
Application Report
SPHA001

Digital Signal Processing Solutions March 1999

Setting Up TMS320C6201 Interrupts in C
Carlos A.P.N. Solis World Wide Broadband Access Group

LAN Products
DSP Networking

Abstract

How do I set and use interrupts on C for the Texas Instruments (TIä) TMS320C6x DSP?

Writing Interrupt Service Routines (ISRs) in C is straightforward as long as you follow the simple
rules set out in this document. The problem consists of four parts:

r Selecting the interrupt source and writing the ISR

r Creating and initializing the interrupt vector table

r Setting the proper registers to enable and process the interrupt(s)

r Linking the parts together in the linker command file

Clearly there are variations on this theme. Some ISRs can be written in C and some in assembly
as long as the declaration conventions and vector tables are followed and initialized.

Contents

Design Problem ...2

Solution ..2
Interrupt Service Table (IST) and Interrupt Service Table Pointer Register (ISTP)...................................2
Interrupt Service Fetch Packet (ISFP) ..3
Creation and Installation of the Interrupt Vector Table..4
A C Language ISR..7
Setting the Interrupt Control Registers..7
Linking Everything Together ...10

Summary..11

Figures
Figure 1. Interrupt Service Table...3
Figure 2. Interrupt Service Fetch Packet...4

Application Report
SPHA001

Setting Up TMS320C6201 Interrupts in C 2

Design Problem
How do I use interrupts from C?

Solution
There are four parts to this problem:

r Selecting the interrupt source and writing the ISR

r Creating and initializing the interrupt vector table

r Setting the proper registers to enable and process the interrupt(s)

r Linking the parts together in the linker command file

Interrupt Service Table (IST) and Interrupt Service Table Pointer
Register (ISTP)

When the CPU begins processing an interrupt, it references the interrupt service table
(IST). The IST is a table of fetch packets containing code to service the interrupts. The
IST consists of 16 consecutive fetch packets. Each interrupt service fetch packet (ISFP)
contains eight instructions. A simple interrupt service routine may fit in an individual fetch
packet.

Figure 1 shows the addresses and contents of the IST. Because each fetch packet
contains eight 32-bit instruction words (or 32 bytes), each address in the table is
incremented by 32 bytes (20h) from the one adjacent to it.

The interrupt service table pointer (ISTP) register is used to locate the interrupt service
routine. One of its fields, ISTB, identifies the base portion of the address of the IST;
another field, HPEINT, identifies the specific interrupt and locates the specific fetch
packet within the IST.

The reset fetch packet must be located at address 0, but the rest of the IST can be at any
program memory location that is on a 256-word boundary. The interrupt service table
base (ISTB) field of the ISTP determines the location of the IST.

Application Report
SPHA001

Setting Up TMS320C6201 Interrupts in C 3

Figure 1. Interrupt Service Table

 Interrupt Service Table (IST)
000h RESET ISFP
020h NMI ISFP
040h Reserved
060h Reserved
080h INT4 ISFP
0A0h INT5 ISFP
0C0h INT6 ISFP
0E0h INT7 ISFP
100h INT8 ISFP
120h INT9 ISFP
140h INT10 ISFP
160h INT11 ISFP
180h INT12 ISFP
1A0h INT13 ISFP
1C0h INT14 ISFP
1E0h INT15 ISFP

Program Memory

Interrupt Service Fetch Packet (ISFP)

An ISFP is a fetch packet used to service an interrupt. Figure 2 shows an ISFP that
contains an interrupt service routine small enough to fit in a single fetch packet (FP). To
branch back to the main program, the FP contains a branch to the interrupt return pointer
instruction (B IRP). This is followed by a NOP 5 instruction (5 No_operation instructions)
to allow the branch target to reach the execution stage of the pipeline.

 NOTE:
If the NOP 5 was not in the routine, the CPU would execute
the next five execute packets that are associated with the next
ISFP.

If the interrupt service routine for an interrupt is too large to fit in a single FP, a branch to
the location of additional interrupt service routine code is required.

If you write your code in c, the C compiler takes care of all this (generation of the IST,
information on the ISTP and allocation of the ISFPs for each ISR), but if you write it in
assembly, then you have to take care of it by yourself.

Application Report
SPHA001

Setting Up TMS320C6201 Interrupts in C 4

Figure 2. Interrupt Service Fetch Packet

Interrupt Service Table (IST)
000h RESET ISFP
020h NMI ISFP
040h Reserved
060h Reserved
080h INT4 ISFP
0A0h INT5 ISFP
0C0h INT6 ISFP
0E0h INT7 ISFP
100h INT8 ISFP
120h INT9 ISFP
140h INT10 ISFP
160h INT11 ISFP
180h INT12 ISFP
1A0h INT13 ISFP
1C0h INT14 ISFP
1E0h INT15 ISFP

Program Memory

Creation and Installation of the Interrupt Vector Table

Because each vector included into the interrupt vector table must be aligned on a fetch
packet boundary, the vector table is always written in assembly language. When C
language is used for the application framework, C conventions must be respected when
writing the vector table.

As a fetch packet contains eight 32-bit instructions, each vector is aligned on a fetch
packet boundary that means each packet must contain eight instructions. Each vector
may either contain the branch to the interrupt service routine (with some padding NOPs
or fill them with setup code for the interrupt service routine) or may contain the complete
interrupt service routine if less than eight instructions. The next example shows the
interrupt service table included in the code section vectors, which is typically linked at
address 0. (Refer to the TI TMS320C62x/C67x CPU and Instruction Set Reference Guide
for details about the interrupt service table.)

The C compiler run-time support library automatically creates a function, _c_int00, when
the –c or –cr linker options are invoked. This function corresponds to the entry point of
the C program. The reset vector must be set up to branch to _ c_int00.

The following example shows one way to initialize and install the interrupt vector table. To
do this, you must reserve space for the interrupt vector table (".sect" command in an
assembly language file) and tell the linker where in memory you want to install the
interrupt vector table.

Instr1
Instr2
Instr3
Instr4
Instr5
Instr6
B IRP
NOP 5

ISFP for INT6

0C0h

0C4h

0C8h

0CCh

0D0h

0D4h

0D8h

0DCh

The interrupt service
routine for INT6 is short
enough to be contained
in a single fetch packet.

Application Report
SPHA001

Setting Up TMS320C6201 Interrupts in C 5

The following file (intr_.asm) is included with the 'C6x peripheral support library;
therefore, you do not need to create it if working without an OS. You must only link
intr_.asm with the rest of your code files (the "intr.c" and "regs.h" files, which are
mentioned in the "intr_.asm" file, are also provided as part of the 'C6x peripheral support
library, devlib6x.src). You must also compile and link them with the rest of your program
files.

Application Report
SPHA001

Setting Up TMS320C6201 Interrupts in C 6

; intr_.asm
;
; This file provides run time installable ISR capability through the use of the intr_jump_table
; which is defined in intr.c. This file provides the ISFPs (Interrupt Service Fetch Packets)
; for the IST (Interrupt Service Table). If the address in the jump table index corresponding
; to the interrupt service CPU interrupt is 0, no branch is executed and control is returned
; to the previous thread.
;
 .ref _c_int00 ; reset ISR
 .ref _isr_jump_table ; defined in intr.c : Interrupt Service Routine Jump Table
;near unsigned int isr_jump_table[16] ={ (unsigned int)c_int00, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
 .global _istb ; interrupt service table base, defined in regs.h

 .text ;compile in code section
 .sect ".vec" ;space allocation for the vector table
_istb:
 mvk _c_int00,b0 ; c_int00 is resolved at compile time
 mvkh _c_int00,b0 ; c_int00 must be the entry point when programming in C
 b .s2 b0 ; c_int00 is the entry point for boot.obj
 nop 5
 nop
 nop
 nop
 nop

 .asg 1, vec
 .loop 15

 stw .d2 b0, *--b15

 ldw .d2 *+b14(_isr_jump_table + vec * 4), b0

 nop 4

 [b0] b .s2 b0

 .if (vec == 1)

 [!b0] b .s2 nrp ;NMI ISR
 || ldw .d2 *b15++, b0

 .else

 [!b0] b .s2 irp ;Non-NMI ISR
 || ldw .d2 *b15++, b0

 .endif

 nop 4
 nop 1

 .eval vec + 1, vec
 .endloop

Application Report
SPHA001

Setting Up TMS320C6201 Interrupts in C 7

A C Language ISR

In a typical DSP system, hardware interrupts are triggered either by devices external to
the DSP or by on-chip peripherals. In either case, the interrupt causes the processor to
vector (jump) to the ISTB entry.

Hardware ISRs may be written in C, assembly language, or a combination of both. But
since ISRs written in C require the entire C context to be saved (TI's C compiler takes
care of that), highly time-critical ISRs are usually written in either linear assembly or
assembly language.

The C compiler requires that each ISR be declared in either of the following ways:

r The 'C6x compiler extends the C language by adding the interrupt keyword, which
specifies that a function is treated as an interrupt function.

Functions that handle interrupts follow special register-saving rules and a special
return sequence. When C code is interrupted, the interrupt routine must preserve the
contents of all machine registers used by the routine or by any function called by the
routine.

When you use the interrupt keyword with the definition of the function, the compiler
generates register saves based on the rules for interrupt functions and the special
return sequence for interrupts. You can only use the interrupt keyword with a function
that is defined to return void and that has no parameters. The body of the interrupt
function can have local variables and is free to use the stack or global variables.

For example:

interrupt void int_handler()
{
unsigned int flags;
...
}

A good practice is to include the interrupts in a separate file called ints.c or something
similar. This makes for a more modular style, simpler maintenance, and easier to
understand software.

r Another way to define ISR is by using the INTERRUPT pragma . The INTERRUPT
pragma enables you to handle interrupts directly with C code. The argument func is
the name of a function. The pragma syntax is:

#pragma INTERRUPT (func);

For example:

#pragma INTERRUPT(int_handler)

Setting the Interrupt Control Registers

There are eight interrupt control registers on the 'C62x devices. The control status
register (CSR) and the interrupt enable register (IER) enable or disable interrupt
processing. The interrupt flag register (IFR) identifies pending interrupts. The interrupt set
register (ISR) and interrupt clear register (ICR) can be used in manual interrupt
processing.

Application Report
SPHA001

Setting Up TMS320C6201 Interrupts in C 8

There are three pointer registers. ISTP points to the interrupt service table. NRP and IRP
are the return pointers used when returning from a nonmaskable or a maskable interrupt,
respectively.

To be able to process an interrupt, you must take the following steps (be aware that this
is not the only way to do it, we are only providing an example of how you could do it).

1) Initialize the Interrupt Service Table Pointer (ISTP) based on the global vec_table that
is resolved at link time (refer to linker command file for this value). The ISTP should
point to the beginning of the interrupt service table (IST) at the memory address
defined in the linker command file (under the "vec" section).

2) Map the interrupt source number (isn) to a cpu interrupt number (cpu_intr). You must
load the proper isn value into the INTSEL field of the appropriate Interrupt multiplexer
register. The 'C6x peripheral set has 16 interrupt sources; however, the CPU has 12
interrupt sources available for us. The interrupt selector allows you to choose and
prioritize which 12 of the 16 your system must use.

3) Manually clear the selected interrupt by writing a 1 to the specified bit in the ICR. This
ensures that there's no unwanted/unexpected data in any of the bit fields of this
register (this step is not absolutely necessary but it's highly recommended)

4) Hook your ISR to the cpu interrupt signal.

5) Enable the non-maskable interrupt (NMI). If this interrupt is not enabled, the rest of
the interrupts will not be seen/processed.

6) Enable the CPU interrupt number for the interrupt you mapped in step #2 and hooked
in step # 4. In this step, you enable the interrupt bit in the interrupt enable register
(IER).

7) Globally enable all maskable interrupts by setting the GIE bit in the control status
register. If this bit is not enabled, the rest of the interrupts will not be seen/processed.

For a detailed description of all the register's structure, refer to the TI TMS320C62x/C67x
CPU and Instruction Set Reference Guide (literature number SPRU189C) and the TI
TMS320C6201/C6701 Peripherals Reference Guide (literature number SPRU190B).

The following lines include an example of how you can accomplish these steps using the
'C6x instructions (with functions and macros provided on the 'C6x peripheral support
library). We provided the commands, a description of each command, the file name
where each command is defined, and any file that needs to be called (included) when
compiling the C code.

In this particular example, CPU interrupt 14 is tied to the interrupt signal generated by the
CPU timer 0:

/* includes */
#include <intr.h> /* Interrupts Support - 'C6x peripheral support library*/
#include <regs.h> /* Device register support - 'C6x peripheral support library*/

/* variables definitions */

Int status;

/* To call within the main() function: */

Application Report
SPHA001

Setting Up TMS320C6201 Interrupts in C 9

/* Interrupts settings */

intr_init(); // it initializes the ISTP with the address of the global label
// vec_table, which is defined in intr_.asm, and resolved at link
// time. Defined in intr.c as a callable function, intr.c is a included
// with the 'C6x peripheral support library and should be compiled
// and linked with the rest of the program files

intr_map(CPU_INT14,ISN_TINT0); // it places the indicated Interrupt Service Number
// (ISN) value in the appropriate field of the
// appropriate interrupt multiplexer register. Defined in
// intr.c as a callable function

INTR_CLR_FLAG(CPU_INT14); // it manually clears the selected interrupt by writing
// a 1 to the specified bit in the ICR. This is just to
// be sure that there's no unwanted/unexpected
// data in any of the bit fields of this register.
// Defined in intr.h as a macro . Even though
// this is not absolutely necessary, it is highly
// recommended.

intr_hook(timerISR,CPU_INT14); // it places the function pointer indicated by the first
// parameter (a pointer to an ISR declared in C) into
// isr_jump_table[], at the location specified by the
// second parameter (ISR to invoke when servicing
// this interrupt).

INTR_ENABLE(CPU_INT_NMI); // it enables the non-maskable interrupt (NMI). If this
// interrupt is not enabled, the rest of the interrupts
// won't be seen/processed. Defined in intr.h as a
// macro.

INTR_ENABLE(CPU_INT14); // it enables CPU interrupt 14 by enabling its bit in the
// the interrupt enable register (IER).We have previously
// mapped this interrupt number with the cpu clock 0
// interrupt signal. Defined in intr.h as a macro.

INTR_GLOBAL_ENABLE(); // it globally enables all maskable interrupts by setting the
// GIE bit in the control status register (CSR). If this bit is
// not enabled/set, the rest of the interrupts won't be seen
// nor processed. Defined in intr.h as a macro

That takes care of all of the registers that deal with interrupts. This program will execute
the function "timerISR" whenever an CPU Timer 0 interrupt signal is triggered (you still
must set the timer parameters, which is beyond the scope of this document. For more
information, see the TI TMS320C6201/C6701 Peripherals Reference Guide (literature
number SPRU190B) and the TI TMS320X6x Peripheral Support Library Programmer's
Guide (literature number SPRU273)).

If you want to disable any interrupt (s) (e.g., when the program calls an ISR and you do
not want the processor to be interrupted while it is servicing the current interrupt), you
must clear the proper bit(s) on the IER register. You can do this by calling:

Application Report
SPHA001

Setting Up TMS320C6201 Interrupts in C 10

#include <intr.h>

INTR_DISABLE(bit); // bit is the CPU interrupt (value 0 -15) that disables the specified
// interrupt;

If you want to disable multiple interrupts at once, you either must call this function with
the proper bit value for each interrupt you want to disable or make the following function
call:

#include <regs.h>

SET_REG(IER,val); // val is the decimal value of the binary bitmask that represents the
// bits of the interrupts you want to disable.

If you want to disable all of the interrupts at once, you must make the following call:

#include <intr.h>

INTR_GLOBAL_DISABLE; // It globally disables all maskable interrupts by clearing the
// GIE bit in the CSR.

Linking Everything Together

When linking all of your files, you must link with them the files provided with the
peripheral support library (intr.h, intr_.asm., regs.h, etc.). To accomplish this, link the
"dev6x.lib" library file by using the -l linker option when linking all of your files:

 "-ldev6x.lib".

On your "linker command file" you must include the following sections:

/* file name == mylink.cmd */

The MEMORY section must identify the location of the int vectors.

;For Memory Map 1:

MEMORY
{
VECTORS: origin = 0h, length = 200h ; internal program memory (IPM)
...
}

;For Memory Map 0:

MEMORY
{
VECTORS: origin = 01400000h, length = 200h ; internal program memory (IPM)
...
}

Application Report
SPHA001

Setting Up TMS320C6201 Interrupts in C 11

The SECTIONS section needs to map the user-defined section called “vec” to the
memory location.

SECTIONS
{
 vec : > VECTORS
...
}

If you plan to work with SPOX, you must use the functions and macros provided with
SPOX (in the file c62.h); otherwise, you could have problems with function calls being
incompatible. Refer to the SPOX-KNL Programming Guide TMS320C62x, version 2.2 or
newer, for a detailed description of how to work with interrupts on SPOX.

Summary
Writing interrupt routines in C is straightforward as long as you follow the simple rules set
out in this document. You must make sure to generate the interrupt vector table (either by
writing your own assembly file, using the SPOX utilities, or by any other means). You
must also provide the linker with all of the necessary information to link the ISRs, vector
table, and section names into the correct locations. Clearly there are variations on this
theme: some ISRs can be written in C and some in assembly as long as the declaration
conventions and vector tables are followed and initialized.

Application Report
SPHA001

Setting Up TMS320C6201 Interrupts in C 12

TI Contact Numbers

INTERNET

TI Semiconductor Home Page
www.ti.com/sc

TI Distributors
www.ti.com/sc/docs/distmenu.htm

PRODUCT INFORMATION CENTERS

Americas
Phone +1(972) 644-5580
Fax +1(972) 480-7800
Email sc-infomaster@ti.com

Europe, Middle East, and Africa
Phone

Deutsch +49-(0) 8161 80 3311
English +44-(0) 1604 66 3399
Español +34-(0) 90 23 54 0 28
Francais +33-(0) 1-30 70 11 64
Italiano +33-(0) 1-30 70 11 67

Fax +44-(0) 1604 66 33 34
Email epic@ti.com
Japan
Phone

International +81-3-3457-0972
Domestic 0120-81-0026

Fax
International +81-3-3457-1259
Domestic 0120-81-0036

Email pic-japan@ti.com

Asia
Phone

International +886-2-23786800
Domestic

Australia 1-800-881-011
TI Number -800-800-1450

China 10810
TI Number -800-800-1450

Hong Kong 800-96-1111
TI Number -800-800-1450

India 000-117
TI Number -800-800-1450

Indonesia 001-801-10
TI Number -800-800-1450

Korea 080-551-2804
Malaysia 1-800-800-011

TI Number -800-800-1450
New Zealand 000-911

TI Number -800-800-1450
Philippines 105-11

TI Number -800-800-1450
Singapore 800-0111-111

TI Number -800-800-1450
Taiwan 080-006800
Thailand 0019-991-1111

TI Number -800-800-1450
Fax 886-2-2378-6808
Email tiasia@ti.com

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

Application Report
SPHA001

Setting Up TMS320C6201 Interrupts in C 13

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their
products or to discontinue any product or service without notice, and advise customers to
obtain the latest version of relevant information to verify, before placing orders, that
information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including
those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS"). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS
IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design
and operating safeguards must be provided by the customer to minimize inherent or
procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does
not warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of TI covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used. TI's publication of information regarding any
third party's products or services does not constitute TI's approval, warranty, or
endorsement thereof.

Copyright Ó 1999 Texas Instruments Incorporated

