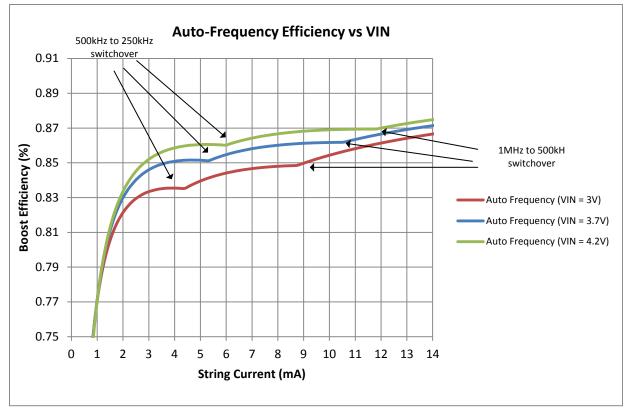


Figure 2. Auto-Frequency Threshold With Different Input Voltages

3.2 Auto-Frequency Thresholds vs Diode Selection

The Schottky diode selection can have the largest impact on the optimal transition point for the Auto-Frequency threshold. This is primarily due to the amount of capacitance from the diode that gets added to the boost switching node. This can add anywhere from 20 pF to 200 pF, which can drastically alter the amount of boost switching losses. Figure 3 shows the optimal auto-frequency efficiency response when the diode capacitance changes from the nominal conditions (20pF) to a larger diode with 160 pF.

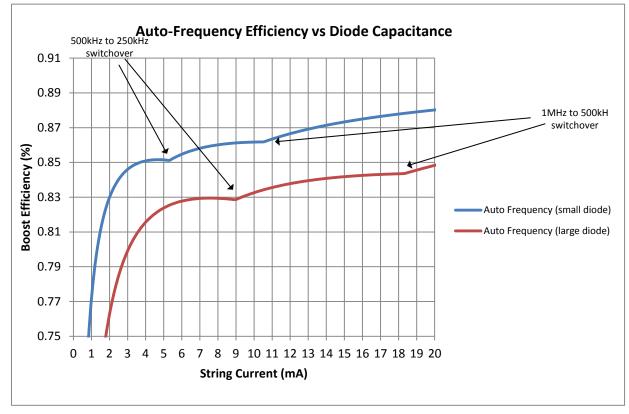


Figure 3. Auto-Frequency Threshold With Different Schottky Diodes

3.3 Auto-Frequency Thresholds vs Inductor Resistance

Inductor DC resistance can vary widely for a specific value inductor for a given application. This causes the conduction losses to have a slight variation around the auto-frequency thresholds. Figure 4 shows the optimized high and low auto-frequency threshold for two different values of the inductor DC resistance (L = 4.7-µH). The low threshold has less variation than the high threshold due to the lower inductor currents at the frequency shift point.

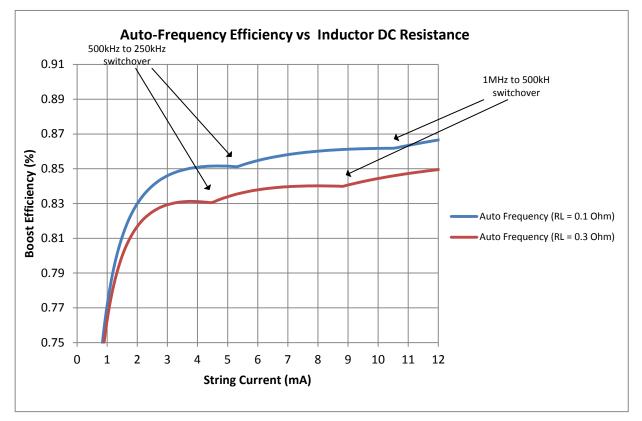


Figure 4. Auto-Frequency Threshold With Different Inductor Resistance

3.4 Typical Target Thresholds

Table 3 and Table 4 list typical thresholds for the LM3692x and LM3627x devices. These typical thresholds can be used with good results for a wide range of components and operating conditions. However, for optimum results where the components and/or operating conditions vary widely from the those listed, the optimum auto-frequency thresholds would need to be further evaluated.

Auto-Frequency Thresholds vs Operating Conditions

Table 3. LM36272/3/4 Typical Setting for Auto Frequency High and Low Threshold (V_{IN} = 3.7 V, Schottky = NSR0530P2, L = VLF403212MT-4R7/100/150, V_F = 3.3 V at I_{LED} = 30 mA)

Device	Configuration	Inductor Value	Low TH (mA)/String	High TH (mA)/String	Mode	Auto-Frequency Low Code	Auto-Frequency High Code
		47.41	5.7825	10.5795	Linear	0x31	0x5A
		4.7 µH			Exponential	0xBC	0xD5
	2P4S	10		44.000	Linear	0x38	0x66
	2P45	10 µH	6.6015	11.983	Exponential	0xC2	0xDA
		45	6 74 95	12.568	Linear	0x39	0x6B
		15 µH	6.7185	12.306	Exponential	0xC2	0xDC
		47	E E 40E	40.2455	Linear	0x2F	0x58
		4.7 µH	5.5485	10.3455	Exponential	0xBA	0xD4
	0050	1011	6.2505	11.000	Linear	0x35	0x65
	2P5S	10 µH		11.866	Exponential	0xBF	0xDA
		15 µH	6.3675	29.9	Linear	0x36	0xFF
					Exponential	0xC0	0xFF
	2P6S	4.7 µH	5.4315	10.4625	Linear	0x2E	0x59
					Exponential	0xBA	0xD5
1 100070/0/4		10 μH 15 μH	6.0165	11.515	Linear	0x33	0x62
LM36272/3/4					Exponential	0xBE	0xD8
			6.2505	29.9	Linear	0x35	0xFF
					Exponential	0xBF	0xFF
	0770	4.7 μH	5.1975	10.2285	Linear	0x2C	0x57
					Exponential	0xB8	0xD4
			6 1005	11.866	Linear	0x34	0x65
	2015	10 µH	6.1335	11.000	Exponential	0xBF	0xDA
			C 4045	29.9	Linear	0x37	0xFF
		15 µH	6.4845	29.9	Exponential	0xC1	0xFF
		4.7 µH	5.3145	10.3455	Linear	0x2D	0x58
		4.7 µn	0.0140	10.3400	Exponential	0xB9	0xD4
	2P8S	10	6 1225	15 250	Linear	0x34	0x82
	2800	10 µH	6.1335	15.259	Exponential	0xBF	0xE4
		45	0.0505	20.0	Linear	0x35	0xFF
		15 µH	6.2505	29.9	Exponential	0xBF	0xFF

8

Table 3. LM36272/3/4 Typical Setting for Auto Frequency High and Low Threshold ($V_{IN} = 3.7 \text{ V}$, Schottky = NSR0530P2, L = VLF403212MT-4R7/100/150, $V_F = 3.3 \text{ V}$ at $I_{LED} = 30 \text{ mA}$) (continued)

				(0011111100)				
LM36273/4	3P4S	4.7 µH	3.9105	7.0695	Linear	0x21	0x3C	
					Exponential	0xAC	0xC4	
		10 µH	4.4955	8.0055	Linear	0x26	0x44	
					Exponential	0xB2	0xC9	
		15 µH	4.4955	8.4735	Linear	0x26	0x48	
					Exponential	0xB2	0xCC	
	3P5S	4.7 μH	3.677	6.9525	Linear	0x1F	0x3B	
					Exponential	0xA9	0xC4	
		10 µH	4.1445	7.8885	Linear	0x23	0x43	
					Exponential	0xAE	0xC9	
		15 µH	4.4955	12.1	Linear	0x26	0x67	
					Exponential	0xB2	0xDA	
	3P6S	4.7 µH	3.56	6.8355	Linear	0x1E	0x3A	
					Exponential	0xA8	0xC3	
		10 µH	4.1445	7.8885	Linear	0x23	0x43	
					Exponential	0xAE	0xC9	
	-	15 µH	4.3785	29.9	Linear	0x25	0xFF	
					Exponential	0xB1	0xFF	
-	3P7S	4.7 µH	3.56	6.8355	Linear	0x1E	0x3A	
					Exponential	0xA8	0xC3	
		10 µH	4.0275	7.7715	Linear	0x22	0x42	
					Exponential	0xAD	0xC8	
		15 µH	4.2615	29.9	Linear	0x24	0xFF	
					Exponential	0xB0	0xFF	
	3P8S	4.7 µH	3.56	7.0695	Linear	0x1E	0x3C	
					Exponential	0xA8	0xC4	
		10 µH	4.1445	9.7605	Linear	0x23	0x53	
					Exponential	0xAE	0xD2	
		15 µH	4.2615	29.9	Linear	0x24	0xFF	
					Exponential	0xB0	0xFF	
LM36274	4P4S	4.7 µH	2.975	5.4315	Linear	0x19	0x2E	
LWOOZIA		·			Exponential	0xA1	0xBA	
		10 µH	3.326	6.0165	Linear	0x1C	0x33	
						Exponential	0xA5	0xBE
			-	15 µH	3.443	6.3675	Linear	0x1D
					Exponential	0xA7	0xC0	
-	4P5S	4.7 µH	2.741	5.1975	Linear	0x17	0x2C	
					Exponential	0x9D	0xB8	
		10 µH	3.092	5.8995	Linear	0x1A	0x32	
			0.002		Exponential	0xA2	0xBD	
		15 µH	3.326	8.3565	Linear	0x42 0x1C	0x8D 0x47	
		15 μ11	0.020	0.0000	Exponential	0xA5	0x47 0xCB	
-	4P6S	4.7 µH	2.741	5.1975	Linear	0xA5 0x17	0xCB 0x2C	
	4100	ч. ι µп	2.741	5.19/0			0x2C 0xB8	
		10.04	3 002	5.8995	Exponential	0x9D		
		10 µH	3.092	0.0990	Linear	0x1A	0x32	
		45	2 000	20.0	Exponential	0xA2	0xBD	
		15 µH	3.209	29.9	Linear	0x1B	0xFF	
					Exponential	0xA4	0xFF	

Auto-Frequency Thresholds vs Operating Conditions

Table 4. LM36922/22H/23/23H Typical Settings For Auto Frequency High and Low Thresholds (V_{IN} = 3.7 V, Schottky = NSR0530P2, L = VLF403212MT-4R7/100/220, V_F = 3.25 V at I_{LED} = 25 mA)

Device	Configuration	Inductor	Low TH (mA)/String	High TH (mA)/String	Mode	Auto-Frequency Low Code	Auto-Frequency High Code
LM3692xH	2P4S	4.7 µH	5.6055	10.673	Linear	0x39	0x6D
					Exponential	0xC2	0xDD
LM3692x/2xH		10 µH	6.58	11.94	Linear	0x43	0x7A
					Exponential	0xC9	0xE1
LM3692x		22 µH	7.1645	24.9	Linear	0x49	0xFF
					Exponential	0xCC	0xFF
LM3692xH	2P5S	4.7 µH	5.508	10.381	Linear	0x38	0x6A
					Exponential	0xC2	0xDC
LM3692x/2xH		10 µH	6.19	11.94	Linear	0x3F	0x7A
					Exponential	0xC6	0xE1
LM36923		22 µH	6.8725	24.9	Linear	0x46	0xFF
					Exponential	0xCB	0xFF
LM3692xH	2P6S	4.7 µH	5.4105	10.2835	Linear	0x37	0x69
					Exponential	0xC1	0xDB
LM3692x/2xH		10 µH	6.0925	11.648	Linear	0x3E	0x77
					Exponential	0xC6	0xE0
LM3692x	_	22 µH	6.6775	24.9	Linear	0x44	0xFF
				-	Exponential	0xCA	0xFF
LM3692xH	2P7S	4.7 µH	5.313	10.381	Linear	0x36	0x6A
				-	Exponential	0xC0	0xDC
LM3692x/2xH		10 µH	6.0925	11.7455	Linear	0x3E	0x78
				-	Exponential	0xC6	0xE1
LM3692x	-	22 µH	6.6775	24.9	Linear	0x44	0xFF
				-	Exponential	0xCA	0xFF
LM3692xH	2P8S	4.7 µH	5.2155	10.4785	Linear	0x35	0x6B
					Exponential	0xBF	0xDC
LM3692x/2xH		10 µH	6.19	24.9	Linear	0x3F	0xFF
				-	Exponential	0xC6	0xFF
LM3692x		22 µH	6.58	24.9	Linear	0x43	0xFF
		·			Exponential	0xC9	0xFF
LM3692xH	2P9S	4.7 µH	5.313	10.673	Linear	0x36	0x6D
LINIOOSZAN					Exponential	0xC0	0xDD
	_	10 µH	6.19	24.9	Linear	0x3F	0xFF
					Exponential	0xC6	0xFF
LM3692xH	2P10S	4.7 µH	5.313	10.673	Linear	0x36	0x6D
					Exponential	0xC0	0xDD
	_	10 µH	6.0925	24.9	Linear	0x3E	0xFF
		10 μ.1	0.0020	2.00	Exponential	0xC6	0xFF
LM36923H	3P4S	4.7 µH	3.851	7.067	Linear	0x27	0x48
2	0.10	p	0.001		Exponential	0xB3	0xCC
LM36923/23H	-	10 µH	4.4355	7.9445	Linear	0x2D	0x51
2012011		io µii	4.4000	1.5110	Exponential	0xB9	0xD1
LM36923		22 µH	4.8255	24.9	Linear	0x31	0xFF
2		h		2.10	Exponential	0xBC	0xFF
LM36923H	3P5S	4.7 µH	3.656	6.775	Linear	0x80	0xFF 0x45
LINI309230	JF JO	4.7 μπ	5.050	0.770	Exponential	0x25	0x45 0xCA
LM36923/23H	-	10 µH	4.1435	7.847	Linear	0xB1	0xCA 0x50
LIVI30923/23T		το μπ	4.1430	1.041			
L Macona	-	2211	4 6205	24.0	Exponential	0xB6	0xD0
LM36923		22 µH	4.6305	24.9	Linear	0x2F	0xFF
					Exponential	0xBA	0xFF

Table 4. LM36922/22H/23/23H Typical Settings For Auto Frequency High and Low Thresholds $(V_{IN} = 3.7 \text{ V}, \text{ Schottky} = \text{NSR0530P2}, L = \text{VLF403212MT-4R7/100/220}, V_F = 3.25 \text{ V} \text{ at } I_{LED} = 25 \text{ mA}) \text{ (continued)}$

LM36923H	3P6S	4.7 µH	3.5585	6.8725	Linear	0x24	0x46	
					Exponential	0xB0	0xCB	
LM36923/23H		10 µH	4.046	7.847	Linear	0x29	0x50	
					Exponential	0xB5	0xD0	
LM36923		22 µH	4.4355	24.9	Linear	0x2D	0xFF	
					Exponential	0xB9	0xFF	
LM36923H	3P7S	4.7 µH	3.5585	6.8725	Linear	0x24	0x46	
					Exponential	0xB0	0xCB	
LM36923/23H		10 µH	4.046	7.847	Linear	0x29	0x50	
					Exponential	0xB5	0xD0	
LM36923		22 µH	4.4355	24.9	Linear	0x2D	0xFF	
					Exponential	0xB9	0xFF	
LM36923H	3P8S	4.7 µH	3.5585	6.9695	Linear	0x24	0x47	
					Exponential	0xB0	0xCB	
LM36923/23H		10 µH	4.046	10.186	Linear	0x29	0x68	
					Exponential	0xB5	0xDB	
LM36923		22 µH	4.533	24.9	Linear	0x2E	0xFF	
					Exponential	0xBA	0xFF	
LM36923H	3P9S	4.7 µH	3.5585	6.9695	Linear	0x24	0x47	
					Exponential	0xB0	0xCB	
			10 µH	4.046	24.9	Linear	0x29	0xFF
						Exponential	0xB5	0xFF
			4.533	24.9	Linear	0x2E	0xFF	
					Exponential	0xBA	0xFF	
LM36923H	3P10S	4.7 µH	3.5585	7.067	Linear	0x24	0x48	
					Exponential	0xB0	0xCC	
		10 µH	4.046	24.9	Linear	0x29	0xFF	
					Exponential	0xB5	0xFF	
			4.533	24.9	Linear	0x2E	0xFF	
					Exponential	0xBA	0xFF	

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Audio Amplifiers Data Converters DLP® Products	www.ti.com/audio amplifier.ti.com dataconverter.ti.com www.dlp.com	Applications Automotive and Transportation Communications and Telecom Computers and Peripherals Consumer Electronics	www.ti.com/automotive www.ti.com/communications www.ti.com/computers www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated