
Application Note
Shared Key Boot Loader for TM4C129 Devices With AES
Hardware Encryption

Bob Crosby and Ralph Jacobi

ABSTRACT

This application report provides an infrastructure where the product owner can create an image for field upgrade
of their product in their factory using a pair of 256-bit shared keys. One key is used to generate a signature.
The other key is used to encrypt the image. The product in the field has a boot loader that shares the same two
keys. It decrypts the signature and the image and programs them into the flash with one key. Then, it verifies
the signature against the image with the second key. Only if the image verifies, then the boot loader transfers
execution to the new image.

This example provides a mechanism to protect against accidental or unsophisticated attempts to upload a code
image other than one created by the tools described in this report. It is not intended to imply that this method is
sufficient to protect against more sophisticated attacks. It is the your responsibility to determine if this method is
appropriate for your application.

Project collateral discussed in this document can be downloaded from the following URL: https://
www.ti.com/lit/zip/spma083.

Table of Contents
1 Implementation... 2

1.1 Flash Boot Loader Project..2
1.2 Image Creation Project.. 4
1.3 Key Image Project..4
1.4 EK-TM4C129EXL Example Application Project...4
1.5 DK-TM4C129X Example Application Project... 4
1.6 RAM-Based EEPROM Erase Project...4

2 Example Walk Through.. 4
2.1 Build Environment.. 4
2.2 Importing the Examples into Code Composer Studio.. 5
2.3 Setting Keys and Variables.. 8
2.4 Running the shared_key_image_encrypt Tool... 9
2.5 Running the Shared Key Serial Boot Loader... 15
2.6 Returning to the Boot Loader... 20

3 Summary... 21

List of Figures
Figure 2-1. Import CCS Projects Step 1.. 5
Figure 2-2. Import CCS Projects Step 2.. 6
Figure 2-3. Import CCS Projects Step 3.. 7
Figure 2-4. Import CCS Projects Step 4.. 8
Figure 2-5. Executing the shared_key_image_encrypt Program...10
Figure 2-6. Identifying the COM Port... 10
Figure 2-7. Selecting the COM Port in Tera Term.. 11
Figure 2-8. Configuring the COM Port in Tera Term...11
Figure 2-9. Executing the shared_key_image_encrypt Program...12
Figure 2-10. shared_key_image_encrypt Command Menu...12
Figure 2-11. Loading the Key Image..13
Figure 2-12. Keys Successfully Loaded.. 13

www.ti.com Table of Contents

SPMA083 – JANUARY 2022
Submit Document Feedback

Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

1

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/zip/spma083
https://www.ti.com/lit/zip/spma083
https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

Figure 2-13. Loading the Program Image..14
Figure 2-14. Verifying the Program Image...15
Figure 2-15. Erasing Flash with Code Composer Studio...16
Figure 2-16. Loading eeprom_erase.out... 16
Figure 2-17. Configuring LM Flash Programmer to Program the Boot Loader..17
Figure 2-18. Programming the Boot Loader With LM Flash Programmer... 18
Figure 2-19. Configuring LM Flash Programmer to Program the Application Code.. 19
Figure 2-20. Programming the Application Code with LM Flash Programmer.. 20

Trademarks
Code Composer Studio™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

1 Implementation
The code encryption and verification method will be implemented with five example projects:

• Flash boot loader project
• Image creation project
• Key creation project
• Example application project for the EK-TM4C129EXL LaunchPad Development Kit
• Example application project for the DK-TM4C129X Development Kit

There is also a sixth project included that is used to erase the keys in EEPROM. This is simply an supplemental
resource for use during development.

1.1 Flash Boot Loader Project
The flash boot loader project shared_key_boot_serial is an example based on the current flash serial boot loader
implementation with these additional features:

• The boot loader exists in the first 16KB of flash space
• The boot loader checks for 256-bit keys stored in two blocks of EEPROM.
• If no valid keys are found (keys that are all FFs are invalid):

– The boot loader enters a mode waiting to upload an image without decrypting that image. If the image
starting at 0x4000 contains only 1 to 4 valid keys, those keys are copied to the EEPROM and the sector at
0x4000 is erased.

– The boot loader checks that JTAG is disabled. If not, it disables JTAG, and write protects the first sector of
flash (release configuration only).

• If a valid key image is found:
– The boot loader decrypts the incoming data stream using AES decryption with a 256-bit key before

programming the data.
– The incoming image should consist of a full flash image starting at address 0x4000, with the 16 bytes at

the end of flash containing the authentication signature.
• The flash end address, APP_END, is defined in the header file linker_defines.h. This file is used

by the key creation project and the boot loader project. The flash application end address can be
defined smaller than the actual flash end to reduce the time to update a device, but once defined in the
boot loader, that becomes the maximum size of the image that can be uploaded into that device.

– The boot loader computes an AES-CBCMAC signature on the data from address 0x4000 to the end of
flash minus 16 bytes.

– If that signature matches the one stored at the end of flash, the boot loader hides the EEPROM blocks
that contain the keys and jumps to the application code.

A method to change the encryption keys would be to add a new function that can revoke the current
key using a valid hash with the current key and a specific command.

Trademarks www.ti.com

2 Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

SPMA083 – JANUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

1.1.1 Changes to the Example Project boot_serial

1.1.1.1 Changes to bl_config.h

• Line 29: Modify blank line by adding “#include "linker_defines.h"”. This defines the flash application start
address

• Line 80: Modify to “#define APP_START_ADDRESS APP_BASE”.
• Line 218: Uncomment FLASH_CODE_PROTECTION.
• Line 1402: Uncomment “void MyReinitFunc(void);”.
• Line 1405: Uncomment “#define BL_INIT_FN_HOOK MyReinitFunc”.
• Line 1442: Uncomment “void MyEndFunc(void);”.
• Line 1445: Uncomment “#define BL_END_FN_HOOK MyEndFunc”.
• Line 1453: Uncomment “void MyDecryptionFunc(unsigned char *pucBuffer, unsigned long ulSize);” and

change “long” to “int”.
• Line 1460: Uncomment “#define BL_DECRYPT_FN_HOOK MyDecryptionFunc”.
• Line 1471: Uncomment “unsigned long MyCheckUpdateFunc(void);”.
• Line 1479: Uncomment “#define BL_CHECK_UPDATE_FN_HOOK MyCheckUpdateFunc”.

1.1.1.2 New Functions Added

The following new functions are added in the file shared_key_functions.c.

1.1.1.2.1 MyCheckUpdateFunc

This routine is called at the beginning of the boot loader and determines if the boot loader should run the
application code, or wait for a new image. It checks the following five conditions:

• If the code is running on a device that does not support the AES hardware encryption, the boot loader will not
execute an application program.

• If the device does not have valid keys stored in the EEPROM, the application program will not be executed.
Instead, the boot loader enters a state where it waits for an unencrypted image of the keys to be uploaded.

• MyCheckUpdateFunc will call the user-defined function CheckGPIOPin. If this function returns true, the boot
loader will not execute the application program, rather it will wait to upload a new encrypted application
image. In the example boot loader program, it checks if the EK-TM4C129EXL LaunchPad SW2 button is
being held low.

• MyCheckUpdateFunc checks if a software reset occurred and if a RAM-based predetermined value is set
signifying the boot loader was called by the application. If these are true, the boot loader waits to upload a
new encrypted application image.

• MyCheckUpdateFunc computes an AES-CBCMAC hash on the application code area and compares the
result to the last 16 bytes of the application image. If the images match, the boot loader executes the
application code. If the images do not match, it waits to upload a new encrypted application image.

1.1.1.2.2 MyReinitFunc

Since the keys can only be read from the EEPROM after a reset but before the application is invoked, the boot
loader will not work when directly called from the application. Therefore, this function sets a predefined value in a
static RAM location and then causes a software reset. The MyCheckUpdateFunc function checks for a software
reset with the predefined RAM value and uses that condition to stay in the boot loader.

1.1.1.2.3 MyEndFunc

This function is used to load a new key image into EEPROM. It is called after all of the data has been
programmed but before execution is passed to the new program. If the device contains valid keys or the device
does not have an AES module, it will return without executing. If the device does not contain valid keys and
has an AES module, then this function will check the loaded image to see if it is a valid key image. If so, it will
program the keys into EEPROM, hide the EEPROM blocks, erase the flash at APP_BASE, and finally reset the
part.

1.1.1.2.4 MyDecryptionFunc

This function decrypts the input buffer using AES-CBC with a 256-bit key. The input buffer must be a size of 16,
32, 48, or 64 bytes.

www.ti.com Implementation

SPMA083 – JANUARY 2022
Submit Document Feedback

Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

3

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

1.2 Image Creation Project
The image creation project, shared_key_image_encrypt, only runs on a TM4C129 part with AES module. It uses
UART0 to run a command line program. That program executes the following commands:

• K – Load two 256-bit key pairs and save them in EEPROM
• D - Disable JTAG (only if keys are already in EEPROM)
• L – Load a program that starts at address 0x4000, using XMODEM transfer.
• X – Execute the program loaded at address 0x4000
• O – Output a binary image that is signed and encrypted.
• H – Print help menu

1.3 Key Image Project
key_image is a simple assembly language project that is used to create a binary image of the encryption and
verification keys.

1.4 EK-TM4C129EXL Example Application Project
A simple application project, shared_key_boot_demo, can be used to demonstrate the process of creating an
application, signing and encoding it, then programming it with the secure boot loader. When run, the application
blinks an LED until the SW1 button is pressed and held ,which returns the application to the boot loader.

1.5 DK-TM4C129X Example Application Project
A simple application project, shared_key_boot_demo_DK, that can be used to demonstrate the process of
creating an application, signing and encoding it, then programming it with the secure boot loader. When run, the
application prints a message on the LCD screen. When the Down switch is pressed, the application returns to
the boot loader.

1.6 RAM-Based EEPROM Erase Project
Keys stored in the EEPROM will remain unless the device goes through an “unlock” procedure, or they are
explicitly erased by an application that runs from reset. The project eeprom_erase erases the keys when run
by Code Composer Studio™ after a system reset. This project is simply an aid for use during the boot loader
development to clear any loaded keys from EEPROM without needing to go through the more tedious device
unlock process.

2 Example Walk Through

2.1 Build Environment
These examples were built and tested using:

• EK-TM4C129EXL LaunchPad Development Kit
• Code Composer Studio v10.2
• TI Arm C Compiler v20.2.5.LTS
• TivaWare v2.2.0.295

Implementation www.ti.com

4 Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

SPMA083 – JANUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

2.2 Importing the Examples into Code Composer Studio
There are six CCS project examples attached as collateral to this document. Project collateral discussed in this
document can be downloaded from the following URL: https://www.ti.com/lit/zip/spma083. The projects can be
unzipped into a folder or kept in the zip file. Both formats can be imported to the CCS.

1. To import the project into CCS, first select “File” -> ”Import”.

Figure 2-1. Import CCS Projects Step 1.

www.ti.com Example Walk Through

SPMA083 – JANUARY 2022
Submit Document Feedback

Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

5

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/zip/spma083
https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

2. Select “CCS Projects” to import the examples and then click “Next”.

Figure 2-2. Import CCS Projects Step 2.

Example Walk Through www.ti.com

6 Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

SPMA083 – JANUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

3. Next, provide the path to either the unzipped project by selecting the first radio button or import the zip file
directly by selecting the second radio button. Select the “Copy projects into workspace” box.

Figure 2-3. Import CCS Projects Step 3.

www.ti.com Example Walk Through

SPMA083 – JANUARY 2022
Submit Document Feedback

Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

7

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

4. After the project path is provided, a total of six discovered projects will show up. First click the “Select All”
button and then click the “Finish” button to complete the import.

Figure 2-4. Import CCS Projects Step 4.

2.3 Setting Keys and Variables

2.3.1 Keys

The keys are defined in the file key_image.asm that is in the key_image directory. This file is used in the
key_image project and also, by link, in the shared_key_boot_serial example project.

 .sect ".keyimage"
 .global key
key
; Encryption/Decryption Key 0
 .word 0x3ed44417, 0x8d849ffc, 0x4719e4dc, 0x71583965
 .word 0x84b6ba7d, 0xa96ff68a, 0xb79d9da8, 0x5f747e02
; Authentication Key 0
 .word 0xf74e59bf, 0xd19cd4e1, 0x630303f8, 0xe5bb8089
 .word 0x0e3bc945, 0xffc85239, 0x53289e9c, 0x5f906df8
; Encryption/Decryption Key 1
 .word 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF
 .word 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF
; Authentication Key 1
 .word 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF
 .word 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF

Example Walk Through www.ti.com

8 Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

SPMA083 – JANUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

As seen in the code, there are actually four 256-bit keys defined. The first key is for encryption/decryption. The
second key is for authentication. The last two keys are currently not used.

For initial evaluation and development the keys given in this example can be used, but for a real project these
need to be changed and kept confidential in a secure location.

2.3.2 Initialization Vector

The initialization vector is defined in the file initialization_vector.c . This file is in the project
shared_key_image_encrypt and is referenced by link in the project shared_key_boot_serial. In this example
the initialization vector is all zeros. It is suggested that a random 128-bit initialization vector be chosen for real
products.

2.3.3 Application Start Address and Flash Size

The file linker_defines.h, located in the project shared_key_image_encrypt, defines the space in Flash
memory for the application and the size of RAM. It is used in the source code and link command files for the
shared_key_image_encrypt and shared_key_boot_serial projects.

/*
 * linker_defines.h
 */
#ifndef LINKER_DEFINES_H_
#define LINKER_DEFINES_H_

#define APP_BASE 0x00004000
#define APP_END 0x00100000
#define RAM_BASE 0x20000000

#endif /* LINKER_DEFINES_H_ */

2.3.3.1 APP_BASE

APP_BASE is the start of the flash area for the application. It must be on the start of a flash sector boundary. For
the TM4C129 devices this means it must be a multiple of 0x4000. Since the boot loader exists in the first sector,
APP_BASE cannot be zero. There is typically no need to change APP_BASE from the default value of 0x4000.

2.3.3.2 APP_END

APP_END is the address of the first byte beyond the flash memory available to the application. The AEC-
CBCMAC authentication signature is stored in the 16 bytes before APP_END. The default value for devices with
1MB of flash is 0x100000. For devices with 512KB of flash the default value is 0x80000.

The user may choose to use a smaller size flash to reduce the time to download a new image. If so, the value
for APP_END must be multiple of the sector size, 0x4000. The same value must be used for APP_END in the boot
loader and in the tool that creates the encrypted image. The size of usable flash for the application cannot be
changed once the boot loader is programmed into the device. Make sure to leave enough unused space in the
flash to support future application program growth.

The reason a fixed size image is loaded each time is that one attack for AES-CBC encoded data is to extend the
length with malicious code. Using a fixed length of data foils that attack method.

2.3.3.3 RAM_BASE

RAM_BASE defines the starting address of RAM on the part. There is usually no reason to change this value from
the default of 0x2000.0000.

2.4 Running the shared_key_image_encrypt Tool
After making any modifications described in section 3.3, re-compile the Debug configurations of the projects
shared_key_image_encrypt and key_image. Then recompile the Debug_wKey configuration of the project
shared_key_boot_serial. The debug configurations do not lock the JTAG and are for use during development.
The release configurations will lock JTAG and should be used for the production version of the shared key boot
loader.

www.ti.com Example Walk Through

SPMA083 – JANUARY 2022
Submit Document Feedback

Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

9

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

1. With the EK-TM4C129EXL LaunchPad Development Kit connected with a USB cable from the DEBUG port
of the LaunchPad to a USB port on the PC, launch the shared_key_image_encrypt project. This can be done
by highlighting the project in the Project Explorer window then clicking on the debug icon shown in yellow in
Figure 2-5.

Figure 2-5. Executing the shared_key_image_encrypt Program
2. Identify that the serial port was assigned by the PC to the virtual serial port of the LaunchPad. This can be

found by running Device Manager on the PC. In Figure 2-6, the LaunchPad was assigned to COM19.

Figure 2-6. Identifying the COM Port

Example Walk Through www.ti.com

10 Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

SPMA083 – JANUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

3. Open a terminal emulator that supports XMODEM communications. In this example “Tera Term” was used.
Connect over serial to the identified COM port for the LaunchPad.

Figure 2-7. Selecting the COM Port in Tera Term
4. Configure the terminal emulator to use the serial port at 460800 baud, 8-bit data, 1 stop bit, and no parity.

Figure 2-8. Configuring the COM Port in Tera Term

www.ti.com Example Walk Through

SPMA083 – JANUARY 2022
Submit Document Feedback

Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

11

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

5. Execute the shared_key_image_encrypt program by clicking on the green arrow in Code Composer Studio
or by pressing F8.

Figure 2-9. Executing the shared_key_image_encrypt Program
6. The following menu should now be displayed on the terminal.

Figure 2-10. shared_key_image_encrypt Command Menu

Example Walk Through www.ti.com

12 Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

SPMA083 – JANUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

7. To create a signed and encrypted image to be used by the boot loader follow these steps:
a. Transfer the file key_image.bin from the debug subdirectory of the project key_image to the device

using XMODEM protocol. Using Tera Term follow these steps:
i. Type K in the terminal emulator (it takes lower-case k or upper-case K).
ii. Select “File” -> “Transfer” -> “XMODEM” -> “Send”.
iii. Browse to key_image\Debug\key_image.bin and select “Open”.

Figure 2-11. Loading the Key Image
iv. The terminal should now display Keys successfully programmed into EEPROM.

Figure 2-12. Keys Successfully Loaded

www.ti.com Example Walk Through

SPMA083 – JANUARY 2022
Submit Document Feedback

Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

13

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

b. Transfer the application image into the device. Using Tera Term follow these steps:
i. Type L in the terminal emulator.
ii. Select “File” -> “Transfer” -> “XMODEM” -> “Send”.
iii. Browse to shared_key_boot_demo\Debug\shared_key_boot_demo.bin and select “Open”.

The transfer can take up to one minute for a full 1MB flash device. After completion, the message File
programming complete will be displayed on the terminal.

Figure 2-13. Loading the Program Image
c. Output a signed and encrypted version of the binary image. Using Tera Term follow these steps:

i. Type O in the terminal emulator.
ii. Select “File” -> “Transfer” -> “XMODEM” -> “Receive”.
iii. Choose an output file name such as:

shared_key_boot_demo\Debug\shared_key_boot_demo_encrypted.bin and select
“Save”.

d. Optionally, it is possible to verify the encrypted file just created against the unencrypted image stored in
flash by:
i. Type V in the terminal emulator.
ii. Select “File” -> “Transfer” -> “XMODEM” -> “Send”.
iii. Browse to shared_key_boot_demo\Debug\shared_key_boot_demo_encrypted.bin and

select “Open”.
iv. The transfer will take about one minute for a full 1MB flash device. After completion, the message

File verification complete will be displayed on the terminal if the encrypted file's hash value was
autheticated successfully.

Example Walk Through www.ti.com

14 Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

SPMA083 – JANUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

Figure 2-14. Verifying the Program Image
e. Optionally, execute the application code that has been programmed into the device by:

i. Type X in the terminal emulator.
ii. The message Hash value authenticated will be displayed on the terminal and LED D1 on the

LaunchPad will be flashing.
iii. Reset the LaunchPad with either Code Composer Studio, or the reset button on the LaunchPad and

the terminal will indicate that the program is back in the shared_key_image_encrypt tool.

2.5 Running the Shared Key Serial Boot Loader
While the boot loader could be programmed in a non-secure environment, that would open up a risk that the
initialization vectors could be exposed. Therefore, the best method is to program the boot loader and the keys
simultaneously in a secure environment. When the boot loader is programmed in the first sector, and an image
of the keys is programmed in the sector at APP_BASE, the boot loader copies the keys into EEPROM and then
erase the sector at APP_BASE. If the “Release” configuration is used, the boot loader then write protects itself
and disables JTAG.

The “Debug” configuration of the boot loader should not be released in the field. Without much difficulty someone
can connect to the JTAG port with an emulator and write code that would expose the keys. Then they could
make their own programs that would load using these keys.

The user should consider whether or not to expose the JTAG pins on their circuit board. It is possible to program
the initial boot loader and the keys using the ROM boot loader. Therefore, JTAG access is not required. Using
the “Release” configuration of the boot loader disables the JTAG interface, but someone could still use the
method of recovering a locked microcontroller to completely reset the device. This would erase the boot loader,
the application code, and the keys which were in EEPROM. Afterwards, they could then program their own code
into that device. It would be the same effect as if they desoldered the TM4C device and replaced it with a new
one. For ball grid array (BGA) devices, JTAG can be hidden by not adding traces to the JTAG balls. For quad flat
pack (QFP) devices the pins are exposed even if there are no traces to the pins.

The main disadvantage of not having access to the JTAG pins is that the device cannot be recovered externally.
Therefore, the user must ensure there is a validated process to re-enter the boot loader. Also, it would not be
possible to do analysis of failing parts without removing them from the printed circuit board.

www.ti.com Example Walk Through

SPMA083 – JANUARY 2022
Submit Document Feedback

Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

15

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

2.5.1 Programming the Boot Loader

2.5.1.1 Erasing Existing Code and Keys

To emulate a true production environment, start with a fully erased part. There are two methods of achieving this:

2.5.1.1.1 Erasing Flash and EEPROM With Code Composer Studio

1. To erase the flash, select “Tools” -> “On-Chip Flash” from the pulldown menu. Enter the proper crystal
frequency. It is 25 MHz for the EK-TM4C129EXL LaunchPad Development Kit. In the erase section make
sure “Entire Flash” is selected, then click the “Erase Flash” button.

Figure 2-15. Erasing Flash with Code Composer Studio
2. To erase the EEPROM, load and execute the eeprom_erase program that was loaded into the workspace

with this document’s collateral. From the pulldown menu select “Run” -> “Load” -> “Select Program to Load”.
Then click “Browse project”. Select the file eeprom_erase\Debug\eeprom_erase.out, then click “OK”.

3. Click OK again to load and execute the eeprom_erase program.

Figure 2-16. Loading eeprom_erase.out
4. Two LEDs on the LaunchPad will blink indicating that the program ran and erased the EEPROM.

Example Walk Through www.ti.com

16 Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

SPMA083 – JANUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

2.5.1.1.2 Erasing Flash and EEPROM by Using the Unlock Procedure

The unlock procedure causes all flash, EEPROM, and device settings to be restored to factory conditions. This
causes the MAC address stored in the user registers of the LaunchPad to be erased. It is recommended to
record the MAC address before unlocking the part so that it can be restored afterwords.

The unlock procedure using LM Flash Programmer is described in the Executing Unlock Sequence section in
Using TM4C12x Devices Over JTAG Interface.

2.5.1.2 Using the ROM Boot Loader to Program the Shared Key Boot Loader

Now that the flash is erased, the LaunchPad is executing the ROM boot loader. The prior example for the shared
key boot loader utilized a serial interface. This ROM boot loader example uses the same serial interface to
demonstrate how to load the shared key boot loader into a blank device.

Note
Make sure the TeraTerm terminal window is disconnected from the serial port and the LaunchPad is
not connected to Code Composer Studio. The USB cable must still be connected.

1. Open LM Flash Programmer and set the items on the configuration tab as shown below, selecting the COM
port associated with the LaunchPad.

Figure 2-17. Configuring LM Flash Programmer to Program the Boot Loader

www.ti.com Example Walk Through

SPMA083 – JANUARY 2022
Submit Document Feedback

Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

17

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPMA075
https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

2. Then, on the “Program” tab, browse to the Debug_wKey\shared_key_boot_serial.bin file. Make sure
“Reset MCU After Program” is checked and the “Program Address Offset” is set to 0.

Figure 2-18. Programming the Boot Loader With LM Flash Programmer
3. Click the “Program” button.

After programming is completed, the boot loader executes and copies the keys into EEPROM before erasing
them from flash. If the Release_wKey\shared_key_boot_serial.bin file is used instead of the debug
version, the boot loader write protects the first sector of flash and lock the JTAG.

Example Walk Through www.ti.com

18 Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

SPMA083 – JANUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

2.5.2 Using the Shared Key Boot Loader to Program the Application Code

The encrypted application code can now be programmed into the part using LM Flash Programmer. Since the
keys are now hidden, this can be done in the field or in a less secure part of the factory.

1. On the configuration tab of LM Flash Programmer the “Disable Auto Baud Support” must be checked, and
the baud rate must be set to the one chosen in the file bl_config.h. In this example, 460800 was used.

Figure 2-19. Configuring LM Flash Programmer to Program the Application Code

www.ti.com Example Walk Through

SPMA083 – JANUARY 2022
Submit Document Feedback

Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

19

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

2. On the “Program” tab, select the encrypted application file. For this example,
shared_key_boot_demo\Debug\shared_key_boot_demo_encrypted.bin is used.

Figure 2-20. Programming the Application Code with LM Flash Programmer
3. Click the “Program” button.

Programming the application code space on a 1MB part will take about 100 seconds. When the
shared_key_boot_demo application is running it will blink LED1.

2.6 Returning to the Boot Loader
In this example, there are two methods to return to the boot loader. The first is implemented in the boot loader.
Coming out of reset, the boot loader checks if the SW2 button on the LaunchPad is pressed. Press and hold
SW2 while pressing the reset button. LED1 will stop flashing and the boot loader will be ready to load a new
encrypted application code. Simply press the reset button again without depressing SW2 and the application
code will run again.

The second method of returning to the boot loader is implemented in the application itself. This
shared_key_boot_demo application code reads the LaunchPad SW1 button. If it is depressed and held one
second, the application code calls the boot loader.

Example Walk Through www.ti.com

20 Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

SPMA083 – JANUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

3 Summary
The implementation of effective safeguards for systems continues to grow as a priority for system designers.
This application report and the associated collateral are aimed at providing sensible options that can be
considered for TM4C microcontrollers. Techniques such as leveraging EEPROM for key storage, validating
firmware images with hash signatures, and locking JTAG access are all methods that can increase the protection
of a system against unsophisticated or accidental attempts to override a code image. These concepts are
applicable across all boot loader options as long as an emphasis is placed on ensuring images are able to be
transferred in a manner that validates all packets were received correctly. While the focus for this application
report was centered on devices with the hardware AES encryption peripheral, the same concepts can be applied
for all TM4C devices provided software AES is leveraged instead with the tradeoffs being additional cost of code
space and slower execution of the boot loading process. Ultimately, it is up to the system designers to define the
criteria for what safeguards are required for proper system protection and assess the correct implementation to
meet those requirements.

www.ti.com Summary

SPMA083 – JANUARY 2022
Submit Document Feedback

Shared Key Boot Loader for TM4C129 Devices With AES Hardware
Encryption

21

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA083
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA083&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Implementation
	1.1 Flash Boot Loader Project
	1.1.1 Changes to the Example Project boot_serial
	1.1.1.1 Changes to bl_config.h
	1.1.1.2 New Functions Added
	1.1.1.2.1 MyCheckUpdateFunc
	1.1.1.2.2 MyReinitFunc
	1.1.1.2.3 MyEndFunc
	1.1.1.2.4 MyDecryptionFunc

	1.2 Image Creation Project
	1.3 Key Image Project
	1.4 EK-TM4C129EXL Example Application Project
	1.5 DK-TM4C129X Example Application Project
	1.6 RAM-Based EEPROM Erase Project

	2 Example Walk Through
	2.1 Build Environment
	2.2 Importing the Examples into Code Composer Studio
	2.3 Setting Keys and Variables
	2.3.1 Keys
	2.3.2 Initialization Vector
	2.3.3 Application Start Address and Flash Size
	2.3.3.1 APP_BASE
	2.3.3.2 APP_END
	2.3.3.3 RAM_BASE

	2.4 Running the shared_key_image_encrypt Tool
	2.5 Running the Shared Key Serial Boot Loader
	2.5.1 Programming the Boot Loader
	2.5.1.1 Erasing Existing Code and Keys
	2.5.1.1.1 Erasing Flash and EEPROM With Code Composer Studio
	2.5.1.1.2 Erasing Flash and EEPROM by Using the Unlock Procedure

	2.5.1.2 Using the ROM Boot Loader to Program the Shared Key Boot Loader

	2.5.2 Using the Shared Key Boot Loader to Program the Application Code

	2.6 Returning to the Boot Loader

	3 Summary

