
Application Report
SPMA044A–August 2012

Using Execute, Write, and Erase-Only Flash Protection on
Stellaris Microcontrollers Using Code Composer Studio

Ashish Ahuja ...

ABSTRACT

Protection of code and IP in a microcontroller’s Flash memory has always been an important
consideration for the system designers. Stellaris® microcontrollers feature a code protection mechanism
that enables developers to protect their code and IP in the end application, while providing the flexibility to
upgrade the firmware using a boot loader. This application report describes using Flash protection to
prevent code from being read while still allowing it to be executed (for example, the memory block may be
written, erased, or executed but not read) using TI’s Code Composer Studio™ v4.2.3.

Contents
1 Introduction .. 2
2 Requirements .. 3
3 Procedure .. 4
4 Modify Existing Project Settings and Determine the Length of Executable Code 10
5 Reserve a Read Protected Region in the Flash by Modifying the Linker Command File 17
6 Rebuild Associated Libraries (driver lib and graphics lib with Code Generation Tools v4.9) 21
7 Add Flash Protection Code to the Project and Build It ... 31
8 Launch Debugger ... 34
9 Conclusion .. 36
10 References ... 37

List of Figures

1 Flowchart Showing Sequence of Key Steps .. 4

2 Determining Versions of Installed Components... 5

3 Selecting Update Options.. 6

4 Selecting Update Components.. 7

5 Install Window_Accept Terms ... 7

6 Install Window_Finish .. 8

7 Verification Window... 9

8 Install and Update Dialog Box... 9

9 Checking Update Options .. 10

10 Properties for “hello” .. 11

11 Save Build Configuration Settings... 12

12 Save Build Configuration Settings... 12

13 Properties for “hello” - Code Composer Studio Build ... 13

14 Properties for “hello” - C/C++ Build ... 14

15 Properties for “hello” - Predefined Name ... 15

16 Screen Shot of hello.map .. 16

17 System Memory Map ... 17

18 Memory Map_Flash ... 18
Code Composer Studio is a trademark of Texas Instruments.
Stellaris, StellarisWare are registered trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

1SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Introduction www.ti.com

19 Memory Map (FLASH_1, FLASH_EX and FLASH_2).. 19

20 Linker Command File ... 20

21 TMS470 Linker PC v4.9.0 Map File... 21

22 Setting a Project as an Active Project .. 22

23 Properties for Driver Lib .. 22

24 Save Build Configuration Settings... 23

25 Save Build Configuration Settings (Problems)... 23

26 Properties for driverlib (Code Composer Studio Build) ... 24

27 Properties for driverlib (C, C++ Build) .. 25

28 Properties for driverlib (Pre-Defined Name) ... 26

29 Properties for grlib... 27

30 Save Build Configuration Settings (Debug) .. 28

31 Save Build Configuration Settings (Problems)... 28

32 Properties for grlib (Code Composer Studio Build) ... 29

33 Properties for grlib (C, C++ Build)... 30

34 Properties for grlib (Debug) .. 31

35 Including Header Files .. 32

36 Adding Flash Protection Code ... 33

37 Launching Memory Window.. 34

38 Memory Window_0x00000800 .. 35

39 Debugger Console .. 35

40 Memory Window_0x00002000 .. 36

41 Debugger Console_2 ... 36

List of Tables

1 Flash Protection Modes .. 2

1 Introduction

Stellaris microcontrollers offer different Flash memory protection modes as illustrated in Table 1. This
document specifically focuses on the execute, write, and erase-only protection modes, and explains how
these modes can be implemented using one of the examples provided in the StellarisWare®.

NOTE: For more details on read-only Flash protection, see the Flash Memory Protection section in
the Stellaris LM3S9B96 Microcontroller Data Sheet (SPMS182).

When the corresponding bits in the Flash Memory Protection Program Enable (FMPPEn) and the Flash
Memory Protection Read Enable (FMPREn) registers are set to 1 and 0, respectively, you can erase and
write to the Flash, and the Cortex core can execute code from Flash. Generally, most compilers put literal
dump (constants and data) in the executable code. When such a code is located in executable-only (and
read protected) blocks of the system memory, a literal dump can’t be read. Therefore, the application will
not execute properly. While using execute, write, and erase-only Flash protection, it is important that the
code be compiled such that the literal dump does not reside in executable sections of the code, which
may require using special compilers during the build process. The compiler that comes bundled with
Texas Instruments Code Composer Studio’s Code Generation Tools (at least v4.9) has this capability.

Table 1. Flash Protection Modes

Protection Mode FMPPEn FMPREn Execute Read Write and Erase

Execute Only 0 0 √ x x

Execute, Write and 1 0 √ x √
Erase Only

2 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPMS182
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Requirements

Table 1. Flash Protection Modes (continued)

Protection Mode FMPPEn FMPREn Execute Read Write and Erase

Execute and Read 0 1 √ √ x
Only

No Protection 1 1 x x x

This application report uses a “hello” example for the DK-LM3S9B96 kit to demonstrate execute, write,
and erase-only Flash protection.

2 Requirements

You will need:

• A computer with the following software installed and running:

– Windows XP or 7 operating system

– Code Composer Studio v 4.2.3 with Code Generation Tools v4.9 that can be downloaded from the
following URL: http://www.ti.com/ccs

– StellarisWare software that can be downloaded from the following URL:
http://www.ti.com/stellarisware

– StellarisWare USB Drivers for Stellaris virtual COM port, Stellaris Evaluation board A and B that
can be downloaded from the following URL: http://www.ti.com/tool/lm_ftdi_driver

• DK-LM3S9B96 Stellaris Development Kit

• USB cable with a standard type-A plug on one side and a mini-B plug (5 pin) on the other side

3SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/ccs
http://www.ti.com/stellarisware
http://www.ti.com/tool/lm_ftdi_driver
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

1. Update Tools/Complier

2. Take an exiting project, modify project settings and
determine the length of executable code.

3. Reserve a read-protected region in the flash by
modifying the Linker Command file.

4. Rebuild associated libraries.

5. Add flash protection code to the project and build it.

6. Launch debugger and verify the results that Execute
and Write/Erase only flash protection works and read
protected region in flash can not be read.

Procedure www.ti.com

3 Procedure

Figure 1 illustrates the key steps that are covered in this application report. Each step is subsequently
explained in the following sections.

Figure 1. Flowchart Showing Sequence of Key Steps

3.1 Update Tools and Compiler

3.1.1 Checking Currently Installed Code Generation Tools Version

Code Generation Tools v4.9 is not a standard component of the currently available Code Composer
Studio v4.2.3 installation package.

To determine the current version of the Code Generation Tools installed on your machine:

1. Launch Code Composer Studio.

2. Go to the Help menu.

3. Click on Software Updates.

4. Go to the Manage Configuration option. The following window will appear.

4 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Procedure

The compiler version has been highlighted in Figure 2.

Figure 2. Determining Versions of Installed Components

If Code Generation Tools v4.9 is not installed on your machine, follow the instructions starting with
Section 3.2 to update your current compiler to v4.9 or else proceed to Section 3.3.

3.2 Installing and Updating Code Generation Tools to Version 4.9

In Code Composer Studio:

1. Go to the Help menu.

2. Click on Software Updates.

3. Click on Find and Install. An Install and Update wizard will appear.

4. Select Search for new features to install.

5. Click on the Next button.

6. Select Code Generation Tools Updates on the screen that appears next (as shown in Figure 3).

7. Click on the Finish button.

5SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Procedure www.ti.com

Figure 3. Selecting Update Options

6 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Procedure

Code Composer Studio searches for updates and opens a list of available updates as shown in Figure 4.

1. Select TMS470 Code Generation Tools 4.9.0 → Other → Code Generation Tools Update.

2. Click on Next and proceed to the Feature License screen.

Figure 4. Selecting Update Components

3. Read and accept the license agreement and click on the Next button as shown in Figure 5.

Figure 5. Install Window_Accept Terms

7SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Procedure www.ti.com

4. Click on the Finish button as shown in Figure 6.

Figure 6. Install Window_Finish

8 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Procedure

5. Click on the Install button as shown in Figure 7. The verification screen appears next.

Figure 7. Verification Window

6. The following pop-up appears (see Figure 8) after the update is successfully installed.

Figure 8. Install and Update Dialog Box

7. Click on the Yes button and restart Code Composer Studio.

3.3 Confirm That the Currently Installed Version of Code Generation Tools is 4.9
Upon launching Code Composer Studio:

1. Go to Help menu.

2. Click on Software Updates.

3. Manage Configuration option. The following window will appear.

9SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Modify Existing Project Settings and Determine the Length of Executable Code www.ti.com

4. Confirm that Code Generation Tools v4.9 has been successfully installed as shown in the red circle in
Figure 9.

Figure 9. Checking Update Options

4 Modify Existing Project Settings and Determine the Length of Executable Code

In the following section, an existing example from StellarisWare is used. Project settings are modified and
compiled in such a way that a literal dump does not reside in executable sections of code. This protocol
enables you to use execute, write, and erase-only Flash protection, which provide the capability to write,
erase, and execute from Flash but do not give you the ability to read from it.

4.1 Build an Existing Project (hello.c) in Code Composer Studio From StellarisWare
1. Connect the DK-LM3S9B96 board to the computer.

2. Launch Code Composer Studio.

3. Go to the Project menu.

4. Select the Import Existing CCS/Eclipse Project.

5. Click on the Browse button → browse to the C:\StellarisWare\boards\dk-lm3s9b96\hello location, or
wherever the “hello” project is located in your computer.

6. Import the project files into a workspace.

7. Build, debug and download the project with default settings. The project should successfully build
without any errors, and the application should execute normally as expected.

4.2 Modify Project Settings

In Code Composer Studio:

1. Go to the Project menu

2. Select Properties to open the Project properties window as shown in Figure 10.

3. Select Code Composer Studio Build

4. In the General tab → select the TI v4.9.0 compiler in the Code Generation Tools field.

5. Select <automatic> for the Runtime Support Library.

6. After selecting these options, click on the Apply button.

10 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Modify Existing Project Settings and Determine the Length of Executable Code

Figure 10. Properties for “hello”

11SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Modify Existing Project Settings and Determine the Length of Executable Code www.ti.com

7. The Build Configuration Settings window will appear. Select the options as shown in Figure 11 and
click on the OK button.

Figure 11. Save Build Configuration Settings

8. Click on the OK button when the dialog box appears as shown in Figure 12.

Figure 12. Save Build Configuration Settings

12 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Modify Existing Project Settings and Determine the Length of Executable Code

9. Click on the OK button on the window that appears next (as shown in Figure 13) and return to the
Code Composer Studio project properties for this project.

Figure 13. Properties for “hello” - Code Composer Studio Build

10. Select C/C++ Build under the Tool Settings tab.

11. Select Runtime Model Options in the TMS470 Compiler field.

13SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Modify Existing Project Settings and Determine the Length of Executable Code www.ti.com

12. Select options (on and off), as shown in red circles in Figure 14, → click on the Apply button.

Figure 14. Properties for “hello” - C/C++ Build

14 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Modify Existing Project Settings and Determine the Length of Executable Code

As shown in Figure 15, select Predefined Symbols and add additional defines to the Predefined NAME

section by clicking on the button. Add Predefined NAMEs as shown in the red circles in Figure 15.
Pay attention to the letter case; and include the following three symbols:

• TARGET_IS_TEMPEST_RB1

• ccs

• PART_LM3S9B96

Figure 15. Properties for “hello” - Predefined Name

13. Click Apply → return to the Code Composer Studio main window/ file editor window.

4.3 Rebuilding the Project

Rebuild the code by selecting the Rebuild All option in the Project menu. The project should successfully
build without any errors.

4.4 Determining How Much Flash to Protect by Examining Contents of the Map File

In this example, the executable section of code is protected in the Flash by making it execute, write, and
erase only. The remaining sections of the code like the vector table, constants, and initialization values
need not be protected.

15SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Modify Existing Project Settings and Determine the Length of Executable Code www.ti.com

In order to protect the executable code, the map file is first examined to determine the length of
executable code. The map file in Code Composer Studio ends with the .map extension and (hello.map)
can be found in the Debug directory in the Code Composer Studio project folder, which is located at
C:\StellarisWare\boards\dk-lm3s9b96\hello\ccs\Debug assuming that StellarisWare has been installed in
the C:\ directory. Map files can be modified using a text editor.

If the project was previously complied using an older version of Code Generation Tools (older compiler),
the project folder will have a map file (hello_ccs.map) associated with that version of the compiler as well.
Make sure that the map file (hello.map) being referred to is generated by Code Generation Tools v4.9.
This information is available in the beginning of the map file as shown in Figure 16. Or, you can use the
Windows time stamp to identify the map file that has just been generated.

Figure 16. Screen Shot of hello.map

As shown in Figure 16, the executable section of the code is 0x16C6 bytes long (5830 bytes long). As
explained in the Stellaris LM3S9B96 Microcontroller Data Sheet (SPMS182), the Flash can only be
protected in the multiples of 2KB. For the purpose of this project, at least 6KB (3 sectors) of Flash must to
be protected to accommodate 5830 bytes of executable code.

Next, the length of readable section of code must be determined, which is the sum of the following
sections:

• Vector table (.intvecs) : 0x11C

• Constants (.const) : 0x1e9c

• Initialization data (.cinit) : 0x40

The sum of these three sections is 8186 bytes (for example, 7KB), which translates to 8KB (4 sectors) in
Flash.

NOTE: If the “hello” example is modified or rebuilt, the length of sections mentioned above may get
modified. Options like compiler optimization also affect the length of different code sections.
Therefore, keeping some additional margin is always recommended, but is not necessary.

16 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPMS182
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Reserve a Read Protected Region in the Flash by Modifying the Linker Command File

5 Reserve a Read Protected Region in the Flash by Modifying the Linker Command
File

The linker command file (also known as linker file, or scatter file in some integrated development
environments (IDEs)) is used to define the addresses of sections in the memory. The linker command file
in Code Composer Studio ends with the .cmd extension and it (hello_ccs.cmd) can be found in the
C:\StellarisWare\boards\dk-lm3s9b96\hello directory assuming that StellarisWare has been installed in the
C:\ directory. The linker command file can be modified using a text editor. Figure 17 shows the contents of
the original default linked command file created for this example. As highlighted using red circles, two
sections in memory are defined namely FLASH and SRAM.

Figure 17. System Memory Map

The Flash memory map can be graphically represented in Figure 18 and includes the addresses from
0x0000 0000 to 0x0040 000. In other words, 256KB of Flash memory is executable and readable.

17SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

.intvecs

.text

.const

.cinit

.pinit

0x0000 0000

0x0040 0000

256K

R
e

a
d

a
b

le
a

n
d

E
xe

cu
ta

b
le

FLASH

Reserve a Read Protected Region in the Flash by Modifying the Linker Command File www.ti.com

Figure 18. Memory Map_Flash

In order to protect executable code from being read, a separate read-protected section must be reserved
in the Flash. Before such a section can be reserved, it must be first defined in the memory map. For the
purpose of this project, 2KB in Flash is reserved for the vector table; named as FLASH_1 and configured
as readable and executable (default configuration).

Per Section 4.4, 6KB in Flash is reserved for executable code; named as FLASH_EX and configured as
not-readable but executable. The remaining Flash can be named as FLASH_2. It is configured as
readable and executable (default configuration) for the rest of the code including constants and
initialization data. This is represented in Figure 19.

Address Space 0x0000 0000 to 0x0000 0800 Readable and Executable
Address Space 0x0000 0800 to 0x0000 2000 Non-Readable and Executable
Address Space 0x0000 2000 to 0x0040 0000 Readable and Executable

18 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

.intvecs

.text

.const

.cinit

.pinit

0x0000 0000

0x0000 0800

0x0000 2000

0x0040 0000

2K

248K

6K

FLASH_1

FLASH_EX

FLASH_2

R
e

a
d

a
b

le
 a

n
d

E
xe

cu
ta

b
le

N
o

n
-r

e
a

d
a

b
le

 a
n

d

E
xe

cu
ta

b
le

R
e

a
d

a
b

le
 a

n
d

E
xe

cu
ta

b
le

www.ti.com Reserve a Read Protected Region in the Flash by Modifying the Linker Command File

Figure 19. Memory Map (FLASH_1, FLASH_EX and FLASH_2)

19SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Reserve a Read Protected Region in the Flash by Modifying the Linker Command File www.ti.com

In order to implement the changes just described, modify the linker command file as shown in Figure 20.

Figure 20. Linker Command File

Save and close the linker command file, and rebuild the project.

Now open the map file and make sure that it reflects the new sections that have been created in the
memory as shown in Figure 21. Compare this with the map file referenced previously. Notice that an
additional read protected region in Flash has been created, “FLASH_EX”, along with another region,
“FLASH_2”, which is both readable and writeable.

20 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Rebuild Associated Libraries (driver lib and graphics lib with Code Generation Tools v4.9)

Figure 21. TMS470 Linker PC v4.9.0 Map File

6 Rebuild Associated Libraries (driver lib and graphics lib with Code Generation
Tools v4.9)

This example (“hello”) uses API function calls from the StellarisWare Driver Library and the Graphics
Library. Therefore, these libraries must also be compiled using Code Generation Tools v4.9 with the same
compiler settings that project (“hello”) was built with. Instructions to compile DriverLib and GraphicsLib are
illustrated in the following sections.

6.1 Compiling Driver Lib

Add the Driver Library (driverlib) project to an existing workspace where the “hello” project already exists.

1. Go to the Project menu in Code Composer Studio → select Import Existing CCS/Eclipse Project →
click on the Browse button and browse to the C:\StellarisWare\driverlib location. Import the project file
for the DriverLib in the current workspace.

2. The driverlib project will be set as the Active Project. If not, then it can be manually set as an active
project in the project explorer window pane by right clicking on driverlib project and selecting Set as
Active Project option as shown in Figure 22.

21SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Rebuild Associated Libraries (driver lib and graphics lib with Code Generation Tools v4.9) www.ti.com

Figure 22. Setting a Project as an Active Project

3. Go to Project menu → select Properties to open Project properties window as shown in Figure 23.

4. Select Code Composer Studio Build in the General tab → select the TI v4.9.0 compiler in the Code
Generation Tools field. After selecting these options → click on the Apply button.

Figure 23. Properties for Driver Lib

22 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Rebuild Associated Libraries (driver lib and graphics lib with Code Generation Tools v4.9)

5. The Build Configuration Settings window will appear → select options as in Figure 24 → click on the
OK button.

Figure 24. Save Build Configuration Settings

6. Click on the OK button when the following dialog box appears.

Figure 25. Save Build Configuration Settings (Problems)

23SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Rebuild Associated Libraries (driver lib and graphics lib with Code Generation Tools v4.9) www.ti.com

7. Click OK on the window that appears next (as shown in Figure 26) → return to the Code Composer
Studio project properties for this project.

Figure 26. Properties for driverlib (Code Composer Studio Build)

24 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Rebuild Associated Libraries (driver lib and graphics lib with Code Generation Tools v4.9)

8. Select C/C++ Build under the Tool Settings tab → select Runtime Model Options in the TMS470
Compiler field. Select options (on and off) as shown in red circles in Figure 27 and click on the Apply
button.

Figure 27. Properties for driverlib (C, C++ Build)

25SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Rebuild Associated Libraries (driver lib and graphics lib with Code Generation Tools v4.9) www.ti.com

9. Next, as shown in Figure 28, select Predefined Symbols and add additional defines to the Pre-define

NAME section by clicking on the button. Add Pre-define NAMEs as shown in the red circle in
Figure 28. Pay attention to the letter cases and include the following two symbols:

• ccs

• PART_LM3S1101

Figure 28. Properties for driverlib (Pre-Defined Name)

10. Click on the Apply button → return to the Code Composer Studio main window/ file editor window and
rebuild the library.

6.2 Compiling Graphics-Lib

Add the GraphicsLib project to an existing workspace where the “hello” project already exists.

1. Go to the Project menu in Code Composer Studio → select Import Existing CCS/Eclipse Project →
click on the Browse button → browse to the C:\StellarisWare\grlib location. Import the project file for
the Graphics Library (grlib) to the current workspace.

The grlib project will be set as an Active Project. If not, then it can be manually set as an active project
in the project explorer window pane, by right clicking on grlib project and selecting Set as Active
Project.

2. Go to the Project menu → select Properties to open the Project properties window as shown in
Figure 29.

3. Select CCS Build In the General tab. Select the TI v4.9.0 compiler in the Code Generation Tools field.
After selecting these options, click on the Apply button.

26 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Rebuild Associated Libraries (driver lib and graphics lib with Code Generation Tools v4.9)

Figure 29. Properties for grlib

27SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Rebuild Associated Libraries (driver lib and graphics lib with Code Generation Tools v4.9) www.ti.com

4. The Build Configuration Settings window will appear → select options as shown in Figure 30 → click
OK button.

Figure 30. Save Build Configuration Settings (Debug)

5. Click the OK button when the following dialog box appears.

Figure 31. Save Build Configuration Settings (Problems)

28 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Rebuild Associated Libraries (driver lib and graphics lib with Code Generation Tools v4.9)

6. Click the OK button on the window that appears next (as shown in Figure 32) and return to the Code
Composer Studio properties for this project.

Figure 32. Properties for grlib (Code Composer Studio Build)

29SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Rebuild Associated Libraries (driver lib and graphics lib with Code Generation Tools v4.9) www.ti.com

7. Select C/C++ Build under the Tool Settings tab → select the Runtime Model Options in the TMS470
Compiler field. Select options (on/off) as shown in red circles in Figure 33 → click on the Apply button.

Figure 33. Properties for grlib (C, C++ Build)

30 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Add Flash Protection Code to the Project and Build It

8. Next, as shown in Figure 34 → select Predefined Symbols and add additional defines to the Pre-

define NAME section by clicking on the button. Add Pre-define NAMEs as shown in the red circle
in Figure 34. Pay attention to the letter cases and include the following two symbols:

• ccs

• PART_LM3S1101

Figure 34. Properties for grlib (Debug)

9. Click Apply → return to the Code Composer Studio main file editor window and rebuild the library.

7 Add Flash Protection Code to the Project and Build It

7.1 Make “hello” Project Active Again

Set “hello” as the active project in the project explorer window pane, by right clicking on “hello” project and
selecting Set as Active Project.

31SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Add Flash Protection Code to the Project and Build It www.ti.com

7.2 Include Appropriate Header Files in II

Flash APIs are declared in the flash.h header file. In order to use those APIs, include the flash.h header
file as shown in Figure 35.

Figure 35. Including Header Files

7.3 Add Flash Protection Code to “hello” Project

In order to configure Flash memory as execute only (read protected), appropriate arguments should be
passed in FlashProtectSet() API. The changes can be committed using FlashProtectSave() API. Once
committed, the protection settings are permanent and cannot be undone by performing chip reset or
power cycle. It is recommended to use FlashProtectSave() only after you are sure that your code works
the way it is designed to work. The function calls are shown in Figure 36.

Note that the Flash protection settings can be reset to their factory default configuration by performing the
debug port unlock sequence using LM Flash Programmer.

32 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Add Flash Protection Code to the Project and Build It

Figure 36. Adding Flash Protection Code

Rebuild the project now.

33SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Launch Debugger www.ti.com

8 Launch Debugger

Next, you can verify the results that execute, write, and erase-only Flash protection works as expected
and the read-protected region in Flash cannot be read.

After the code has been built, download the application to the Flash memory. Begin code execution by

clicking on the Run button . Pause code execution by clicking on Pause/ Suspend button

.

Launch the debugger to examine the contents of the memory location. The Memory window can be
launched by selecting the Memory option in the View menu from the Code Composer Studio menu bar as
shown in Figure 37.

Figure 37. Launching Memory Window

Now, examine the contents of the Flash memory located at addresses in various regions - namely
FLASH_1, FLASH_EX, FLASH_2.

First, read the contents in the FLASH_EX region. You will notice that the contents of Flash in the
FLASH_EX region, say at address 0x0000 0800, are not readable. The debugger shows “????????” for
the memory cells it cannot read. Additionally, some symbols may be shown like GrStringDraw. This is
shown in Figure 38.

34 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com Launch Debugger

Figure 38. Memory Window_0x00000800

Upon attempting to access other addresses in the FLASH_EX region, the debugger will prompt an error in
the console window as shown in Figure 39. This is expected and indicates that the Flash is read protected
for those addresses.

Figure 39. Debugger Console

Second, read the contents in the FLASH_2 (or FLASH_1) region.Notice that the contents of the Flash in
FLASH_2 region, say at address 0x0000 2000, are readable as shown in Figure 40.

35SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

Conclusion www.ti.com

Figure 40. Memory Window_0x00002000

Last, note that upon attempting to access other addresses in the FLASH_EX region, the debugger will
prompt an error in the console window as shown in Figure 41. This message is expected and indicates
that the Flash is read protected for those addresses.

Figure 41. Debugger Console_2

9 Conclusion

Using a simple “hello” example from StellarisWare, it has been demonstrated how execute, write, erase-
only Flash protection can be used on Stellaris microcontrollers to enable developers to protect their code
and IP in the end application while providing the flexibility to upgrade the firmware. Flash protection has
been implemented by creating a read-only region in the Flash memory to prevent code from being read
but executed (the memory block may be written, erased, or executed but not read) using TI’s Code
Composer Studio v4.2.3 and Code Generation Tools v4.9 that offers the advantage of separating the
literal dump and executable code.

36 Using Execute, Write, and Erase-Only Flash Protection on Stellaris SPMA044A–August 2012
Microcontrollers Using Code Composer Studio Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

www.ti.com References

NOTE: Once committed (saved), the Flash protection settings can not be changed or undone by
power-cycling or resetting the MCU. Performing the Debug Port Unlock (JTAG toggle mass
erase sequence) using LM Flash Programmer will erase the entire Flash memory and reset
the Flash protection settings to factory default.

10 References
• Stellaris LM3S9B96 Microcontroller Data Sheet (SPMS182)

• Code Composer Studio v 4.2.3 with Code Generation Tools v4.9 can be downloaded from the
following URL: http://www.ti.com/ccs

• StellarisWare Package can be downloaded from the following URL: http://www.ti.com/stellarisware

• FTDI-based ICDI driver can be downloaded from the following URL:
http://www.ti.com/tool/lm_ftdi_driver

37SPMA044A–August 2012 Using Execute, Write, and Erase-Only Flash Protection on Stellaris
Microcontrollers Using Code Composer StudioSubmit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPMS182
http://www.ti.com/ccs
http://www.ti.com/stellarisware
http://www.ti.com/tool/lm_ftdi_driver
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA044A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Using Execute, Write, and Erase-Only Flash Protection on Stellaris Microcontrollers Using Code Composer Studio
	1 Introduction
	2 Requirements
	3 Procedure
	3.1 Update Tools and Compiler
	3.1.1 Checking Currently Installed Code Generation Tools Version

	3.2 Installing and Updating Code Generation Tools to Version 4.9
	3.3 Confirm That the Currently Installed Version of Code Generation Tools is 4.9

	4 Modify Existing Project Settings and Determine the Length of Executable Code
	4.1 Build an Existing Project (hello.c) in Code Composer Studio From StellarisWare
	4.2 Modify Project Settings
	4.3 Rebuilding the Project
	4.4 Determining How Much Flash to Protect by Examining Contents of the Map File

	5 Reserve a Read Protected Region in the Flash by Modifying the Linker Command File
	6 Rebuild Associated Libraries (driver lib and graphics lib with Code Generation Tools v4.9)
	6.1 Compiling Driver Lib
	6.2 Compiling Graphics-Lib

	7 Add Flash Protection Code to the Project and Build It
	7.1 Make “hello” Project Active Again
	7.2 Include Appropriate Header Files in II
	7.3 Add Flash Protection Code to “hello” Project

	8 Launch Debugger
	9 Conclusion
	10 References

