
Copyright © 2006-2008 Luminary Micro, Inc.PDL-LM3S-UG-3416

Stellaris® Peripheral Driver Library

USER’S GUIDE

Legal Disclaimers and Trademark Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH LUMINARY MICRO PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN LUMINARY MICRO’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, LUMINARY MICRO ASSUMES
NO LIABILITY WHATSOEVER, AND LUMINARY MICRO DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE
AND/OR USE OF LUMINARY MICRO’S PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICU-
LAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
LUMINARY MICRO’S PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE-SUSTAINING APPLICATIONS.

Luminary Micro may make changes to specifications and product descriptions at any time, without notice. Contact your local Luminary Micro sales
office or your distributor to obtain the latest specifications and before placing your product order.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Luminary Micro reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Copyright © 2006-2008 Luminary Micro, Inc. All rights reserved. Stellaris, Luminary Micro, and the Luminary Micro logo are registered trademarks of
Luminary Micro, Inc. or its subsidiaries in the United States and other countries. ARM and Thumb are registered trademarks and Cortex is a trademark
of ARM Limited. Other names and brands may be claimed as the property of others.

Luminary Micro, Inc.
108 Wild Basin, Suite 350
Austin, TX 78746
Main: +1-512-279-8800
Fax: +1-512-279-8879
http://www.luminarymicro.com

Revision Information
This is version 3416 of this document, last updated on September 29, 2008.

2 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Table of Contents
Legal Disclaimers and Trademark Information . 2

Revision Information . 2

1 Introduction . 9

2 Building The Code . 13
2.1 Required Software . 13
2.2 Building With Keil uVision . 13
2.3 Building with IAR Embedded Workbench . 14
2.4 Building with CodeSourcery Sourcery G++ . 14
2.5 Building with Code Red Technologies Tools . 14
2.6 Building From The Command Line . 14

3 Boot Code . 17

4 Programming Model . 19
4.1 Introduction . 19
4.2 Direct Register Access Model . 19
4.3 Software Driver Model . 20
4.4 Combining The Models . 21

5 Analog Comparator . 23
5.1 Introduction . 23
5.2 API Functions . 23
5.3 Programming Example . 29

6 Analog to Digital Converter (ADC) . 31
6.1 Introduction . 31
6.2 API Functions . 32
6.3 Programming Example . 43

7 Controller Area Network (CAN) . 45
7.1 Introduction . 45
7.2 API Functions . 45
7.3 Programming Example . 62

8 Ethernet Controller . 65
8.1 Introduction . 65
8.2 API Functions . 65
8.3 Programming Example . 78

9 Flash . 79
9.1 Introduction . 79
9.2 API Functions . 79
9.3 Programming Example . 87

10 GPIO . 89
10.1 Introduction . 89
10.2 API Functions . 89
10.3 Programming Example . 105

11 Hibernation Module . 107
11.1 Introduction . 107
11.2 API Functions . 107
11.3 Programming Example . 120

12 Inter-Integrated Circuit (I2C) . 125

September 29, 2008 3

Table of Contents

12.1 Introduction . 125
12.2 API Functions . 126
12.3 Programming Example . 140

13 Interrupt Controller (NVIC) . 141
13.1 Introduction . 141
13.2 API Functions . 142
13.3 Programming Example . 147

14 Memory Protection Unit (MPU) . 149
14.1 Introduction . 149
14.2 API Functions . 149
14.3 Programming Example . 156

15 Peripheral Pin Mapping . 159
15.1 Introduction . 159
15.2 API Functions . 159
15.3 Programming Example . 165

16 Pulse Width Modulator (PWM) . 167
16.1 Introduction . 167
16.2 API Functions . 167
16.3 Programming Example . 187

17 Quadrature Encoder (QEI) . 189
17.1 Introduction . 189
17.2 API Functions . 190
17.3 Programming Example . 198

18 Synchronous Serial Interface (SSI) . 199
18.1 Introduction . 199
18.2 API Functions . 199
18.3 Programming Example . 208

19 System Control . 209
19.1 Introduction . 209
19.2 API Functions . 210
19.3 Programming Example . 231

20 System Tick (SysTick) . 233
20.1 Introduction . 233
20.2 API Functions . 233
20.3 Programming Example . 237

21 Timer . 239
21.1 Introduction . 239
21.2 API Functions . 239
21.3 Programming Example . 251

22 UART . 253
22.1 Introduction . 253
22.2 API Functions . 253
22.3 Programming Example . 267

23 uDMA Controller . 269
23.1 Introduction . 269
23.2 API Functions . 270
23.3 Programming Example . 284

24 USB Controller . 287

4 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

24.1 Introduction . 287
24.2 Using USB with the uDMA Controller . 287
24.3 API Functions . 291
24.4 Programming Example . 319

25 Watchdog Timer . 321
25.1 Introduction . 321
25.2 API Functions . 321
25.3 Programming Example . 329

26 Using the ROM . 331
26.1 Introduction . 331
26.2 Direct ROM Calls . 331
26.3 Mapped ROM Calls . 332
26.4 Firmware Update . 333

27 Utility Functions . 335
27.1 Introduction . 335
27.2 API Functions . 335

28 Error Handling . 363

29 Boot Loader . 365
29.1 Introduction . 365
29.2 Functions . 378

30 Tool Chain Specifics . 389
30.1 Introduction . 389
30.2 Compilers . 389
30.3 Debuggers . 397

31 DK-LM3S101 Example Applications . 399
31.1 Introduction . 399
31.2 API Functions . 399
31.3 Examples . 407

32 DK-LM3S102 Example Applications . 411
32.1 Introduction . 411
32.2 API Functions . 411
32.3 Examples . 419

33 DK-LM3S301 Example Applications . 423
33.1 Introduction . 423
33.2 API Functions . 423
33.3 Examples . 431

34 DK-LM3S801 Example Applications . 435
34.1 Introduction . 435
34.2 API Functions . 435
34.3 Examples . 443

35 DK-LM3S811 Example Applications . 447
35.1 Introduction . 447
35.2 API Functions . 447
35.3 Examples . 455

36 DK-LM3S815 Example Applications . 459
36.1 Introduction . 459
36.2 API Functions . 459
36.3 Examples . 467

September 29, 2008 5

Table of Contents

37 DK-LM3S817 Example Applications . 471
37.1 Introduction . 471
37.2 API Functions . 471
37.3 Examples . 479

38 DK-LM3S818 Example Applications . 483
38.1 Introduction . 483
38.2 API Functions . 483
38.3 Examples . 491

39 DK-LM3S828 Example Applications . 495
39.1 Introduction . 495
39.2 API Functions . 495
39.3 Examples . 503

40 EK-LM3S1968 Example Applications . 507
40.1 Introduction . 507
40.2 API Functions . 508
40.3 Examples . 516

41 EK-LM3S2965 Example Applications . 521
41.1 Introduction . 521
41.2 API Functions . 521
41.3 Examples . 526

42 EK-LM3S2965 Rev C Example Applications . 531
42.1 Introduction . 531
42.2 API Functions . 531
42.3 Examples . 536

43 EK-LM3S3748 Example Applications . 541
43.1 Introduction . 541
43.2 API Functions . 541
43.3 Examples . 549

44 EK-LM3S6965 Example Applications . 557
44.1 Introduction . 557
44.2 API Functions . 557
44.3 Building Web Server File System Images . 562
44.4 Examples . 563

45 EK-LM3S6965 Rev C Example Applications . 569
45.1 Introduction . 569
45.2 API Functions . 569
45.3 Building Web Server File System Images . 574
45.4 Examples . 575

46 EK-LM3S811 Example Applications . 581
46.1 Introduction . 581
46.2 API Functions . 581
46.3 Examples . 585

47 EK-LM3S8962 Example Applications . 589
47.1 Introduction . 589
47.2 API Functions . 589
47.3 Building Web Server File System Images . 594
47.4 Examples . 595

48 RDK-IDM Example Applications . 601

6 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

48.1 Introduction . 601
48.2 Analog Input API Functions . 603
48.3 Display Driver API Functions . 607
48.4 Relay Output API Functions . 609
48.5 Sound Output API Functions . 610
48.6 Touch Screen API Functions . 614
48.7 Boot Loader and Firmware Update . 616
48.8 Building Web Server File System Images . 616
48.9 Examples . 617

49 RDK-S2E Example Applications . 623
49.1 Introduction . 623
49.2 Configuration API Functions . 623
49.3 File System API Functions . 629
49.4 Ring Buffer API Functions . 631
49.5 Serial Port API Functions . 631
49.6 Telnet Port API Functions . 641
49.7 Universal Plug and Play API Functions . 648
49.8 Examples . 650

Company Information . 652

Support Information . 652

September 29, 2008 7

Table of Contents

8 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

1 Introduction
The Luminary Micro® Stellaris® Peripheral Driver Library is a set of drivers for accessing the pe-
ripherals found on the Stellaris family of ARM® Cortex™-M3 based microcontrollers. While they
are not drivers in the pure operating system sense (that is, they do not have a common interface
and do not connect into a global device driver infrastructure), they do provide a mechanism that
makes it easy to use the device’s peripherals.

The capabilities and organization of the drivers are governed by the following design goals:

They are written entirely in C except where absolutely not possible.
They demonstrate how to use the peripheral in its common mode of operation.
They are easy to understand.
They are reasonably efficient in terms of memory and processor usage.
They are as self-contained as possible.
Where possible, computations that can be performed at compile time are done there instead
of at run time.
They can be built with more than one tool chain.

Some consequences of these design goals are:

The drivers are not necessarily as efficient as they could be (from a code size and/or execution
speed point of view). While the most efficient piece of code for operating a peripheral would be
written in assembly and custom tailored to the specific requirements of the application, further
size optimizations of the drivers would make them more difficult to understand.
The drivers do not support the full capabilities of the hardware. Some of the peripherals
provide complex capabilities which can not be utilized by the drivers in this library, though
the existing code can be used as a reference upon which to add support for the additional
capabilities.
The APIs have a means of removing all error checking code. Since the error checking is
usually only useful during initial program development, it can be removed to improve code size
and speed.

For many applications, the drivers can be used as is. But in some cases, the drivers will have to be
enhanced or rewritten in order to meet the functionality, memory, or processing requirements of the
application. If so, the existing driver can be used as a reference on how to operate the peripheral.

The following tool chains are supported:

Keil™ RealView® Microcontroller Development Kit
CodeSourcery Sourcery G++ for Stellaris EABI
IAR Embedded Workbench®
Code Red Technologies tools

Source Code Overview

The following is an overview of the organization of the peripheral driver library source code, along
with references to where each portion is described in detail.

September 29, 2008 9

Introduction

EULA.txt The full text of the End User License Agreement that covers the use of this
software package.

Makefile The rules for building the peripheral driver library. The contents of this file are
described in chapter 2.

asmdefs.h A set of macros used by assembly language source files. The contents of
this file are described in chapter 30.

boards/ This directory contains the source code for the example applications that run
on the various Luminary Micro development and evaluation boards. These
applications are described in chapter 31 through 49.

boot_loader/ This directory contains the source code for the boot loader. This code is
described in chapter 29.

codered/ This directory contains the source files that are specific to the Code Red
Technologies tool chain. The contents of this directory are described in chap-
ters 3 and 30.

ewarm/ This directory contains the source files that are specific to the IAR Embed-
ded Workbench tool chain. The contents of this directory are described in
chapters 3 and 30.

gcc/ This directory contains the source files that are specific to the GNU tool chain.
The contents of this directory are described in chapters 3 and 30.

grlib/ This directory contains the Stellaris Graphics Library. The contents of this
directory are described in a PDF contained within this directory.

hw_*.h Header files, one per peripheral, that describe all the registers and the bit
fields within those registers for each peripheral. These header files are used
by the drivers to directly access a peripheral, and can be used by application
code to bypass the peripheral driver library API.

inc/ This directory holds the part specific header files used for the direct register
access programming model, which is described in chapter 4.

makedefs A set of definitions used by make files. The contents of this file are described
in chapter 30.

rvmdk/ This directory contains the source files that are specific to the Keil RealView
Microcontroller Development Kit. The contents of this directory are described
in chapters 3 and 30.

src/ This directory contains the source code for the drivers, which are each de-
scribed in chapters 5 through 25.

third_party/ This directory contains third party software packages that have been ported
to the Stellaris microcontroller family. Each package has its own documenta-
tion describing its functionality.

10 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

usblib/ This directory contains the Stellaris USB Library. The contents of this direc-
tory are described in a PDF contained within this directory.

utils/ This directory contains a set of utility functions for use by the example appli-
cations. The contents of this directory are described in chapter 27.

September 29, 2008 11

Introduction

12 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

2 Building The Code
Required Software . 13
Building with Keil uVision .13
Building with IAR Embedded Workbench . 14
Building with CodeSourcery Sourcery G++ . 14
Building with Code Red Technologies Tools . 14
Building From The Command Line . 14

2.1 Required Software

In order to build the code in the peripheral driver library, the following software is needed.

One of the following tool chains:

• Keil RealView Microcontroller Development Kit
• CodeSourcery’s Sourcery G++ for ARM EABI
• IAR Embedded Workbench
• Code Red Technologies tools

If building from the command line, some form of Unix environment for Windows®.

Follow the directions provided with the tool chain of choice to install the compiler and debugger
(there are also Quickstart guides provided by Luminary Micro that describe installing each of these
tool chains); this will also add the compiler to the search path so that it can be executed.

Once the required software is installed, the peripheral driver library source must be extracted from
its ZIP file using the archiver of your choice (such as WinZip® or the built-in utilities in Win-
dows XP). For the remainder of these directions, it will be assumed that the source is extracted
to c:/DriverLib.

2.2 Building With Keil uVision

The peripheral driver library and each example application has a uVision project (with a .Uv2 file
name extension) that can be used to build from within uVision. Simply load the project file into uVi-
sion and click on the “Build target” or “Rebuild all target files” buttons. Note that the peripheral driver
library (c:/DriverLib/src/driverlib.Uv2) project must be built before any of the example
applications can be built.

There is a multi-project workspace file (with a .mpw file name extension) that includes all the
projects for a particular board in each board directory. For example, in the boards/dk-lm3s101
directory, there is a dk-lm3s101.mpw file that contains the project for the peripheral driver library
along with the projects for all of the board examples for the DK-LM3S101 board.

See the “RealView Quickstart” for details about using uVision.

September 29, 2008 13

Building The Code

2.3 Building with IAR Embedded Workbench

The peripheral driver library and each example application has an Embedded Workbench
project (with a .ewp file name extension) that can be used to build from within Embed-
ded Workbench version 5. Simply load the project file into Embedded Workbench and se-
lect “Make” or “Rebuild All” from the “Project” menu. Note that the peripheral driver library
(c:/DriverLib/src/driverlib.ewp) project must be built before any of the examples ap-
plications can be built.

There is a workspace file (with a .eww file name extension) that includes all the projects for a
particular board in each board directory. For example, in the boards/dk-lm3s101 directory,
there is a dk-lm3s101.eww file that contains the project for the peripheral driver library along with
the projects for all of the board examples for the DK-LM3S101 board.

There are also versions of these files for use with Embedded Workbench version 4.42a. They are
∗-ewarm4.ewp and ∗-ewarm4.eww, and are located in the same places as the version 5 files.

See the “IAR KickStart Quickstart” for details about using Embedded Workbench.

2.4 Building with CodeSourcery Sourcery G++

The peripheral driver library and each example application can be built utilizing the CodeSourcery
Common Startup Code Sequence (CS3). By setting the COMPILER environment variable to
“sourcerygxx”, CS3 will be used to build the application. The advantage of using CS3 is the
ability to easily use the C library provided by CodeSourcery for things such as printf().

See the CodeSourcery Getting Started document for details on CS3 and how to use it in your
application. See the following section for details on how to build the code using CS3.

2.5 Building with Code Red Technologies Tools

The peripheral driver library and each example application can be built using the compiler supplied
with Code Red Technologies tools. By setting the COMPILER environment variable to “codered”,
the Code Red Technologies tools will be used when building from the command line or from within
the Code Red Technologies development environment.

See the “code_red Quickstart” for details about using Code Red Technologies tools.

2.6 Building From The Command Line

In order to build from the command line, some form of Unix environment for
Windows is required. The recommended solution is the Unix Utilities from
SourceForge (http://unxutils.sourceforge.net); alternatives are Cygwin
(http://www.cygwin.com) and MinGW (http://www.mingw.org). The Unix Utilities
and Cygwin have both been tested and work with this library; MinGW should work as well, though
it has not been tested.

See the “GNU Quickstart” for details about installing and setting up the Unix Utilities.

14 September 29, 2008

http://unxutils.sourceforge.net
http://www.cygwin.com
http://www.mingw.org

Stellaris Peripheral Driver Library User’s Guide

The makefiles will not work with the make utilities normally available on Windows (such as the one
provided with RealView); the “Unix” version must appear in the search path before any other version
of make. Of course, if using a compiler on Linux, the normal Posix shell environment that exists is
more than adequate for building the code.

The Unix utilities from SourceForge are in a ZIP file that must be unpacked; for the remainder of
these directions, it will be assumed that the Unix utilities are extracted to c:/.

The search path must be manually updated to include both the c:/bin directory and the
c:/usr/local/wbin directory, preferably at the beginning of the search path (so that make from
c:/usr/local/wbin is used in preference to other versions of make).

The remainder of these directions assume that the shell in c:/bin/sh is being used in preference
to the command shell provided by Windows XP; if not using this shell, the commands may have to
be modified to be compatible with the Windows XP shell.

A couple of quick tests will determine if the search path is set up correctly. First, type:

make --version

It should report back that some version of GNU Make was invoked; if not, then the wrong make
utility is being found and the search path needs to be corrected. Next, type:

type sh

It should specify the path where sh.exe from the Unix utilities was extracted; if not, then the make
utility will not be able to find the shell (meaning that the build will fail) and the search path needs to
be corrected.

If using the Keil RealView Microcontroller Development Kit, the following will verify that the compiler
can be found (which means that all the other tool chain utilities will be found as well):

type armcc

If using CodeSourcery’s Sourcery G++ for ARM EABI, the following will verify that the compiler can
be found:

type arm-stellaris-eabi-gcc

If using IAR Embedded Workbench, the following will verify that the compiler can be found:

type iccarm
type xlink

If using Code Red Technologies tools, the following will verify that the compiler can be found:

type arm-none-eabi-gcc

If any of the above checks fail then the build will probably fail as well. In each case, the search path
would need to be updated so that the tools in question can be located by the shell.

Now, to build the library and example applications, type the following:

cd c:/DriverLib
make

September 29, 2008 15

Building The Code

It will display short messages to indicate the build step being performed; the following extract is an
example:

...
CC timer.c
CC uart.c
CC watchdog.c
AR gcc/libdriver.a
...

This indicates that it is compiling timer.c, uart.c, watchdog.c, and then creating a library
called gcc/libdriver.a. Displaying short messages like this makes it very easy to spot warnings
and errors encountered during the build process.

There are several variables that control the build process. They can either appear as environment
variables or they can be passed on the command line to make. The variables are:

COMPILER specifies the tool chain to be used to build the source code. Currently, this can be
codered, ewarm, gcc, rvmdk, or sourcerygxx; the default value if not specified is gcc.
DEBUGGER specifies the debugger that will be used to run the executables. This affects the
version of the Diag...() functions that are used. Currently, this can be either cspy, gdb, or
uvision; the default value if not specified depends on the value of COMPILER (codered
results in gdb, ewarm results in cspy, gcc results in gdb, rvmdk results in uvision, and
sourcerygxx results in gdb).
DEBUG specifies that debugging information should be included in the object files that are
built. This allows the debugger to perform source level debugging, and may add additional
code that helps the development and debugging process (such as the ASSERT-based error
checking). The value of this variable is not important; if it exists then debugging information
will be included. If not specified, debugging information is not included.
VERBOSE specifies that the actual compiler invocations should be displayed instead of the
brief build steps. The value of this variable is not important; if it exists then verbose mode will
be enabled. If not specified, verbose mode is disabled.

So, for example, to build using rvmdk with debugging enabled, type the following:

make COMPILER=rvmdk DEBUG=1

Alternatively, the following could be typed instead:

export COMPILER=rvmdk
export DEBUG=1
make

The advantage of the latter is subsequent builds require only invoking make, and is less prone to
unexpected results from forgetting to add the variables to the command line each time (that is, from
mixing and matching objects built with different definitions).

To remove all build products, use:

make clean

Note that this still depends upon the COMPILER environment variable; it will only remove the
objects associated with the tool chain in use (that is, it can be used to clean out the rvmdk objects
while leaving the gcc objects undisturbed).

16 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

3 Boot Code
The boot code contains the minimal set of code required to set up the vector table and get ap-
plication code running after a system reset. There are multiple versions of the boot code, one per
supported tool chain (some tool chain-specific constructs are used to find where the code, data, and
bss segments reside in memory); the startup code is contained in <toolchain>/startup.c.
Accompanying the startup code is the corresponding linker script that is used to link an application
so that the vector table, code segment, data segment initializers, and data segments are placed in
the appropriate locations in memory; this script is contained in <toolchain>/standalone.ld
(standalone.xcl for IAR Embedded Workbench).

The boot code and its corresponding linker script utilize a typical memory layout for a flash-based
system. The first portion of the flash is used for code and read-only data (this is referred to as
the “code” segment). Immediately following are the initializers (if any) for the non-zero initialized
data. The first portion of SRAM is used for the non-zero initialized data (referred to as the “data”
segment), with the zero initialized data immediately following it (referred to as the “bss” segment).

The vector table of the Cortex-M3 microprocessor contains four required entries; they are the ini-
tial stack pointer, the reset handler address, the NMI handler address, and the hard fault handler
address. Upon reset, the processor will load the initial stack pointer and then start executing the
reset handler. The initial stack pointer is required since an NMI or hard fault can occur at any time;
the stack is required to be able to take those interrupts since the processor will automatically push
eight items onto the stack.

The g_pfnVectors array contains a full vector table. It contains the addresses of the all the
handlers and the end of the initial stack. Tool chain-specific constructs are used to provide a hint to
the linker that is used to make sure that this array is located at 0x0000.0000, the default location
of the vector table.

The NmiSR function contains the NMI handler. It simply enters an infinite loop, effectively halting
the application if an NMI occurs; the application state is therefore preserved for examination by a
debugger. If desired, the application can provide its own NMI handler via the interrupt driver.

The FaultISR function contains the hard fault handler. It also enters an infinite loop and can be
replaced by the application.

The ResetISR function contains the reset handler. It copies the initializers from the end of the
code segment in flash into the data segment in SRAM, zero fills the bss segment, and branches
to the application-supplied entry point. This corresponds to the minimal set of things that must be
done for C code to work properly when called; anything more complicated that is required by an
application must be provided by that application.

The application must supply an entry point called main that takes no arguments and never returns.
This function will be called by ResetISR after memory has been initialized. If main does return,
ResetISR will also return, which will cause a hard fault to occur.

Each example application has its own copy of the boot code with the required interrupt handlers in
place. This allows the interrupt handlers to be custom to each example and reside in flash.

September 29, 2008 17

Boot Code

18 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

4 Programming Model
Introduction . 19
Direct Register Access Model . 19
Software Driver Model . 20
Combining The Models . 21

4.1 Introduction

The peripheral driver library provides support for two programming models: the direct register ac-
cess model and the software driver model. Each model can be used independently, or combined,
based on the needs of the application or the programming environment desired by the developer.

Each programming model has advantages and disadvantages. Use of the direct register access
model will generally result in smaller and more efficient code than using the software driver model.
However, the direct register access model does require detailed knowledge of the operation of
each register, bit field, their interactions, and any sequencing required for proper operation of the
peripheral; the developer is insulated from these details by the software driver model, generally
requiring less time to develop applications.

4.2 Direct Register Access Model

In the direct register access model, the peripherals are programmed by the application by writing
values directly into the peripheral’s registers. A set of macros is provided that simplifies this process.
These macros are stored in part-specific header files contained in the inc directory; the name of the
header file matches the part number (for example, the header file for the LM3S6965 microcontroller
is inc/lm3s6965.h). By including the header file that matches the part being used, macros are
available for accessing all registers on that part, as well as all bit fields within those registers. No
macros are available for registers that do not exist on the part in question, making it difficult to
access registers that do not exist.

The defines used by the direct register access model follow a naming convention that makes it
easier to know how to use a particular macro. The rules are as follows:

Values that end in _R are used to access the value of a register. For example, SSI0_CR0_R
is used to access the CR0 register in the SSI0 module.

Values that end in _M represent the mask for a multi-bit field in a register. If the value
placed in the multi-bit field is a number, there will be a macro with the same base name
but ending with _S (for example, SSI_CR0_SCR_M and SSI_CR0_SCR_S). If the value
placed into the multi-bit field is an enumeration, then there will be a set of macros with
the same base name but ending with identifiers for the various enumeration values (for
example, the SSI_CR0_FRF_M macro defines the bit field, and the SSI_CR0_FRF_NMW,
SSI_CR0_FRF_TI, and SSI_CR0_FRF_MOTO macros provide the enumerations for the bit
field).

Values that end in _S represent the number of bits to shift a value in order to align it with a
multi-bit field. These values will match the macro with the same base name but ending with
_M.

September 29, 2008 19

Programming Model

All other macros represent the value of a bit field.

All register name macros start with the module name and instance number (for example, SSI0
for the first SSI module) and are followed by the name of the register as it appears in the data
sheet (for example, the CR0 register in the data sheet results in SSI0_CR0_R).

All register bit fields start with the module name, followed by the register name, and then
followed by the bit field name as it appears in the data sheet. For example, the SCR bit field in
the CR0 register in the SSI module will be identified by SSI_CR0_SCR.... In the case where
the bit field is a single bit, there will be nothing further (for example, SSI_CR0_SPH is a single
bit in the CR0 register). If the bit field is more than a single bit, there will be a mask value (_M)
and either a shift (_S) if the bit field contains a number or a set of enumerations if not.

Given these definitions, the CR0 register can be programmed as follows:

SSI0_CR0_R = ((5 << SSI_CR0_SCR_S) | SSI_CR0_SPH | SSI_CR0_SPO |
SSI_CR0_FRF_MOTO | SSI_CR0_DSS_8);

Alternatively, the following has the same effect (although it is not as easy to understand):

SSI0_CR0_R = 0x000005c7;

Extracting the value of the SCR field from the CR0 register is as follows:

ulValue = (SSI0_CR0_R & SSI_CR0_SCR_M) >> SSI0_CR0_SCR_S;

The GPIO modules have many registers that do not have bit field definitions. For these registers,
the register bits represent the individual GPIO pins; so bit zero in these registers corresponds to
the Px0 pin on the part (where x is replaced by a GPIO module letter), bit one corresponds to the
Px1 pin, and so on.

The blinky example for each board utilizes the direct register access model to blink the on-board
LED.

Note:
The hw_∗.h header files that are used by the drivers in the library contain many of the same
definitions as the header files used for direct register access. As such, the two can not be in-
cluded into the same source file without the compiler producing warnings about the redefinition
of symbols.

4.3 Software Driver Model

In the software driver model, the API provided by the peripheral driver library is used by applica-
tions to control the peripherals. Since these drivers provide complete control of the peripherals in
their normal mode of operation, it is possible to write an entire application without direct access
to the hardware. This provides for rapid development of the application without requiring detailed
knowledge of how to program the peripherals.

Corresponding to the direct register access model example, the following will also program the CR0
register in the SSI module (though that fact is hidden by the API):

20 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

SSIConfigSetExpClk(SSI0_BASE, 50000000, SSI_FRF_MOTO_MODE_3,
SSI_MODE_MASTER, 1000000, 8);

The resulting value in the CR0 register might not be exactly the same since SSIConfigSetExpClk()
may compute a different value for the SCR bit field than what was used in the direct register access
model example.

All example applications other than blinky utilize the software driver model.

The drivers in the peripheral driver library are described in chapters 5 through 25 . They combine
to form the software driver model.

4.4 Combining The Models

The direct register access model and software driver model can be utilized together in a single
application. This allows the most appropriate model to be used in any particular situation within the
application; for example, the software driver model can be used to configure the peripherals (since
this is not performance critical) and the direct register access model can be used for operation of
the peripheral (which may be more performance critical). Or, the software driver model can be used
for peripherals that are not performance critical (such as a UART used for data logging) and the
direct register access model for performance critical peripherals (such as the ADC module used to
capture real-time analog data).

September 29, 2008 21

Programming Model

22 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

5 Analog Comparator
Introduction . 23
API Functions .23
Programming Example . 29

5.1 Introduction

The comparator API provides a set of functions for dealing with the analog comparators. A com-
parator can compare a test voltage against individual external reference voltage, a shared single
external reference voltage, or a shared internal reference voltage. It can provide its output to a
device pin, acting as a replacement for an analog comparator on the board, or it can be used to
signal the application via interrupts or triggers to the ADC to cause it to start capturing a sample
sequence. The interrupt generation and ADC triggering logic is separate, so that an interrupt can
be generated on a rising edge and the ADC triggered on a falling edge (for example).

This driver is contained in src/comp.c, with src/comp.h containing the API definitions for use
by applications.

5.2 API Functions

Functions
void ComparatorConfigure (unsigned long ulBase, unsigned long ulComp, unsigned long ul-
Config)
void ComparatorIntClear (unsigned long ulBase, unsigned long ulComp)
void ComparatorIntDisable (unsigned long ulBase, unsigned long ulComp)
void ComparatorIntEnable (unsigned long ulBase, unsigned long ulComp)
void ComparatorIntRegister (unsigned long ulBase, unsigned long ulComp, void
(∗pfnHandler)(void))
tBoolean ComparatorIntStatus (unsigned long ulBase, unsigned long ulComp, tBoolean
bMasked)
void ComparatorIntUnregister (unsigned long ulBase, unsigned long ulComp)
void ComparatorRefSet (unsigned long ulBase, unsigned long ulRef)
tBoolean ComparatorValueGet (unsigned long ulBase, unsigned long ulComp)

5.2.1 Detailed Description

The comparator API is fairly simple, like the comparators themselves. There are functions for
configuring a comparator and reading its output (ComparatorConfigure(), ComparatorRefSet() and
ComparatorValueGet()) and functions for dealing with an interrupt handler for the comparator (Com-
paratorIntRegister(), ComparatorIntUnregister(), ComparatorIntEnable(), ComparatorIntDisable(),
ComparatorIntStatus(), and ComparatorIntClear()).

September 29, 2008 23

Analog Comparator

5.2.2 Function Documentation

5.2.2.1 ComparatorConfigure

Configures a comparator.

Prototype:
void
ComparatorConfigure(unsigned long ulBase,

unsigned long ulComp,
unsigned long ulConfig)

Parameters:
ulBase is the base address of the comparator module.
ulComp is the index of the comparator to configure.
ulConfig is the configuration of the comparator.

Description:
This function will configure a comparator. The ulConfig parameter is the result of a logical
OR operation between the COMP_TRIG_xxx, COMP_INT_xxx, COMP_ASRCP_xxx, and
COMP_OUTPUT_xxx values.

The COMP_TRIG_xxx term can take on the following values:

COMP_TRIG_NONE to have no trigger to the ADC.
COMP_TRIG_HIGH to trigger the ADC when the comparator output is high.
COMP_TRIG_LOW to trigger the ADC when the comparator output is low.
COMP_TRIG_FALL to trigger the ADC when the comparator output goes low.
COMP_TRIG_RISE to trigger the ADC when the comparator output goes high.
COMP_TRIG_BOTH to trigger the ADC when the comparator output goes low or high.

The COMP_INT_xxx term can take on the following values:

COMP_INT_HIGH to generate an interrupt when the comparator output is high.
COMP_INT_LOW to generate an interrupt when the comparator output is low.
COMP_INT_FALL to generate an interrupt when the comparator output goes low.
COMP_INT_RISE to generate an interrupt when the comparator output goes high.
COMP_INT_BOTH to generate an interrupt when the comparator output goes low or high.

The COMP_ASRCP_xxx term can take on the following values:

COMP_ASRCP_PIN to use the dedicated Comp+ pin as the reference voltage.
COMP_ASRCP_PIN0 to use the Comp0+ pin as the reference voltage (this the same as
COMP_ASRCP_PIN for the comparator 0).
COMP_ASRCP_REF to use the internally generated voltage as the reference voltage.

The COMP_OUTPUT_xxx term can take on the following values:

COMP_OUTPUT_NORMAL to enable a non-inverted output from the comparator to a
device pin.
COMP_OUTPUT_INVERT to enable an inverted output from the comparator to a device
pin.

24 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

COMP_OUTPUT_NONE is deprecated and behaves the same as
COMP_OUTPUT_NORMAL.

Returns:
None.

5.2.2.2 ComparatorIntClear

Clears a comparator interrupt.

Prototype:
void
ComparatorIntClear(unsigned long ulBase,

unsigned long ulComp)

Parameters:
ulBase is the base address of the comparator module.
ulComp is the index of the comparator.

Description:
The comparator interrupt is cleared, so that it no longer asserts. This must be done in the
interrupt handler to keep it from being called again immediately upon exit. Note that for a level
triggered interrupt, the interrupt cannot be cleared until it stops asserting.

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

5.2.2.3 ComparatorIntDisable

Disables the comparator interrupt.

Prototype:
void
ComparatorIntDisable(unsigned long ulBase,

unsigned long ulComp)

Parameters:
ulBase is the base address of the comparator module.
ulComp is the index of the comparator.

Description:
This function disables generation of an interrupt from the specified comparator. Only compara-
tors whose interrupts are enabled can be reflected to the processor.

September 29, 2008 25

Analog Comparator

Returns:
None.

5.2.2.4 ComparatorIntEnable

Enables the comparator interrupt.

Prototype:
void
ComparatorIntEnable(unsigned long ulBase,

unsigned long ulComp)

Parameters:
ulBase is the base address of the comparator module.
ulComp is the index of the comparator.

Description:
This function enables generation of an interrupt from the specified comparator. Only compara-
tors whose interrupts are enabled can be reflected to the processor.

Returns:
None.

5.2.2.5 ComparatorIntRegister

Registers an interrupt handler for the comparator interrupt.

Prototype:
void
ComparatorIntRegister(unsigned long ulBase,

unsigned long ulComp,
void (*pfnHandler)(void))

Parameters:
ulBase is the base address of the comparator module.
ulComp is the index of the comparator.
pfnHandler is a pointer to the function to be called when the comparator interrupt occurs.

Description:
This sets the handler to be called when the comparator interrupt occurs. This will enable the
interrupt in the interrupt controller; it is the interrupt-handler’s responsibility to clear the interrupt
source via ComparatorIntClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

26 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

5.2.2.6 ComparatorIntStatus

Gets the current interrupt status.

Prototype:
tBoolean
ComparatorIntStatus(unsigned long ulBase,

unsigned long ulComp,
tBoolean bMasked)

Parameters:
ulBase is the base address of the comparator module.
ulComp is the index of the comparator.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the comparator. Either the raw or the masked interrupt
status can be returned.

Returns:
true if the interrupt is asserted and false if it is not asserted.

5.2.2.7 ComparatorIntUnregister

Unregisters an interrupt handler for a comparator interrupt.

Prototype:
void
ComparatorIntUnregister(unsigned long ulBase,

unsigned long ulComp)

Parameters:
ulBase is the base address of the comparator module.
ulComp is the index of the comparator.

Description:
This function will clear the handler to be called when a comparator interrupt occurs. This will
also mask off the interrupt in the interrupt controller so that the interrupt handler no longer is
called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

5.2.2.8 ComparatorRefSet

Sets the internal reference voltage.

September 29, 2008 27

Analog Comparator

Prototype:
void
ComparatorRefSet(unsigned long ulBase,

unsigned long ulRef)

Parameters:
ulBase is the base address of the comparator module.
ulRef is the desired reference voltage.

Description:
This function will set the internal reference voltage value. The voltage is specified as one of
the following values:

COMP_REF_OFF to turn off the reference voltage
COMP_REF_0V to set the reference voltage to 0 V
COMP_REF_0_1375V to set the reference voltage to 0.1375 V
COMP_REF_0_275V to set the reference voltage to 0.275 V
COMP_REF_0_4125V to set the reference voltage to 0.4125 V
COMP_REF_0_55V to set the reference voltage to 0.55 V
COMP_REF_0_6875V to set the reference voltage to 0.6875 V
COMP_REF_0_825V to set the reference voltage to 0.825 V
COMP_REF_0_928125V to set the reference voltage to 0.928125 V
COMP_REF_0_9625V to set the reference voltage to 0.9625 V
COMP_REF_1_03125V to set the reference voltage to 1.03125 V
COMP_REF_1_134375V to set the reference voltage to 1.134375 V
COMP_REF_1_1V to set the reference voltage to 1.1 V
COMP_REF_1_2375V to set the reference voltage to 1.2375 V
COMP_REF_1_340625V to set the reference voltage to 1.340625 V
COMP_REF_1_375V to set the reference voltage to 1.375 V
COMP_REF_1_44375V to set the reference voltage to 1.44375 V
COMP_REF_1_5125V to set the reference voltage to 1.5125 V
COMP_REF_1_546875V to set the reference voltage to 1.546875 V
COMP_REF_1_65V to set the reference voltage to 1.65 V
COMP_REF_1_753125V to set the reference voltage to 1.753125 V
COMP_REF_1_7875V to set the reference voltage to 1.7875 V
COMP_REF_1_85625V to set the reference voltage to 1.85625 V
COMP_REF_1_925V to set the reference voltage to 1.925 V
COMP_REF_1_959375V to set the reference voltage to 1.959375 V
COMP_REF_2_0625V to set the reference voltage to 2.0625 V
COMP_REF_2_165625V to set the reference voltage to 2.165625 V
COMP_REF_2_26875V to set the reference voltage to 2.26875 V
COMP_REF_2_371875V to set the reference voltage to 2.371875 V

Returns:
None.

28 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

5.2.2.9 ComparatorValueGet

Gets the current comparator output value.

Prototype:
tBoolean
ComparatorValueGet(unsigned long ulBase,

unsigned long ulComp)

Parameters:
ulBase is the base address of the comparator module.
ulComp is the index of the comparator.

Description:
This function retrieves the current value of the comparator output.

Returns:
Returns true if the comparator output is high and false if the comparator output is low.

5.3 Programming Example

The following example shows how to use the comparator API to configure the comparator and read
its value.

//
// Configure the internal voltage reference.
//
ComparatorRefSet(COMP_BASE, COMP_REF_1_65V);

//
// Configure a comparator.
//
ComparatorConfigure(COMP_BASE, 0,

(COMP_TRIG_NONE | COMP_INT_BOTH |
COMP_ASRCP_REF | COMP_OUTPUT_NONE));

//
// Delay for some time...
//

//
// Read the comparator output value.
//
ComparatorValueGet(COMP_BASE, 0);

September 29, 2008 29

Analog Comparator

30 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

6 Analog to Digital Converter (ADC)
Introduction . 31
API Functions .32
Programming Example . 43

6.1 Introduction

The analog to digital converter (ADC) API provides a set of functions for dealing with the ADC.
Functions are provided to configure the sample sequencers, read the captured data, register a
sample sequence interrupt handler, and handle interrupt masking/clearing.

The ADC supports up to eight input channels plus an internal temperature sensor. Four sampling
sequences, each with configurable trigger events, can be captured. The first sequence will capture
up to eight samples, the second and third sequences will capture up to four samples, and the fourth
sequence will capture a single sample. Each sample can be the same channel, different channels,
or any combination in any order.

The sample sequences have configurable priorities that determine the order in which they are cap-
tured when multiple triggers occur simultaneously. The highest priority sequence that is currently
triggered will be sampled. Care must be taken with triggers that occur frequently (such as the
“always” trigger); if their priority is too high it is possible to starve the lower priority sequences.

Beginning with Rev C0 of the Stellaris microcontroller, hardware oversampling of the ADC data is
available for improved accuracy. An oversampling factor of 2x, 4x, 8x, 16x, 32x, and 64x is sup-
ported, but reduces the throughput of the ADC by a corresponding factor. Hardware oversampling
is applied uniformly across all sample sequences.

Software oversampling of the ADC data is also available (even when hardware oversampling is
available). An oversampling factor of 2x, 4x, and 8x is supported, but reduces the depth of the
sample sequences by a corresponding amount. For example, the first sample sequence will capture
eight samples; in 4x oversampling mode it can only capture two samples since the first four samples
are used over the first oversampled value and the second four samples are used for the second
oversampled value. The amount of software oversampling is configured on a per sample sequence
basis.

A more sophisticated software oversampling can be used to eliminate the reduction of the sample
sequence depth. By increasing the ADC trigger rate by 4x (for example) and averaging four trig-
gers worth of data, 4x oversampling is achieved without any loss of sample sequence capability.
In this case, an increase in the number of ADC triggers (and presumably ADC interrupts) is the
consequence. Since this requires adjustments outside of the ADC driver itself, this is not directly
supported by the driver (though nothing in the driver prevents it). The software oversampling APIs
should not be used in this case.

This driver is contained in src/adc.c, with src/adc.h containing the API definitions for use by
applications.

September 29, 2008 31

Analog to Digital Converter (ADC)

6.2 API Functions

Functions
void ADCHardwareOversampleConfigure (unsigned long ulBase, unsigned long ulFactor)
void ADCIntClear (unsigned long ulBase, unsigned long ulSequenceNum)
void ADCIntDisable (unsigned long ulBase, unsigned long ulSequenceNum)
void ADCIntEnable (unsigned long ulBase, unsigned long ulSequenceNum)
void ADCIntRegister (unsigned long ulBase, unsigned long ulSequenceNum, void
(∗pfnHandler)(void))
unsigned long ADCIntStatus (unsigned long ulBase, unsigned long ulSequenceNum, tBoolean
bMasked)
void ADCIntUnregister (unsigned long ulBase, unsigned long ulSequenceNum)
void ADCProcessorTrigger (unsigned long ulBase, unsigned long ulSequenceNum)
void ADCSequenceConfigure (unsigned long ulBase, unsigned long ulSequenceNum, un-
signed long ulTrigger, unsigned long ulPriority)
long ADCSequenceDataGet (unsigned long ulBase, unsigned long ulSequenceNum, un-
signed long ∗pulBuffer)
void ADCSequenceDisable (unsigned long ulBase, unsigned long ulSequenceNum)
void ADCSequenceEnable (unsigned long ulBase, unsigned long ulSequenceNum)
long ADCSequenceOverflow (unsigned long ulBase, unsigned long ulSequenceNum)
void ADCSequenceOverflowClear (unsigned long ulBase, unsigned long ulSequenceNum)
void ADCSequenceStepConfigure (unsigned long ulBase, unsigned long ulSequenceNum,
unsigned long ulStep, unsigned long ulConfig)
long ADCSequenceUnderflow (unsigned long ulBase, unsigned long ulSequenceNum)
void ADCSequenceUnderflowClear (unsigned long ulBase, unsigned long ulSequenceNum)
void ADCSoftwareOversampleConfigure (unsigned long ulBase, unsigned long ulSequen-
ceNum, unsigned long ulFactor)
void ADCSoftwareOversampleDataGet (unsigned long ulBase, unsigned long ulSequen-
ceNum, unsigned long ∗pulBuffer, unsigned long ulCount)
void ADCSoftwareOversampleStepConfigure (unsigned long ulBase, unsigned long ulSe-
quenceNum, unsigned long ulStep, unsigned long ulConfig)

6.2.1 Detailed Description

The analog to digital converter API is broken into three groups of functions: those that deal with
the sample sequences, those that deal with the processor trigger, and those that deal with interrupt
handling.

The sample sequences are configured with ADCSequenceConfigure() and ADCSequenceStep-
Configure(). They are enabled and disabled with ADCSequenceEnable() and ADCSequenceDis-
able(). The captured data is obtained with ADCSequenceDataGet(). Sample sequence FIFO over-
flow and underflow is managed with ADCSequenceOverflow(), ADCSequenceOverflowClear(), AD-
CSequenceUnderflow(), and ADCSequenceUnderflowClear().

Hardware oversampling of the ADC is controlled with ADCHardwareOversampleConfigure(). Soft-
ware oversampling of the ADC is controlled with ADCSoftwareOversampleConfigure(), ADCSoft-
wareOversampleStepConfigure(), and ADCSoftwareOversampleDataGet().

32 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

The processor trigger is generated with ADCProcessorTrigger().

The interrupt handler for the ADC sample sequence interrupts are managed with ADCIntRegister()
and ADCIntUnregister(). The sample sequence interrupt sources are managed with ADCIntDis-
able(), ADCIntEnable(), ADCIntStatus(), and ADCIntClear().

6.2.2 Function Documentation

6.2.2.1 ADCHardwareOversampleConfigure

Configures the hardware oversampling factor of the ADC.

Prototype:
void
ADCHardwareOversampleConfigure(unsigned long ulBase,

unsigned long ulFactor)

Parameters:
ulBase is the base address of the ADC module.
ulFactor is the number of samples to be averaged.

Description:
This function configures the hardware oversampling for the ADC, which can be used to provide
better resolution on the sampled data. Oversampling is accomplished by averaging multiple
samples from the same analog input. Six different oversampling rates are supported; 2x,
4x, 8x, 16x, 32x, and 64x. Specifying an oversampling factor of zero will disable hardware
oversampling.

Hardware oversampling applies uniformly to all sample sequencers. It does not reduce the
depth of the sample sequencers like the software oversampling APIs; each sample written into
the sample sequence FIFO is a fully oversampled analog input reading.

Enabling hardware averaging increases the precision of the ADC at the cost of throughput. For
example, enabling 4x oversampling reduces the throughput of a 250 Ksps ADC to 62.5 Ksps.

Note:
Hardware oversampling is available beginning with Rev C0 of the Stellaris microcontroller.

Returns:
None.

6.2.2.2 ADCIntClear

Clears sample sequence interrupt source.

Prototype:
void
ADCIntClear(unsigned long ulBase,

unsigned long ulSequenceNum)

Parameters:
ulBase is the base address of the ADC module.

September 29, 2008 33

Analog to Digital Converter (ADC)

ulSequenceNum is the sample sequence number.

Description:
The specified sample sequence interrupt is cleared, so that it no longer asserts. This must be
done in the interrupt handler to keep it from being called again immediately upon exit.

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

6.2.2.3 ADCIntDisable

Disables a sample sequence interrupt.

Prototype:
void
ADCIntDisable(unsigned long ulBase,

unsigned long ulSequenceNum)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
This function disables the requested sample sequence interrupt.

Returns:
None.

6.2.2.4 ADCIntEnable

Enables a sample sequence interrupt.

Prototype:
void
ADCIntEnable(unsigned long ulBase,

unsigned long ulSequenceNum)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

34 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function enables the requested sample sequence interrupt. Any outstanding interrupts
are cleared before enabling the sample sequence interrupt.

Returns:
None.

6.2.2.5 ADCIntRegister

Registers an interrupt handler for an ADC interrupt.

Prototype:
void
ADCIntRegister(unsigned long ulBase,

unsigned long ulSequenceNum,
void (*pfnHandler)(void))

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.
pfnHandler is a pointer to the function to be called when the ADC sample sequence interrupt

occurs.

Description:
This function sets the handler to be called when a sample sequence interrupt occurs. This will
enable the global interrupt in the interrupt controller; the sequence interrupt must be enabled
with ADCIntEnable(). It is the interrupt handler’s responsibility to clear the interrupt source via
ADCIntClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

6.2.2.6 ADCIntStatus

Gets the current interrupt status.

Prototype:
unsigned long
ADCIntStatus(unsigned long ulBase,

unsigned long ulSequenceNum,
tBoolean bMasked)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

September 29, 2008 35

Analog to Digital Converter (ADC)

Description:
This returns the interrupt status for the specified sample sequence. Either the raw interrupt
status or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current raw or masked interrupt status.

6.2.2.7 ADCIntUnregister

Unregisters the interrupt handler for an ADC interrupt.

Prototype:
void
ADCIntUnregister(unsigned long ulBase,

unsigned long ulSequenceNum)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
This function unregisters the interrupt handler. This will disable the global interrupt in the
interrupt controller; the sequence interrupt must be disabled via ADCIntDisable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

6.2.2.8 ADCProcessorTrigger

Causes a processor trigger for a sample sequence.

Prototype:
void
ADCProcessorTrigger(unsigned long ulBase,

unsigned long ulSequenceNum)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
This function triggers a processor-initiated sample sequence if the sample sequence trigger is
configured to ADC_TRIGGER_PROCESSOR.

Returns:
None.

36 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

6.2.2.9 ADCSequenceConfigure

Configures the trigger source and priority of a sample sequence.

Prototype:
void
ADCSequenceConfigure(unsigned long ulBase,

unsigned long ulSequenceNum,
unsigned long ulTrigger,
unsigned long ulPriority)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.
ulTrigger is the trigger source that initiates the sample sequence; must be one of the

ADC_TRIGGER_∗ values.
ulPriority is the relative priority of the sample sequence with respect to the other sample

sequences.

Description:
This function configures the initiation criteria for a sample sequence. Valid sample sequences
range from zero to three; sequence zero will capture up to eight samples, sequences one and
two will capture up to four samples, and sequence three will capture a single sample. The
trigger condition and priority (with respect to other sample sequence execution) is set.

The ulTrigger parameter can take on the following values:

ADC_TRIGGER_PROCESSOR - A trigger generated by the processor, via the ADCPro-
cessorTrigger() function.
ADC_TRIGGER_COMP0 - A trigger generated by the first analog comparator; configured
with ComparatorConfigure().
ADC_TRIGGER_COMP1 - A trigger generated by the second analog comparator; config-
ured with ComparatorConfigure().
ADC_TRIGGER_COMP2 - A trigger generated by the third analog comparator; configured
with ComparatorConfigure().
ADC_TRIGGER_EXTERNAL - A trigger generated by an input from the Port B4 pin.
ADC_TRIGGER_TIMER - A trigger generated by a timer; configured with TimerCon-
trolTrigger().
ADC_TRIGGER_PWM0 - A trigger generated by the first PWM generator; configured with
PWMGenIntTrigEnable().
ADC_TRIGGER_PWM1 - A trigger generated by the second PWM generator; configured
with PWMGenIntTrigEnable().
ADC_TRIGGER_PWM2 - A trigger generated by the third PWM generator; configured with
PWMGenIntTrigEnable().
ADC_TRIGGER_ALWAYS - A trigger that is always asserted, causing the sample se-
quence to capture repeatedly (so long as there is not a higher priority source active).

Note that not all trigger sources are available on all Stellaris family members; consult the data
sheet for the device in question to determine the availability of triggers.

The ulPriority parameter is a value between 0 and 3, where 0 represents the highest priority
and 3 the lowest. Note that when programming the priority among a set of sample sequences,
each must have unique priority; it is up to the caller to guarantee the uniqueness of the priori-
ties.

September 29, 2008 37

Analog to Digital Converter (ADC)

Returns:
None.

6.2.2.10 ADCSequenceDataGet

Gets the captured data for a sample sequence.

Prototype:
long
ADCSequenceDataGet(unsigned long ulBase,

unsigned long ulSequenceNum,
unsigned long *pulBuffer)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.
pulBuffer is the address where the data is stored.

Description:
This function copies data from the specified sample sequence output FIFO to a memory resi-
dent buffer. The number of samples available in the hardware FIFO are copied into the buffer,
which is assumed to be large enough to hold that many samples. This will only return the
samples that are presently available, which may not be the entire sample sequence if it is in
the process of being executed.

Returns:
Returns the number of samples copied to the buffer.

6.2.2.11 ADCSequenceDisable

Disables a sample sequence.

Prototype:
void
ADCSequenceDisable(unsigned long ulBase,

unsigned long ulSequenceNum)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
Prevents the specified sample sequence from being captured when its trigger is detected. A
sample sequence should be disabled before it is configured.

Returns:
None.

38 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

6.2.2.12 ADCSequenceEnable

Enables a sample sequence.

Prototype:
void
ADCSequenceEnable(unsigned long ulBase,

unsigned long ulSequenceNum)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
Allows the specified sample sequence to be captured when its trigger is detected. A sample
sequence must be configured before it is enabled.

Returns:
None.

6.2.2.13 ADCSequenceOverflow

Determines if a sample sequence overflow occurred.

Prototype:
long
ADCSequenceOverflow(unsigned long ulBase,

unsigned long ulSequenceNum)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
This determines if a sample sequence overflow has occurred. This will happen if the captured
samples are not read from the FIFO before the next trigger occurs.

Returns:
Returns zero if there was not an overflow, and non-zero if there was.

6.2.2.14 ADCSequenceOverflowClear

Clears the overflow condition on a sample sequence.

Prototype:
void
ADCSequenceOverflowClear(unsigned long ulBase,

unsigned long ulSequenceNum)

Parameters:
ulBase is the base address of the ADC module.

September 29, 2008 39

Analog to Digital Converter (ADC)

ulSequenceNum is the sample sequence number.

Description:
This will clear an overflow condition on one of the sample sequences. The overflow condition
must be cleared in order to detect a subsequent overflow condition (it otherwise causes no
harm).

Returns:
None.

6.2.2.15 ADCSequenceStepConfigure

Configure a step of the sample sequencer.

Prototype:
void
ADCSequenceStepConfigure(unsigned long ulBase,

unsigned long ulSequenceNum,
unsigned long ulStep,
unsigned long ulConfig)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.
ulStep is the step to be configured.
ulConfig is the configuration of this step; must be a logical OR of ADC_CTL_TS,

ADC_CTL_IE, ADC_CTL_END, ADC_CTL_D, and one of the input channel selects
(ADC_CTL_CH0 through ADC_CTL_CH7).

Description:
This function will set the configuration of the ADC for one step of a sample sequence. The
ADC can be configured for single-ended or differential operation (the ADC_CTL_D bit selects
differential operation when set), the channel to be sampled can be chosen (the ADC_CTL_CH0
through ADC_CTL_CH7 values), and the internal temperature sensor can be selected (the
ADC_CTL_TS bit). Additionally, this step can be defined as the last in the sequence (the
ADC_CTL_END bit) and it can be configured to cause an interrupt when the step is complete
(the ADC_CTL_IE bit). The configuration is used by the ADC at the appropriate time when the
trigger for this sequence occurs.

The ulStep parameter determines the order in which the samples are captured by the ADC
when the trigger occurs. It can range from zero to seven for the first sample sequence, from
zero to three for the second and third sample sequence, and can only be zero for the fourth
sample sequence.

Differential mode only works with adjacent channel pairs (for example, 0 and 1). The channel
select must be the number of the channel pair to sample (for example, ADC_CTL_CH0 for
0 and 1, or ADC_CTL_CH1 for 2 and 3) or undefined results will be returned by the ADC.
Additionally, if differential mode is selected when the temperature sensor is being sampled,
undefined results will be returned by the ADC.

It is the responsibility of the caller to ensure that a valid configuration is specified; this function
does not check the validity of the specified configuration.

40 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

6.2.2.16 ADCSequenceUnderflow

Determines if a sample sequence underflow occurred.

Prototype:
long
ADCSequenceUnderflow(unsigned long ulBase,

unsigned long ulSequenceNum)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
This determines if a sample sequence underflow has occurred. This will happen if too many
samples are read from the FIFO.

Returns:
Returns zero if there was not an underflow, and non-zero if there was.

6.2.2.17 ADCSequenceUnderflowClear

Clears the underflow condition on a sample sequence.

Prototype:
void
ADCSequenceUnderflowClear(unsigned long ulBase,

unsigned long ulSequenceNum)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
This will clear an underflow condition on one of the sample sequences. The underflow condition
must be cleared in order to detect a subsequent underflow condition (it otherwise causes no
harm).

Returns:
None.

6.2.2.18 ADCSoftwareOversampleConfigure

Configures the software oversampling factor of the ADC.

September 29, 2008 41

Analog to Digital Converter (ADC)

Prototype:
void
ADCSoftwareOversampleConfigure(unsigned long ulBase,

unsigned long ulSequenceNum,
unsigned long ulFactor)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.
ulFactor is the number of samples to be averaged.

Description:
This function configures the software oversampling for the ADC, which can be used to provide
better resolution on the sampled data. Oversampling is accomplished by averaging multiple
samples from the same analog input. Three different oversampling rates are supported; 2x,
4x, and 8x.

Oversampling is only supported on the sample sequencers that are more than one sample in
depth (that is, the fourth sample sequencer is not supported). Oversampling by 2x (for exam-
ple) divides the depth of the sample sequencer by two; so 2x oversampling on the first sample
sequencer can only provide four samples per trigger. This also means that 8x oversampling is
only available on the first sample sequencer.

Returns:
None.

6.2.2.19 ADCSoftwareOversampleDataGet

Gets the captured data for a sample sequence using software oversampling.

Prototype:
void
ADCSoftwareOversampleDataGet(unsigned long ulBase,

unsigned long ulSequenceNum,
unsigned long *pulBuffer,
unsigned long ulCount)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.
pulBuffer is the address where the data is stored.
ulCount is the number of samples to be read.

Description:
This function copies data from the specified sample sequence output FIFO to a memory resi-
dent buffer with software oversampling applied. The requested number of samples are copied
into the data buffer; if there are not enough samples in the hardware FIFO to satisfy this many
oversampled data items then incorrect results will be returned. It is the caller’s responsibility to
read only the samples that are available and wait until enough data is available, for example as
a result of receiving an interrupt.

Returns:
None.

42 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

6.2.2.20 ADCSoftwareOversampleStepConfigure

Configures a step of the software oversampled sequencer.

Prototype:
void
ADCSoftwareOversampleStepConfigure(unsigned long ulBase,

unsigned long ulSequenceNum,
unsigned long ulStep,
unsigned long ulConfig)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.
ulStep is the step to be configured.
ulConfig is the configuration of this step.

Description:
This function configures a step of the sample sequencer when using the software oversam-
pling feature. The number of steps available depends on the oversampling factor set by AD-
CSoftwareOversampleConfigure(). The value of ulConfig is the same as defined for ADCSe-
quenceStepConfigure().

Returns:
None.

6.3 Programming Example

The following example shows how to use the ADC API to initialize a sample sequence for processor
triggering, trigger the sample sequence, and then read back the data when it is ready.

unsigned long ulValue;

//
// Enable the first sample sequence to capture the value of channel 0 when
// the processor trigger occurs.
//
ADCSequenceConfigure(ADC_BASE, 0, ADC_TRIGGER_PROCESSOR, 0);
ADCSequenceStepConfigure(ADC_BASE, 0, 0,

ADC_CTL_IE | ADC_CTL_END | ADC_CTL_CH0);
ADCSequenceEnable(ADC_BASE, 0);

//
// Trigger the sample sequence.
//
ADCProcessorTrigger(ADC_BASE, 0);

//
// Wait until the sample sequence has completed.
//
while(!ADCIntStatus(ADC_BASE, 0, false))
{
}

//

September 29, 2008 43

Analog to Digital Converter (ADC)

// Read the value from the ADC.
//
ADCSequenceDataGet(ADC_BASE, 0, &ulValue);

44 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

7 Controller Area Network (CAN)
Introduction . 45
API Functions .45
Programming Example . 62

7.1 Introduction

The Controller Area Network (CAN) APIs provide a set of functions for accessing the Stellaris CAN
modules. Functions are provided to configure the CAN controllers, configure message objects, and
manage CAN interrupts.

The Stellaris CAN module provides hardware processing of the CAN data link layer. It can be
configured with message filters and preloaded message data so that it can autonomously send
and receive messages on the bus, and notify the application accordingly. It automatically handles
generation and checking of CRCs, error processing, and retransmission of CAN messages.

The message objects are stored in the CAN controller and provide the main interface for the CAN
module on the CAN bus. There are 32 message objects that can each be programmed to handle
a separate message ID, or can be chained together for a sequence of frames with the same ID.
The message identifier filters provide masking that can be programmed to match any or all of the
message ID bits, and frame types.

This driver is contained in src/can.c, with src/can.h containing the API definitions for use by
applications.

7.2 API Functions

Data Structures
tCANBitClkParms
tCANMsgObject

Defines
MSG_OBJ_STATUS_MASK

Enumerations
tCANIntFlags
tCANIntStsReg
tCANObjFlags
tCANStatusCtrl
tCANStsReg
tMsgObjType

September 29, 2008 45

Controller Area Network (CAN)

Functions
void CANBitTimingGet (unsigned long ulBase, tCANBitClkParms ∗pClkParms)
void CANBitTimingSet (unsigned long ulBase, tCANBitClkParms ∗pClkParms)
void CANDisable (unsigned long ulBase)
void CANEnable (unsigned long ulBase)
tBoolean CANErrCntrGet (unsigned long ulBase, unsigned long ∗pulRxCount, unsigned long
∗pulTxCount)
void CANInit (unsigned long ulBase)
void CANIntClear (unsigned long ulBase, unsigned long ulIntClr)
void CANIntDisable (unsigned long ulBase, unsigned long ulIntFlags)
void CANIntEnable (unsigned long ulBase, unsigned long ulIntFlags)
void CANIntRegister (unsigned long ulBase, void (∗pfnHandler)(void))
unsigned long CANIntStatus (unsigned long ulBase, tCANIntStsReg eIntStsReg)
void CANIntUnregister (unsigned long ulBase)
void CANMessageClear (unsigned long ulBase, unsigned long ulObjID)
void CANMessageGet (unsigned long ulBase, unsigned long ulObjID, tCANMsgObject
∗pMsgObject, tBoolean bClrPendingInt)
void CANMessageSet (unsigned long ulBase, unsigned long ulObjID, tCANMsgObject
∗pMsgObject, tMsgObjType eMsgType)
tBoolean CANRetryGet (unsigned long ulBase)
void CANRetrySet (unsigned long ulBase, tBoolean bAutoRetry)
unsigned long CANStatusGet (unsigned long ulBase, tCANStsReg eStatusReg)

7.2.1 Detailed Description

The CAN APIs provide all of the functions needed by the application to implement an interrupt-
driven CAN stack. These functions may be used to control any of the available CAN ports on a
Stellaris microcontroller, and can be used with one port without causing conflicts with the other
port.

The CAN module is disabled by default, so the the CANInit() function must be called before any
other CAN functions are called. This call initializes the message objects to a safe state prior to
enabling the controller on the CAN bus. Also, the bit timing values must be programmed prior to
enabling the CAN controller. The CANSetBitTiming() function should be called with the appropriate
bit timing values for the CAN bus. Once these two functions have been called, a CAN controller
can be enabled using the CANEnable(), and later disabled using CANDisable() if needed. Calling
CANDisable() does not reinitialize a CAN controller, so it can be used to temporarily remove a CAN
controller from the bus.

The CAN controller is highly configurable and contains 32 message objects that can be pro-
grammed to automatically transmit and receive CAN messages under certain conditions. Message
objects allow the application to perform some actions automatically without interaction from the
microcontroller. Some examples of these actions are the following:

Send a data frame immediately

Send a data frame when a matching remote frame is seen on the CAN bus

Receive a specific data frame

Receive data frames that match a certain identifier pattern

46 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

To configure message objects to perform any of these actions, the application must first set up one
of the 32 message objects using CANMessageSet(). This function must be used to configure a
message object to send data, or to configure a message object to receive data. Each message
object can be configured to generate interrupts on transmission or reception of CAN messages.

When data is received from the CAN bus, the application can use the CANMessageGet() function to
read the received message. This function can also be used to read a message object that is already
configured in order to populate a message structure prior to making changes to the configuration
of a message object. Reading the message object using this function will also clear any pending
interrupt on the message object.

Once a message object has been configured using CANMessageSet(), it has allocated the mes-
sage object and will continue to perform its programmed function unless it is released with a call to
CANMessageClear(). The application is not required to clear out a message object before setting
it with a new configuration, because each time CANMessageSet() is called, it will overwrite any
previously programmed configuration.

The 32 message objects are identical except for priority. The lowest numbered message objects
have the highest priority. Priority affects operation in two ways. First, if multiple actions are ready
at the same time, the one with the highest priority message object will occur first. And second,
when multiple message objects have interrupts pending, the highest priority will be presented first
when reading the interrupt status. It is up to the application to manage the 32 message objects as
a resource, and determine the best method for allocating and releasing them.

The CAN controller can generate interrupts on several conditions:

When any message object transmits a message

When any message object receives a message

On warning conditions such as an error counter reaching a limit or occurrence of various bus
errors

On controller error conditions such as entering the bus-off state

An interrupt handler must be installed in order to process CAN interrupts. If dynamic interrupt
configuration is desired, the CANIntRegister() can be used to register the interrupt handler. This
will place the vector in a RAM-based vector table. However, if the application uses a pre-loaded
vector table in flash, then the CAN controller handler should be entered in the appropriate slot in
the vector table. In this case, CANIntRegister() is not needed, but the interrupt will need to be
enabled on the host processor master interrupt controller using the IntEnable() function. The CAN
module interrupts are enabled using the CANIntEnable() function. They can be disabled by using
the CANIntDisable() function.

Once CAN interrupts are enabled, the handler will be invoked whenever a CAN interrupt is triggered.
The handler can determine which condition caused the interrupt by using the CANIntStatus() func-
tion. Multiple conditions can be pending when an interrupt occurs, so the handler must be designed
to process all pending interrupt conditions before exiting. Each interrupt condition must be cleared
before exiting the handler. There are two ways to do this. The CANIntClear() function will clear
a specific interrupt condition without further action required by the handler. However, the handler
can also clear the condition by performing certain actions. If the interrupt is a status interrupt,
the interrupt can be cleared by reading the status register with CANStatusGet(). If the interrupt is
caused by one of the message objects, then it can be cleared by reading the message object using
CANMessageGet().

There are several status registers that can be used to help the application manage the controller.
The status registers are read using the CANStatusGet() function. There is a controller status reg-
ister that provides general status information such as error or warning conditions. There are also

September 29, 2008 47

Controller Area Network (CAN)

several status registers that provide information about all of the message objects at once using a
32-bit bit map of the status, with one bit representing each message object. These status registers
can be used to determine:

Which message objects have unprocessed received data
Which message objects have pending transmission requests
Which message objects are allocated for use

7.2.2 Data Structure Documentation

7.2.2.1 tCANBitClkParms

Definition:
typedef struct
{

unsigned int uSyncPropPhase1Seg;
unsigned int uPhase2Seg;
unsigned int uSJW;
unsigned int uQuantumPrescaler;

}
tCANBitClkParms

Members:
uSyncPropPhase1Seg This value holds the sum of the Synchronization, Propagation, and

Phase Buffer 1 segments, measured in time quanta. The valid values for this setting range
from 2 to 16.

uPhase2Seg This value holds the Phase Buffer 2 segment in time quanta. The valid values
for this setting range from 1 to 8.

uSJW This value holds the Resynchronization Jump Width in time quanta. The valid values
for this setting range from 1 to 4.

uQuantumPrescaler This value holds the CAN_CLK divider used to determine time quanta.
The valid values for this setting range from 1 to 1023.

Description:
This structure is used for encapsulating the values associated with setting up the bit timing for a
CAN controller. The structure is used when calling the CANGetBitTiming and CANSetBitTiming
functions.

7.2.2.2 tCANMsgObject

Definition:
typedef struct
{

unsigned long ulMsgID;
unsigned long ulMsgIDMask;
unsigned long ulFlags;
unsigned long ulMsgLen;
unsigned char *pucMsgData;

}
tCANMsgObject

48 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Members:
ulMsgID The CAN message identifier used for 11 or 29 bit identifiers.
ulMsgIDMask The message identifier mask used when identifier filtering is enabled.
ulFlags This value holds various status flags and settings specified by tCANObjFlags.
ulMsgLen This value is the number of bytes of data in the message object.
pucMsgData This is a pointer to the message object’s data.

Description:
The structure used for encapsulating all the items associated with a CAN message object in
the CAN controller.

7.2.3 Define Documentation

7.2.3.1 MSG_OBJ_STATUS_MASK

Definition:
#define MSG_OBJ_STATUS_MASK

Description:
This define is used with the tCANObjFlags enumerated values to allow checking only status
flags and not configuration flags.

7.2.4 Enumeration Documentation

7.2.4.1 tCANIntFlags

Description:
These definitions are used to specify interrupt sources to CANIntEnable() and CANIntDisable().

Enumerators:
CAN_INT_ERROR This flag is used to allow a CAN controller to generate error interrupts.
CAN_INT_STATUS This flag is used to allow a CAN controller to generate status interrupts.
CAN_INT_MASTER This flag is used to allow a CAN controller to generate any CAN inter-

rupts. If this is not set, then no interrupts will be generated by the CAN controller.

7.2.4.2 tCANIntStsReg

Description:
This data type is used to identify the interrupt status register. This is used when calling the
CANIntStatus() function.

Enumerators:
CAN_INT_STS_CAUSE Read the CAN interrupt status information.
CAN_INT_STS_OBJECT Read a message object’s interrupt status.

September 29, 2008 49

Controller Area Network (CAN)

7.2.4.3 tCANObjFlags

Description:
These are the flags used by the tCANMsgObject variable when calling the CANMessageSet()
and CANMessageGet() functions.

Enumerators:
MSG_OBJ_TX_INT_ENABLE This indicates that transmit interrupts should be enabled, or

are enabled.
MSG_OBJ_RX_INT_ENABLE This indicates that receive interrupts should be enabled, or

are enabled.
MSG_OBJ_EXTENDED_ID This indicates that a message object will use or is using an ex-

tended identifier.
MSG_OBJ_USE_ID_FILTER This indicates that a message object will use or is using filter-

ing based on the object’s message identifier.
MSG_OBJ_NEW_DATA This indicates that new data was available in the message object.
MSG_OBJ_DATA_LOST This indicates that data was lost since this message object was

last read.
MSG_OBJ_USE_DIR_FILTER This indicates that a message object will use or is using filter-

ing based on the direction of the transfer. If the direction filtering is used, then ID filtering
must also be enabled.

MSG_OBJ_USE_EXT_FILTER This indicates that a message object will use or is using mes-
sage identifier filtering based on the extended identifier. If the extended identifier filtering
is used, then ID filtering must also be enabled.

MSG_OBJ_REMOTE_FRAME This indicates that a message object is a remote frame.
MSG_OBJ_NO_FLAGS This indicates that a message object has no flags set.

7.2.4.4 tCANStatusCtrl

Description:
The following enumeration contains all error or status indicators that can be returned when
calling the CANStatusGet() function.

Enumerators:
CAN_STATUS_BUS_OFF CAN controller has entered a Bus Off state.
CAN_STATUS_EWARN CAN controller error level has reached warning level.
CAN_STATUS_EPASS CAN controller error level has reached error passive level.
CAN_STATUS_RXOK A message was received successfully since the last read of this sta-

tus.
CAN_STATUS_TXOK A message was transmitted successfully since the last read of this

status.
CAN_STATUS_LEC_MSK This is the mask for the last error code field.
CAN_STATUS_LEC_NONE There was no error.
CAN_STATUS_LEC_STUFF A bit stuffing error has occurred.
CAN_STATUS_LEC_FORM A formatting error has occurred.
CAN_STATUS_LEC_ACK An acknowledge error has occurred.
CAN_STATUS_LEC_BIT1 The bus remained a bit level of 1 for longer than is allowed.
CAN_STATUS_LEC_BIT0 The bus remained a bit level of 0 for longer than is allowed.

50 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

CAN_STATUS_LEC_CRC A CRC error has occurred.
CAN_STATUS_LEC_MASK This is the mask for the CAN Last Error Code (LEC).

7.2.4.5 tCANStsReg

Description:
This data type is used to identify which of several status registers to read when calling the
CANStatusGet() function.

Enumerators:
CAN_STS_CONTROL Read the full CAN controller status.
CAN_STS_TXREQUEST Read the full 32-bit mask of message objects with a transmit re-

quest set.
CAN_STS_NEWDAT Read the full 32-bit mask of message objects with new data available.
CAN_STS_MSGVAL Read the full 32-bit mask of message objects that are enabled.

7.2.4.6 tMsgObjType

Description:
This definition is used to determine the type of message object that will be set up via a call to
the CANMessageSet() API.

Enumerators:
MSG_OBJ_TYPE_TX Transmit message object.
MSG_OBJ_TYPE_TX_REMOTE Transmit remote request message object.
MSG_OBJ_TYPE_RX Receive message object.
MSG_OBJ_TYPE_RX_REMOTE Receive remote request message object.
MSG_OBJ_TYPE_RXTX_REMOTE Remote frame receive remote, with auto-transmit mes-

sage object.

7.2.5 Function Documentation

7.2.5.1 CANBitTimingGet

Reads the current settings for the CAN controller bit timing.

Prototype:
void
CANBitTimingGet(unsigned long ulBase,

tCANBitClkParms *pClkParms)

Parameters:
ulBase is the base address of the CAN controller.
pClkParms is a pointer to a structure to hold the timing parameters.

September 29, 2008 51

Controller Area Network (CAN)

Description:
This function reads the current configuration of the CAN controller bit clock timing, and stores
the resulting information in the structure supplied by the caller. Refer to CANBitTimingSet() for
the meaning of the values that are returned in the structure pointed to by pClkParms.

This function replaces the original CANGetBitTiming() API and performs the same actions. A
macro is provided in can.h to map the original API to this API.

Returns:
None.

7.2.5.2 CANBitTimingSet

Configures the CAN controller bit timing.

Prototype:
void
CANBitTimingSet(unsigned long ulBase,

tCANBitClkParms *pClkParms)

Parameters:
ulBase is the base address of the CAN controller.
pClkParms points to the structure with the clock parameters.

Description:
Configures the various timing parameters for the CAN bus bit timing: Propagation segment,
Phase Buffer 1 segment, Phase Buffer 2 segment, and the Synchronization Jump Width.
The values for Propagation and Phase Buffer 1 segments are derived from the combina-
tion pClkParms->uSyncPropPhase1Seg parameter. Phase Buffer 2 is determined from the
pClkParms->uPhase2Seg parameter. These two parameters, along with pClkParms->uSJW
are based in units of bit time quanta. The actual quantum time is determined by the pClkParms-
>uQuantumPrescaler value, which specifies the divisor for the CAN module clock.

The total bit time, in quanta, will be the sum of the two Seg parameters, as follows:

bit_time_q = uSyncPropPhase1Seg + uPhase2Seg + 1

Note that the Sync_Seg is always one quantum in duration, and will be added to derive the
correct duration of Prop_Seg and Phase1_Seg.

The equation to determine the actual bit rate is as follows:

CAN Clock / ((uSyncPropPhase1Seg + uPhase2Seg + 1) ∗ (uQuantumPrescaler))

This means that with uSyncPropPhase1Seg = 4, uPhase2Seg = 1, uQuantumPrescaler = 2
and an 8 MHz CAN clock, that the bit rate will be (8 MHz) / ((5 + 2 + 1) ∗ 2) or 500 Kbit/sec.

This function replaces the original CANSetBitTiming() API and performs the same actions. A
macro is provided in can.h to map the original API to this API.

Returns:
None.

52 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

7.2.5.3 CANDisable

Disables the CAN controller.

Prototype:
void
CANDisable(unsigned long ulBase)

Parameters:
ulBase is the base address of the CAN controller to disable.

Description:
Disables the CAN controller for message processing. When disabled, the controller will no
longer automatically process data on the CAN bus. The controller can be restarted by calling
CANEnable(). The state of the CAN controller and the message objects in the controller are
left as they were before this call was made.

Returns:
None.

7.2.5.4 CANEnable

Enables the CAN controller.

Prototype:
void
CANEnable(unsigned long ulBase)

Parameters:
ulBase is the base address of the CAN controller to enable.

Description:
Enables the CAN controller for message processing. Once enabled, the controller will auto-
matically transmit any pending frames, and process any received frames. The controller can
be stopped by calling CANDisable(). Prior to calling CANEnable(), CANInit() should have been
called to initialize the controller and the CAN bus clock should be configured by calling CAN-
BitTimingSet().

Returns:
None.

7.2.5.5 CANErrCntrGet

Reads the CAN controller error counter register.

Prototype:
tBoolean
CANErrCntrGet(unsigned long ulBase,

unsigned long *pulRxCount,
unsigned long *pulTxCount)

September 29, 2008 53

Controller Area Network (CAN)

Parameters:
ulBase is the base address of the CAN controller.
pulRxCount is a pointer to storage for the receive error counter.
pulTxCount is a pointer to storage for the transmit error counter.

Description:
Reads the error counter register and returns the transmit and receive error counts to the caller
along with a flag indicating if the controller receive counter has reached the error passive
limit. The values of the receive and transmit error counters are returned through the pointers
provided as parameters.

After this call, ∗pulRxCount will hold the current receive error count and ∗pulTxCount will hold
the current transmit error count.

Returns:
Returns true if the receive error count has reached the error passive limit, and false if the error
count is below the error passive limit.

7.2.5.6 CANInit

Initializes the CAN controller after reset.

Prototype:
void
CANInit(unsigned long ulBase)

Parameters:
ulBase is the base address of the CAN controller.

Description:
After reset, the CAN controller is left in the disabled state. However, the memory used for
message objects contains undefined values and must be cleared prior to enabling the CAN
controller the first time. This prevents unwanted transmission or reception of data before the
message objects are configured. This function must be called before enabling the controller
the first time.

Returns:
None.

7.2.5.7 CANIntClear

Clears a CAN interrupt source.

Prototype:
void
CANIntClear(unsigned long ulBase,

unsigned long ulIntClr)

Parameters:
ulBase is the base address of the CAN controller.
ulIntClr is a value indicating which interrupt source to clear.

54 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function can be used to clear a specific interrupt source. The ulIntClr parameter should
be one of the following values:

CAN_INT_INTID_STATUS - Clears a status interrupt.
1-32 - Clears the specified message object interrupt

It is not necessary to use this function to clear an interrupt. This should only be used if the
application wants to clear an interrupt source without taking the normal interrupt action.

Normally, the status interrupt is cleared by reading the controller status using CANStatusGet().
A specific message object interrupt is normally cleared by reading the message object using
CANMessageGet().

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

7.2.5.8 CANIntDisable

Disables individual CAN controller interrupt sources.

Prototype:
void
CANIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the CAN controller.
ulIntFlags is the bit mask of the interrupt sources to be disabled.

Description:
Disables the specified CAN controller interrupt sources. Only enabled interrupt sources can
cause a processor interrupt.

The ulIntFlags parameter has the same definition as in the CANIntEnable() function.

Returns:
None.

7.2.5.9 CANIntEnable

Enables individual CAN controller interrupt sources.

September 29, 2008 55

Controller Area Network (CAN)

Prototype:
void
CANIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the CAN controller.
ulIntFlags is the bit mask of the interrupt sources to be enabled.

Description:
Enables specific interrupt sources of the CAN controller. Only enabled sources will cause a
processor interrupt.

The ulIntFlags parameter is the logical OR of any of the following:

CAN_INT_ERROR - a controller error condition has occurred
CAN_INT_STATUS - a message transfer has completed, or a bus error has been detected
CAN_INT_MASTER - allow CAN controller to generate interrupts

In order to generate any interrupts, CAN_INT_MASTER must be enabled. Further, for any
particular transaction from a message object to generate an interrupt, that message object
must have interrupts enabled (see CANMessageSet()). CAN_INT_ERROR will generate an
interrupt if the controller enters the “bus off” condition, or if the error counters reach a limit.
CAN_INT_STATUS will generate an interrupt under quite a few status conditions and may
provide more interrupts than the application needs to handle. When an interrupt occurs, use
CANIntStatus() to determine the cause.

Returns:
None.

7.2.5.10 CANIntRegister

Registers an interrupt handler for the CAN controller.

Prototype:
void
CANIntRegister(unsigned long ulBase,

void (*pfnHandler)(void))

Parameters:
ulBase is the base address of the CAN controller.
pfnHandler is a pointer to the function to be called when the enabled CAN interrupts occur.

Description:
This function registers the interrupt handler in the interrupt vector table, and enables CAN
interrupts on the interrupt controller; specific CAN interrupt sources must be enabled using
CANIntEnable(). The interrupt handler being registered must clear the source of the interrupt
using CANIntClear().

If the application is using a static interrupt vector table stored in flash, then it is not necessary
to register the interrupt handler this way. Instead, IntEnable() should be used to enable CAN
interrupts on the interrupt controller.

56 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

7.2.5.11 CANIntStatus

Returns the current CAN controller interrupt status.

Prototype:
unsigned long
CANIntStatus(unsigned long ulBase,

tCANIntStsReg eIntStsReg)

Parameters:
ulBase is the base address of the CAN controller.
eIntStsReg indicates which interrupt status register to read

Description:
Returns the value of one of two interrupt status registers. The interrupt status register read is
determined by the eIntStsReg parameter, which can have one of the following values:

CAN_INT_STS_CAUSE - indicates the cause of the interrupt
CAN_INT_STS_OBJECT - indicates pending interrupts of all message objects

CAN_INT_STS_CAUSE returns the value of the controller interrupt register and indicates the
cause of the interrupt. It will be a value of CAN_INT_INTID_STATUS if the cause is a status
interrupt. In this case, the status register should be read with the CANStatusGet() function.
Calling this function to read the status will also clear the status interrupt. If the value of the
interrupt register is in the range 1-32, then this indicates the number of the highest priority
message object that has an interrupt pending. The message object interrupt can be cleared by
using the CANIntClear() function, or by reading the message using CANMessageGet() in the
case of a received message. The interrupt handler can read the interrupt status again to make
sure all pending interrupts are cleared before returning from the interrupt.

CAN_INT_STS_OBJECT returns a bit mask indicating which message objects have pending
interrupts. This can be used to discover all of the pending interrupts at once, as opposed to
repeatedly reading the interrupt register by using CAN_INT_STS_CAUSE.

Returns:
Returns the value of one of the interrupt status registers.

7.2.5.12 CANIntUnregister

Unregisters an interrupt handler for the CAN controller.

Prototype:
void
CANIntUnregister(unsigned long ulBase)

September 29, 2008 57

Controller Area Network (CAN)

Parameters:
ulBase is the base address of the controller.

Description:
This function unregisters the previously registered interrupt handler and disables the interrupt
on the interrupt controller.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

7.2.5.13 CANMessageClear

Clears a message object so that it is no longer used.

Prototype:
void
CANMessageClear(unsigned long ulBase,

unsigned long ulObjID)

Parameters:
ulBase is the base address of the CAN controller.
ulObjID is the message object number to disable (1-32).

Description:
This function frees the specified message object from use. Once a message object has been
“cleared,” it will no longer automatically send or receive messages, or generate interrupts.

Returns:
None.

7.2.5.14 CANMessageGet

Reads a CAN message from one of the message object buffers.

Prototype:
void
CANMessageGet(unsigned long ulBase,

unsigned long ulObjID,
tCANMsgObject *pMsgObject,
tBoolean bClrPendingInt)

Parameters:
ulBase is the base address of the CAN controller.
ulObjID is the object number to read (1-32).
pMsgObject points to a structure containing message object fields.
bClrPendingInt indicates whether an associated interrupt should be cleared.

58 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function is used to read the contents of one of the 32 message objects in the CAN con-
troller, and return it to the caller. The data returned is stored in the fields of the caller-supplied
structure pointed to by pMsgObject . The data consists of all of the parts of a CAN message,
plus some control and status information.

Normally this is used to read a message object that has received and stored a CAN message
with a certain identifier. However, this could also be used to read the contents of a message
object in order to load the fields of the structure in case only part of the structure needs to be
changed from a previous setting.

When using CANMessageGet, all of the same fields of the structure are populated in the same
way as when the CANMessageSet() function is used, with the following exceptions:

pMsgObject->ulFlags:

MSG_OBJ_NEW_DATA indicates if this is new data since the last time it was read
MSG_OBJ_DATA_LOST indicates that at least one message was received on this mes-
sage object, and not read by the host before being overwritten.

Returns:
None.

7.2.5.15 CANMessageSet

Configures a message object in the CAN controller.

Prototype:
void
CANMessageSet(unsigned long ulBase,

unsigned long ulObjID,
tCANMsgObject *pMsgObject,
tMsgObjType eMsgType)

Parameters:
ulBase is the base address of the CAN controller.
ulObjID is the object number to configure (1-32).
pMsgObject is a pointer to a structure containing message object settings.
eMsgType indicates the type of message for this object.

Description:
This function is used to configure any one of the 32 message objects in the CAN controller.
A message object can be configured as any type of CAN message object as well as several
options for automatic transmission and reception. This call also allows the message object to
be configured to generate interrupts on completion of message receipt or transmission. The
message object can also be configured with a filter/mask so that actions are only taken when
a message that meets certain parameters is seen on the CAN bus.

The eMsgType parameter must be one of the following values:

MSG_OBJ_TYPE_TX - CAN transmit message object.
MSG_OBJ_TYPE_TX_REMOTE - CAN transmit remote request message object.
MSG_OBJ_TYPE_RX - CAN receive message object.

September 29, 2008 59

Controller Area Network (CAN)

MSG_OBJ_TYPE_RX_REMOTE - CAN receive remote request message object.
MSG_OBJ_TYPE_RXTX_REMOTE - CAN remote frame receive remote, then transmit
message object.

The message object pointed to by pMsgObject must be populated by the caller, as follows:

ulMsgID - contains the message ID, either 11 or 29 bits.
ulMsgIDMask - mask of bits from ulMsgID that must match if identifier filtering is enabled.
ulFlags

• Set MSG_OBJ_TX_INT_ENABLE flag to enable interrupt on transmission.
• Set MSG_OBJ_RX_INT_ENABLE flag to enable interrupt on receipt.
• Set MSG_OBJ_USE_ID_FILTER flag to enable filtering based on the identifier mask

specified by ulMsgIDMask .
ulMsgLen - the number of bytes in the message data. This should be non-zero even for a
remote frame; it should match the expected bytes of the data responding data frame.
pucMsgData - points to a buffer containing up to 8 bytes of data for a data frame.

Example: To send a data frame or remote frame(in response to a remote request), take the
following steps:

1. Set eMsgType to MSG_OBJ_TYPE_TX.
2. Set pMsgObject->ulMsgID to the message ID.
3. Set pMsgObject->ulFlags. Make sure to set MSG_OBJ_TX_INT_ENABLE to allow an

interrupt to be generated when the message is sent.
4. Set pMsgObject->ulMsgLen to the number of bytes in the data frame.
5. Set pMsgObject->pucMsgData to point to an array containing the bytes to send in the

message.
6. Call this function with ulObjID set to one of the 32 object buffers.

Example: To receive a specific data frame, take the following steps:

1. Set eMsgObjType to MSG_OBJ_TYPE_RX.
2. Set pMsgObject->ulMsgID to the full message ID, or a partial mask to use partial ID match-

ing.
3. Set pMsgObject->ulMsgIDMask bits that should be used for masking during comparison.
4. Set pMsgObject->ulFlags as follows:

Set MSG_OBJ_TX_INT_ENABLE flag to be interrupted when the data frame is re-
ceived.
Set MSG_OBJ_USE_ID_FILTER flag to enable identifier based filtering.

5. Set pMsgObject->ulMsgLen to the number of bytes in the expected data frame.
6. The buffer pointed to by pMsgObject->pucMsgData and pMsgObject->ulMsgLen are not

used by this call as no data is present at the time of the call.
7. Call this function with ulObjID set to one of the 32 object buffers.

If you specify a message object buffer that already contains a message definition, it will be
overwritten.

Returns:
None.

60 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

7.2.5.16 CANRetryGet

Returns the current setting for automatic retransmission.

Prototype:
tBoolean
CANRetryGet(unsigned long ulBase)

Parameters:
ulBase is the base address of the CAN controller.

Description:
Reads the current setting for the automatic retransmission in the CAN controller and returns it
to the caller.

Returns:
Returns true if automatic retransmission is enabled, false otherwise.

7.2.5.17 CANRetrySet

Sets the CAN controller automatic retransmission behavior.

Prototype:
void
CANRetrySet(unsigned long ulBase,

tBoolean bAutoRetry)

Parameters:
ulBase is the base address of the CAN controller.
bAutoRetry enables automatic retransmission.

Description:
Enables or disables automatic retransmission of messages with detected errors. If bAutoRetry
is true, then automatic retransmission is enabled, otherwise it is disabled.

Returns:
None.

7.2.5.18 CANStatusGet

Reads one of the controller status registers.

Prototype:
unsigned long
CANStatusGet(unsigned long ulBase,

tCANStsReg eStatusReg)

Parameters:
ulBase is the base address of the CAN controller.
eStatusReg is the status register to read.

September 29, 2008 61

Controller Area Network (CAN)

Description:
Reads a status register of the CAN controller and returns it to the caller. The different status
registers are:

CAN_STS_CONTROL - the main controller status
CAN_STS_TXREQUEST - bit mask of objects pending transmission
CAN_STS_NEWDAT - bit mask of objects with new data
CAN_STS_MSGVAL - bit mask of objects with valid configuration

When reading the main controller status register, a pending status interrupt will be cleared.
This should be used in the interrupt handler for the CAN controller if the cause is a status
interrupt. The controller status register fields are as follows:

CAN_STATUS_BUS_OFF - controller is in bus-off condition
CAN_STATUS_EWARN - an error counter has reached a limit of at least 96
CAN_STATUS_EPASS - CAN controller is in the error passive state
CAN_STATUS_RXOK - a message was received successfully (independent of any mes-
sage filtering).
CAN_STATUS_TXOK - a message was successfully transmitted
CAN_STATUS_LEC_MSK - mask of last error code bits (3 bits)
CAN_STATUS_LEC_NONE - no error
CAN_STATUS_LEC_STUFF - stuffing error detected
CAN_STATUS_LEC_FORM - a format error occurred in the fixed format part of a message
CAN_STATUS_LEC_ACK - a transmitted message was not acknowledged
CAN_STATUS_LEC_BIT1 - dominant level detected when trying to send in recessive
mode
CAN_STATUS_LEC_BIT0 - recessive level detected when trying to send in dominant
mode
CAN_STATUS_LEC_CRC - CRC error in received message

The remaining status registers are 32-bit bit maps to the message objects. They can be used
to quickly obtain information about the status of all the message objects without needing to
query each one. They contain the following information:

CAN_STS_TXREQUEST - if a message object’s TxRequest bit is set, that means that a
transmission is pending on that object. The application can use this to determine which
objects are still waiting to send a message.
CAN_STS_NEWDAT - if a message object’s NewDat bit is set, that means that a new
message has been received in that object, and has not yet been picked up by the host
application
CAN_STS_MSGVAL - if a message object’s MsgVal bit is set, that means it has a valid
configuration programmed. The host application can use this to determine which message
objects are empty/unused.

Returns:
Returns the value of the status register.

7.3 Programming Example

This example code will send out data from CAN controller 0 to be received by CAN controller 1. In
order to actually receive the data, an external cable must be connected between the two ports. In

62 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

this example, both controllers are configured for 1 Mbit operation.

tCANBitClkParms CANBitClk;
tCANMsgObject sMsgObjectRx;
tCANMsgObject sMsgObjectTx;
unsigned char ucBufferIn[8];
unsigned char ucBufferOut[8];

//
// Reset the state of all the message objects and the state of the CAN
// module to a known state.
//
CANInit(CAN0_BASE);
CANInit(CAN1_BASE);

//
// Configure the controller for 1 Mbit operation.
//
CANBitClk.uSyncPropPhase1Seg = 5;
CANBitClk.uPhase2Seg = 2;
CANBitClk.uQuantumPrescaler = 1;
CANBitClk.uSJW = 2;
CANSetBitTiming(CAN0_BASE, &CANBitClk);
CANSetBitTiming(CAN1_BASE, &CANBitClk);

//
// Take the CAN0 device out of INIT state.
//
CANEnable(CAN0_BASE);
CANEnable(CAN1_BASE);

//
// Configure a receive object.
//
sMsgObjectRx.ulMsgID = (0x400);
sMsgObjectRx.ulMsgIDMask = 0x7f8;
sMsgObjectRx.ulFlags = MSG_OBJ_USE_ID_FILTER;
sMsgObjectRx.ulMsgLen = 8;
sMsgObjectRx.pucMsgData = ucBufferIn;
CANMessageSet(CAN1_BASE, 1, &sMsgObjectRx, MSG_OBJ_TYPE_RX);

//
// Configure and start transmit of message object.
//
sMsgObjectTx.ulMsgID = 0x400;
sMsgObjectTx.ulFlags = 0;
sMsgObjectTx.ulMsgLen = 8;
sMsgObjectTx.pucMsgData = ucBufferOut;
CANMessageSet(CAN0_BASE, 2, &sMsgObjectTx, MSG_OBJ_TYPE_TX);

//
// Wait for new data to become available.
//
while((CANStatusGet(CAN1_BASE, CAN_STS_NEWDAT) & 1) == 0)
{

//
// Read the message out of the message object.
//
CANMessageGet(CAN1_BASE, 1, &sMsgObjectRx, true);

}

//
// Process new data in sMsgObjectRx.pucMsgData.
//
...

September 29, 2008 63

Controller Area Network (CAN)

64 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

8 Ethernet Controller
Introduction . 65
API Functions .65
Programming Example . 78

8.1 Introduction

The Stellaris Ethernet controller consists of a fully integrated media access controller (MAC) and a
network physical (PHY) interface device. The Ethernet controller conforms to IEEE 802.3 specifi-
cations and fully supports 10BASE-T and 100BASE-TX standards.

The Ethernet API provides the set of functions required to implement an interrupt-driven Ethernet
driver for this Ethernet controller. Functions are provided to configure and control the MAC, to
access the register set on the PHY, to transmit and receive Ethernet packets, and to configure and
control the interrupts that are available.

This driver is contained in src/ethernet.c, with src/ethernet.h containing the API defini-
tions for use by applications.

8.2 API Functions

Functions
unsigned long EthernetConfigGet (unsigned long ulBase)
void EthernetConfigSet (unsigned long ulBase, unsigned long ulConfig)
void EthernetDisable (unsigned long ulBase)
void EthernetEnable (unsigned long ulBase)
void EthernetInitExpClk (unsigned long ulBase, unsigned long ulEthClk)
void EthernetIntClear (unsigned long ulBase, unsigned long ulIntFlags)
void EthernetIntDisable (unsigned long ulBase, unsigned long ulIntFlags)
void EthernetIntEnable (unsigned long ulBase, unsigned long ulIntFlags)
void EthernetIntRegister (unsigned long ulBase, void (∗pfnHandler)(void))
unsigned long EthernetIntStatus (unsigned long ulBase, tBoolean bMasked)
void EthernetIntUnregister (unsigned long ulBase)
void EthernetMACAddrGet (unsigned long ulBase, unsigned char ∗pucMACAddr)
void EthernetMACAddrSet (unsigned long ulBase, unsigned char ∗pucMACAddr)
tBoolean EthernetPacketAvail (unsigned long ulBase)
long EthernetPacketGet (unsigned long ulBase, unsigned char ∗pucBuf, long lBufLen)
long EthernetPacketGetNonBlocking (unsigned long ulBase, unsigned char ∗pucBuf, long lBu-
fLen)
long EthernetPacketPut (unsigned long ulBase, unsigned char ∗pucBuf, long lBufLen)
long EthernetPacketPutNonBlocking (unsigned long ulBase, unsigned char ∗pucBuf, long lBu-
fLen)
unsigned long EthernetPHYRead (unsigned long ulBase, unsigned char ucRegAddr)

September 29, 2008 65

Ethernet Controller

void EthernetPHYWrite (unsigned long ulBase, unsigned char ucRegAddr, unsigned long ul-
Data)
tBoolean EthernetSpaceAvail (unsigned long ulBase)

8.2.1 Detailed Description

For any application, the EthernetInitExpClk() function must be called first to prepare the Ethernet
controller for operation. This function will configure the Ethernet controller options that are based
on system parameters, such as the system clock speed.

Once initialized, access to the PHY is available via the EthernetPHYRead() and EthernetPHY-
Write() functions. By default, the PHY will auto-negotiate the line speed and duplex modes. For
most applications, this will be sufficient. If a special configuration is required, the PHY read and
write functions can be used to reconfigure the PHY to the desired mode of operation.

The MAC must also be configured using the EthernetConfigSet() function. The parameters for this
function will allow the configuration of options such as Promiscuous Mode, Multicast Reception,
Transmit Data Length Padding, and so on. The EthernetConfigGet() function can be used to query
the current configuration of the Ethernet MAC.

The MAC address, used for incoming packet filtering, must also be programmed using the Eth-
ernetMACAddrSet() function. The current value can be queried using the EthernetMACAddrGet()
function.

When configuration has been completed, the Ethernet controller can be enabled using the Ether-
netEnable() function. When getting ready to terminate operations on the Ethernet controller, the
EthernetDisable() function may be called.

After the Ethernet controller has been enabled, Ethernet frames can be transmitted and received
using the EthernetPacketPut() and EthernetPacketGet() functions. Care must be taken when using
these functions, as they are blocking functions, and will not return until data is available (for RX)
or buffer space is available (for TX). The EthernetSpaceAvail() and EthernetPacketAvail() functions
can be called to determine if there is room for a TX packet or if there is an RX packet available
prior to calling these blocking functions. Alternatively, the EthernetPacketGetNonBlocking() and
EthernetPacketPutNonBlocking() functions will return immediately if a packet cannot be processed.
Otherwise, the packet will be processed normally.

When developing a mapping layer for a TCP/IP stack, you may wish to use the interrupt capability
of the Ethernet controller. The EthernetIntRegister() and EthernetIntUnregister() functions are used
to register an ISR with the system and to enable or disable the Ethernet controller’s interrupt signal.
The EthernetIntEnable() and EthernetIntDisable() functions are used to manipulate the individual
interrupt sources available in the Ethernet controller (for example, RX Error, TX Complete). The
EthernetIntStatus() and EthernetIntClear() functions would be used to query the active interrupts to
determine which process to service, and to clear the indicated interrupts prior to returning from the
registered ISR.

The EthernetInit(), EthernetPacketNonBlockingGet(), and EthernetPacketNonBlockingPut() APIs
from previous versions of the peripheral driver library have been replaced by the EthernetInitEx-
pClk(), EthernetPacketGetNonBlocking(), and EthernetPacketPutNonBlocking() APIs, respectively.
Macros have been provided in ethernet.h to map the old APIs to the new APIs, allowing existing
applications to link and run with the new APIs. It is recommended that new applications utilize the
new APIs in favor of the old ones.

66 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

8.2.2 Function Documentation

8.2.2.1 EthernetConfigGet

Gets the current configuration of the Ethernet controller.

Prototype:
unsigned long
EthernetConfigGet(unsigned long ulBase)

Parameters:
ulBase is the base address of the controller.

Description:
This function will query the control registers of the Ethernet controller and return a bit-mapped
configuration value.

See also:
The description of the EthernetConfigSet() function provides detailed information for the bit-
mapped configuration values that will be returned.

Returns:
Returns the bit-mapped Ethernet controller configuration value.

8.2.2.2 EthernetConfigSet

Sets the configuration of the Ethernet controller.

Prototype:
void
EthernetConfigSet(unsigned long ulBase,

unsigned long ulConfig)

Parameters:
ulBase is the base address of the controller.
ulConfig is the configuration for the controller.

Description:
After the EthernetInitExpClk() function has been called, this API function can be used to con-
figure the various features of the Ethernet controller.

The Ethernet controller provides three control registers that are used to configure the con-
troller’s operation. The transmit control register provides settings to enable full duplex opera-
tion, to auto-generate the frame check sequence, and to pad the transmit packets to the min-
imum length as required by the IEEE standard. The receive control register provides settings
to enable reception of packets with bad frame check sequence values and to enable multi-cast
or promiscuous modes. The timestamp control register provides settings that enable support
logic in the controller that allow the use of the General Purpose Timer 3 to capture timestamps
for the transmitted and received packets.

The ulConfig parameter is the logical OR of the following values:

ETH_CFG_TS_TSEN - Enable TX and RX interrupt status as CCP timer inputs

September 29, 2008 67

Ethernet Controller

ETH_CFG_RX_BADCRCDIS - Disable reception of packets with a bad CRC
ETH_CFG_RX_PRMSEN - Enable promiscuous mode reception (all packets)
ETH_CFG_RX_AMULEN - Enable reception of multicast packets
ETH_CFG_TX_DPLXEN - Enable full duplex transmit mode
ETH_CFG_TX_CRCEN - Enable transmit with auto CRC generation
ETH_CFG_TX_PADEN - Enable padding of transmit data to minimum size

These bit-mapped values are programmed into the transmit, receive, and/or timestamp control
register.

Returns:
None.

8.2.2.3 EthernetDisable

Disables the Ethernet controller.

Prototype:
void
EthernetDisable(unsigned long ulBase)

Parameters:
ulBase is the base address of the controller.

Description:
When terminating operations on the Ethernet interface, this function should be called. This
function will disable the transmitter and receiver, and will clear out the receive FIFO.

Returns:
None.

8.2.2.4 EthernetEnable

Enables the Ethernet controller for normal operation.

Prototype:
void
EthernetEnable(unsigned long ulBase)

Parameters:
ulBase is the base address of the controller.

Description:
Once the Ethernet controller has been configured using the EthernetConfigSet() function and
the MAC address has been programmed using the EthernetMACAddrSet() function, this API
function can be called to enable the controller for normal operation.

This function will enable the controller’s transmitter and receiver, and will reset the receive
FIFO.

Returns:
None.

68 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

8.2.2.5 EthernetInitExpClk

Initializes the Ethernet controller for operation.

Prototype:
void
EthernetInitExpClk(unsigned long ulBase,

unsigned long ulEthClk)

Parameters:
ulBase is the base address of the controller.
ulEthClk is the rate of the clock supplied to the Ethernet module.

Description:
This function will prepare the Ethernet controller for first time use in a given hardware/software
configuration. This function should be called before any other Ethernet API functions are called.

The peripheral clock will be the same as the processor clock. This will be the value returned
by SysCtlClockGet(), or it can be explicitly hard-coded if it is constant and known (to save the
code/execution overhead of a call to SysCtlClockGet()).

This function replaces the original EthernetInit() API and performs the same actions. A macro
is provided in ethernet.h to map the original API to this API.

Note:
If the device configuration is changed (for example, the system clock is reprogrammed to a
different speed), then the Ethernet controller must be disabled by calling the EthernetDisable()
function and the controller must be reinitialized by calling the EthernetInitExpClk() function
again. After the controller has been reinitialized, the controller should be reconfigured using
the appropriate Ethernet API calls.

Returns:
None.

8.2.2.6 EthernetIntClear

Clears Ethernet interrupt sources.

Prototype:
void
EthernetIntClear(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the controller.
ulIntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified Ethernet interrupt sources are cleared so that they no longer assert. This must
be done in the interrupt handler to keep it from being called again immediately upon exit.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to Ethernet-
IntEnable().

September 29, 2008 69

Ethernet Controller

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

8.2.2.7 EthernetIntDisable

Disables individual Ethernet interrupt sources.

Prototype:
void
EthernetIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the controller.
ulIntFlags is the bit mask of the interrupt sources to be disabled.

Description:
Disables the indicated Ethernet interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to Ethernet-
IntEnable().

Returns:
None.

8.2.2.8 EthernetIntEnable

Enables individual Ethernet interrupt sources.

Prototype:
void
EthernetIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the controller.
ulIntFlags is the bit mask of the interrupt sources to be enabled.

Description:
Enables the indicated Ethernet interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor.

The ulIntFlags parameter is the logical OR of any of the following:

70 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

ETH_INT_PHY - An interrupt from the PHY has occurred. The integrated PHY supports a
number of interrupt conditions. The PHY register, PHY_MR17, must be read to determine
which PHY interrupt has occurred. This register can be read using the EthernetPHYRead()
API function.
ETH_INT_MDIO - This interrupt indicates that a transaction on the management interface
has completed successfully.
ETH_INT_RXER - This interrupt indicates that an error has occurred during reception of
a frame. This error can indicate a length mismatch, a CRC failure, or an error indication
from the PHY.
ETH_INT_RXOF - This interrupt indicates that a frame has been received that exceeds
the available space in the RX FIFO.
ETH_INT_TX - This interrupt indicates that the packet stored in the TX FIFO has been
successfully transmitted.
ETH_INT_TXER - This interrupt indicates that an error has occurred during the transmis-
sion of a packet. This error can be either a retry failure during the back-off process, or an
invalid length stored in the TX FIFO.
ETH_INT_RX - This interrupt indicates that one (or more) packets are available in the RX
FIFO for processing.

Returns:
None.

8.2.2.9 EthernetIntRegister

Registers an interrupt handler for an Ethernet interrupt.

Prototype:
void
EthernetIntRegister(unsigned long ulBase,

void (*pfnHandler)(void))

Parameters:
ulBase is the base address of the controller.
pfnHandler is a pointer to the function to be called when the enabled Ethernet interrupts occur.

Description:
This function sets the handler to be called when the Ethernet interrupt occurs. This will enable
the global interrupt in the interrupt controller; specific Ethernet interrupts must be enabled via
EthernetIntEnable(). It is the interrupt handler’s responsibility to clear the interrupt source.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

8.2.2.10 EthernetIntStatus

Gets the current Ethernet interrupt status.

September 29, 2008 71

Ethernet Controller

Prototype:
unsigned long
EthernetIntStatus(unsigned long ulBase,

tBoolean bMasked)

Parameters:
ulBase is the base address of the controller.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the Ethernet controller. Either the raw interrupt status or
the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, enumerated as a bit field of values described in Ethernet-
IntEnable().

8.2.2.11 EthernetIntUnregister

Unregisters an interrupt handler for an Ethernet interrupt.

Prototype:
void
EthernetIntUnregister(unsigned long ulBase)

Parameters:
ulBase is the base address of the controller.

Description:
This function unregisters the interrupt handler. This will disable the global interrupt in the
interrupt controller so that the interrupt handler no longer is called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

8.2.2.12 EthernetMACAddrGet

Gets the MAC address of the Ethernet controller.

Prototype:
void
EthernetMACAddrGet(unsigned long ulBase,

unsigned char *pucMACAddr)

Parameters:
ulBase is the base address of the controller.
pucMACAddr is the pointer to the location in which to store the array of MAC-48 address

octets.

72 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function will read the currently programmed MAC address into the pucMACAddr buffer.

See also:
Refer to EthernetMACAddrSet() API description for more details about the MAC address for-
mat.

Returns:
None.

8.2.2.13 EthernetMACAddrSet

Sets the MAC address of the Ethernet controller.

Prototype:
void
EthernetMACAddrSet(unsigned long ulBase,

unsigned char *pucMACAddr)

Parameters:
ulBase is the base address of the controller.
pucMACAddr is the pointer to the array of MAC-48 address octets.

Description:
This function will program the IEEE-defined MAC-48 address specified in pucMACAddr into the
Ethernet controller. This address is used by the Ethernet controller for hardware-level filtering
of incoming Ethernet packets (when promiscuous mode is not enabled).

The MAC-48 address is defined as 6 octets, illustrated by the following example address. The
numbers are shown in hexadecimal format.

AC-DE-48-00-00-80

In this representation, the first three octets (AC-DE-48) are the Organizationally Unique Iden-
tifier (OUI). This is a number assigned by the IEEE to an organization that requests a block of
MAC addresses. The last three octets (00-00-80) are a 24-bit number managed by the OUI
owner to uniquely identify a piece of hardware within that organization that is to be connected
to the Ethernet.

In this representation, the octets are transmitted from left to right, with the “AC” octet being
transmitted first and the “80” octet being transmitted last. Within an octet, the bits are transmit-
ted LSB to MSB. For this address, the first bit to be transmitted would be “0”, the LSB of “AC”,
and the last bit to be transmitted would be “1”, the MSB of “80”.

Returns:
None.

8.2.2.14 EthernetPacketAvail

Check for packet available from the Ethernet controller.

Prototype:
tBoolean
EthernetPacketAvail(unsigned long ulBase)

September 29, 2008 73

Ethernet Controller

Parameters:
ulBase is the base address of the controller.

Description:
The Ethernet controller provides a register that contains the number of packets available in
the receive FIFO. When the last bytes of a packet are successfully received (that is, the frame
check sequence bytes), the packet count is incremented. Once the packet has been fully read
(including the frame check sequence bytes) from the FIFO, the packet count will be decre-
mented.

Returns:
Returns true if there are one or more packets available in the receive FIFO, including the
current packet being read, and false otherwise.

8.2.2.15 EthernetPacketGet

Waits for a packet from the Ethernet controller.

Prototype:
long
EthernetPacketGet(unsigned long ulBase,

unsigned char *pucBuf,
long lBufLen)

Parameters:
ulBase is the base address of the controller.
pucBuf is the pointer to the packet buffer.
lBufLen is the maximum number of bytes to be read into the buffer.

Description:
This function reads a packet from the receive FIFO of the controller and places it into pucBuf .
The function will wait until a packet is available in the FIFO. Then the function will read the entire
packet from the receive FIFO. If there are more bytes in the packet than will fit into pucBuf (as
specified by lBufLen), the function will return the negated length of the packet and the buffer will
contain lBufLen bytes of the packet. Otherwise, the function will return the length of the packet
that was read and pucBuf will contain the entire packet (excluding the frame check sequence
bytes).

Note:
This function is blocking and will not return until a packet arrives.

Returns:
Returns the negated packet length -n if the packet is too large for pucBuf , and returns the
packet length n otherwise.

8.2.2.16 EthernetPacketGetNonBlocking

Receives a packet from the Ethernet controller.

74 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
long
EthernetPacketGetNonBlocking(unsigned long ulBase,

unsigned char *pucBuf,
long lBufLen)

Parameters:
ulBase is the base address of the controller.
pucBuf is the pointer to the packet buffer.
lBufLen is the maximum number of bytes to be read into the buffer.

Description:
This function reads a packet from the receive FIFO of the controller and places it into pucBuf .
If no packet is available the function will return immediately. Otherwise, the function will read
the entire packet from the receive FIFO. If there are more bytes in the packet than will fit into
pucBuf (as specified by lBufLen), the function will return the negated length of the packet and
the buffer will contain lBufLen bytes of the packet. Otherwise, the function will return the length
of the packet that was read and pucBuf will contain the entire packet (excluding the frame
check sequence bytes).

This function replaces the original EthernetPacketNonBlockingGet() API and performs the
same actions. A macro is provided in ethernet.h to map the original API to this API.

Note:
This function will return immediately if no packet is available.

Returns:
Returns 0 if no packet is available, the negated packet length -n if the packet is too large for
pucBuf , and the packet length n otherwise.

8.2.2.17 EthernetPacketPut

Waits to send a packet from the Ethernet controller.

Prototype:
long
EthernetPacketPut(unsigned long ulBase,

unsigned char *pucBuf,
long lBufLen)

Parameters:
ulBase is the base address of the controller.
pucBuf is the pointer to the packet buffer.
lBufLen is number of bytes in the packet to be transmitted.

Description:
This function writes lBufLen bytes of the packet contained in pucBuf into the transmit FIFO of
the controller and then activates the transmitter for this packet. This function will wait until the
transmit FIFO is empty. Once space is available, the function will return once lBufLen bytes of
the packet have been placed into the FIFO and the transmitter has been started. The function
will not wait for the transmission to complete. The function will return the negated lBufLen if
the length is larger than the space available in the transmit FIFO.

September 29, 2008 75

Ethernet Controller

Note:
This function blocks and will wait until space is available for the transmit packet before returning.

Returns:
Returns the negated packet length -lBufLen if the packet is too large for FIFO, and the packet
length lBufLen otherwise.

8.2.2.18 EthernetPacketPutNonBlocking

Sends a packet to the Ethernet controller.

Prototype:
long
EthernetPacketPutNonBlocking(unsigned long ulBase,

unsigned char *pucBuf,
long lBufLen)

Parameters:
ulBase is the base address of the controller.
pucBuf is the pointer to the packet buffer.
lBufLen is number of bytes in the packet to be transmitted.

Description:
This function writes lBufLen bytes of the packet contained in pucBuf into the transmit FIFO
of the controller and then activates the transmitter for this packet. If no space is available in
the FIFO, the function will return immediately. If space is available, the function will return
once lBufLen bytes of the packet have been placed into the FIFO and the transmitter has been
started. The function will not wait for the transmission to complete. The function will return the
negated lBufLen if the length is larger than the space available in the transmit FIFO.

This function replaces the original EthernetPacketNonBlockingPut() API and performs the
same actions. A macro is provided in ethernet.h to map the original API to this API.

Note:
This function does not block and will return immediately if no space is available for the transmit
packet.

Returns:
Returns 0 if no space is available in the transmit FIFO, the negated packet length -lBufLen if
the packet is too large for FIFO, and the packet length lBufLen otherwise.

8.2.2.19 EthernetPHYRead

Reads from a PHY register.

Prototype:
unsigned long
EthernetPHYRead(unsigned long ulBase,

unsigned char ucRegAddr)

Parameters:
ulBase is the base address of the controller.

76 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

ucRegAddr is the address of the PHY register to be accessed.

Description:
This function will return the contents of the PHY register specified by ucRegAddr .

Returns:
Returns the 16-bit value read from the PHY.

8.2.2.20 EthernetPHYWrite

Writes to the PHY register.

Prototype:
void
EthernetPHYWrite(unsigned long ulBase,

unsigned char ucRegAddr,
unsigned long ulData)

Parameters:
ulBase is the base address of the controller.
ucRegAddr is the address of the PHY register to be accessed.
ulData is the data to be written to the PHY register.

Description:
This function will write the ulData to the PHY register specified by ucRegAddr .

Returns:
None.

8.2.2.21 EthernetSpaceAvail

Checks for packet space available in the Ethernet controller.

Prototype:
tBoolean
EthernetSpaceAvail(unsigned long ulBase)

Parameters:
ulBase is the base address of the controller.

Description:
The Ethernet controller’s transmit FIFO is designed to support a single packet at a time. After
the packet has been written into the FIFO, the transmit request bit must be set to enable the
transmission of the packet. Only after the packet has been transmitted can a new packet be
written into the FIFO. This function will simply check to see if a packet is in progress. If so,
there is no space available in the transmit FIFO.

Returns:
Returns true if a space is available in the transmit FIFO, and false otherwise.

September 29, 2008 77

Ethernet Controller

8.3 Programming Example

The following example shows how to use the this API to initialize the Ethernet controller to transmit
and receive packets.

unsigned char pucMACAddress[6];
unsigned char pucMyRxPacket[];
unsigned char pucMyTxPacket[];
unsigned long ulMyTxPacketLength;

//
// Initialize the Ethernet controller for operation
//
EthernetInitExpClk(ETH_BASE, SysCtlClockGet());

//
// Configure the Ethernet controller for normal operation
// Enable TX Duplex Mode
// Enable TX Padding
//
EthernetConfigSet(ETH_BASE, (ETH_CFG_TX_DPLXEN | ETH_CFG_TX_PADEN));

//
// Program the MAC Address (01-23-45-67-89-AB)
//
pucMACAddress[0] = 0x01;
pucMACAddress[1] = 0x23;
pucMACAddress[2] = 0x45;
pucMACAddress[3] = 0x67;
pucMACAddress[4] = 0x89;
pucMACAddress[5] = 0xAB;
EthernetMACAddrSet(ETH_BASE, pucMACAddress);

//
// Enable the Ethernet controller
//
EthernetEnable(ETH_BASE);

//
// Send a packet.
// (assume that the packet has been filled in appropriately elsewhere
// in the code).
//
EthernetPacketPut(ETH_BASE, pucMyTxPacket, ulMyTxPacketLength);

//
// Wait for a packet to come in.
//
EthernetPacketGet(ETH_BASE, pucMyRxPacket, sizeof(pucMyRxPacket));

78 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

9 Flash
Introduction . 79
API Functions .79
Programming Example . 87

9.1 Introduction

The flash API provides a set of functions for dealing with the on-chip flash. Functions are provided
to program and erase the flash, configure the flash protection, and handle the flash interrupt.

The flash is organized as a set of 1 kB blocks that can be individually erased. Erasing a block
causes the entire contents of the block to be reset to all ones. These blocks are paired into a
set of 2 kB blocks that can be individually protected. The blocks can be marked as read-only or
execute-only, providing differing levels of code protection. Read-only blocks cannot be erased or
programmed, protecting the contents of those blocks from being modified. Execute-only blocks can-
not be erased or programmed, and can only be read by the processor instruction fetch mechanism,
protecting the contents of those blocks from being read by either the processor or by debuggers.

The flash can be programmed on a word-by-word basis. Programming causes 1 bits to become 0
bits (where appropriate); because of this, a word can be repeatedly programmed so long as each
programming operation only requires changing 1 bits to 0 bits.

The timing for the flash is automatically handled by the flash controller. In order to do this, the
flash controller must know the clock rate of the system in order to be able to time the number of
micro-seconds certain signals are asserted. The number of clock cycles per micro-second must be
provided to the flash controller for it to accomplish this timing.

The flash controller has the ability to generate an interrupt when an invalid access is attempted
(such as reading from execute-only flash). This can be used to validate the operation of a program;
the interrupt will keep invalid accesses from being silently ignored, hiding potential bugs. The flash
protection can be applied without being permanently enabled; this, along with the interrupt, allows
the program to be debugged before the flash protection is permanently applied to the device (which
is a non-reversible operation). An interrupt can also be generated when an erase or programming
operation has completed.

Depending upon the member of the Stellaris family used, the amount of available flash is 8 KB, 16
KB, 32 KB, 64 KB, 96 KB, 128 KB, or 256 KB.

This driver is contained in src/flash.c, with src/flash.h containing the API definitions for use
by applications.

9.2 API Functions

Functions
long FlashErase (unsigned long ulAddress)
void FlashIntClear (unsigned long ulIntFlags)
void FlashIntDisable (unsigned long ulIntFlags)

September 29, 2008 79

Flash

void FlashIntEnable (unsigned long ulIntFlags)
unsigned long FlashIntGetStatus (tBoolean bMasked)
void FlashIntRegister (void (∗pfnHandler)(void))
void FlashIntUnregister (void)
long FlashProgram (unsigned long ∗pulData, unsigned long ulAddress, unsigned long ul-
Count)
tFlashProtection FlashProtectGet (unsigned long ulAddress)
long FlashProtectSave (void)
long FlashProtectSet (unsigned long ulAddress, tFlashProtection eProtect)
unsigned long FlashUsecGet (void)
void FlashUsecSet (unsigned long ulClocks)
long FlashUserGet (unsigned long ∗pulUser0, unsigned long ∗pulUser1)
long FlashUserSave (void)
long FlashUserSet (unsigned long ulUser0, unsigned long ulUser1)

9.2.1 Detailed Description

The flash API is broken into three groups of functions: those that deal with programming the flash,
those that deal with flash protection, and those that deal with interrupt handling.

Flash programming is managed with FlashErase(), FlashProgram(), FlashUsecGet(), and
FlashUsecSet().

Flash protection is managed with FlashProtectGet(), FlashProtectSet(), and FlashProtectSave().

Interrupt handling is managed with FlashIntRegister(), FlashIntUnregister(), FlashIntEnable(),
FlashIntDisable(), FlashIntGetStatus(), and FlashIntClear().

9.2.2 Function Documentation

9.2.2.1 FlashErase

Erases a block of flash.

Prototype:
long
FlashErase(unsigned long ulAddress)

Parameters:
ulAddress is the start address of the flash block to be erased.

Description:
This function will erase a 1 kB block of the on-chip flash. After erasing, the block will be filled
with 0xFF bytes. Read-only and execute-only blocks cannot be erased.

This function will not return until the block has been erased.

Returns:
Returns 0 on success, or -1 if an invalid block address was specified or the block is write-
protected.

80 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

9.2.2.2 FlashIntClear

Clears flash controller interrupt sources.

Prototype:
void
FlashIntClear(unsigned long ulIntFlags)

Parameters:
ulIntFlags is the bit mask of the interrupt sources to be cleared. Can be any of the

FLASH_FCMISC_PROGRAM or FLASH_FCMISC_AMISC values.

Description:
The specified flash controller interrupt sources are cleared, so that they no longer assert. This
must be done in the interrupt handler to keep it from being called again immediately upon exit.

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

9.2.2.3 FlashIntDisable

Disables individual flash controller interrupt sources.

Prototype:
void
FlashIntDisable(unsigned long ulIntFlags)

Parameters:
ulIntFlags is a bit mask of the interrupt sources to be disabled. Can be any of the

FLASH_FCIM_PROGRAM or FLASH_FCIM_ACCESS values.

Description:
Disables the indicated flash controller interrupt sources. Only the sources that are enabled can
be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns:
None.

9.2.2.4 FlashIntEnable

Enables individual flash controller interrupt sources.

September 29, 2008 81

Flash

Prototype:
void
FlashIntEnable(unsigned long ulIntFlags)

Parameters:
ulIntFlags is a bit mask of the interrupt sources to be enabled. Can be any of the

FLASH_FCIM_PROGRAM or FLASH_FCIM_ACCESS values.

Description:
Enables the indicated flash controller interrupt sources. Only the sources that are enabled can
be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns:
None.

9.2.2.5 FlashIntGetStatus

Gets the current interrupt status.

Prototype:
unsigned long
FlashIntGetStatus(tBoolean bMasked)

Parameters:
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the flash controller. Either the raw interrupt status or the
status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, enumerated as a bit field of FLASH_FCMISC_PROGRAM and
FLASH_FCMISC_AMISC.

9.2.2.6 FlashIntRegister

Registers an interrupt handler for the flash interrupt.

Prototype:
void
FlashIntRegister(void (*pfnHandler)(void))

Parameters:
pfnHandler is a pointer to the function to be called when the flash interrupt occurs.

Description:
This sets the handler to be called when the flash interrupt occurs. The flash controller can
generate an interrupt when an invalid flash access occurs, such as trying to program or erase
a read-only block, or trying to read from an execute-only block. It can also generate an interrupt
when a program or erase operation has completed. The interrupt will be automatically enabled
when the handler is registered.

82 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

9.2.2.7 FlashIntUnregister

Unregisters the interrupt handler for the flash interrupt.

Prototype:
void
FlashIntUnregister(void)

Description:
This function will clear the handler to be called when the flash interrupt occurs. This will also
mask off the interrupt in the interrupt controller so that the interrupt handler is no longer called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

9.2.2.8 FlashProgram

Programs flash.

Prototype:
long
FlashProgram(unsigned long *pulData,

unsigned long ulAddress,
unsigned long ulCount)

Parameters:
pulData is a pointer to the data to be programmed.
ulAddress is the starting address in flash to be programmed. Must be a multiple of four.
ulCount is the number of bytes to be programmed. Must be a multiple of four.

Description:
This function will program a sequence of words into the on-chip flash. Programming each
location consists of the result of an AND operation of the new data and the existing data; in
other words bits that contain 1 can remain 1 or be changed to 0, but bits that are 0 cannot be
changed to 1. Therefore, a word can be programmed multiple times as long as these rules are
followed; if a program operation attempts to change a 0 bit to a 1 bit, that bit will not have its
value changed.

Since the flash is programmed one word at a time, the starting address and byte count must
both be multiples of four. It is up to the caller to verify the programmed contents, if such
verification is required.

This function will not return until the data has been programmed.

September 29, 2008 83

Flash

Returns:
Returns 0 on success, or -1 if a programming error is encountered.

9.2.2.9 FlashProtectGet

Gets the protection setting for a block of flash.

Prototype:
tFlashProtection
FlashProtectGet(unsigned long ulAddress)

Parameters:
ulAddress is the start address of the flash block to be queried.

Description:
This function will get the current protection for the specified 2 kB block of flash. Each block can
be read/write, read-only, or execute-only. Read/write blocks can be read, executed, erased,
and programmed. Read-only blocks can be read and executed. Execute-only blocks can only
be executed; processor and debugger data reads are not allowed.

Returns:
Returns the protection setting for this block. See FlashProtectSet() for possible values.

9.2.2.10 FlashProtectSave

Saves the flash protection settings.

Prototype:
long
FlashProtectSave(void)

Description:
This function will make the currently programmed flash protection settings permanent. This is
a non-reversible operation; a chip reset or power cycle will not change the flash protection.

This function will not return until the protection has been saved.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

9.2.2.11 FlashProtectSet

Sets the protection setting for a block of flash.

Prototype:
long
FlashProtectSet(unsigned long ulAddress,

tFlashProtection eProtect)

84 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
ulAddress is the start address of the flash block to be protected.
eProtect is the protection to be applied to the block. Can be one of FlashReadWrite,

FlashReadOnly, or FlashExecuteOnly.

Description:
This function will set the protection for the specified 2 kB block of flash. Blocks which are
read/write can be made read-only or execute-only. Blocks which are read-only can be made
execute-only. Blocks which are execute-only cannot have their protection modified. Attempts
to make the block protection less stringent (that is, read-only to read/write) will result in a failure
(and be prevented by the hardware).

Changes to the flash protection are maintained only until the next reset. This allows the ap-
plication to be executed in the desired flash protection environment to check for inappropriate
flash access (via the flash interrupt). To make the flash protection permanent, use the Flash-
ProtectSave() function.

Returns:
Returns 0 on success, or -1 if an invalid address or an invalid protection was specified.

9.2.2.12 FlashUsecGet

Gets the number of processor clocks per micro-second.

Prototype:
unsigned long
FlashUsecGet(void)

Description:
This function returns the number of clocks per micro-second, as presently known by the flash
controller.

Returns:
Returns the number of processor clocks per micro-second.

9.2.2.13 FlashUsecSet

Sets the number of processor clocks per micro-second.

Prototype:
void
FlashUsecSet(unsigned long ulClocks)

Parameters:
ulClocks is the number of processor clocks per micro-second.

Description:
This function is used to tell the flash controller the number of processor clocks per micro-
second. This value must be programmed correctly or the flash most likely will not program
correctly; it has no affect on reading flash.

Returns:
None.

September 29, 2008 85

Flash

9.2.2.14 FlashUserGet

Gets the user registers.

Prototype:
long
FlashUserGet(unsigned long *pulUser0,

unsigned long *pulUser1)

Parameters:
pulUser0 is a pointer to the location to store USER Register 0.
pulUser1 is a pointer to the location to store USER Register 1.

Description:
This function will read the contents of user registers (0 and 1), and store them in the specified
locations.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

9.2.2.15 FlashUserSave

Saves the user registers.

Prototype:
long
FlashUserSave(void)

Description:
This function will make the currently programmed user register settings permanent. This is a
non-reversible operation; a chip reset or power cycle will not change this setting.

This function will not return until the protection has been saved.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

9.2.2.16 FlashUserSet

Sets the user registers.

Prototype:
long
FlashUserSet(unsigned long ulUser0,

unsigned long ulUser1)

Parameters:
ulUser0 is the value to store in USER Register 0.
ulUser1 is the value to store in USER Register 1.

Description:
This function will set the contents of the user registers (0 and 1) to the specified values.

86 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

9.3 Programming Example

The following example shows how to use the flash API to erase a block of the flash and program a
few words.

unsigned long pulData[2];

//
// Set the uSec value to 20, indicating that the processor is running at
// 20 MHz.
//
FlashUsecSet(20);

//
// Erase a block of the flash.
//
FlashErase(0x800);

//
// Program some data into the newly erased block of the flash.
//
pulData[0] = 0x12345678;
pulData[1] = 0x56789abc;
FlashProgram(pulData, 0x800, sizeof(pulData));

September 29, 2008 87

Flash

88 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

10 GPIO
Introduction . 89
API Functions .89
Programming Example .105

10.1 Introduction

The GPIO module provides control for up to eight independent GPIO pins (the actual number
present depend upon the GPIO port and part number). Each pin has the following capabilities:

Can be configured as an input or an output. On reset, they default to being an input.
In input mode, can generate interrupts on high level, low level, rising edge, falling edge, or
both edges.
In output mode, can be configured for 2 mA, 4 mA, or 8 mA drive strength. The 8 mA drive
strength configuration has optional slew rate control to limit the rise and fall times of the signal.
On reset, they default to 2 mA drive strength.
Optional weak pull-up or pull-down resistors. On reset, they default to a weak pull-up.
Optional open-drain operation. On reset, they default to standard push/pull operation.
Can be configured to be a GPIO or a peripheral pin. On reset, they default to being GPIOs.
Note that not all pins on all parts have peripheral functions, in which case the pin is only useful
as a GPIO (that is, when configured for peripheral function the pin will not do anything useful).

Most of the GPIO functions can operate on more than one GPIO pin (within a single module) at
a time. The ucPins parameter to these functions is used to specify the pins that are affected; the
GPIO pins whose corresponding bits in this parameter that are set will be affected (where pin 0 is
in bit 0, pin 1 in bit 1, and so on). For example, if ucPins is 0x09, then pins 0 and 3 will be affected
by the function.

This is most useful for the GPIOPinRead() and GPIOPinWrite() functions; a read will return only
the value of the requested pins (with the other pin values masked out) and a write will affect the
requested pins simultaneously (that is, the state of multiple GPIO pins can be changed at the same
time). This data masking for the GPIO pin state occurs in the hardware; a single read or write is
issued to the hardware, which interprets some of the address bits as an indication of the GPIO pins
to operate upon (and therefore the ones to not affect). See the part data sheet for details of the
GPIO data register address-based bit masking.

For functions that have a ucPin (singular) parameter, only a single pin is affected by the function. In
this case, this value specifies the pin number (that is, 0 through 7).

This driver is contained in src/gpio.c, with src/gpio.h containing the API definitions for use
by applications.

10.2 API Functions

Functions
unsigned long GPIODirModeGet (unsigned long ulPort, unsigned char ucPin)

September 29, 2008 89

GPIO

void GPIODirModeSet (unsigned long ulPort, unsigned char ucPins, unsigned long ulPinIO)
unsigned long GPIOIntTypeGet (unsigned long ulPort, unsigned char ucPin)
void GPIOIntTypeSet (unsigned long ulPort, unsigned char ucPins, unsigned long ulIntType)
void GPIOPadConfigGet (unsigned long ulPort, unsigned char ucPin, unsigned long
∗pulStrength, unsigned long ∗pulPinType)
void GPIOPadConfigSet (unsigned long ulPort, unsigned char ucPins, unsigned long ul-
Strength, unsigned long ulPinType)
void GPIOPinIntClear (unsigned long ulPort, unsigned char ucPins)
void GPIOPinIntDisable (unsigned long ulPort, unsigned char ucPins)
void GPIOPinIntEnable (unsigned long ulPort, unsigned char ucPins)
long GPIOPinIntStatus (unsigned long ulPort, tBoolean bMasked)
long GPIOPinRead (unsigned long ulPort, unsigned char ucPins)
void GPIOPinTypeADC (unsigned long ulPort, unsigned char ucPins)
void GPIOPinTypeCAN (unsigned long ulPort, unsigned char ucPins)
void GPIOPinTypeComparator (unsigned long ulPort, unsigned char ucPins)
void GPIOPinTypeGPIOInput (unsigned long ulPort, unsigned char ucPins)
void GPIOPinTypeGPIOOutput (unsigned long ulPort, unsigned char ucPins)
void GPIOPinTypeGPIOOutputOD (unsigned long ulPort, unsigned char ucPins)
void GPIOPinTypeI2C (unsigned long ulPort, unsigned char ucPins)
void GPIOPinTypePWM (unsigned long ulPort, unsigned char ucPins)
void GPIOPinTypeQEI (unsigned long ulPort, unsigned char ucPins)
void GPIOPinTypeSSI (unsigned long ulPort, unsigned char ucPins)
void GPIOPinTypeTimer (unsigned long ulPort, unsigned char ucPins)
void GPIOPinTypeUART (unsigned long ulPort, unsigned char ucPins)
void GPIOPinTypeUSBDigital (unsigned long ulPort, unsigned char ucPins)
void GPIOPinWrite (unsigned long ulPort, unsigned char ucPins, unsigned char ucVal)
void GPIOPortIntRegister (unsigned long ulPort, void (∗pfnIntHandler)(void))
void GPIOPortIntUnregister (unsigned long ulPort)

10.2.1 Detailed Description

The GPIO API is broken into three groups of functions: those that deal with configuring the GPIO
pins, those that deal with interrupts, and those that access the pin value.

The GPIO pins are configured with GPIODirModeSet() and GPIOPadConfigSet(). The configura-
tion can be read back with GPIODirModeGet() and GPIOPadConfigGet(). There are also con-
venience functions for configuring the pin in the required or recommended configuration for a
particular peripheral; these are GPIOPinTypeCAN(), GPIOPinTypeComparator(), GPIOPinTypeG-
PIOInput(), GPIOPinTypeGPIOOutput(), GPIOPinTypeGPIOOutputOD(), GPIOPinTypeI2C(), GPI-
OPinTypePWM(), GPIOPinTypeQEI(), GPIOPinTypeSSI(), GPIOPinTypeTimer(), and GPIOPin-
TypeUART().

The GPIO interrupts are handled with GPIOIntTypeSet(), GPIOIntTypeGet(), GPIOPinIntEnable(),
GPIOPinIntDisable(), GPIOPinIntStatus(), GPIOPinIntClear(), GPIOPortIntRegister(), and GPIO-
PortIntUnregister().

The GPIO pin state is accessed with GPIOPinRead() and GPIOPinWrite().

90 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

10.2.2 Function Documentation

10.2.2.1 GPIODirModeGet

Gets the direction and mode of a pin.

Prototype:
unsigned long
GPIODirModeGet(unsigned long ulPort,

unsigned char ucPin)

Parameters:
ulPort is the base address of the GPIO port.
ucPin is the pin number.

Description:
This function gets the direction and control mode for a specified pin on the selected GPIO port.
The pin can be configured as either an input or output under software control, or it can be under
hardware control. The type of control and direction are returned as an enumerated data type.

Returns:
Returns one of the enumerated data types described for GPIODirModeSet().

10.2.2.2 GPIODirModeSet

Sets the direction and mode of the specified pin(s).

Prototype:
void
GPIODirModeSet(unsigned long ulPort,

unsigned char ucPins,
unsigned long ulPinIO)

Parameters:
ulPort is the base address of the GPIO port
ucPins is the bit-packed representation of the pin(s).
ulPinIO is the pin direction and/or mode.

Description:
This function will set the specified pin(s) on the selected GPIO port as either an input or output
under software control, or it will set the pin to be under hardware control.

The parameter ulPinIO is an enumerated data type that can be one of the following values:

GPIO_DIR_MODE_IN
GPIO_DIR_MODE_OUT
GPIO_DIR_MODE_HW

where GPIO_DIR_MODE_IN specifies that the pin will be programmed as a software controlled
input, GPIO_DIR_MODE_OUT specifies that the pin will be programmed as a software con-
trolled output, and GPIO_DIR_MODE_HW specifies that the pin will be placed under hardware
control.

September 29, 2008 91

GPIO

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

10.2.2.3 GPIOIntTypeGet

Gets the interrupt type for a pin.

Prototype:
unsigned long
GPIOIntTypeGet(unsigned long ulPort,

unsigned char ucPin)

Parameters:
ulPort is the base address of the GPIO port.
ucPin is the pin number.

Description:
This function gets the interrupt type for a specified pin on the selected GPIO port. The pin
can be configured as a falling edge, rising edge, or both edge detected interrupt, or it can
be configured as a low level or high level detected interrupt. The type of interrupt detection
mechanism is returned as an enumerated data type.

Returns:
Returns one of the enumerated data types described for GPIOIntTypeSet().

10.2.2.4 GPIOIntTypeSet

Sets the interrupt type for the specified pin(s).

Prototype:
void
GPIOIntTypeSet(unsigned long ulPort,

unsigned char ucPins,
unsigned long ulIntType)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).
ulIntType specifies the type of interrupt trigger mechanism.

Description:
This function sets up the various interrupt trigger mechanisms for the specified pin(s) on the
selected GPIO port.

The parameter ulIntType is an enumerated data type that can be one of the following values:

GPIO_FALLING_EDGE

92 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

GPIO_RISING_EDGE
GPIO_BOTH_EDGES
GPIO_LOW_LEVEL
GPIO_HIGH_LEVEL

where the different values describe the interrupt detection mechanism (edge or level) and the
particular triggering event (falling, rising, or both edges for edge detect, low or high for level
detect).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
In order to avoid any spurious interrupts, the user must ensure that the GPIO inputs remain
stable for the duration of this function.

Returns:
None.

10.2.2.5 GPIOPadConfigGet

Gets the pad configuration for a pin.

Prototype:
void
GPIOPadConfigGet(unsigned long ulPort,

unsigned char ucPin,
unsigned long *pulStrength,
unsigned long *pulPinType)

Parameters:
ulPort is the base address of the GPIO port.
ucPin is the pin number.
pulStrength is a pointer to storage for the output drive strength.
pulPinType is a pointer to storage for the output drive type.

Description:
This function gets the pad configuration for a specified pin on the selected GPIO port. The
values returned in pulStrength and pulPinType correspond to the values used in GPIOPad-
ConfigSet(). This function also works for pin(s) configured as input pin(s); however, the only
meaningful data returned is whether the pin is terminated with a pull-up or down resistor.

Returns:
None

10.2.2.6 GPIOPadConfigSet

Sets the pad configuration for the specified pin(s).

September 29, 2008 93

GPIO

Prototype:
void
GPIOPadConfigSet(unsigned long ulPort,

unsigned char ucPins,
unsigned long ulStrength,
unsigned long ulPinType)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).
ulStrength specifies the output drive strength.
ulPinType specifies the pin type.

Description:
This function sets the drive strength and type for the specified pin(s) on the selected GPIO
port. For pin(s) configured as input ports, the pad is configured as requested, but the only real
effect on the input is the configuration of the pull-up or pull-down termination.

The parameter ulStrength can be one of the following values:

GPIO_STRENGTH_2MA
GPIO_STRENGTH_4MA
GPIO_STRENGTH_8MA
GPIO_STRENGTH_8MA_SC

where GPIO_STRENGTH_xMA specifies either 2, 4, or 8 mA output drive strength, and
GPIO_OUT_STRENGTH_8MA_SC specifies 8 mA output drive with slew control.

The parameter ulPinType can be one of the following values:

GPIO_PIN_TYPE_STD
GPIO_PIN_TYPE_STD_WPU
GPIO_PIN_TYPE_STD_WPD
GPIO_PIN_TYPE_OD
GPIO_PIN_TYPE_OD_WPU
GPIO_PIN_TYPE_OD_WPD
GPIO_PIN_TYPE_ANALOG

where GPIO_PIN_TYPE_STD∗ specifies a push-pull pin, GPIO_PIN_TYPE_OD∗ specifies an
open-drain pin, ∗_WPU specifies a weak pull-up, ∗_WPD specifies a weak pull-down, and
GPIO_PIN_TYPE_ANALOG specifies an analog input (for the comparators).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

10.2.2.7 GPIOPinIntClear

Clears the interrupt for the specified pin(s).

94 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
GPIOPinIntClear(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
Clears the interrupt for the specified pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

10.2.2.8 GPIOPinIntDisable

Disables interrupts for the specified pin(s).

Prototype:
void
GPIOPinIntDisable(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
Masks the interrupt for the specified pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

September 29, 2008 95

GPIO

10.2.2.9 GPIOPinIntEnable

Enables interrupts for the specified pin(s).

Prototype:
void
GPIOPinIntEnable(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
Unmasks the interrupt for the specified pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

10.2.2.10 GPIOPinIntStatus

Gets interrupt status for the specified GPIO port.

Prototype:
long
GPIOPinIntStatus(unsigned long ulPort,

tBoolean bMasked)

Parameters:
ulPort is the base address of the GPIO port.
bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status will be returned.

Returns:
Returns a bit-packed byte, where each bit that is set identifies an active masked or raw inter-
rupt, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO port pin 1,
and so on. Bits 31:8 should be ignored.

10.2.2.11 GPIOPinRead

Reads the values present of the specified pin(s).

96 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
long
GPIOPinRead(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The values at the specified pin(s) are read, as specified by ucPins. Values are returned for
both input and output pin(s), and the value for pin(s) that are not specified by ucPins are set to
0.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
Returns a bit-packed byte providing the state of the specified pin, where bit 0 of the byte
represents GPIO port pin 0, bit 1 represents GPIO port pin 1, and so on. Any bit that is not
specified by ucPins is returned as a 0. Bits 31:8 should be ignored.

10.2.2.12 GPIOPinTypeADC

Configures pin(s) for use as analog-to-digital converter inputs.

Prototype:
void
GPIOPinTypeADC(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The analog-to-digital converter input pins must be properly configured to function correctly on
DustDevil-class devices. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into an ADC input; it only configures an ADC input pin for
proper operation.

Returns:
None.

September 29, 2008 97

GPIO

10.2.2.13 GPIOPinTypeCAN

Configures pin(s) for use as a CAN device.

Prototype:
void
GPIOPinTypeCAN(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The CAN pins must be properly configured for the CAN peripherals to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into a CAN pin; it only configures a CAN pin for proper
operation.

Returns:
None.

10.2.2.14 GPIOPinTypeComparator

Configures pin(s) for use as an analog comparator input.

Prototype:
void
GPIOPinTypeComparator(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The analog comparator input pins must be properly configured for the analog comparator to
function correctly. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into an analog comparator input; it only configures an
analog comparator pin for proper operation.

98 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

10.2.2.15 GPIOPinTypeGPIOInput

Configures pin(s) for use as GPIO inputs.

Prototype:
void
GPIOPinTypeGPIOInput(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as GPIO inputs; this
is especially true of Fury-class devices where the digital input enable is turned off by default.
This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

10.2.2.16 GPIOPinTypeGPIOOutput

Configures pin(s) for use as GPIO outputs.

Prototype:
void
GPIOPinTypeGPIOOutput(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as GPIO outputs; this
is especially true of Fury-class devices where the digital input enable is turned off by default.
This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

September 29, 2008 99

GPIO

10.2.2.17 GPIOPinTypeGPIOOutputOD

Configures pin(s) for use as GPIO open drain outputs.

Prototype:
void
GPIOPinTypeGPIOOutputOD(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as GPIO outputs; this
is especially true of Fury-class devices where the digital input enable is turned off by default.
This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

10.2.2.18 GPIOPinTypeI2C

Configures pin(s) for use by the I2C peripheral.

Prototype:
void
GPIOPinTypeI2C(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The I2C pins must be properly configured for the I2C peripheral to function correctly. This
function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into an I2C pin; it only configures an I2C pin for proper
operation.

Returns:
None.

100 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

10.2.2.19 GPIOPinTypePWM

Configures pin(s) for use by the PWM peripheral.

Prototype:
void
GPIOPinTypePWM(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The PWM pins must be properly configured for the PWM peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into a PWM pin; it only configures a PWM pin for proper
operation.

Returns:
None.

10.2.2.20 GPIOPinTypeQEI

Configures pin(s) for use by the QEI peripheral.

Prototype:
void
GPIOPinTypeQEI(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The QEI pins must be properly configured for the QEI peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, not using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into a QEI pin; it only configures a QEI pin for proper
operation.

September 29, 2008 101

GPIO

Returns:
None.

10.2.2.21 GPIOPinTypeSSI

Configures pin(s) for use by the SSI peripheral.

Prototype:
void
GPIOPinTypeSSI(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The SSI pins must be properly configured for the SSI peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into a SSI pin; it only configures a SSI pin for proper
operation.

Returns:
None.

10.2.2.22 GPIOPinTypeTimer

Configures pin(s) for use by the Timer peripheral.

Prototype:
void
GPIOPinTypeTimer(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The CCP pins must be properly configured for the timer peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

102 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Note:
This cannot be used to turn any pin into a timer pin; it only configures a timer pin for proper
operation.

Returns:
None.

10.2.2.23 GPIOPinTypeUART

Configures pin(s) for use by the UART peripheral.

Prototype:
void
GPIOPinTypeUART(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The UART pins must be properly configured for the UART peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into a UART pin; it only configures a UART pin for proper
operation.

Returns:
None.

10.2.2.24 GPIOPinTypeUSBDigital

Configures pin(s) for use by the USB peripheral.

Prototype:
void
GPIOPinTypeUSBDigital(unsigned long ulPort,

unsigned char ucPins)

Parameters:
ulPort is the base address of the USB port.
ucPins is the bit-packed representation of the pin(s).

September 29, 2008 103

GPIO

Description:
Some USB pins must be properly configured for the USB peripheral to function correctly. This
function provides a typical configuration for the digital USB pin(s); other configurations may
work as well depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into a USB pin; it only configures a USB pin for proper
operation.

Returns:
None.

10.2.2.25 GPIOPinWrite

Writes a value to the specified pin(s).

Prototype:
void
GPIOPinWrite(unsigned long ulPort,

unsigned char ucPins,
unsigned char ucVal)

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).
ucVal is the value to write to the pin(s).

Description:
Writes the corresponding bit values to the output pin(s) specified by ucPins. Writing to a pin
configured as an input pin has no effect.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

10.2.2.26 GPIOPortIntRegister

Registers an interrupt handler for a GPIO port.

Prototype:
void
GPIOPortIntRegister(unsigned long ulPort,

void (*pfnIntHandler)(void))

104 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
ulPort is the base address of the GPIO port.
pfnIntHandler is a pointer to the GPIO port interrupt handling function.

Description:
This function will ensure that the interrupt handler specified by pfnIntHandler is called when an
interrupt is detected from the selected GPIO port. This function will also enable the correspond-
ing GPIO interrupt in the interrupt controller; individual pin interrupts and interrupt sources must
be enabled with GPIOPinIntEnable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

10.2.2.27 GPIOPortIntUnregister

Removes an interrupt handler for a GPIO port.

Prototype:
void
GPIOPortIntUnregister(unsigned long ulPort)

Parameters:
ulPort is the base address of the GPIO port.

Description:
This function will unregister the interrupt handler for the specified GPIO port. This function will
also disable the corresponding GPIO port interrupt in the interrupt controller; individual GPIO
interrupts and interrupt sources must be disabled with GPIOPinIntDisable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

10.3 Programming Example

The following example shows how to use the GPIO API to initialize the GPIO, enable interrupts,
read data from pins, and write data to pins.

int iVal;

//
// Register the port-level interrupt handler. This handler is the
// first level interrupt handler for all the pin interrupts.
//
GPIOPortIntRegister(GPIO_PORTA_BASE, PortAIntHandler);

September 29, 2008 105

GPIO

//
// Initialize the GPIO pin configuration.
//
// Set pins 2, 4, and 5 as input, SW controlled.
//
GPIOPinTypeGPIOInput(GPIO_PORTA_BASE,

GPIO_PIN_2 | GPIO_PIN_4 | GPIO_PIN_5);

//
// Set pins 0 and 3 as output, SW controlled.
//
GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_3);

//
// Make pins 2 and 4 rising edge triggered interrupts.
//
GPIOIntTypeSet(GPIO_PORTA_BASE, GPIO_PIN_2 | GPIO_PIN_4, GPIO_RISING_EDGE);

//
// Make pin 5 high level triggered interrupts.
//
GPIOIntTypeSet(GPIO_PORTA_BASE, GPIO_PIN_5, GPIO_HIGH_LEVEL);

//
// Read some pins.
//
iVal = GPIOPinRead(GPIO_PORTA_BASE,

(GPIO_PIN_0 | GPIO_PIN_2 | GPIO_PIN_3 |
GPIO_PIN_4 | GPIO_PIN_5));

//
// Write some pins. Even though pins 2, 4, and 5 are specified, those
// pins are unaffected by this write since they are configured as inputs.
// At the end of this write, pin 0 will be a 0, and pin 3 will be a 1.
//
GPIOPinWrite(GPIO_PORTA_BASE,

(GPIO_PIN_0 | GPIO_PIN_2 | GPIO_PIN_3 |
GPIO_PIN_4 | GPIO_PIN_5),

0xF4);

//
// Enable the pin interrupts.
//
GPIOPinIntEnable(GPIO_PORTA_BASE, GPIO_PIN_2 | GPIO_PIN_4 | GPIO_PIN_5);

106 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

11 Hibernation Module
Introduction .107
API Functions . 107
Programming Example .120

11.1 Introduction

The Hibernate API provides a set of functions for using the Hibernation module on the Stellaris
microcontroller. The Hibernation module allows the software application to cause power to be
removed from the microcontroller, and then be powered on later based on specific time or a signal
on the external WAKE pin. The API provides functions to configure wake conditions, manage
interrupts, read status, save and restore program state information, and request hibernation mode.

Some of the features of the Hibernation module are:

32-bit real time clock

Trim register for fine tuning the RTC rate

Two RTC match registers for generating RTC events

External WAKE pin to initiate a wake-up

Low-battery detection

64 32-bit words of non-volatile memory

Programmable interrupts for hibernation events

This driver is contained in src/hibernate.c, with src/hibernate.h containing the API defi-
nitions for use by applications.

11.2 API Functions

Functions
void HibernateClockSelect (unsigned long ulClockInput)
void HibernateDataGet (unsigned long ∗pulData, unsigned long ulCount)
void HibernateDataSet (unsigned long ∗pulData, unsigned long ulCount)
void HibernateDisable (void)
void HibernateEnableExpClk (unsigned long ulHibClk)
void HibernateIntClear (unsigned long ulIntFlags)
void HibernateIntDisable (unsigned long ulIntFlags)
void HibernateIntEnable (unsigned long ulIntFlags)
void HibernateIntRegister (void (∗pfnHandler)(void))
unsigned long HibernateIntStatus (tBoolean bMasked)
void HibernateIntUnregister (void)
unsigned int HibernateIsActive (void)
unsigned long HibernateLowBatGet (void)

September 29, 2008 107

Hibernation Module

void HibernateLowBatSet (unsigned long ulLowBatFlags)
void HibernateRequest (void)
void HibernateRTCDisable (void)
void HibernateRTCEnable (void)
unsigned long HibernateRTCGet (void)
unsigned long HibernateRTCMatch0Get (void)
void HibernateRTCMatch0Set (unsigned long ulMatch)
unsigned long HibernateRTCMatch1Get (void)
void HibernateRTCMatch1Set (unsigned long ulMatch)
void HibernateRTCSet (unsigned long ulRTCValue)
unsigned long HibernateRTCTrimGet (void)
void HibernateRTCTrimSet (unsigned long ulTrim)
unsigned long HibernateWakeGet (void)
void HibernateWakeSet (unsigned long ulWakeFlags)

11.2.1 Detailed Description

The Hibernation module must be enabled before it can be used. Use the HibernateEnableExpClk()
function to enable it. If a crystal is used for the clock source, then the initializing code must allow
time for the crystal to stabilize after calling the HibernateEnableExpClk() function. Refer to the
device data sheet for information about crystal stabilization time. If an oscillator is used, then no
delay is necessary. After the module is enabled, the clock source must be configured by calling
HibernateClockSelect().

In order to use the RTC feature of the Hibernation module, the RTC must be enabled by calling
HibernateRTCEnable(). It can be later disabled by calling HibernateRTCDisable(). These functions
can be called at any time to start and stop the RTC. The RTC value can be read or set by using the
HibernateRTCGet() and HibernateRTCSet() functions. The two match registers can be read and set
by using the HibernateRTCMatch0Get(), HibernateRTCMatch0Set(), HibernateRTCMatch1Get(),
and HibernateRTCMatch1Set() functions. The real-time clock rate can be adjusted by using the trim
register. Use the HibernateRTCTrimGet() and HibernateRTCTrimSet() functions for this purpose.

Application state information can be stored in the non-volatile memory of the Hibernation module
when the processor is powered off. Use the HibernateDataSet() and HibernateDataGet() functions
to access the non-volatile memory area.

The module can be configured to wake when the external WAKE pin is asserted, or when an RTC
match occurs, or both. Use the HibernateWakeSet() function to configure the wake conditions. The
present configuration can be read by calling HibernateWakeGet().

The Hibernation module can detect a low battery and signal the processor. It can also be configured
to abort a hibernation request if the battery voltage is too low. Use the HibernateLowBatSet() and
HibernateLowBatGet() functions to configure this feature.

Several functions are provided for managing interrupts. Use the HibernateIntRegister() and Hiber-
nateIntUnregister() functions to install or uninstall an interrupt handler into the vector table. Refer to
the IntRegister() function for notes about using the interrupt vector table. The module can generate
several different interrupts. Use the HibernateIntEnable() and HibernateIntDisable() functions to
enable and disable specific interrupt sources. The present interrupt status can be found by call-
ing HibernateIntStatus(). In the interrupt handler, all pending interrupts must be cleared. Use the
HibernateIntClear() function to clear pending interrupts.

108 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Finally, once the module is appropriately configured, the state saved, and the software application
is ready to hibernate, call the HibernateRequest() function. This will initiate the sequence to remove
power from the processor. At a power-on reset, the software application can use the HibernateIsAc-
tive() function to determine if the Hibernation module is already active and therefore does not need
to be enabled. This can provide a hint to the software that the processor is waking from hibernation
instead of a cold start. The software can then use the HibernateIntStatus() and HibernateDataGet()
functions to discover the cause of the wake and to get the saved system state.

The HibernateEnable() API from previous versions of the peripheral driver library has been re-
placed by the HibernateEnableExpClk() API. A macro has been provided in hibernate.h to map
the old API to the new API, allowing existing applications to link and run with the new API. It is
recommended that new applications utilize the new API in favor of the old one.

11.2.2 Function Documentation

11.2.2.1 HibernateClockSelect

Selects the clock input for the Hibernation module.

Prototype:
void
HibernateClockSelect(unsigned long ulClockInput)

Parameters:
ulClockInput specifies the clock input.

Description:
Configures the clock input for the Hibernation module. The configuration option chosen de-
pends entirely on hardware design. The clock input for the module will either be a 32.768 kHz
oscillator or a 4.194304 MHz crystal. The ulClockFlags parameter must be one of the following:

HIBERNATE_CLOCK_SEL_RAW - use the raw signal from a 32.768 kHz oscillator.
HIBERNATE_CLOCK_SEL_DIV128 - use the crystal input, divided by 128.

Returns:
None.

11.2.2.2 HibernateDataGet

Reads a set of data from the non-volatile memory of the Hibernation module.

Prototype:
void
HibernateDataGet(unsigned long *pulData,

unsigned long ulCount)

Parameters:
pulData points to a location where the data that is read from the Hibernation module will be

stored.
ulCount is the count of 32-bit words to read.

September 29, 2008 109

Hibernation Module

Description:
Retrieves a set of data from the Hibernation module non-volatile memory that was previously
stored with the HibernateDataSet() function. The caller must ensure that pulData points to a
large enough memory block to hold all the data that is read from the non-volatile memory.

Returns:
None.

11.2.2.3 HibernateDataSet

Stores data in the non-volatile memory of the Hibernation module.

Prototype:
void
HibernateDataSet(unsigned long *pulData,

unsigned long ulCount)

Parameters:
pulData points to the data that the caller wants to store in the memory of the Hibernation

module.
ulCount is the count of 32-bit words to store.

Description:
Stores a set of data in the Hibernation module non-volatile memory. This memory will be pre-
served when the power to the processor is turned off, and can be used to store application state
information which will be available when the processor wakes. Up to 64 32-bit words can be
stored in the non-volatile memory. The data can be restored by calling the HibernateDataGet()
function.

Returns:
None.

11.2.2.4 HibernateDisable

Disables the Hibernation module for operation.

Prototype:
void
HibernateDisable(void)

Description:
Disables the Hibernation module for operation. After this function is called, none of the Hiber-
nation module features are available.

Returns:
None.

110 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

11.2.2.5 HibernateEnableExpClk

Enables the Hibernation module for operation.

Prototype:
void
HibernateEnableExpClk(unsigned long ulHibClk)

Parameters:
ulHibClk is the rate of the clock supplied to the Hibernation module.

Description:
Enables the Hibernation module for operation. This function should be called before any of the
Hibernation module features are used.

The peripheral clock will be the same as the processor clock. This will be the value returned
by SysCtlClockGet(), or it can be explicitly hard-coded if it is constant and known (to save the
code/execution overhead of a call to SysCtlClockGet()).

This function replaces the original HibernateEnable() API and performs the same actions. A
macro is provided in hibernate.h to map the original API to this API.

Returns:
None.

11.2.2.6 HibernateIntClear

Clears pending interrupts from the Hibernation module.

Prototype:
void
HibernateIntClear(unsigned long ulIntFlags)

Parameters:
ulIntFlags is the bit mask of the interrupts to be cleared.

Description:
Clears the specified interrupt sources. This must be done from within the interrupt handler or
else the handler will be called again upon exit.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to the Hiber-
nateIntEnable() function.

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

September 29, 2008 111

Hibernation Module

11.2.2.7 HibernateIntDisable

Disables interrupts for the Hibernation module.

Prototype:
void
HibernateIntDisable(unsigned long ulIntFlags)

Parameters:
ulIntFlags is the bit mask of the interrupts to be disabled.

Description:
Disables the specified interrupt sources from the Hibernation module.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to the Hiber-
nateIntEnable() function.

Returns:
None.

11.2.2.8 HibernateIntEnable

Enables interrupts for the Hibernation module.

Prototype:
void
HibernateIntEnable(unsigned long ulIntFlags)

Parameters:
ulIntFlags is the bit mask of the interrupts to be enabled.

Description:
Enables the specified interrupt sources from the Hibernation module.

The ulIntFlags parameter must be the logical OR of any combination of the following:

HIBERNATE_INT_PIN_WAKE - wake from pin interrupt
HIBERNATE_INT_LOW_BAT - low battery interrupt
HIBERNATE_INT_RTC_MATCH_0 - RTC match 0 interrupt
HIBERNATE_INT_RTC_MATCH_1 - RTC match 1 interrupt

Returns:
None.

11.2.2.9 HibernateIntRegister

Registers an interrupt handler for the Hibernation module interrupt.

Prototype:
void
HibernateIntRegister(void (*pfnHandler)(void))

112 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
pfnHandler points to the function to be called when a hibernation interrupt occurs.

Description:
Registers the interrupt handler in the system interrupt controller. The interrupt is enabled at the
global level, but individual interrupt sources must still be enabled with a call to HibernateIntEn-
able().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

11.2.2.10 HibernateIntStatus

Gets the current interrupt status of the Hibernation module.

Prototype:
unsigned long
HibernateIntStatus(tBoolean bMasked)

Parameters:
bMasked is false to retrieve the raw interrupt status, and true to retrieve the masked interrupt

status.

Description:
Returns the interrupt status of the Hibernation module. The caller can use this to determine
the cause of a hibernation interrupt. Either the masked or raw interrupt status can be returned.

Returns:
Returns the interrupt status as a bit field with the values as described in the HibernateIntEn-
able() function.

11.2.2.11 HibernateIntUnregister

Unregisters an interrupt handler for the Hibernation module interrupt.

Prototype:
void
HibernateIntUnregister(void)

Description:
Unregisters the interrupt handler in the system interrupt controller. The interrupt is disabled at
the global level, and the interrupt handler will no longer be called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

September 29, 2008 113

Hibernation Module

11.2.2.12 HibernateIsActive

Checks to see if the Hibernation module is already powered up.

Prototype:
unsigned int
HibernateIsActive(void)

Description:
This function queries the control register to determine if the module is already active. This
function can be called at a power-on reset to help determine if the reset is due to a wake from
hibernation or a cold start. If the Hibernation module is already active, then it does not need to
be re-enabled and its status can be queried immediately.

The software application should also use the HibernateIntStatus() function to read the raw
interrupt status to determine the cause of the wake. The HibernateDataGet() function can
be used to restore state. These combinations of functions can be used by the software to
determine if the processor is waking from hibernation and the appropriate action to take as a
result.

Returns:
Returns true if the module is already active, and false if not.

11.2.2.13 HibernateLowBatGet

Gets the currently configured low battery detection behavior.

Prototype:
unsigned long
HibernateLowBatGet(void)

Description:
Returns a value representing the currently configured low battery detection behavior. The
return value will be one of the following:

HIBERNATE_LOW_BAT_DETECT - detect a low battery condition.
HIBERNATE_LOW_BAT_ABORT - detect a low battery condition, and abort hibernation
if low battery is detected.

Returns:
Returns a value indicating the configured low battery detection.

11.2.2.14 HibernateLowBatSet

Configures the low battery detection.

Prototype:
void
HibernateLowBatSet(unsigned long ulLowBatFlags)

Parameters:
ulLowBatFlags specifies behavior of low battery detection.

114 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
Enables the low battery detection and whether hibernation is allowed if a low battery is de-
tected. If low battery detection is enabled, then a low battery condition will be indicated in the
raw interrupt status register, and can also trigger an interrupt. Optionally, hibernation can be
aborted if a low battery is detected.

The ulLowBatFlags parameter is one of the following values:

HIBERNATE_LOW_BAT_DETECT - detect a low battery condition.
HIBERNATE_LOW_BAT_ABORT - detect a low battery condition, and abort hibernation
if low battery is detected.

Returns:
None.

11.2.2.15 HibernateRequest

Requests hibernation mode.

Prototype:
void
HibernateRequest(void)

Description:
This function requests the Hibernation module to disable the external regulator, thus removing
power from the processor and all peripherals. The Hibernation module will remain powered
from the battery or auxiliary power supply.

The Hibernation module will re-enable the external regulator when one of the configured wake
conditions occurs (such as RTC match or external WAKE pin). When the power is restored
the processor will go through a normal power-on reset. The processor can retrieve saved
state information with the HibernateDataGet() function. Prior to calling the function to request
hibernation mode, the conditions for waking must have already been set by using the Hiber-
nateWakeSet() function.

Note that this function may return because some time may elapse before the power is actually
removed, or it may not be removed at all. For this reason, the processor will continue to execute
instructions for some time and the caller should be prepared for this function to return. There
are various reasons why the power may not be removed. For example, if the HibernateLow-
BatSet() function was used to configure an abort if low battery is detected, then the power will
not be removed if the battery voltage is too low. There may be other reasons, related to the
external circuit design, that a request for hibernation may not actually occur.

For all these reasons, the caller must be prepared for this function to return. The simplest way
to handle it is to just enter an infinite loop and wait for the power to be removed.

Returns:
None.

11.2.2.16 HibernateRTCDisable

Disables the RTC feature of the Hibernation module.

September 29, 2008 115

Hibernation Module

Prototype:
void
HibernateRTCDisable(void)

Description:
Disables the RTC in the Hibernation module. After calling this function the RTC features of the
Hibernation module will not be available.

Returns:
None.

11.2.2.17 HibernateRTCEnable

Enables the RTC feature of the Hibernation module.

Prototype:
void
HibernateRTCEnable(void)

Description:
Enables the RTC in the Hibernation module. The RTC can be used to wake the processor from
hibernation at a certain time, or to generate interrupts at certain times. This function must be
called before using any of the RTC features of the Hibernation module.

Returns:
None.

11.2.2.18 HibernateRTCGet

Gets the value of the real time clock (RTC) counter.

Prototype:
unsigned long
HibernateRTCGet(void)

Description:
Gets the value of the RTC and returns it to the caller.

Returns:
Returns the value of the RTC.

11.2.2.19 HibernateRTCMatch0Get

Gets the value of the RTC match 0 register.

Prototype:
unsigned long
HibernateRTCMatch0Get(void)

Description:
Gets the value of the match 0 register for the RTC.

116 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
Returns the value of the match register.

11.2.2.20 HibernateRTCMatch0Set

Sets the value of the RTC match 0 register.

Prototype:
void
HibernateRTCMatch0Set(unsigned long ulMatch)

Parameters:
ulMatch is the value for the match register.

Description:
Sets the match 0 register for the RTC. The Hibernation module can be configured to wake from
hibernation, and/or generate an interrupt when the value of the RTC counter is the same as
the match register.

Returns:
None.

11.2.2.21 HibernateRTCMatch1Get

Gets the value of the RTC match 1 register.

Prototype:
unsigned long
HibernateRTCMatch1Get(void)

Description:
Gets the value of the match 1 register for the RTC.

Returns:
Returns the value of the match register.

11.2.2.22 HibernateRTCMatch1Set

Sets the value of the RTC match 1 register.

Prototype:
void
HibernateRTCMatch1Set(unsigned long ulMatch)

Parameters:
ulMatch is the value for the match register.

Description:
Sets the match 1 register for the RTC. The Hibernation module can be configured to wake from
hibernation, and/or generate an interrupt when the value of the RTC counter is the same as
the match register.

September 29, 2008 117

Hibernation Module

Returns:
None.

11.2.2.23 HibernateRTCSet

Sets the value of the real time clock (RTC) counter.

Prototype:
void
HibernateRTCSet(unsigned long ulRTCValue)

Parameters:
ulRTCValue is the new value for the RTC.

Description:
Sets the value of the RTC. The RTC will count seconds if the hardware is configured correctly.
The RTC must be enabled by calling HibernateRTCEnable() before calling this function.

Returns:
None.

11.2.2.24 HibernateRTCTrimGet

Gets the value of the RTC predivider trim register.

Prototype:
unsigned long
HibernateRTCTrimGet(void)

Description:
Gets the value of the pre-divider trim register. This function can be used to get the current
value of the trim register prior to making an adjustment by using the HibernateRTCTrimSet()
function.

Returns:
None.

11.2.2.25 HibernateRTCTrimSet

Sets the value of the RTC predivider trim register.

Prototype:
void
HibernateRTCTrimSet(unsigned long ulTrim)

Parameters:
ulTrim is the new value for the pre-divider trim register.

118 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
Sets the value of the pre-divider trim register. The input time source is divided by the pre-
divider to achieve a one-second clock rate. Once every 64 seconds, the value of the pre-divider
trim register is applied to the predivider to allow fine-tuning of the RTC rate, in order to make
corrections to the rate. The software application can make adjustments to the predivider trim
register to account for variations in the accuracy of the input time source. The nominal value is
0x7FFF, and it can be adjusted up or down in order to fine-tune the RTC rate.

Returns:
None.

11.2.2.26 HibernateWakeGet

Gets the currently configured wake conditions for the Hibernation module.

Prototype:
unsigned long
HibernateWakeGet(void)

Description:
Returns the flags representing the wake configuration for the Hibernation module. The return
value will be a combination of the following flags:

HIBERNATE_WAKE_PIN - wake when the external wake pin is asserted.
HIBERNATE_WAKE_RTC - wake when one of the RTC matches occurs.

Returns:
Returns flags indicating the configured wake conditions.

11.2.2.27 HibernateWakeSet

Configures the wake conditions for the Hibernation module.

Prototype:
void
HibernateWakeSet(unsigned long ulWakeFlags)

Parameters:
ulWakeFlags specifies which conditions should be used for waking.

Description:
Enables the conditions under which the Hibernation module will wake. The ulWakeFlags pa-
rameter is the logical OR of any combination of the following:

HIBERNATE_WAKE_PIN - wake when the external wake pin is asserted.
HIBERNATE_WAKE_RTC - wake when one of the RTC matches occurs.

Returns:
None.

September 29, 2008 119

Hibernation Module

11.3 Programming Example

The following example shows how to determine if the processor reset is due to a wake from hiber-
nation, and to restore saved state:

unsigned long ulStatus;
unsigned long ulNVData[64];

//
// Need to enable the hibernation peripheral after wake/reset, before using
// it.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);

//
// Determine if the Hibernation module is active.
//
if(HibernateIsActive())
{

//
// Read the status to determine cause of wake.
//
ulStatus = HibernateIntStatus(false);

//
// Test the status bits to see the cause.
//
if(ulStatus & HIBERNATE_INT_PIN_WAKE)
{

//
// Wakeup was due to WAKE pin assertion.
//

}
if(ulStatus & HIBERNATE_INT_RTC_MATCH_0)
{

//
// Wakeup was due to RTC match0 register.
//

}

//
// Restore program state information that was saved prior to
// hibernation.
//
HibernateDataGet(ulNVData, 64);

//
// Now that wakeup cause has been determined and state has been
// restored, the program can proceed with normal processor and
// peripheral initialization.
//

}

//
// Hibernation module was not active so this is a cold power-up/reset.
//
else
{

//
// Perform normal power-on initialization.
//

}

120 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

The following example shows how to set up the Hibernation module and initiate a hibernation with
wake up at a future time:

unsigned long ulStatus;
unsigned long ulNVData[64];

//
// Need to enable the hibernation peripheral before using it.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);

//
// Enable clocking to the Hibernation module.
//
HibernateEnableExpClk(SysCtlClockGet());

//
// User-implemented delay here to allow crystal to power up and stabilize.
//

//
// Configure the clock source for Hibernation module, and enable the RTC
// feature. This configuration is for a 4.194304 MHz crystal.
//
HibernateClockSelect(HIBERNATE_CLOCK_SEL_DIV128);
HibernateRTCEnable();

//
// Set the RTC to 0, or an initial value. The RTC can be set once when the
// system is initialized after the cold-startup, and then left to run. Or
// it can be initialized before every hibernate.
//
HibernateRTCSet(0);

//
// Set the match 0 register for 30 seconds from now.
//
HibernateRTCMatch0Set(HibernateRTCGet() + 30);

//
// Clear any pending status.
//
ulStatus = HibernateIntStatus(0);
HibernateIntClear(ulStatus);

//
// Save the program state information. The state information will be
// stored in the ulNVData[] array. It is not necessary to save the full 64
// words of data, only as much as is actually needed by the program.
//
HibernateDataSet(ulNVData, 64);

//
// Configure to wake on RTC match.
//
HibernateWakeSet(HIBERNATE_WAKE_RTC);

//
// Request hibernation. The following call may return since it takes a
// finite amount of time for power to be removed.
//
HibernateRequest();

//
// Need a loop here to wait for the power to be removed. Power will be
// removed while executing in this loop.

September 29, 2008 121

Hibernation Module

//
for(;;)
{
}

The following example shows how to use the Hibernation module RTC to generate an interrupt at
a certain time:

//
// Handler for hibernate interrupts.
//
void
HibernateHandler(void)
{

unsigned long ulStatus;

//
// Get the interrupt status, and clear any pending interrupts.
//
ulStatus = HibernateIntStatus(1);
HibernateIntClear(ulStatus);

//
// Process the RTC match 0 interrupt.
//
if(ulStatus & HIBERNATE_INT_RTC_MATCH_0)
{

//
// RTC match 0 interrupt actions go here.
//

}
}

//
// Main function.
//
int
main(void)
{

//
// System initialization code ...
//

//
// Enable the Hibernation module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);
HibernateEnableExpClk(SysCtlClockGet());

//
// Wait an amount of time for the module to power up.
//

//
// Configure the clock source for Hibernation module, and enable the
// RTC feature. This configuration is for the 4.194304 MHz crystal.
//
HibernateClockSelect(HIBERNATE_CLOCK_SEL_DIV128);
HibernateRTCEnable();

//
// Set the RTC to an initial value.
//
HibernateRTCSet(0);

122 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

//
// Set Match 0 for 30 seconds from now.
//
HibernateRTCMatch0Set(HibernateRTCGet() + 30);

//
// Set up interrupts on the Hibernation module to enable the RTC match
// 0 interrupt. Clear all pending interrupts and register the
// interrupt handler.
//
HibernateIntEnable(HIBERNATE_INT_RTC_MATCH_0);
HibernateIntClear(HIBERNATE_INT_PIN_WAKE | HIBERNATE_INT_LOW_BAT |

HIBERNATE_INT_RTC_MATCH_0 |
HIBERNATE_INT_RTC_MATCH_1);

HibernateIntRegister(HibernateHandler);

//
// Hibernate handler (above) will now be invoked in 30 seconds.
//

// ...

September 29, 2008 123

Hibernation Module

124 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

12 Inter-Integrated Circuit (I2C)
Introduction .125
API Functions . 126
Programming Example .140

12.1 Introduction

The Inter-Integrated Circuit (I2C) API provides a set of functions for using the Stellaris I2C master
and slave modules. Functions are provided to initialize the I2C modules, to send and receive data,
obtain status, and to manage interrupts for the I2C modules.

The I2C master and slave modules provide the ability to communicate to other IC devices over an
I2C bus. The I2C bus is specified to support devices that can both transmit and receive (write and
read) data. Also, devices on the I2C bus can be designated as either a master or a slave. The
Stellaris I2C modules support both sending and receiving data as either a master or a slave, and
also support the simultaneous operation as both a master and a slave. Finally, the Stellaris I2C
modules can operate at two speeds: Standard (100 kb/s) and Fast (400 kb/s).

Both the master and slave I2C modules can generate interrupts. The I2C master module will
generate interrupts when a transmit or receive operation is completed (or aborted due to an error).
The I2C slave module will generate interrupts when data has been sent or requested by a master.

12.1.1 Master Operations

When using this API to drive the I2C master module, the user must first initialize the I2C master
module with a call to I2CMasterInitExpClk(). That function will set the bus speed and enable the
master module.

The user may transmit or receive data after the successful initialization of the I2C master module.
Data is transferred by first setting the slave address using I2CMasterSlaveAddrSet(). That function
is also used to define whether the transfer is a send (a write to the slave from the master) or a
receive (a read from the slave by the master). Then, if connected to an I2C bus that has multiple
masters, the Stellaris I2C master must first call I2CMasterBusBusy() before attempting to initiate
the desired transaction. After determining that the bus is not busy, if trying to send data, the user
must call the I2CMasterDataPut() function. The transaction can then be initiated on the bus by
calling the I2CMasterControl() function with any of the following commands:

I2C_MASTER_CMD_SINGLE_SEND
I2C_MASTER_CMD_SINGLE_RECEIVE
I2C_MASTER_CMD_BURST_SEND_START
I2C_MASTER_CMD_BURST_RECEIVE_START

Any of those commands will result in the master arbitrating for the bus, driving the start sequence
onto the bus, and sending the slave address and direction bit across the bus. The remainder of the
transaction can then be driven using either a polling or interrupt-driven method.

For the single send and receive cases, the polling method will involve looping on the return from
I2CMasterBusy(). Once that function indicates that the I2C master is no longer busy, the bus trans-
action has been completed and can be checked for errors using I2CMasterErr(). If there are no

September 29, 2008 125

Inter-Integrated Circuit (I2C)

errors, then the data has been sent or is ready to be read using I2CMasterDataGet(). For the burst
send and receive cases, the polling method also involves calling the I2CMasterControl() function for
each byte transmitted or received (using either the I2C_MASTER_CMD_BURST_SEND_CONT
or I2C_MASTER_CMD_BURST_RECEIVE_CONT commands), and for the last byte
sent or received (using either the I2C_MASTER_CMD_BURST_SEND_FINISH or
I2C_MASTER_CMD_BURST_RECEIVE_FINISH commands). If any error is detected
during the burst transfer, the I2CMasterControl() function should be called using the
appropriate stop command (I2C_MASTER_CMD_BURST_SEND_ERROR_STOP or
I2C_MASTER_CMD_BURST_RECEIVE_ERROR_STOP).

For the interrupt-driven transaction, the user must register an interrupt handler for the I2C devices
and enable the I2C master interrupt; the interrupt will occur when the master is no longer busy.

12.1.2 Slave Operations

When using this API to drive the I2C slave module, the user must first initialize the I2C slave module
with a call to I2CSlaveInit(). This will enable the I2C slave module and initialize the slave’s own ad-
dress. After the initialization is complete, the user may poll the slave status using I2CSlaveStatus()
to determine if a master requested a send or receive operation. Depending on the type of operation
requested, the user can call I2CSlaveDataPut() or I2CSlaveDataGet() to complete the transac-
tion. Alternatively, the I2C slave can handle transactions using an interrupt handler registered with
I2CIntRegister(), and by enabling the I2C slave interrupt.

This driver is contained in src/i2c.c, with src/i2c.h containing the API definitions for use by
applications.

12.2 API Functions

Functions
void I2CIntRegister (unsigned long ulBase, void (∗pfnHandler)(void))
void I2CIntUnregister (unsigned long ulBase)
tBoolean I2CMasterBusBusy (unsigned long ulBase)
tBoolean I2CMasterBusy (unsigned long ulBase)
void I2CMasterControl (unsigned long ulBase, unsigned long ulCmd)
unsigned long I2CMasterDataGet (unsigned long ulBase)
void I2CMasterDataPut (unsigned long ulBase, unsigned char ucData)
void I2CMasterDisable (unsigned long ulBase)
void I2CMasterEnable (unsigned long ulBase)
unsigned long I2CMasterErr (unsigned long ulBase)
void I2CMasterInitExpClk (unsigned long ulBase, unsigned long ulI2CClk, tBoolean bFast)
void I2CMasterIntClear (unsigned long ulBase)
void I2CMasterIntDisable (unsigned long ulBase)
void I2CMasterIntEnable (unsigned long ulBase)
tBoolean I2CMasterIntStatus (unsigned long ulBase, tBoolean bMasked)
void I2CMasterSlaveAddrSet (unsigned long ulBase, unsigned char ucSlaveAddr, tBoolean
bReceive)

126 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

unsigned long I2CSlaveDataGet (unsigned long ulBase)
void I2CSlaveDataPut (unsigned long ulBase, unsigned char ucData)
void I2CSlaveDisable (unsigned long ulBase)
void I2CSlaveEnable (unsigned long ulBase)
void I2CSlaveInit (unsigned long ulBase, unsigned char ucSlaveAddr)
void I2CSlaveIntClear (unsigned long ulBase)
void I2CSlaveIntClearEx (unsigned long ulBase, unsigned long ulIntFlags)
void I2CSlaveIntDisable (unsigned long ulBase)
void I2CSlaveIntDisableEx (unsigned long ulBase, unsigned long ulIntFlags)
void I2CSlaveIntEnable (unsigned long ulBase)
void I2CSlaveIntEnableEx (unsigned long ulBase, unsigned long ulIntFlags)
tBoolean I2CSlaveIntStatus (unsigned long ulBase, tBoolean bMasked)
unsigned long I2CSlaveIntStatusEx (unsigned long ulBase, tBoolean bMasked)
unsigned long I2CSlaveStatus (unsigned long ulBase)

12.2.1 Detailed Description

The I2C API is broken into three groups of functions: those that deal with interrupts, those that
handle status and initialization, and those that deal with sending and receiving data.

The I2C master and slave interrupts are handled by the I2CIntRegister(), I2CIntUnregister(),
I2CMasterIntEnable(), I2CMasterIntDisable(), I2CMasterIntClear(), I2CMasterIntStatus(),
I2CSlaveIntEnable(), I2CSlaveIntDisable(), I2CSlaveIntClear(), I2CSlaveIntStatus(),
I2CSlaveIntEnableEx(), I2CSlaveIntDisableEx(), I2CSlaveIntClearEx(), and I2CSlaveIntStatusEx()
functions.

Status and initialization functions for the I2C modules are I2CMasterInitExpClk(),
I2CMasterEnable(), I2CMasterDisable(), I2CMasterBusBusy(), I2CMasterBusy(), I2CMasterErr(),
I2CSlaveInit(), I2CSlaveEnable(), I2CSlaveDisable(), and I2CSlaveStatus().

Sending and receiving data from the I2C modules are handled by the I2CMasterSlaveAddrSet(),
I2CMasterControl(), I2CMasterDataGet(), I2CMasterDataPut(), I2CSlaveDataGet(), and
I2CSlaveDataPut() functions.

The I2CMasterInit() API from previous versions of the peripheral driver library has been replaced
by the I2CMasterInitExpClk() API. A macro has been provided in i2c.h to map the old API to the
new API, allowing existing applications to link and run with the new API. It is recommended that
new applications utilize the new API in favor of the old one.

12.2.2 Function Documentation

12.2.2.1 I2CIntRegister

Registers an interrupt handler for the I2C module.

Prototype:
void
I2CIntRegister(unsigned long ulBase,

void (*pfnHandler)(void))

September 29, 2008 127

Inter-Integrated Circuit (I2C)

Parameters:
ulBase is the base address of the I2C Master module.
pfnHandler is a pointer to the function to be called when the I2C interrupt occurs.

Description:
This sets the handler to be called when an I2C interrupt occurs. This will enable the global inter-
rupt in the interrupt controller; specific I2C interrupts must be enabled via I2CMasterIntEnable()
and I2CSlaveIntEnable(). If necessary, it is the interrupt handler’s responsibility to clear the in-
terrupt source via I2CMasterIntClear() and I2CSlaveIntClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

12.2.2.2 I2CIntUnregister

Unregisters an interrupt handler for the I2C module.

Prototype:
void
I2CIntUnregister(unsigned long ulBase)

Parameters:
ulBase is the base address of the I2C Master module.

Description:
This function will clear the handler to be called when an I2C interrupt occurs. This will also
mask off the interrupt in the interrupt controller so that the interrupt handler no longer is called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

12.2.2.3 I2CMasterBusBusy

Indicates whether or not the I2C bus is busy.

Prototype:
tBoolean
I2CMasterBusBusy(unsigned long ulBase)

Parameters:
ulBase is the base address of the I2C Master module.

Description:
This function returns an indication of whether or not the I2C bus is busy. This function can be
used in a multi-master environment to determine if another master is currently using the bus.

128 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
Returns true if the I2C bus is busy; otherwise, returns false.

12.2.2.4 I2CMasterBusy

Indicates whether or not the I2C Master is busy.

Prototype:
tBoolean
I2CMasterBusy(unsigned long ulBase)

Parameters:
ulBase is the base address of the I2C Master module.

Description:
This function returns an indication of whether or not the I2C Master is busy transmitting or
receiving data.

Returns:
Returns true if the I2C Master is busy; otherwise, returns false.

12.2.2.5 I2CMasterControl

Controls the state of the I2C Master module.

Prototype:
void
I2CMasterControl(unsigned long ulBase,

unsigned long ulCmd)

Parameters:
ulBase is the base address of the I2C Master module.
ulCmd command to be issued to the I2C Master module

Description:
This function is used to control the state of the Master module send and receive operations.
The ucCmd parameter can be one of the following values:

I2C_MASTER_CMD_SINGLE_SEND
I2C_MASTER_CMD_SINGLE_RECEIVE
I2C_MASTER_CMD_BURST_SEND_START
I2C_MASTER_CMD_BURST_SEND_CONT
I2C_MASTER_CMD_BURST_SEND_FINISH
I2C_MASTER_CMD_BURST_SEND_ERROR_STOP
I2C_MASTER_CMD_BURST_RECEIVE_START
I2C_MASTER_CMD_BURST_RECEIVE_CONT
I2C_MASTER_CMD_BURST_RECEIVE_FINISH
I2C_MASTER_CMD_BURST_RECEIVE_ERROR_STOP

Returns:
None.

September 29, 2008 129

Inter-Integrated Circuit (I2C)

12.2.2.6 I2CMasterDataGet

Receives a byte that has been sent to the I2C Master.

Prototype:
unsigned long
I2CMasterDataGet(unsigned long ulBase)

Parameters:
ulBase is the base address of the I2C Master module.

Description:
This function reads a byte of data from the I2C Master Data Register.

Returns:
Returns the byte received from by the I2C Master, cast as an unsigned long.

12.2.2.7 I2CMasterDataPut

Transmits a byte from the I2C Master.

Prototype:
void
I2CMasterDataPut(unsigned long ulBase,

unsigned char ucData)

Parameters:
ulBase is the base address of the I2C Master module.
ucData data to be transmitted from the I2C Master

Description:
This function will place the supplied data into I2C Master Data Register.

Returns:
None.

12.2.2.8 I2CMasterDisable

Disables the I2C master block.

Prototype:
void
I2CMasterDisable(unsigned long ulBase)

Parameters:
ulBase is the base address of the I2C Master module.

Description:
This will disable operation of the I2C master block.

Returns:
None.

130 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

12.2.2.9 I2CMasterEnable

Enables the I2C Master block.

Prototype:
void
I2CMasterEnable(unsigned long ulBase)

Parameters:
ulBase is the base address of the I2C Master module.

Description:
This will enable operation of the I2C Master block.

Returns:
None.

12.2.2.10 I2CMasterErr

Gets the error status of the I2C Master module.

Prototype:
unsigned long
I2CMasterErr(unsigned long ulBase)

Parameters:
ulBase is the base address of the I2C Master module.

Description:
This function is used to obtain the error status of the Master module send and receive opera-
tions.

Returns:
Returns the error status, as one of I2C_MASTER_ERR_NONE,
I2C_MASTER_ERR_ADDR_ACK, I2C_MASTER_ERR_DATA_ACK, or
I2C_MASTER_ERR_ARB_LOST.

12.2.2.11 I2CMasterInitExpClk

Initializes the I2C Master block.

Prototype:
void
I2CMasterInitExpClk(unsigned long ulBase,

unsigned long ulI2CClk,
tBoolean bFast)

Parameters:
ulBase is the base address of the I2C Master module.
ulI2CClk is the rate of the clock supplied to the I2C module.
bFast set up for fast data transfers

September 29, 2008 131

Inter-Integrated Circuit (I2C)

Description:
This function initializes operation of the I2C Master block. Upon successful initialization of the
I2C block, this function will have set the bus speed for the master, and will have enabled the
I2C Master block.

If the parameter bFast is true, then the master block will be set up to transfer data at 400 kbps;
otherwise, it will be set up to transfer data at 100 kbps.

The peripheral clock will be the same as the processor clock. This will be the value returned
by SysCtlClockGet(), or it can be explicitly hard coded if it is constant and known (to save the
code/execution overhead of a call to SysCtlClockGet()).

This function replaces the original I2CMasterInit() API and performs the same actions. A macro
is provided in i2c.h to map the original API to this API.

Returns:
None.

12.2.2.12 I2CMasterIntClear

Clears I2C Master interrupt sources.

Prototype:
void
I2CMasterIntClear(unsigned long ulBase)

Parameters:
ulBase is the base address of the I2C Master module.

Description:
The I2C Master interrupt source is cleared, so that it no longer asserts. This must be done in
the interrupt handler to keep it from being called again immediately upon exit.

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

12.2.2.13 I2CMasterIntDisable

Disables the I2C Master interrupt.

Prototype:
void
I2CMasterIntDisable(unsigned long ulBase)

132 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
ulBase is the base address of the I2C Master module.

Description:
Disables the I2C Master interrupt source.

Returns:
None.

12.2.2.14 I2CMasterIntEnable

Enables the I2C Master interrupt.

Prototype:
void
I2CMasterIntEnable(unsigned long ulBase)

Parameters:
ulBase is the base address of the I2C Master module.

Description:
Enables the I2C Master interrupt source.

Returns:
None.

12.2.2.15 I2CMasterIntStatus

Gets the current I2C Master interrupt status.

Prototype:
tBoolean
I2CMasterIntStatus(unsigned long ulBase,

tBoolean bMasked)

Parameters:
ulBase is the base address of the I2C Master module.
bMasked is false if the raw interrupt status is requested and true if the masked interrupt status

is requested.

Description:
This returns the interrupt status for the I2C Master module. Either the raw interrupt status or
the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, returned as true if active or false if not active.

September 29, 2008 133

Inter-Integrated Circuit (I2C)

12.2.2.16 I2CMasterSlaveAddrSet

Sets the address that the I2C Master will place on the bus.

Prototype:
void
I2CMasterSlaveAddrSet(unsigned long ulBase,

unsigned char ucSlaveAddr,
tBoolean bReceive)

Parameters:
ulBase is the base address of the I2C Master module.
ucSlaveAddr 7-bit slave address
bReceive flag indicating the type of communication with the slave

Description:
This function will set the address that the I2C Master will place on the bus when initiating a
transaction. When the bReceive parameter is set to true, the address will indicate that the
I2C Master is initiating a read from the slave; otherwise the address will indicate that the I2C
Master is initiating a write to the slave.

Returns:
None.

12.2.2.17 I2CSlaveDataGet

Receives a byte that has been sent to the I2C Slave.

Prototype:
unsigned long
I2CSlaveDataGet(unsigned long ulBase)

Parameters:
ulBase is the base address of the I2C Slave module.

Description:
This function reads a byte of data from the I2C Slave Data Register.

Returns:
Returns the byte received from by the I2C Slave, cast as an unsigned long.

12.2.2.18 I2CSlaveDataPut

Transmits a byte from the I2C Slave.

Prototype:
void
I2CSlaveDataPut(unsigned long ulBase,

unsigned char ucData)

134 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
ulBase is the base address of the I2C Slave module.
ucData data to be transmitted from the I2C Slave

Description:
This function will place the supplied data into I2C Slave Data Register.

Returns:
None.

12.2.2.19 I2CSlaveDisable

Disables the I2C slave block.

Prototype:
void
I2CSlaveDisable(unsigned long ulBase)

Parameters:
ulBase is the base address of the I2C Slave module.

Description:
This will disable operation of the I2C slave block.

Returns:
None.

12.2.2.20 I2CSlaveEnable

Enables the I2C Slave block.

Prototype:
void
I2CSlaveEnable(unsigned long ulBase)

Parameters:
ulBase is the base address of the I2C Slave module.

Description:
This will enable operation of the I2C Slave block.

Returns:
None.

12.2.2.21 I2CSlaveInit

Initializes the I2C Slave block.

Prototype:
void
I2CSlaveInit(unsigned long ulBase,

unsigned char ucSlaveAddr)

September 29, 2008 135

Inter-Integrated Circuit (I2C)

Parameters:
ulBase is the base address of the I2C Slave module.
ucSlaveAddr 7-bit slave address

Description:
This function initializes operation of the I2C Slave block. Upon successful initialization of the
I2C blocks, this function will have set the slave address and have enabled the I2C Slave block.

The parameter ucSlaveAddr is the value that will be compared against the slave address sent
by an I2C master.

Returns:
None.

12.2.2.22 I2CSlaveIntClear

Clears I2C Slave interrupt sources.

Prototype:
void
I2CSlaveIntClear(unsigned long ulBase)

Parameters:
ulBase is the base address of the I2C Slave module.

Description:
The I2C Slave interrupt source is cleared, so that it no longer asserts. This must be done in
the interrupt handler to keep it from being called again immediately upon exit.

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

12.2.2.23 I2CSlaveIntClearEx

Clears I2C Slave interrupt sources.

Prototype:
void
I2CSlaveIntClearEx(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the I2C Slave module.
ulIntFlags is a bit mask of the interrupt sources to be cleared.

136 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
The specified I2C Slave interrupt sources are cleared, so that they no longer assert. This must
be done in the interrupt handler to keep it from being called again immediately upon exit.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to
I2CSlaveIntEnableEx().

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

12.2.2.24 I2CSlaveIntDisable

Disables the I2C Slave interrupt.

Prototype:
void
I2CSlaveIntDisable(unsigned long ulBase)

Parameters:
ulBase is the base address of the I2C Slave module.

Description:
Disables the I2C Slave interrupt source.

Returns:
None.

12.2.2.25 I2CSlaveIntDisableEx

Disables individual I2C Slave interrupt sources.

Prototype:
void
I2CSlaveIntDisableEx(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the I2C Slave module.
ulIntFlags is the bit mask of the interrupt sources to be disabled.

Description:
Disables the indicated I2C Slave interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor.

September 29, 2008 137

Inter-Integrated Circuit (I2C)

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to
I2CSlaveIntEnableEx().

Returns:
None.

12.2.2.26 I2CSlaveIntEnable

Enables the I2C Slave interrupt.

Prototype:
void
I2CSlaveIntEnable(unsigned long ulBase)

Parameters:
ulBase is the base address of the I2C Slave module.

Description:
Enables the I2C Slave interrupt source.

Returns:
None.

12.2.2.27 I2CSlaveIntEnableEx

Enables individual I2C Slave interrupt sources.

Prototype:
void
I2CSlaveIntEnableEx(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the I2C Slave module.
ulIntFlags is the bit mask of the interrupt sources to be enabled.

Description:
Enables the indicated I2C Slave interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor.

The ulIntFlags parameter is the logical OR of any of the following:

I2C_SLAVE_INT_STOP - Stop condition detected interrupt
I2C_SLAVE_INT_START - Start condition detected interrupt
I2C_SLAVE_INT_DATA - Data interrupt

Returns:
None.

138 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

12.2.2.28 I2CSlaveIntStatus

Gets the current I2C Slave interrupt status.

Prototype:
tBoolean
I2CSlaveIntStatus(unsigned long ulBase,

tBoolean bMasked)

Parameters:
ulBase is the base address of the I2C Slave module.
bMasked is false if the raw interrupt status is requested and true if the masked interrupt status

is requested.

Description:
This returns the interrupt status for the I2C Slave module. Either the raw interrupt status or the
status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, returned as true if active or false if not active.

12.2.2.29 I2CSlaveIntStatusEx

Gets the current I2C Slave interrupt status.

Prototype:
unsigned long
I2CSlaveIntStatusEx(unsigned long ulBase,

tBoolean bMasked)

Parameters:
ulBase is the base address of the I2C Slave module.
bMasked is false if the raw interrupt status is requested and true if the masked interrupt status

is requested.

Description:
This returns the interrupt status for the I2C Slave module. Either the raw interrupt status or the
status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, enumerated as a bit field of values described in
I2CSlaveIntEnableEx().

12.2.2.30 I2CSlaveStatus

Gets the I2C Slave module status

Prototype:
unsigned long
I2CSlaveStatus(unsigned long ulBase)

September 29, 2008 139

Inter-Integrated Circuit (I2C)

Parameters:
ulBase is the base address of the I2C Slave module.

Description:
This function will return the action requested from a master, if any. Possible values are:

I2C_SLAVE_ACT_NONE
I2C_SLAVE_ACT_RREQ
I2C_SLAVE_ACT_TREQ
I2C_SLAVE_ACT_RREQ_FBR

Returns:
Returns I2C_SLAVE_ACT_NONE to indicate that no action has been requested of the I2C
Slave module, I2C_SLAVE_ACT_RREQ to indicate that an I2C master has sent data to the
I2C Slave module, I2C_SLAVE_ACT_TREQ to indicate that an I2C master has requested that
the I2C Slave module send data, and I2C_SLAVE_ACT_RREQ_FBR to indicate that an I2C
master has sent data to the I2C slave and the first byte following the slave’s own address has
been received.

12.3 Programming Example

The following example shows how to use the I2C API to send data as a master.

//
// Initialize Master and Slave
//
I2CMasterInitExpClk(I2C_MASTER_BASE, SysCtlClockGet(), true);

//
// Specify slave address
//
I2CMasterSlaveAddrSet(I2C_MASTER_BASE, 0x3B, false);

//
// Place the character to be sent in the data register
//
I2CMasterDataPut(I2C_MASTER_BASE, ’Q’);

//
// Initiate send of character from Master to Slave
//
I2CMasterControl(I2C_MASTER_BASE, I2C_MASTER_CMD_SINGLE_SEND);

//
// Delay until transmission completes
//
while(I2CMasterBusBusy(I2C_MASTER_BASE))
{
}

140 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

13 Interrupt Controller (NVIC)
Introduction .141
API Functions . 142
Programming Example .147

13.1 Introduction

The interrupt controller API provides a set of functions for dealing with the Nested Vectored Inter-
rupt Controller (NVIC). Functions are provided to enable and disable interrupts, register interrupt
handlers, and set the priority of interrupts.

The NVIC provides global interrupt masking, prioritization, and handler dispatching. This version
of the Stellaris family supports thirty-two interrupt sources and eight priority levels. Individual inter-
rupt sources can be masked, and the processor interrupt can be globally masked as well (without
affecting the individual source masks).

The NVIC is tightly coupled with the Cortex-M3 microprocessor. When the processor responds
to an interrupt, NVIC will supply the address of the function to handle the interrupt directly to the
processor. This eliminates the need for a global interrupt handler that queries the interrupt controller
to determine the cause of the interrupt and branch to the appropriate handler, reducing interrupt
response time.

The interrupt prioritization in the NVIC allows higher priority interrupts to be handled before lower
priority interrupts, as well as allowing preemption of lower priority interrupt handlers by higher prior-
ity interrupts. Again, this helps reduce interrupt response time (for example, a 1 ms system control
interrupt is not held off by the execution of a lower priority 1 second housekeeping interrupt handler).

Sub-prioritization is also possible; instead of having N bits of preemptable prioritization, NVIC can
be configured (via software) for N - M bits of preemptable prioritization and M bits of subpriority. In
this scheme, two interrupts with the same preemptable prioritization but different subpriorities will
not cause a preemption; tail chaining will instead be used to process the two interrupts back-to-
back.

If two interrupts with the same priority (and subpriority if so configured) are asserted at the same
time, the one with the lower interrupt number will be processed first. NVIC keeps track of the nesting
of interrupt handlers, allowing the processor to return from interrupt context only once all nested
and pending interrupts have been handled.

Interrupt handlers can be configured in one of two ways; statically at compile time or dynamically at
run time. Static configuration of interrupt handlers is accomplished by editing the interrupt handler
table in the application’s startup code. When statically configured, the interrupts must be explicitly
enabled in NVIC via IntEnable() before the processor will respond to the interrupt (in addition to any
interrupt enabling required within the peripheral itself).

Alternatively, interrupts can be configured at run-time using IntRegister() (or the analog in each
individual driver). When using IntRegister(), the interrupt must also be enabled as before; when
using the analogue in each individual driver, IntEnable() is called by the driver and does not need
to be call by the application.

Run-time configuration of interrupt handlers requires that the interrupt handler table be placed on
a 1 kB boundary in SRAM (typically this would be at the beginning of SRAM). Failure to do so will
result in an incorrect vector address being fetched in response to an interrupt. The vector table is

September 29, 2008 141

Interrupt Controller (NVIC)

in a section called “vtable” and should be placed appropriately with a linker script. Tools that do not
support linker scripts (such as the evaluation version of RV-MDK) therefore do not support run-time
configuration of interrupt handlers (though the full version of RV-MDK does).

This driver is contained in src/interrupt.c, with src/interrupt.h containing the API defi-
nitions for use by applications.

13.2 API Functions

Functions
void IntDisable (unsigned long ulInterrupt)
void IntEnable (unsigned long ulInterrupt)
tBoolean IntMasterDisable (void)
tBoolean IntMasterEnable (void)
long IntPriorityGet (unsigned long ulInterrupt)
unsigned long IntPriorityGroupingGet (void)
void IntPriorityGroupingSet (unsigned long ulBits)
void IntPrioritySet (unsigned long ulInterrupt, unsigned char ucPriority)
void IntRegister (unsigned long ulInterrupt, void (∗pfnHandler)(void))
void IntUnregister (unsigned long ulInterrupt)

13.2.1 Detailed Description

The primary function of the interrupt controller API is to manage the interrupt vector table used
by the NVIC to dispatch interrupt requests. Registering an interrupt handler is a simple matter of
inserting the handler address into the table. By default, the table is filled with pointers to an internal
handler that loops forever; it is an error for an interrupt to occur when there is no interrupt han-
dler registered to process it. Therefore, interrupt sources should not be enabled before a handler
has been registered, and interrupt sources should be disabled before a handler is unregistered.
Interrupt handlers are managed with IntRegister() and IntUnregister().

Each interrupt source can be individually enabled and disabled via IntEnable() and IntDisable().
The processor interrupt can be enabled and disabled via IntMasterEnable() and IntMasterDisable();
this does not affect the individual interrupt enable states. Masking of the processor interrupt can
be utilized as a simple critical section (only NMI will interrupt the processor while the processor
interrupt is disabled), though this will have adverse effects on the interrupt response time.

The priority of each interrupt source can be set and examined via IntPrioritySet() and IntPriori-
tyGet(). The priority assignments are defined by the hardware; the upper N bits of the 8-bit priority
are examined to determine the priority of an interrupt (for the Stellaris family, N is 3). This allows
priorities to be defined without a real need to know the exact number of supported priorities; moving
to a device with more or fewer priority bits will continue to treat the interrupt source with a similar
level of priority. Smaller priority numbers correspond to higher interrupt priority, so 0 is the highest
priority.

142 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

13.2.2 Function Documentation

13.2.2.1 IntDisable

Disables an interrupt.

Prototype:
void
IntDisable(unsigned long ulInterrupt)

Parameters:
ulInterrupt specifies the interrupt to be disabled.

Description:
The specified interrupt is disabled in the interrupt controller. Other enables for the interrupt
(such as at the peripheral level) are unaffected by this function.

Returns:
None.

13.2.2.2 IntEnable

Enables an interrupt.

Prototype:
void
IntEnable(unsigned long ulInterrupt)

Parameters:
ulInterrupt specifies the interrupt to be enabled.

Description:
The specified interrupt is enabled in the interrupt controller. Other enables for the interrupt
(such as at the peripheral level) are unaffected by this function.

Returns:
None.

13.2.2.3 IntMasterDisable

Disables the processor interrupt.

Prototype:
tBoolean
IntMasterDisable(void)

Description:
Prevents the processor from receiving interrupts. This does not affect the set of interrupts
enabled in the interrupt controller; it just gates the single interrupt from the controller to the
processor.

September 29, 2008 143

Interrupt Controller (NVIC)

Note:
Previously, this function had no return value. As such, it was possible to include interrupt.h
and call this function without having included hw_types.h. Now that the return is a
tBoolean, a compiler error will occur in this case. The solution is to include hw_types.h
before including interrupt.h.

Returns:
Returns true if interrupts were already disabled when the function was called or false if they
were initially enabled.

13.2.2.4 IntMasterEnable

Enables the processor interrupt.

Prototype:
tBoolean
IntMasterEnable(void)

Description:
Allows the processor to respond to interrupts. This does not affect the set of interrupts enabled
in the interrupt controller; it just gates the single interrupt from the controller to the processor.

Note:
Previously, this function had no return value. As such, it was possible to include interrupt.h
and call this function without having included hw_types.h. Now that the return is a
tBoolean, a compiler error will occur in this case. The solution is to include hw_types.h
before including interrupt.h.

Returns:
Returns true if interrupts were disabled when the function was called or false if they were
initially enabled.

13.2.2.5 IntPriorityGet

Gets the priority of an interrupt.

Prototype:
long
IntPriorityGet(unsigned long ulInterrupt)

Parameters:
ulInterrupt specifies the interrupt in question.

Description:
This function gets the priority of an interrupt. See IntPrioritySet() for a definition of the priority
value.

Returns:
Returns the interrupt priority, or -1 if an invalid interrupt was specified.

144 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

13.2.2.6 IntPriorityGroupingGet

Gets the priority grouping of the interrupt controller.

Prototype:
unsigned long
IntPriorityGroupingGet(void)

Description:
This function returns the split between preemptable priority levels and subpriority levels in the
interrupt priority specification.

Returns:
The number of bits of preemptable priority.

13.2.2.7 IntPriorityGroupingSet

Sets the priority grouping of the interrupt controller.

Prototype:
void
IntPriorityGroupingSet(unsigned long ulBits)

Parameters:
ulBits specifies the number of bits of preemptable priority.

Description:
This function specifies the split between preemptable priority levels and subpriority levels in
the interrupt priority specification. The range of the grouping values are dependent upon the
hardware implementation; on the Stellaris family, three bits are available for hardware interrupt
prioritization and therefore priority grouping values of three through seven have the same effect.

Returns:
None.

13.2.2.8 IntPrioritySet

Sets the priority of an interrupt.

Prototype:
void
IntPrioritySet(unsigned long ulInterrupt,

unsigned char ucPriority)

Parameters:
ulInterrupt specifies the interrupt in question.
ucPriority specifies the priority of the interrupt.

September 29, 2008 145

Interrupt Controller (NVIC)

Description:
This function is used to set the priority of an interrupt. When multiple interrupts are asserted
simultaneously, the ones with the highest priority are processed before the lower priority in-
terrupts. Smaller numbers correspond to higher interrupt priorities; priority 0 is the highest
interrupt priority.

The hardware priority mechanism will only look at the upper N bits of the priority level (where
N is 3 for the Stellaris family), so any prioritization must be performed in those bits. The
remaining bits can be used to sub-prioritize the interrupt sources, and may be used by the
hardware priority mechanism on a future part. This arrangement allows priorities to migrate to
different NVIC implementations without changing the gross prioritization of the interrupts.

Returns:
None.

13.2.2.9 IntRegister

Registers a function to be called when an interrupt occurs.

Prototype:
void
IntRegister(unsigned long ulInterrupt,

void (*pfnHandler)(void))

Parameters:
ulInterrupt specifies the interrupt in question.
pfnHandler is a pointer to the function to be called.

Description:
This function is used to specify the handler function to be called when the given interrupt is
asserted to the processor. When the interrupt occurs, if it is enabled (via IntEnable()), the
handler function will be called in interrupt context. Since the handler function can preempt
other code, care must be taken to protect memory or peripherals that are accessed by the
handler and other non-handler code.

Note:
The use of this function (directly or indirectly via a peripheral driver interrupt register function)
moves the interrupt vector table from flash to SRAM. Therefore, care must be taken when
linking the application to ensure that the SRAM vector table is located at the beginning of
SRAM; otherwise NVIC will not look in the correct portion of memory for the vector table (it
requires the vector table be on a 1 kB memory alignment). Normally, the SRAM vector table
is so placed via the use of linker scripts; some tool chains, such as the evaluation version of
RV-MDK, do not support linker scripts and therefore will not produce a valid executable. See
the discussion of compile-time versus run-time interrupt handler registration in the introduction
to this chapter.

Returns:
None.

13.2.2.10 IntUnregister

Unregisters the function to be called when an interrupt occurs.

146 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
IntUnregister(unsigned long ulInterrupt)

Parameters:
ulInterrupt specifies the interrupt in question.

Description:
This function is used to indicate that no handler should be called when the given interrupt is
asserted to the processor. The interrupt source will be automatically disabled (via IntDisable())
if necessary.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

13.3 Programming Example

The following example shows how to use the Interrupt Controller API to register an interrupt handler
and enable the interrupt.

//
// The interrupt handler function.
//
extern void IntHandler(void);

//
// Register the interrupt handler function for interrupt 5.
//
IntRegister(5, IntHandler);

//
// Enable interrupt 5.
//
IntEnable(5);

//
// Enable interrupt 5.
//
IntMasterEnable();

September 29, 2008 147

Interrupt Controller (NVIC)

148 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

14 Memory Protection Unit (MPU)
Introduction .149
API Functions . 149
Programming Example .156

14.1 Introduction

The Memory Protection Unit (MPU) API provides functions to configure the MPU. The MPU is tightly
coupled to the Cortex-M3 processor core and provides a means to establish access permissions
on regions of memory.

Up to eight memory regions can be defined. Each region has a base address and a size. The size
is specified as a power of 2 between 32 bytes and 4 GB, inclusive. The region’s base address must
be aligned to the size of the region. Each region also has access permissions. Code execution can
be allowed or disallowed for a region. A region can be set for read-only access, read/write access,
or no access for both privileged and user modes. This can be used to set up an environment where
only kernel or system code can access certain hardware registers or sections of code.

The MPU creates 8 sub-regions within each region. Any sub-region or combination of sub-regions
can be disabled, allowing creation of “holes” or complex overlaying regions with different permis-
sions. The sub-regions can also be used to create an unaligned beginning or ending of a region by
disabling one or more of the leading or trailing sub-regions.

Once the regions are defined and the MPU is enabled, any access violation of a region will cause
a memory management fault, and the fault handler will be activated.

This driver is contained in src/mpu.c, with src/mpu.h containing the API definitions for use by
applications.

14.2 API Functions

Functions
void MPUDisable (void)
void MPUEnable (unsigned long ulMPUConfig)
void MPUIntRegister (void (∗pfnHandler)(void))
void MPUIntUnregister (void)
unsigned long MPURegionCountGet (void)
void MPURegionDisable (unsigned long ulRegion)
void MPURegionEnable (unsigned long ulRegion)
void MPURegionGet (unsigned long ulRegion, unsigned long ∗pulAddr, unsigned long
∗pulFlags)
void MPURegionSet (unsigned long ulRegion, unsigned long ulAddr, unsigned long ulFlags)

September 29, 2008 149

Memory Protection Unit (MPU)

14.2.1 Detailed Description

The MPU APIs provide a means to enable and configure the MPU and memory protection regions.

Generally, the memory protection regions should be defined before enabling the MPU. The regions
can be configured by calling MPURegionSet() once for each region to be configured.

A region that is defined by MPURegionSet() can be initially enabled or disabled. If the region is not
initially enabled, it can be enabled later by calling MPURegionEnable(). An enabled region can be
disabled by calling MPURegionDisable(). When a region is disabled, its configuration is preserved
as long as it is not overwritten. In this case it can be enabled again with MPURegionEnable()
without the need to reconfigure the region.

Care must be taken when setting up a protection region using MPURegionSet(). The function will
write to multiple registers and is not protected from interrupts. Therefore, it is possible that an
interrupt which accesses a region may occur while that region is in the process of being changed.
The safest way to protect against this is to make sure that a region is always disabled before making
any changes. Otherwise, it is up to the caller to ensure that MPURegionSet() is always called from
within code that cannot be interrupted, or from code that will not be affected if an interrupt occurs
while the region attributes are being changed.

The attributes of a region that has already been programmed can be retrieved and saved using the
MPURegionGet() function. This function is intended to save the attributes in a format that can be
used later to reload the region using the MPURegionSet() function. Note that the enable state of
the region is saved with the attributes and will take effect when the region is reloaded.

When one or more regions are defined, the MPU can be enabled by calling MPUEnable(). This
turns on the MPU and also defines the behavior in privileged mode and in the Hard Fault and NMI
fault handlers. The MPU can be configured so that when in privileged mode and no regions are en-
abled, a default memory map is applied. If this feature is not enabled, then a memory management
fault is generated if the MPU is enabled and no regions are configured and enabled. The MPU can
also be set to use a default memory map when in the Hard Fault or NMI handlers, instead of using
the configured regions. All of these features are selected when calling MPUEnable(). When the
MPU is enabled, it can be disabled by calling MPUDisable().

Finally, if the application is using run-time interrupt registration (see IntRegister()), then the function
MPUIntRegister() can be used to install the fault handler which will be called whenever a memory
protection violation occurs. This function will also enable the fault handler. If compile-time interrupt
registration is used, then the IntEnable() function with the parameter FAULT_MPU must be used to
enable the memory management fault handler. When the memory management fault handler has
been installed with MPUIntRegister(), it can be removed by calling MPUIntUnregister().

14.2.2 Function Documentation

14.2.2.1 MPUDisable

Disables the MPU for use.

Prototype:
void
MPUDisable(void)

Description:
This function disables the Cortex-M3 memory protection unit. When the MPU is disabled, the

150 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

default memory map is used and memory management faults are not generated.

Returns:
None.

14.2.2.2 MPUEnable

Enables and configures the MPU for use.

Prototype:
void
MPUEnable(unsigned long ulMPUConfig)

Parameters:
ulMPUConfig is the logical OR of the possible configurations.

Description:
This function enables the Cortex-M3 memory protection unit. It also configures the default
behavior when in privileged mode and while handling a hard fault or NMI. Prior to enabling
the MPU, at least one region must be set by calling MPURegionSet() or else by enabling
the default region for privileged mode by passing the MPU_CONFIG_PRIV_DEFAULT flag to
MPUEnable(). Once the MPU is enabled, a memory management fault will be generated for
any memory access violations.

The ulMPUConfig parameter should be the logical OR of any of the following:

MPU_CONFIG_PRIV_DEFAULT enables the default memory map when in privileged
mode and when no other regions are defined. If this option is not enabled, then there
must be at least one valid region already defined when the MPU is enabled.
MPU_CONFIG_HARDFLT_NMI enables the MPU while in a hard fault or NMI exception
handler. If this option is not enabled, then the MPU is disabled while in one of these
exception handlers and the default memory map is applied.
MPU_CONFIG_NONE chooses none of the above options. In this case, no default mem-
ory map is provided in privileged mode, and the MPU will not be enabled in the fault
handlers.

Returns:
None.

14.2.2.3 MPUIntRegister

Registers an interrupt handler for the memory management fault.

Prototype:
void
MPUIntRegister(void (*pfnHandler)(void))

Parameters:
pfnHandler is a pointer to the function to be called when the memory management fault oc-

curs.

September 29, 2008 151

Memory Protection Unit (MPU)

Description:
This sets and enables the handler to be called when the MPU generates a memory manage-
ment fault due to a protection region access violation.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

14.2.2.4 MPUIntUnregister

Unregisters an interrupt handler for the memory management fault.

Prototype:
void
MPUIntUnregister(void)

Description:
This function will disable and clear the handler to be called when a memory management fault
occurs.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

14.2.2.5 MPURegionCountGet

Gets the count of regions supported by the MPU.

Prototype:
unsigned long
MPURegionCountGet(void)

Description:
This function is used to get the number of regions that are supported by the MPU. This is the
total number that are supported, including regions that are already programmed.

Returns:
The number of memory protection regions that are available for programming using MPURe-
gionSet().

14.2.2.6 MPURegionDisable

Disables a specific region.

152 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
MPURegionDisable(unsigned long ulRegion)

Parameters:
ulRegion is the region number to disable.

Description:
This function is used to disable a previously enabled memory protection region. The region
will remain configured if it is not overwritten with another call to MPURegionSet(), and can be
enabled again by calling MPURegionEnable().

Returns:
None.

14.2.2.7 MPURegionEnable

Enables a specific region.

Prototype:
void
MPURegionEnable(unsigned long ulRegion)

Parameters:
ulRegion is the region number to enable.

Description:
This function is used to enable a memory protection region. The region should already be
set up with the MPURegionSet() function. Once enabled, the memory protection rules of the
region will be applied and access violations will cause a memory management fault.

Returns:
None.

14.2.2.8 MPURegionGet

Gets the current settings for a specific region.

Prototype:
void
MPURegionGet(unsigned long ulRegion,

unsigned long *pulAddr,
unsigned long *pulFlags)

Parameters:
ulRegion is the region number to get.
pulAddr points to storage for the base address of the region.
pulFlags points to the attribute flags for the region.

September 29, 2008 153

Memory Protection Unit (MPU)

Description:
This function retrieves the configuration of a specific region. The meanings and format of the
parameters is the same as that of the MPURegionSet() function.

This function can be used to save the configuration of a region for later use with the MPURe-
gionSet() function. The region’s enable state will be preserved in the attributes that are saved.

Returns:
None.

14.2.2.9 MPURegionSet

Sets up the access rules for a specific region.

Prototype:
void
MPURegionSet(unsigned long ulRegion,

unsigned long ulAddr,
unsigned long ulFlags)

Parameters:
ulRegion is the region number to set up.
ulAddr is the base address of the region. It must be aligned according to the size of the region

specified in ulFlags.
ulFlags is a set of flags to define the attributes of the region.

Description:
This function sets up the protection rules for a region. The region has a base address and a
set of attributes including the size, which must be a power of 2. The base address parameter,
ulAddr , must be aligned according to the size.

The ulFlags parameter is the logical OR of all of the attributes of the region. It is a combination
of choices for region size, execute permission, read/write permissions, disabled sub-regions,
and a flag to determine if the region is enabled.

The size flag determines the size of a region, and must be one of the following:

MPU_RGN_SIZE_32B
MPU_RGN_SIZE_64B
MPU_RGN_SIZE_128B
MPU_RGN_SIZE_256B
MPU_RGN_SIZE_512B
MPU_RGN_SIZE_1K
MPU_RGN_SIZE_2K
MPU_RGN_SIZE_4K
MPU_RGN_SIZE_8K
MPU_RGN_SIZE_16K
MPU_RGN_SIZE_32K
MPU_RGN_SIZE_64K
MPU_RGN_SIZE_128K
MPU_RGN_SIZE_256K

154 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

MPU_RGN_SIZE_512K
MPU_RGN_SIZE_1M
MPU_RGN_SIZE_2M
MPU_RGN_SIZE_4M
MPU_RGN_SIZE_8M
MPU_RGN_SIZE_16M
MPU_RGN_SIZE_32M
MPU_RGN_SIZE_64M
MPU_RGN_SIZE_128M
MPU_RGN_SIZE_256M
MPU_RGN_SIZE_512M
MPU_RGN_SIZE_1G
MPU_RGN_SIZE_2G
MPU_RGN_SIZE_4G

The execute permission flag must be one of the following:

MPU_RGN_PERM_EXEC enables the region for execution of code
MPU_RGN_PERM_NOEXEC disables the region for execution of code

The read/write access permissions are applied separately for the privileged and user modes.
The read/write access flags must be one of the following:

MPU_RGN_PERM_PRV_NO_USR_NO - no access in privileged or user mode
MPU_RGN_PERM_PRV_RW_USR_NO - privileged read/write, user no access
MPU_RGN_PERM_PRV_RW_USR_RO - privileged read/write, user read-only
MPU_RGN_PERM_PRV_RW_USR_RW - privileged read/write, user read/write
MPU_RGN_PERM_PRV_RO_USR_NO - privileged read-only, user no access
MPU_RGN_PERM_PRV_RO_USR_RO - privileged read-only, user read-only

The region is automatically divided into 8 equally-sized sub-regions by the MPU. Sub-regions
can only be used in regions of size 256 bytes or larger. Any of these 8 sub-regions can be
disabled. This allows for creation of “holes” in a region which can be left open, or overlaid by
another region with different attributes. Any of the 8 sub-regions can be disabled with a logical
OR of any of the following flags:

MPU_SUB_RGN_DISABLE_0
MPU_SUB_RGN_DISABLE_1
MPU_SUB_RGN_DISABLE_2
MPU_SUB_RGN_DISABLE_3
MPU_SUB_RGN_DISABLE_4
MPU_SUB_RGN_DISABLE_5
MPU_SUB_RGN_DISABLE_6
MPU_SUB_RGN_DISABLE_7

Finally, the region can be initially enabled or disabled with one of the following flags:

MPU_RGN_ENABLE
MPU_RGN_DISABLE

September 29, 2008 155

Memory Protection Unit (MPU)

As an example, to set a region with the following attributes: size of 32 KB, execution en-
abled, read-only for both privileged and user, one sub-region disabled, and initially enabled;
the ulFlags parameter would have the following value:

(MPU_RG_SIZE_32K | MPU_RGN_PERM_EXEC | MPU_RGN_PERM_PRV_RO_USR_RO |
MPU_SUB_RGN_DISABLE_2 | MPU_RGN_ENABLE)

Note:
This function will write to multiple registers and is not protected from interrupts. It is possible
that an interrupt which accesses a region may occur while that region is in the process of being
changed. The safest way to handle this is to disable a region before changing it. Refer to the
discussion of this in the API Detailed Description section.

Returns:
None.

14.3 Programming Example

The following example sets up a basic set of protection regions to provide the following:

a 28 KB region in flash for read-only code execution

32 KB of RAM for read-write access in privileged and user modes

an additional 8 KB of RAM for use only in privileged mode

1 MB of peripheral space for access only in privileged mode, except for a 128 KB hole that is
not accessible at all, and another 128 KB region within that is accessible from user mode

//
// Define a 28 KB region of flash from 0x00000000 to 0x00007000. The
// region will be executable, and read-only for both privileged and user
// modes. To set up the region, a 32 KB region (#0) will be defined
// starting at address 0, and then a 4 KB hole removed at the end by
// disabling the last sub-region. The region will be initially enabled.
//
MPURegionSet(0, 0,

MPU_RGN_SIZE_32K |
MPU_RGN_PERM_EXEC |
MPU_RGN_PERM_PRV_RO_USR_RO |
MPU_SUB_RGN_DISABLE_7 |
MPU_RGN_ENABLE);

//
// Define a 32 KB region (#1) of RAM from 0x20000000 to 0x20008000. The
// region will not be executable, and will be read/write access for
// privileged and user modes.
//
MPURegionSet(1, 0x20000000,

MPU_RGN_SIZE_32K |
MPU_RGN_PERM_NOEXEC |
MPU_RGN_PERM_PRV_RW_USR_RW |
MPU_RGN_ENABLE);

//
// Define an additional 8 KB region (#2) in RAM from 0x20008000 to
// 0x2000A000, which will be read/write accessible only from privileged
// mode. This region will be initially disabled, to be enabled later.
//

156 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

MPURegionSet(2, 0x20008000,
MPU_RGN_SIZE_8K |
MPU_RGN_PERM_NOEXEC |
MPU_RGN_PERM_PRV_RW_USR_NO|
MPU_RGN_DISABLE);

//
// Define a region (#3) in peripheral space from 0x40000000 to 0x40100000
// (1 MB). This region is accessible only in privileged mode. There is a
// an area from 0x40020000 to 0x40040000 that has no peripherals and is not
// accessible at all. This is created by disabling the second sub-region
// (1) and creating a hole. Further, there is an area from 0x40080000 to
// 0x400A0000 that should be accessible from user mode as well. This is
// created by disabling the fifth sub-region (4), and overlaying an
// additional region (#4) in that space with the appropriate permissions.
//
MPURegionSet(3, 0x40000000,

MPU_RGN_SIZE_1M |
MPU_RGN_PERM_NOEXEC |
MPU_RGN_PERM_PRV_RW_USR_NO |
MPU_SUB_RGN_DISABLE_1 | MPU_SUB_RGN_DISABLE_4 |
MPU_RGN_ENABLE);

MPURegionSet(4, 0x40080000,
MPU_RGN_SIZE_128K |
MPU_RGN_PERM_NOEXEC |
MPU_RGN_PERM_PRV_RW_USR_RW |
MPU_RGN_ENABLE);

//
// In this example, compile-time registration of interrupts is used, so the
// handler does not need to be registered. However, it does need to be
// enabled.
//
IntEnable(FAULT_MPU);

//
// When setting up the regions, region 2 was initially disabled for some
// reason. At some point it needs to be enabled.
//
MPURegionEnable(2);

//
// Now the MPU will be enabled. It will be configured so that a default
// map is available in privileged mode if no regions are defined. The MPU
// will not be enabled for the hard fault and NMI handlers, which means a
// default map will be used whenever these handlers are active, effectively
// giving the fault handlers access to all of memory without any
// protection.
//
MPUEnable(MPU_CONFIG_PRIV_DEFAULT);

//
// At this point the MPU is configured and enabled and if any code causes
// an access violation, the memory management fault will occur.
//

The following example shows how to save and restore region configurations.

//
// The following arrays provide space for saving the address and
// attributes for 4 region configurations.
//
unsigned long ulRegionAddr[4];
unsigned long ulRegionAttr[4];

September 29, 2008 157

Memory Protection Unit (MPU)

...

//
// At some point in the system code, we want to save the state of 4 regions
// (0-3).
//
for(uIdx = 0; uIdx < 4; uIdx++)
{

MPURegionGet(uIdx, &ulRegionAddr[uIdx], &ulRegionAttr[uIdx]);
}

...

//
// At some other point, the previously saved regions should be restored.
//
for(uIdx = 0; uIdx < 4; uIdx++)
{

MPURegionSet(uIdx, ulRegionAddr[uIdx], ulRegionAttr[uIdx]);
}

158 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

15 Peripheral Pin Mapping
Introduction .159
API Functions . 159
Programming Example .165

15.1 Introduction

The peripheral pin mapping functions provide an easy method of configuring a peripheral pin with-
out having to know which GPIO pin is shared with the peripheral pin. This makes peripheral pin
configuration easier (and clearer) since the pin can be specified by the peripheral pin name instead
of the GPIO name (which may be error prone).

The mapping of peripheral pins to GPIO pins varies from part to part, meaning that the associated
definitions change based on the part being used. The part to be used can be specified in two ways;
either via an explicit #define in the source code or via a definition provided to the compiler. Using
a #define is very direct, but not very flexible. Using a definition provided to the compiler is not
as explicit (since it does not appear clearly in the source code) but is much more flexible. The real
value of the peripheral pin mapping functions is the ability to share a piece of peripheral configura-
tion/control code between projects that utilize different parts; if the part definition is provided to the
compiler instead of in the source code, each project can provide its own definition and the code will
automatically reconfigure itself based on the target part.

Since the peripheral pin mapping functions configure a single pin at a time, it may be more efficient
to use the GPIOPinType∗() functions instead of the PinType∗() functions, although this requires
explicit knowledge of the GPIO pin(s) to be used. For example, it will take four PinTypeSSI() calls
to configure the four pins on the SSI peripheral, but this could be done with a single call to GPI-
OPinTypeSSI() if the pins are all in the same GPIO module. But using GPIOPinType∗() instead of
PinType∗() results in the code no longer automatically reconfiguring itself (without the use of explicit
conditionals in the code, of course).

This driver is contained in src/pin_map.h.

15.2 API Functions

Functions
void PeripheralEnable (unsigned long ulName)
void PinTypeADC (unsigned long ulName)
void PinTypeCAN (unsigned long ulName)
void PinTypeComparator (unsigned long ulName)
void PinTypeI2C (unsigned long ulName)
void PinTypePWM (unsigned long ulName)
void PinTypeQEI (unsigned long ulName)
void PinTypeSSI (unsigned long ulName)
void PinTypeTimer (unsigned long ulName)
void PinTypeUART (unsigned long ulName)

September 29, 2008 159

Peripheral Pin Mapping

void PinTypeUSBDigital (unsigned long ulName)

15.2.1 Detailed Description

The peripheral pin mapping functions require that the part being used be specified by a define of
the PART_LM3Sxxx form. The xxx portion is replaced with the part number of the part being used;
for example, if using the LM3S6965 microcontroller, the define will be PART_LM3S6965. This must
be defined before pin_map.h is included by the source code.

15.2.2 Function Documentation

15.2.2.1 PeripheralEnable

Enables the peripheral port used by the given pin.

Prototype:
void
PeripheralEnable(unsigned long ulName)

Parameters:
ulName is one of the valid names for a pin.

Description:
This function takes one of the valid names for a pin function and enables the peripheral port for
that pin depending on the part that is defined.

Any valid pin name can be used.

See also:
SysCtlPeripheralEnable() in order to enable a single port when multiple pins are on the same
port.

Returns:
None.

15.2.2.2 PinTypeADC

Configures the specified ADC pin to function as an ADC pin.

Prototype:
void
PinTypeADC(unsigned long ulName)

Parameters:
ulName is one of the valid names for the ADC pins.

Description:
This function takes on of the valid names for an ADC pin and configures the pin for its ADC
functionality depending on the part that is defined.

160 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

The valid names for the pins are as follows: ADC0, ADC1, ADC2, ADC3, ADC4, ADC5, ADC6,
or ADC7.

See also:
GPIOPinTypeADC() in order to configure multiple ADC pins at once.

Returns:
None.

15.2.2.3 PinTypeCAN

Configures the specified CAN pin to function as a CAN pin.

Prototype:
void
PinTypeCAN(unsigned long ulName)

Parameters:
ulName is one of the valid names for the CAN pins.

Description:
This function takes one of the valid names for a CAN pin and configures the pin for its CAN
functionality depending on the part that is defined.

The valid names for the pins are as follows: CAN0RX, CAN0TX, CAN1RX, CAN1TX,
CAN2RX, or CAN2TX.

See also:
GPIOPinTypeCAN() in order to configure multiple CAN pins at once.

Returns:
None.

15.2.2.4 PinTypeComparator

Configures the specified comparator pin to function as a comparator pin.

Prototype:
void
PinTypeComparator(unsigned long ulName)

Parameters:
ulName is one of the valid names for the Comparator pins.

Description:
This function takes one of the valid names for a comparator pin and configures the pin for its
comparator functionality depending on the part that is defined.

The valid names for the pins are as follows: C0_MINUS, C0_PLUS, C1_MINUS, C1_PLUS,
C2_MINUS, or C2_PLUS.

See also:
GPIOPinTypeComparator() in order to configure multiple comparator pins at once.

September 29, 2008 161

Peripheral Pin Mapping

Returns:
None.

15.2.2.5 PinTypeI2C

Configures the specified I2C pin to function as an I2C pin.

Prototype:
void
PinTypeI2C(unsigned long ulName)

Parameters:
ulName is one of the valid names for the I2C pins.

Description:
This function takes one of the valid names for an I2C pin and configures the pin for its I2C
functionality depending on the part that is defined.

The valid names for the pins are as follows: I2C0SCL, I2C0SDA, I2C1SCL, or I2C1SDA.

See also:
GPIOPinTypeI2C() in order to configure multiple I2C pins at once.

Returns:
None.

15.2.2.6 PinTypePWM

Configures the specified PWM pin to function as a PWM pin.

Prototype:
void
PinTypePWM(unsigned long ulName)

Parameters:
ulName is one of the valid names for the PWM pins.

Description:
This function takes one of the valid names for a PWM pin and configures the pin for its PWM
functionality depending on the part that is defined.

The valid names for the pins are as follows: PWM0, PWM1, PWM2, PWM3, PWM4, PWM5, or
FAULT.

See also:
GPIOPinTypePWM() in order to configure multiple PWM pins at once.

Returns:
None.

162 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

15.2.2.7 PinTypeQEI

Configures the specified QEI pin to function as a QEI pin.

Prototype:
void
PinTypeQEI(unsigned long ulName)

Parameters:
ulName is one of the valid names for the QEI pins.

Description:
This function takes one of the valid names for a QEI pin and configures the pin for its QEI
functionality depending on the part that is defined.

The valid names for the pins are as follows: PHA0, PHB0, IDX0, PHA1, PHB1, or IDX1.

See also:
GPIOPinTypeQEI() in order to configure multiple QEI pins at once.

Returns:
None.

15.2.2.8 PinTypeSSI

Configures the specified SSI pin to function as an SSI pin.

Prototype:
void
PinTypeSSI(unsigned long ulName)

Parameters:
ulName is one of the valid names for the SSI pins.

Description:
This function takes one of the valid names for an SSI pin and configures the pin for its SSI
functionality depending on the part that is defined.

The valid names for the pins are as follows: SSI0CLK, SSI0FSS, SSI0RX, SSI0TX, SSI1CLK,
SSI1FSS, SSI1RX, or SSI1TX.

See also:
GPIOPinTypeSSI() in order to configure multiple SSI pins at once.

Returns:
None.

15.2.2.9 PinTypeTimer

Configures the specified Timer pin to function as a Timer pin.

September 29, 2008 163

Peripheral Pin Mapping

Prototype:
void
PinTypeTimer(unsigned long ulName)

Parameters:
ulName is one of the valid names for the Timer pins.

Description:
This function takes one of the valid names for a Timer pin and configures the pin for its Timer
functionality depending on the part that is defined.

The valid names for the pins are as follows: CCP0, CCP1, CCP2, CCP3, CCP4, CCP5, CCP6,
or CCP7.

See also:
GPIOPinTypeTimer() in order to configure multiple CCP pins at once.

Returns:
None.

15.2.2.10 PinTypeUART

Configures the specified UART pin to function as a UART pin.

Prototype:
void
PinTypeUART(unsigned long ulName)

Parameters:
ulName is one of the valid names for the UART pins.

Description:
This function takes one of the valid names for a UART pin and configures the pin for its UART
functionality depending on the part that is defined.

The valid names for the pins are as follows: U0RX, U0TX, U1RX, U1TX, U2RX, or U2TX.

See also:
GPIOPinTypeUART() in order to configure multiple UART pins at once.

Returns:
None.

15.2.2.11 PinTypeUSBDigital

Configures the specified USB digital pin to function as a USB pin.

Prototype:
void
PinTypeUSBDigital(unsigned long ulName)

Parameters:
ulName is one of the valid names for a USB digital pin.

164 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function takes one of the valid names for a USB digital pin and configures the pin for its
USB functionality depending on the part that is defined.

The valid names for the pins are as follows: EPEN or PFAULT.

See also:
GPIOPinTypeUSBDigital() in order to configure multiple USB pins at once.

Returns:
None.

15.3 Programming Example

This example shows the difference in code when configuring a PWM pin on two different parts in the
same application. In this case, the PWM0 pin is actually on a different GPIO port on the two parts
and requires special conditional code if the GPIOPinTypePWM() function is used directly. Instead,
if PinTypePWM() is used, then the code can remain the same and only the part definition in the
project file needs to change.

Example for PWM0 pin configuration using PinTypePWM():

...

//
// Configure the pin for use as a PWM pin.
//
PinTypePWM(PWM0);

...

Example for PWM0 pin configuration using GPIOPinTypePWM():

...

#ifdef LM3S2110
//
// Configure the pin for use as a PWM pin.
//
GPIOPinTypePWM(GPIO_PORTF_BASE, GPIO_PIN_0);

#endif
#ifdef LM3S2620

//
// Configure the pin for use as a PWM pin.
//
GPIOPinTypeTimer(GPIO_PORTG_BASE, GPIO_PIN_0);

#endif

...

September 29, 2008 165

Peripheral Pin Mapping

166 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

16 Pulse Width Modulator (PWM)
Introduction .167
API Functions . 167
Programming Example .187

16.1 Introduction

Each instance of a Stellaris PWM module provides three instances of a PWM generator block, and
an output control block. Each generator block has two PWM output signals, which can be operated
independently, or as a pair of signals with dead band delays inserted. Each generator block also
has an interrupt output and a trigger output. The control block determines the polarity of the PWM
signals, and which signals are passed through to the pins.

Some of the features of the Stellaris PWM module are:

Three generator blocks, each containing

• One 16-bit down or up/down counter
• Two comparators
• PWM generator
• Dead band generator

Control block

• PWM output enable
• Output polarity control
• Synchronization
• Fault handling
• Interrupt status

This driver is contained in src/pwm.c, with src/pwm.h containing the API definitions for use by
applications.

16.2 API Functions

Functions
void PWMDeadBandDisable (unsigned long ulBase, unsigned long ulGen)
void PWMDeadBandEnable (unsigned long ulBase, unsigned long ulGen, unsigned short us-
Rise, unsigned short usFall)
void PWMFaultIntClear (unsigned long ulBase)
void PWMFaultIntClearExt (unsigned long ulBase, unsigned long ulFaultInts)
void PWMFaultIntRegister (unsigned long ulBase, void (∗pfnIntHandler)(void))
void PWMFaultIntUnregister (unsigned long ulBase)
void PWMGenConfigure (unsigned long ulBase, unsigned long ulGen, unsigned long ulConfig)
void PWMGenDisable (unsigned long ulBase, unsigned long ulGen)

September 29, 2008 167

Pulse Width Modulator (PWM)

void PWMGenEnable (unsigned long ulBase, unsigned long ulGen)
void PWMGenFaultClear (unsigned long ulBase, unsigned long ulGen, unsigned long ulGroup,
unsigned long ulFaultTriggers)
void PWMGenFaultConfigure (unsigned long ulBase, unsigned long ulGen, unsigned long
ulMinFaultPeriod, unsigned long ulFaultSenses)
unsigned long PWMGenFaultStatus (unsigned long ulBase, unsigned long ulGen, unsigned
long ulGroup)
unsigned long PWMGenFaultTriggerGet (unsigned long ulBase, unsigned long ulGen, un-
signed long ulGroup)
void PWMGenFaultTriggerSet (unsigned long ulBase, unsigned long ulGen, unsigned long
ulGroup, unsigned long ulFaultTriggers)
void PWMGenIntClear (unsigned long ulBase, unsigned long ulGen, unsigned long ulInts)
void PWMGenIntRegister (unsigned long ulBase, unsigned long ulGen, void
(∗pfnIntHandler)(void))
unsigned long PWMGenIntStatus (unsigned long ulBase, unsigned long ulGen, tBoolean
bMasked)
void PWMGenIntTrigDisable (unsigned long ulBase, unsigned long ulGen, unsigned long ulInt-
Trig)
void PWMGenIntTrigEnable (unsigned long ulBase, unsigned long ulGen, unsigned long ulInt-
Trig)
void PWMGenIntUnregister (unsigned long ulBase, unsigned long ulGen)
unsigned long PWMGenPeriodGet (unsigned long ulBase, unsigned long ulGen)
void PWMGenPeriodSet (unsigned long ulBase, unsigned long ulGen, unsigned long ulPeriod)
void PWMIntDisable (unsigned long ulBase, unsigned long ulGenFault)
void PWMIntEnable (unsigned long ulBase, unsigned long ulGenFault)
unsigned long PWMIntStatus (unsigned long ulBase, tBoolean bMasked)
void PWMOutputFault (unsigned long ulBase, unsigned long ulPWMOutBits, tBoolean bFault-
Suppress)
void PWMOutputFaultLevel (unsigned long ulBase, unsigned long ulPWMOutBits, tBoolean
bDriveHigh)
void PWMOutputInvert (unsigned long ulBase, unsigned long ulPWMOutBits, tBoolean bIn-
vert)
void PWMOutputState (unsigned long ulBase, unsigned long ulPWMOutBits, tBoolean bEn-
able)
unsigned long PWMPulseWidthGet (unsigned long ulBase, unsigned long ulPWMOut)
void PWMPulseWidthSet (unsigned long ulBase, unsigned long ulPWMOut, unsigned long
ulWidth)
void PWMSyncTimeBase (unsigned long ulBase, unsigned long ulGenBits)
void PWMSyncUpdate (unsigned long ulBase, unsigned long ulGenBits)

16.2.1 Detailed Description

These are a group of functions for performing high-level operations on PWM modules. Although
Stellaris only has one PWM module, these functions are defined to support using multiple instances
of PWM modules.

The following functions provide the user with a way to configure the PWM for the most common
operations, such as setting the period, generating left and center aligned pulses, modifying the

168 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

pulse width, and controlling interrupts, triggers, and output characteristics. However, the PWM
module is very versatile, and it can be configured in a number of different ways, many of which are
beyond the scope of this API. In order to fully exploit the many features of the PWM module, users
are advised to use register access macros.

When discussing the various components of a PWM module, this API uses the following labeling
convention:

The three generator blocks are called Gen0, Gen1, and Gen2.

The two PWM output signals associated with each generator block are called OutA and OutB.

The six output signals are called PWM0, PWM1, PWM2, PWM3, PWM4, and PWM5.

PWM0 and PWM1 are associated with Gen0, PWM2 and PWM3 are associated with Gen1,
and PWM4 and PWM5 are associated with Gen2.

Also, as a simplifying assumption for this API, comparator A for each generator block is used exclu-
sively to adjust the pulse width of the even numbered PWM outputs (PWM0, PWM2, and PWM4).
In addition, comparator B is used exclusively for the odd numbered PWM outputs (PWM1, PWM3,
PWM5).

16.2.2 Function Documentation

16.2.2.1 PWMDeadBandDisable

Disables the PWM dead band output.

Prototype:
void
PWMDeadBandDisable(unsigned long ulBase,

unsigned long ulGen)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to modify. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.

Description:
This function disables the dead band mode for the specified PWM generator. Doing so decou-
ples the OutA and OutB signals.

Returns:
None.

16.2.2.2 PWMDeadBandEnable

Enables the PWM dead band output, and sets the dead band delays.

Prototype:
void
PWMDeadBandEnable(unsigned long ulBase,

September 29, 2008 169

Pulse Width Modulator (PWM)

unsigned long ulGen,
unsigned short usRise,
unsigned short usFall)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to modify. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.
usRise specifies the width of delay from the rising edge.
usFall specifies the width of delay from the falling edge.

Description:
This function sets the dead bands for the specified PWM generator, where the dead bands
are defined as the number of PWM clock ticks from the rising or falling edge of the generator’s
OutA signal. Note that this function causes the coupling of OutB to OutA.

Returns:
None.

16.2.2.3 PWMFaultIntClear

Clears the fault interrupt for a PWM module.

Prototype:
void
PWMFaultIntClear(unsigned long ulBase)

Parameters:
ulBase is the base address of the PWM module.

Description:
Clears the fault interrupt by writing to the appropriate bit of the interrupt status register for the
selected PWM module.

This function clears only the FAULT0 interrupt and is retained for backwards compatibility. It is
recommended that PWMFaultIntClearExt() be used instead since it supports all fault interrupts
supported on devices with and without extended PWM fault handling support.

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

170 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

16.2.2.4 PWMFaultIntClearExt

Clears the fault interrupt for a PWM module.

Prototype:
void
PWMFaultIntClearExt(unsigned long ulBase,

unsigned long ulFaultInts)

Parameters:
ulBase is the base address of the PWM module.
ulFaultInts specifies the fault interrupts to clear.

Description:
Clears one or more fault interrupts by writing to the appropriate bit of the PWM interrupt status
register. The parameter ulFaultInts must be the logical OR of any of PWM_INT_FAULT0,
PWM_INT_FAULT1, PWM_INT_FAULT2, or PWM_INT_FAULT3.

When running on a device supporting extended PWM fault handling, the fault interrupts are
derived by performing a logical OR of each of the configured fault trigger signals for a given
generator. Therefore, these interrupts are not directly related to the four possible FAULTn
inputs to the device but indicate that a fault has been signalled to one of the four possible PWM
generators. On a device without extended PWM fault handling, the interrupt is directly related
to the state of the single FAULT pin.

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several cycles before the
interrupt source is actually cleared. Therefore, it is recommended that the interrupt source be
cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

16.2.2.5 PWMFaultIntRegister

Registers an interrupt handler for a fault condition detected in a PWM module.

Prototype:
void
PWMFaultIntRegister(unsigned long ulBase,

void (*pfnIntHandler)(void))

Parameters:
ulBase is the base address of the PWM module.
pfnIntHandler is a pointer to the function to be called when the PWM fault interrupt occurs.

Description:
This function will ensure that the interrupt handler specified by pfnIntHandler is called when
a fault interrupt is detected for the selected PWM module. This function will also enable the

September 29, 2008 171

Pulse Width Modulator (PWM)

PWM fault interrupt in the NVIC; the PWM fault interrupt must also be enabled at the module
level using PWMIntEnable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

16.2.2.6 PWMFaultIntUnregister

Removes the PWM fault condition interrupt handler.

Prototype:
void
PWMFaultIntUnregister(unsigned long ulBase)

Parameters:
ulBase is the base address of the PWM module.

Description:
This function will remove the interrupt handler for a PWM fault interrupt from the selected PWM
module. This function will also disable the PWM fault interrupt in the NVIC; the PWM fault
interrupt must also be disabled at the module level using PWMIntDisable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

16.2.2.7 PWMGenConfigure

Configures a PWM generator.

Prototype:
void
PWMGenConfigure(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulConfig)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to configure. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.
ulConfig is the configuration for the PWM generator.

Description:
This function is used to set the mode of operation for a PWM generator. The counting mode,
synchronization mode, and debug behavior are all configured. After configuration, the genera-
tor is left in the disabled state.

172 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

A PWM generator can count in two different modes: count down mode or count up/down mode.
In count down mode, it will count from a value down to zero, and then reset to the preset value.
This will produce left-aligned PWM signals (that is the rising edge of the two PWM signals
produced by the generator will occur at the same time). In count up/down mode, it will count
up from zero to the preset value, count back down to zero, and then repeat the process. This
will produce center-aligned PWM signals (that is, the middle of the high/low period of the PWM
signals produced by the generator will occur at the same time).

When the PWM generator parameters (period and pulse width) are modified, their affect on
the output PWM signals can be delayed. In synchronous mode, the parameter updates are not
applied until a synchronization event occurs. This allows multiple parameters to be modified
and take affect simultaneously, instead of one at a time. Additionally, parameters to multiple
PWM generators in synchronous mode can be updated simultaneously, allowing them to be
treated as if they were a unified generator. In non-synchronous mode, the parameter updates
are not delayed until a synchronization event. In either mode, the parameter updates only
occur when the counter is at zero to help prevent oddly formed PWM signals during the update
(that is, a PWM pulse that is too short or too long).

The PWM generator can either pause or continue running when the processor is stopped via
the debugger. If configured to pause, it will continue to count until it reaches zero, at which
point it will pause until the processor is restarted. If configured to continue running, it will keep
counting as if nothing had happened.

The ulConfig parameter contains the desired configuration. It is the logical OR of the following:

PWM_GEN_MODE_DOWN or PWM_GEN_MODE_UP_DOWN to specify the counting
mode
PWM_GEN_MODE_SYNC or PWM_GEN_MODE_NO_SYNC to specify the counter load
and comparator update synchronization mode
PWM_GEN_MODE_DBG_RUN or PWM_GEN_MODE_DBG_STOP to specify the debug
behavior
PWM_GEN_MODE_GEN_NO_SYNC, PWM_GEN_MODE_GEN_SYNC_LOCAL, or
PWM_GEN_MODE_GEN_SYNC_GLOBAL to specify the update synchronization mode
for generator counting mode changes
PWM_GEN_MODE_DB_NO_SYNC, PWM_GEN_MODE_DB_SYNC_LOCAL, or
PWM_GEN_MODE_DB_SYNC_GLOBAL to specify the deadband parameter syn-
chronization mode
PWM_GEN_MODE_FAULT_LATCHED or PWM_GEN_MODE_FAULT_UNLATCHED to
specify whether fault conditions are latched or not
PWM_GEN_MODE_FAULT_MINPER or PWM_GEN_MODE_FAULT_NO_MINPER to
specify whether minimum fault period support is required
PWM_GEN_MODE_FAULT_EXT or PWM_GEN_MODE_FAULT_LEGACY to specify
whether extended fault source selection support is enabled or not

Setting PWM_GEN_MODE_FAULT_MINPER allows an application to set the minimum dura-
tion of a PWM fault signal. Fault will be signalled for at least this time even if the external fault
pin deasserts earlier. Care should be taken when using this mode since during the fault signal
period, the fault interrupt from the PWM generator will remain asserted. The fault interrupt
handler may, therefore, reenter immediately if it exits prior to expiration of the fault timer.

Note:
Changes to the counter mode will affect the period of the PWM signals produced. PWMGen-
PeriodSet() and PWMPulseWidthSet() should be called after any changes to the counter mode
of a generator.

September 29, 2008 173

Pulse Width Modulator (PWM)

Returns:
None.

16.2.2.8 PWMGenDisable

Disables the timer/counter for a PWM generator block.

Prototype:
void
PWMGenDisable(unsigned long ulBase,

unsigned long ulGen)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to be disabled. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.

Description:
This function blocks the PWM clock from driving the timer/counter for the specified generator
block.

Returns:
None.

16.2.2.9 PWMGenEnable

Enables the timer/counter for a PWM generator block.

Prototype:
void
PWMGenEnable(unsigned long ulBase,

unsigned long ulGen)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to be enabled. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.

Description:
This function allows the PWM clock to drive the timer/counter for the specified generator block.

Returns:
None.

16.2.2.10 PWMGenFaultClear

Clears one or more latched fault triggers for a given PWM generator.

174 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
PWMGenFaultClear(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulGroup,
unsigned long ulFaultTriggers)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator whose fault trigger states are being queried. Must be one of

PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ulGroup indicates the subset of faults that are being queried. This must be

PWM_FAULT_GROUP_0.
ulFaultTriggers is the set of fault triggers which are to be cleared.

Description:
This function allows an application to clear the fault triggers for a given PWM genera-
tor. This is only required if PWMGenConfigure() has previously been called with flag
PWM_GEN_MODE_LATCH_FAULT in parameter ulConfig.

Note:
This function is only available on devices supporting extended PWM fault handling.

Returns:
None.

16.2.2.11 PWMGenFaultConfigure

Configures the minimum fault period and fault pin senses for a given PWM generator.

Prototype:
void
PWMGenFaultConfigure(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulMinFaultPeriod,
unsigned long ulFaultSenses)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator whose fault configuration is being set. Must be one of

PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ulMinFaultPeriod is the minimum fault active period expressed in PWM clock cycles.
ulFaultSenses indicates which sense of each FAULT input should be considered the “as-

serted” state. Valid values are logical OR combinations of PWM_FAULTn_SENSE_HIGH
and PWM_FAULTn_SENSE_LOW.

Description:
This function sets the minimum fault period for a given generator along with the sense of each
of the 4 possible fault inputs. The minimum fault period is expressed in PWM clock cycles and
takes effect only if PWMGenConfigure() is called with flag PWM_GEN_MODE_FAULT_PER
set in the ulConfig parameter. When a fault input is asserted, the minimum fault period timer
ensures that it remains asserted for at least the number of clock cycles specified.

September 29, 2008 175

Pulse Width Modulator (PWM)

Note:
This function is only available on devices supporting extended PWM fault handling.

Returns:
None.

16.2.2.12 PWMGenFaultStatus

Returns the current state of the fault triggers for a given PWM generator.

Prototype:
unsigned long
PWMGenFaultStatus(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulGroup)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator whose fault trigger states are being queried. Must be one of

PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ulGroup indicates the subset of faults that are being queried. This must be

PWM_FAULT_GROUP_0.

Description:
This function allows an application to query the current state of each of the fault trigger inputs
to a given PWM generator. The current state of each fault trigger input is returned unless
PWMGenConfigure() has previously been called with flag PWM_GEN_MODE_LATCH_FAULT
in the ulConfig parameter in which case the returned status is the latched fault trigger status.

If latched faults are configured, the application must call PWMGenFaultClear() to clear each
trigger.

Note:
This function is only available on devices supporting extended PWM fault handling.

Returns:
Returns the current state of the fault triggers for the given PWM generator. A set bit indicates
that the associated trigger is active. For PWM_FAULT_GROUP_0, the returned value will
be a logical OR of PWM_FAULT_FAULT0, PWM_FAULT_FAULT1, PWM_FAULT_FAULT2, or
PWM_FAULT_FAULT3.

16.2.2.13 PWMGenFaultTriggerGet

Returns the set of fault triggers currently configured for a given PWM generator.

Prototype:
unsigned long
PWMGenFaultTriggerGet(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulGroup)

176 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator whose fault triggers are being queried. Must be one of

PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ulGroup indicates the subset of faults that are being queried. This must be

PWM_FAULT_GROUP_0.

Description:
This function allows an application to query the current set of inputs that contribute towards the
generation of a fault condition to a given PWM generator.

Note:
This function is only available on devices supporting extended PWM fault handling.

Returns:
Returns the current fault triggers configured for the fault group provided. For
PWM_FAULT_GROUP_0, the returned value will be a logical OR of PWM_FAULT_FAULT0,
PWM_FAULT_FAULT1, PWM_FAULT_FAULT2, or PWM_FAULT_FAULT3.

16.2.2.14 PWMGenFaultTriggerSet

Configures the set of fault triggers for a given PWM generator.

Prototype:
void
PWMGenFaultTriggerSet(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulGroup,
unsigned long ulFaultTriggers)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator whose fault triggers are being set. Must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ulGroup indicates the subset of possible faults that are to be configured. This must be

PWM_FAULT_GROUP_0.
ulFaultTriggers defines the set of inputs that are to contribute towards generation of the

fault signal to the given PWM generator. For PWM_FAULT_GROUP_0, this will be the
logical OR of PWM_FAULT_FAULT0, PWM_FAULT_FAULT1, PWM_FAULT_FAULT2, or
PWM_FAULT_FAULT3.

Description:
This function allows selection of the set of fault inputs that will be combined to generate a fault
condition to a given PWM generator. By default, all generators use only FAULT0 (for backwards
compatibility) but if PWMGenConfigure() is called with flag PWM_GEN_MODE_FAULT_SRC
in the ulConfig parameter, extended fault handling is enabled and this function must be called
to configure the fault triggers.

The fault signal to the PWM generator is generated by ORing together each of the signals
whose inputs are specified in the ulFaultTriggers parameter after having adjusted the sense of
each FAULTn input based on the configuration previously set using a call to PWMGenFault-
Configure().

September 29, 2008 177

Pulse Width Modulator (PWM)

Note:
This function is only available on devices supporting extended PWM fault handling.

Returns:
None.

16.2.2.15 PWMGenIntClear

Clears the specified interrupt(s) for the specified PWM generator block.

Prototype:
void
PWMGenIntClear(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulInts)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to query. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.
ulInts specifies the interrupts to be cleared.

Description:
Clears the specified interrupt(s) by writing a 1 to the specified bits of the interrupt sta-
tus register for the specified PWM generator. The ulInts parameter is the logical OR of
PWM_INT_CNT_ZERO, PWM_INT_CNT_LOAD, PWM_INT_CNT_AU, PWM_INT_CNT_AD,
PWM_INT_CNT_BU, or PWM_INT_CNT_BD.

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

16.2.2.16 PWMGenIntRegister

Registers an interrupt handler for the specified PWM generator block.

Prototype:
void
PWMGenIntRegister(unsigned long ulBase,

unsigned long ulGen,
void (*pfnIntHandler)(void))

Parameters:
ulBase is the base address of the PWM module.

178 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

ulGen is the PWM generator in question. Must be one of PWM_GEN_0, PWM_GEN_1,
PWM_GEN_2, or PWM_GEN_3.

pfnIntHandler is a pointer to the function to be called when the PWM generator interrupt
occurs.

Description:
This function will ensure that the interrupt handler specified by pfnIntHandler is called when
an interrupt is detected for the specified PWM generator block. This function will also en-
able the corresponding PWM generator interrupt in the interrupt controller; individual generator
interrupts and interrupt sources must be enabled with PWMIntEnable() and PWMGenIntTri-
gEnable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

16.2.2.17 PWMGenIntStatus

Gets interrupt status for the specified PWM generator block.

Prototype:
unsigned long
PWMGenIntStatus(unsigned long ulBase,

unsigned long ulGen,
tBoolean bMasked)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to query. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.
bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status will be returned.

Returns:
Returns the contents of the interrupt status register, or the contents of the raw interrupt status
register, for the specified PWM generator.

16.2.2.18 PWMGenIntTrigDisable

Disables interrupts for the specified PWM generator block.

Prototype:
void
PWMGenIntTrigDisable(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulIntTrig)

September 29, 2008 179

Pulse Width Modulator (PWM)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to have interrupts and triggers disabled. Must be one of

PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ulIntTrig specifies the interrupts and triggers to be disabled.

Description:
Masks the specified interrupt(s) and trigger(s) by clearing the specified bits of the in-
terrupt/trigger enable register for the specified PWM generator. The ulIntTrig parameter
is the logical OR of PWM_INT_CNT_ZERO, PWM_INT_CNT_LOAD, PWM_INT_CNT_AU,
PWM_INT_CNT_AD, PWM_INT_CNT_BU, PWM_INT_CNT_BD, PWM_TR_CNT_ZERO,
PWM_TR_CNT_LOAD, PWM_TR_CNT_AU, PWM_TR_CNT_AD, PWM_TR_CNT_BU, or
PWM_TR_CNT_BD.

Returns:
None.

16.2.2.19 PWMGenIntTrigEnable

Enables interrupts and triggers for the specified PWM generator block.

Prototype:
void
PWMGenIntTrigEnable(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulIntTrig)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to have interrupts and triggers enabled. Must be one of

PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ulIntTrig specifies the interrupts and triggers to be enabled.

Description:
Unmasks the specified interrupt(s) and trigger(s) by setting the specified bits of the in-
terrupt/trigger enable register for the specified PWM generator. The ulIntTrig parameter
is the logical OR of PWM_INT_CNT_ZERO, PWM_INT_CNT_LOAD, PWM_INT_CNT_AU,
PWM_INT_CNT_AD, PWM_INT_CNT_BU, PWM_INT_CNT_BD, PWM_TR_CNT_ZERO,
PWM_TR_CNT_LOAD, PWM_TR_CNT_AU, PWM_TR_CNT_AD, PWM_TR_CNT_BU, or
PWM_TR_CNT_BD.

Returns:
None.

16.2.2.20 PWMGenIntUnregister

Removes an interrupt handler for the specified PWM generator block.

180 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
PWMGenIntUnregister(unsigned long ulBase,

unsigned long ulGen)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator in question. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.

Description:
This function will unregister the interrupt handler for the specified PWM generator block. This
function will also disable the corresponding PWM generator interrupt in the interrupt controller;
individual generator interrupts and interrupt sources must be disabled with PWMIntDisable()
and PWMGenIntTrigDisable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

16.2.2.21 PWMGenPeriodGet

Gets the period of a PWM generator block.

Prototype:
unsigned long
PWMGenPeriodGet(unsigned long ulBase,

unsigned long ulGen)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to query. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.

Description:
This function gets the period of the specified PWM generator block. The period of the generator
block is defined as the number of PWM clock ticks between pulses on the generator block zero
signal.

If the update of the counter for the specified PWM generator has yet to be completed, the
value returned may not be the active period. The value returned is the programmed period,
measured in PWM clock ticks.

Returns:
Returns the programmed period of the specified generator block in PWM clock ticks.

16.2.2.22 PWMGenPeriodSet

Set the period of a PWM generator.

September 29, 2008 181

Pulse Width Modulator (PWM)

Prototype:
void
PWMGenPeriodSet(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulPeriod)

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to be modified. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.
ulPeriod specifies the period of PWM generator output, measured in clock ticks.

Description:
This function sets the period of the specified PWM generator block, where the period of the
generator block is defined as the number of PWM clock ticks between pulses on the generator
block zero signal.

Note:
Any subsequent calls made to this function before an update occurs will cause the previous
values to be overwritten.

Returns:
None.

16.2.2.23 PWMIntDisable

Disables generator and fault interrupts for a PWM module.

Prototype:
void
PWMIntDisable(unsigned long ulBase,

unsigned long ulGenFault)

Parameters:
ulBase is the base address of the PWM module.
ulGenFault contains the interrupts to be disabled. Must be a logical OR of any

of PWM_INT_GEN_0, PWM_INT_GEN_1, PWM_INT_GEN_2, PWM_INT_GEN_3,
PWM_INT_FAULT0, PWM_INT_FAULT1, PWM_INT_FAULT2, or PWM_INT_FAULT3.

Description:
Masks the specified interrupt(s) by clearing the specified bits of the interrupt enable register for
the selected PWM module.

Returns:
None.

16.2.2.24 PWMIntEnable

Enables generator and fault interrupts for a PWM module.

182 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
PWMIntEnable(unsigned long ulBase,

unsigned long ulGenFault)

Parameters:
ulBase is the base address of the PWM module.
ulGenFault contains the interrupts to be enabled. Must be a logical OR of any

of PWM_INT_GEN_0, PWM_INT_GEN_1, PWM_INT_GEN_2, PWM_INT_GEN_3,
PWM_INT_FAULT0, PWM_INT_FAULT1, PWM_INT_FAULT2, or PWM_INT_FAULT3.

Description:
Unmasks the specified interrupt(s) by setting the specified bits of the interrupt enable register
for the selected PWM module.

Returns:
None.

16.2.2.25 PWMIntStatus

Gets the interrupt status for a PWM module.

Prototype:
unsigned long
PWMIntStatus(unsigned long ulBase,

tBoolean bMasked)

Parameters:
ulBase is the base address of the PWM module.
bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status will be returned.

Returns:
The current interrupt status, enumerated as a bit field of PWM_INT_GEN_0,
PWM_INT_GEN_1, PWM_INT_GEN_2, PWM_INT_GEN_3, PWM_INT_FAULT0,
PWM_INT_FAULT1, PWM_INT_FAULT2, and PWM_INT_FAULT3.

16.2.2.26 PWMOutputFault

Specifies the state of PWM outputs in response to a fault condition.

Prototype:
void
PWMOutputFault(unsigned long ulBase,

unsigned long ulPWMOutBits,
tBoolean bFaultSuppress)

Parameters:
ulBase is the base address of the PWM module.

September 29, 2008 183

Pulse Width Modulator (PWM)

ulPWMOutBits are the PWM outputs to be modified. Must be the logical OR of
any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bFaultSuppress determines if the signal is suppressed or passed through during an active
fault condition.

Description:
This function sets the fault handling characteristics of the selected PWM outputs. The outputs
are selected using the parameter ulPWMOutBits. The parameter bFaultSuppress determines
the fault handling characteristics for the selected outputs. If bFaultSuppress is true, then the
selected outputs will be made inactive. If bFaultSuppress is false, then the selected outputs
are unaffected by the detected fault.

On devices supporting extended PWM fault handling, the state the affected output pins are
driven to can be configured with PWMOutputFaultLevel(). If not configured, or if the device
does not support extended PWM fault handling, affected outputs will be driven low on a fault
condition.

Returns:
None.

16.2.2.27 PWMOutputFaultLevel

Specifies the level of PWM outputs suppressed in response to a fault condition.

Prototype:
void
PWMOutputFaultLevel(unsigned long ulBase,

unsigned long ulPWMOutBits,
tBoolean bDriveHigh)

Parameters:
ulBase is the base address of the PWM module.
ulPWMOutBits are the PWM outputs to be modified. Must be the logical OR of

any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bDriveHigh determines if the signal is driven high or low during an active fault condition.

Description:
This function determines whether a PWM output pin that is suppressed in response to a fault
condition will be driven high or low. The affected outputs are selected using the parameter
ulPWMOutBits. The parameter bDriveHigh determines the output level for the pins identified
by ulPWMOutBits. If bDriveHigh is true then the selected outputs will be driven high when a
fault is detected. If it is false, the pins will be driven low.

In a fault condition, pins which have not been configured to be suppressed via a call to PW-
MOutputFault() are unaffected by this function.

Note:
This function is available only on devices which support extended PWM fault handling.

Returns:
None.

184 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

16.2.2.28 PWMOutputInvert

Selects the inversion mode for PWM outputs.

Prototype:
void
PWMOutputInvert(unsigned long ulBase,

unsigned long ulPWMOutBits,
tBoolean bInvert)

Parameters:
ulBase is the base address of the PWM module.
ulPWMOutBits are the PWM outputs to be modified. Must be the logical OR of

any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bInvert determines if the signal is inverted or passed through.

Description:
This function is used to select the inversion mode for the selected PWM outputs. The outputs
are selected using the parameter ulPWMOutBits. The parameter bInvert determines the in-
version mode for the selected outputs. If bInvert is true, this function will cause the specified
PWM output signals to be inverted, or made active low. If bInvert is false, the specified output
will be passed through as is, or be made active high.

Returns:
None.

16.2.2.29 PWMOutputState

Enables or disables PWM outputs.

Prototype:
void
PWMOutputState(unsigned long ulBase,

unsigned long ulPWMOutBits,
tBoolean bEnable)

Parameters:
ulBase is the base address of the PWM module.
ulPWMOutBits are the PWM outputs to be modified. Must be the logical OR of

any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bEnable determines if the signal is enabled or disabled.

Description:
This function is used to enable or disable the selected PWM outputs. The outputs are selected
using the parameter ulPWMOutBits. The parameter bEnable determines the state of the se-
lected outputs. If bEnable is true, then the selected PWM outputs are enabled, or placed in
the active state. If bEnable is false, then the selected outputs are disabled, or placed in the
inactive state.

Returns:
None.

September 29, 2008 185

Pulse Width Modulator (PWM)

16.2.2.30 PWMPulseWidthGet

Gets the pulse width of a PWM output.

Prototype:
unsigned long
PWMPulseWidthGet(unsigned long ulBase,

unsigned long ulPWMOut)

Parameters:
ulBase is the base address of the PWM module.
ulPWMOut is the PWM output to query. Must be one of PWM_OUT_0, PWM_OUT_1,

PWM_OUT_2, PWM_OUT_3, PWM_OUT_4, PWM_OUT_5, PWM_OUT_6, or
PWM_OUT_7.

Description:
This function gets the currently programmed pulse width for the specified PWM output. If the
update of the comparator for the specified output has yet to be completed, the value returned
may not be the active pulse width. The value returned is the programmed pulse width, mea-
sured in PWM clock ticks.

Returns:
Returns the width of the pulse in PWM clock ticks.

16.2.2.31 PWMPulseWidthSet

Sets the pulse width for the specified PWM output.

Prototype:
void
PWMPulseWidthSet(unsigned long ulBase,

unsigned long ulPWMOut,
unsigned long ulWidth)

Parameters:
ulBase is the base address of the PWM module.
ulPWMOut is the PWM output to modify. Must be one of PWM_OUT_0, PWM_OUT_1,

PWM_OUT_2, PWM_OUT_3, PWM_OUT_4, PWM_OUT_5, PWM_OUT_6, or
PWM_OUT_7.

ulWidth specifies the width of the positive portion of the pulse.

Description:
This function sets the pulse width for the specified PWM output, where the pulse width is
defined as the number of PWM clock ticks.

Note:
Any subsequent calls made to this function before an update occurs will cause the previous
values to be overwritten.

Returns:
None.

186 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

16.2.2.32 PWMSyncTimeBase

Synchronizes the counters in one or multiple PWM generator blocks.

Prototype:
void
PWMSyncTimeBase(unsigned long ulBase,

unsigned long ulGenBits)

Parameters:
ulBase is the base address of the PWM module.
ulGenBits are the PWM generator blocks to be synchronized. Must be the logical OR of any

of PWM_GEN_0_BIT, PWM_GEN_1_BIT, PWM_GEN_2_BIT, or PWM_GEN_3_BIT.

Description:
For the selected PWM module, this function synchronizes the time base of the generator blocks
by causing the specified generator counters to be reset to zero.

Returns:
None.

16.2.2.33 PWMSyncUpdate

Synchronizes all pending updates.

Prototype:
void
PWMSyncUpdate(unsigned long ulBase,

unsigned long ulGenBits)

Parameters:
ulBase is the base address of the PWM module.
ulGenBits are the PWM generator blocks to be updated. Must be the logical OR of any of

PWM_GEN_0_BIT, PWM_GEN_1_BIT, PWM_GEN_2_BIT, or PWM_GEN_3_BIT.

Description:
For the selected PWM generators, this function causes all queued updates to the period or
pulse width to be applied the next time the corresponding counter becomes zero.

Returns:
None.

16.3 Programming Example

The following example shows how to use the PWM API to initialize the PWM0 with a 50 KHz
frequency, and with a 25% duty cycle on PWM0 and a 75% duty cycle on PWM1.

//
// Configure the PWM generator for count down mode with immediate updates
// to the parameters.

September 29, 2008 187

Pulse Width Modulator (PWM)

//
PWMGenConfigure(PWM_BASE, PWM_GEN_0,

PWM_GEN_MODE_DOWN | PWM_GEN_MODE_NO_SYNC);

//
// Set the period. For a 50 KHz frequency, the period = 1/50,000, or 20
// microseconds. For a 20 MHz clock, this translates to 400 clock ticks.
// Use this value to set the period.
//
PWMGenPeriodSet(PWM_BASE, PWM_GEN_0, 400);

//
// Set the pulse width of PWM0 for a 25% duty cycle.
//
PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, 100);

//
// Set the pulse width of PWM1 for a 75% duty cycle.
//
PWMPulseWidthSet(PWM_BASE, PWM_OUT_1, 300);

//
// Start the timers in generator 0.
//
PWMGenEnable(PWM_BASE, PWM_GEN_0);

//
// Enable the outputs.
//
PWMOutputState(PWM_BASE, (PWM_OUT_0_BIT | PWM_OUT_1_BIT), true);

188 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

17 Quadrature Encoder (QEI)
Introduction .189
API Functions . 190
Programming Example .198

17.1 Introduction

The quadrature encoder API provides a set of functions for dealing with the Quadrature Encoder
with Index (QEI). Functions are provided to configure and read the position and velocity captures,
register a QEI interrupt handler, and handle QEI interrupt masking/clearing.

The quadrature encoder module provides hardware encoding of the two channels and the index
signal from a quadrature encoder device into an absolute or relative position. There is additional
hardware for capturing a measure of the encoder velocity, which is simply a count of encoder pulses
during a fixed time period; the number of pulses is directly proportional to the encoder speed. Note
that the velocity capture can only operate when the position capture is enabled.

The QEI module supports two modes of operation: phase mode and clock/direction mode. In phase
mode, the encoder produces two clocks that are 90 degrees out of phase; the edge relationship is
used to determine the direction of rotation. In clock/direction mode, the encoder produces a clock
signal to indicate steps and a direction signal to indicate the direction of rotation.

When in phase mode, edges on the first channel or edges on both channels can be counted;
counting edges on both channels provides higher encoder resolution if required. In either mode,
the input signals can be swapped before being processed; this allows wiring mistakes on the circuit
board to be corrected without modifying the board.

The index pulse can be used to reset the position counter; this causes the position counter to
maintain the absolute encoder position. Otherwise, the position counter maintains the relative
position and is never reset.

The velocity capture has a timer to measure equal periods of time. The number of encoder pulses
over each time period is accumulated as a measure of the encoder velocity. The running total for
the current time period and the final count for the previous time period are available to be read. The
final count for the previous time period is usually used as the velocity measure.

The QEI module will generate interrupts when the index pulse is detected, when the velocity timer
expires, when the encoder direction changes, and when a phase signal error is detected. These
interrupt sources can be individually masked so that only the events of interest cause a processor
interrupt.

This driver is contained in src/qei.c, with src/qei.h containing the API definitions for use by
applications.

September 29, 2008 189

Quadrature Encoder (QEI)

17.2 API Functions

Functions
void QEIConfigure (unsigned long ulBase, unsigned long ulConfig, unsigned long ulMaxPosi-
tion)
long QEIDirectionGet (unsigned long ulBase)
void QEIDisable (unsigned long ulBase)
void QEIEnable (unsigned long ulBase)
tBoolean QEIErrorGet (unsigned long ulBase)
void QEIIntClear (unsigned long ulBase, unsigned long ulIntFlags)
void QEIIntDisable (unsigned long ulBase, unsigned long ulIntFlags)
void QEIIntEnable (unsigned long ulBase, unsigned long ulIntFlags)
void QEIIntRegister (unsigned long ulBase, void (∗pfnHandler)(void))
unsigned long QEIIntStatus (unsigned long ulBase, tBoolean bMasked)
void QEIIntUnregister (unsigned long ulBase)
unsigned long QEIPositionGet (unsigned long ulBase)
void QEIPositionSet (unsigned long ulBase, unsigned long ulPosition)
void QEIVelocityConfigure (unsigned long ulBase, unsigned long ulPreDiv, unsigned long
ulPeriod)
void QEIVelocityDisable (unsigned long ulBase)
void QEIVelocityEnable (unsigned long ulBase)
unsigned long QEIVelocityGet (unsigned long ulBase)

17.2.1 Detailed Description

The quadrature encoder API is broken into three groups of functions: those that deal with position
capture, those that deal with velocity capture, and those that deal with interrupt handling.

The position capture is managed with QEIEnable(), QEIDisable(),QEIConfigure(), and QEIPosi-
tionSet(). The positional information is retrieved with QEIPositionGet(), QEIDirectionGet(), and
QEIErrorGet().

The velocity capture is managed with QEIVelocityEnable(), QEIVelocityDisable(), and QEIVelocity-
Configure(). The computed encoder velocity is retrieved with QEIVelocityGet().

The interrupt handler for the QEI interrupt is managed with QEIIntRegister() and QEIIntUnregis-
ter(). The individual interrupt sources within the QEI module are managed with QEIIntEnable(),
QEIIntDisable(), QEIIntStatus(), and QEIIntClear().

17.2.2 Function Documentation

17.2.2.1 QEIConfigure

Configures the quadrature encoder.

190 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
QEIConfigure(unsigned long ulBase,

unsigned long ulConfig,
unsigned long ulMaxPosition)

Parameters:
ulBase is the base address of the quadrature encoder module.
ulConfig is the configuration for the quadrature encoder. See below for a description of this

parameter.
ulMaxPosition specifies the maximum position value.

Description:
This will configure the operation of the quadrature encoder. The ulConfig parameter provides
the configuration of the encoder and is the logical OR of several values:

QEI_CONFIG_CAPTURE_A or QEI_CONFIG_CAPTURE_A_B to specify if edges on
channel A or on both channels A and B should be counted by the position integrator and
velocity accumulator.
QEI_CONFIG_NO_RESET or QEI_CONFIG_RESET_IDX to specify if the position inte-
grator should be reset when the index pulse is detected.
QEI_CONFIG_QUADRATURE or QEI_CONFIG_CLOCK_DIR to specify if quadrature sig-
nals are being provided on ChA and ChB, or if a direction signal and a clock are being
provided instead.
QEI_CONFIG_NO_SWAP or QEI_CONFIG_SWAP to specify if the signals provided on
ChA and ChB should be swapped before being processed.

ulMaxPosition is the maximum value of the position integrator, and is the value used to reset
the position capture when in index reset mode and moving in the reverse (negative) direction.

Returns:
None.

17.2.2.2 QEIDirectionGet

Gets the current direction of rotation.

Prototype:
long
QEIDirectionGet(unsigned long ulBase)

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This returns the current direction of rotation. In this case, current means the most recently
detected direction of the encoder; it may not be presently moving but this is the direction it last
moved before it stopped.

Returns:
Returns 1 if moving in the forward direction or -1 if moving in the reverse direction.

September 29, 2008 191

Quadrature Encoder (QEI)

17.2.2.3 QEIDisable

Disables the quadrature encoder.

Prototype:
void
QEIDisable(unsigned long ulBase)

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This will disable operation of the quadrature encoder module.

Returns:
None.

17.2.2.4 QEIEnable

Enables the quadrature encoder.

Prototype:
void
QEIEnable(unsigned long ulBase)

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This will enable operation of the quadrature encoder module. It must be configured before it is
enabled.

See also:
QEIConfigure()

Returns:
None.

17.2.2.5 QEIErrorGet

Gets the encoder error indicator.

Prototype:
tBoolean
QEIErrorGet(unsigned long ulBase)

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This returns the error indicator for the quadrature encoder. It is an error for both of the signals
of the quadrature input to change at the same time.

192 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
Returns true if an error has occurred and false otherwise.

17.2.2.6 QEIIntClear

Clears quadrature encoder interrupt sources.

Prototype:
void
QEIIntClear(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the quadrature encoder module.
ulIntFlags is a bit mask of the interrupt sources to be cleared. Can be any of the

QEI_INTERROR, QEI_INTDIR, QEI_INTTIMER, or QEI_INTINDEX values.

Description:
The specified quadrature encoder interrupt sources are cleared, so that they no longer assert.
This must be done in the interrupt handler to keep it from being called again immediately upon
exit.

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

17.2.2.7 QEIIntDisable

Disables individual quadrature encoder interrupt sources.

Prototype:
void
QEIIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the quadrature encoder module.
ulIntFlags is a bit mask of the interrupt sources to be disabled. Can be any of the

QEI_INTERROR, QEI_INTDIR, QEI_INTTIMER, or QEI_INTINDEX values.

Description:
Disables the indicated quadrature encoder interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

September 29, 2008 193

Quadrature Encoder (QEI)

Returns:
None.

17.2.2.8 QEIIntEnable

Enables individual quadrature encoder interrupt sources.

Prototype:
void
QEIIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the quadrature encoder module.
ulIntFlags is a bit mask of the interrupt sources to be enabled. Can be any of the

QEI_INTERROR, QEI_INTDIR, QEI_INTTIMER, or QEI_INTINDEX values.

Description:
Enables the indicated quadrature encoder interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns:
None.

17.2.2.9 QEIIntRegister

Registers an interrupt handler for the quadrature encoder interrupt.

Prototype:
void
QEIIntRegister(unsigned long ulBase,

void (*pfnHandler)(void))

Parameters:
ulBase is the base address of the quadrature encoder module.
pfnHandler is a pointer to the function to be called when the quadrature encoder interrupt

occurs.

Description:
This sets the handler to be called when a quadrature encoder interrupt occurs. This will enable
the global interrupt in the interrupt controller; specific quadrature encoder interrupts must be
enabled via QEIIntEnable(). It is the interrupt handler’s responsibility to clear the interrupt
source via QEIIntClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

194 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

17.2.2.10 QEIIntStatus

Gets the current interrupt status.

Prototype:
unsigned long
QEIIntStatus(unsigned long ulBase,

tBoolean bMasked)

Parameters:
ulBase is the base address of the quadrature encoder module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the quadrature encoder module. Either the raw interrupt
status or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, enumerated as a bit field of QEI_INTERROR,
QEI_INTDIR, QEI_INTTIMER, and QEI_INTINDEX.

17.2.2.11 QEIIntUnregister

Unregisters an interrupt handler for the quadrature encoder interrupt.

Prototype:
void
QEIIntUnregister(unsigned long ulBase)

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This function will clear the handler to be called when a quadrature encoder interrupt occurs.
This will also mask off the interrupt in the interrupt controller so that the interrupt handler no
longer is called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

17.2.2.12 QEIPositionGet

Gets the current encoder position.

Prototype:
unsigned long
QEIPositionGet(unsigned long ulBase)

September 29, 2008 195

Quadrature Encoder (QEI)

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This returns the current position of the encoder. Depending upon the configuration of the
encoder, and the incident of an index pulse, this value may or may not contain the expected
data (that is, if in reset on index mode, if an index pulse has not been encountered, the position
counter will not be aligned with the index pulse yet).

Returns:
The current position of the encoder.

17.2.2.13 QEIPositionSet

Sets the current encoder position.

Prototype:
void
QEIPositionSet(unsigned long ulBase,

unsigned long ulPosition)

Parameters:
ulBase is the base address of the quadrature encoder module.
ulPosition is the new position for the encoder.

Description:
This sets the current position of the encoder; the encoder position will then be measured
relative to this value.

Returns:
None.

17.2.2.14 QEIVelocityConfigure

Configures the velocity capture.

Prototype:
void
QEIVelocityConfigure(unsigned long ulBase,

unsigned long ulPreDiv,
unsigned long ulPeriod)

Parameters:
ulBase is the base address of the quadrature encoder module.
ulPreDiv specifies the predivider applied to the input quadrature signal before it is counted;

can be one of QEI_VELDIV_1, QEI_VELDIV_2, QEI_VELDIV_4, QEI_VELDIV_8,
QEI_VELDIV_16, QEI_VELDIV_32, QEI_VELDIV_64, or QEI_VELDIV_128.

ulPeriod specifies the number of clock ticks over which to measure the velocity; must be non-
zero.

196 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This will configure the operation of the velocity capture portion of the quadrature encoder. The
position increment signal is predivided as specified by ulPreDiv before being accumulated by
the velocity capture. The divided signal is accumulated over ulPeriod system clock before
being saved and resetting the accumulator.

Returns:
None.

17.2.2.15 QEIVelocityDisable

Disables the velocity capture.

Prototype:
void
QEIVelocityDisable(unsigned long ulBase)

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This will disable operation of the velocity capture in the quadrature encoder module.

Returns:
None.

17.2.2.16 QEIVelocityEnable

Enables the velocity capture.

Prototype:
void
QEIVelocityEnable(unsigned long ulBase)

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This will enable operation of the velocity capture in the quadrature encoder module. It must be
configured before it is enabled. Velocity capture will not occur if the quadrature encoder is not
enabled.

See also:
QEIVelocityConfigure() and QEIEnable()

Returns:
None.

September 29, 2008 197

Quadrature Encoder (QEI)

17.2.2.17 QEIVelocityGet

Gets the current encoder speed.

Prototype:
unsigned long
QEIVelocityGet(unsigned long ulBase)

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This returns the current speed of the encoder. The value returned is the number of pulses
detected in the specified time period; this number can be multiplied by the number of time
periods per second and divided by the number of pulses per revolution to obtain the number of
revolutions per second.

Returns:
Returns the number of pulses captured in the given time period.

17.3 Programming Example

The following example shows how to use the Quadrature Encoder API to configure the quadrature
encoder read back an absolute position.

//
// Configure the quadrature encoder to capture edges on both signals and
// maintain an absolute position by resetting on index pulses. Using a
// 1000 line encoder at four edges per line, there are 4000 pulses per
// revolution; therefore set the maximum position to 3999 since the count
// is zero based.
//
QEIConfigure(QEI_BASE, (QEI_CONFIG_CAPTURE_A_B | QEI_CONFIG_RESET_IDX |

QEI_CONFIG_QUADRATURE | QEI_CONFIG_NO_SWAP), 3999);

//
// Enable the quadrature encoder.
//
QEIEnable(QEI_BASE);

//
// Delay for some time...
//

//
// Read the encoder position.
//
QEIPositionGet(QEI_BASE);

198 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

18 Synchronous Serial Interface (SSI)
Introduction .199
API Functions . 199
Programming Example .208

18.1 Introduction

The Synchronous Serial Interface (SSI) module provides the functionality for synchronous serial
communications with peripheral devices, and can be configured to use either the Motorola® SPI™,
National Semiconductor® Microwire, or the Texas Instruments® synchronous serial interface
frame formats. The size of the data frame is also configurable, and can be set to be between 4
and 16 bits, inclusive.

The SSI module performs serial-to-parallel data conversion on data received from a peripheral
device, and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX
paths are buffered with internal FIFOs allowing up to eight 16-bit values to be stored independently.

The SSI module can be configured as either a master or a slave device. As a slave device, the SSI
module can also be configured to disable its output, which allows a master device to be coupled
with multiple slave devices.

The SSI module also includes a programmable bit rate clock divider and prescaler to generate the
output serial clock derived from the SSI module’s input clock. Bit rates are generated based on the
input clock and the maximum bit rate supported by the connected peripheral.

For parts that include a DMA controller, the SSI module also provides a DMA interface to facilitate
data transfer via DMA.

This driver is contained in src/ssi.c, with src/ssi.h containing the API definitions for use by
applications.

18.2 API Functions

Functions
void SSIConfigSetExpClk (unsigned long ulBase, unsigned long ulSSIClk, unsigned long ul-
Protocol, unsigned long ulMode, unsigned long ulBitRate, unsigned long ulDataWidth)
void SSIDataGet (unsigned long ulBase, unsigned long ∗pulData)
long SSIDataGetNonBlocking (unsigned long ulBase, unsigned long ∗pulData)
void SSIDataPut (unsigned long ulBase, unsigned long ulData)
long SSIDataPutNonBlocking (unsigned long ulBase, unsigned long ulData)
void SSIDisable (unsigned long ulBase)
void SSIDMADisable (unsigned long ulBase, unsigned long ulDMAFlags)
void SSIDMAEnable (unsigned long ulBase, unsigned long ulDMAFlags)
void SSIEnable (unsigned long ulBase)
void SSIIntClear (unsigned long ulBase, unsigned long ulIntFlags)
void SSIIntDisable (unsigned long ulBase, unsigned long ulIntFlags)

September 29, 2008 199

Synchronous Serial Interface (SSI)

void SSIIntEnable (unsigned long ulBase, unsigned long ulIntFlags)
void SSIIntRegister (unsigned long ulBase, void (∗pfnHandler)(void))
unsigned long SSIIntStatus (unsigned long ulBase, tBoolean bMasked)
void SSIIntUnregister (unsigned long ulBase)

18.2.1 Detailed Description

The SSI API is broken into 3 groups of functions: those that deal with configuration and state, those
that handle data, and those that manage interrupts.

The configuration of the SSI module is managed by the SSIConfigSetExpClk() function, while state
is managed by the SSIEnable() and SSIDisable() functions. The DMA interface is enabled or dis-
abled by the SSIDMAEnable() and SSIDMADisable() functions.

Data handling is performed by the SSIDataPut(), SSIDataPutNonBlocking(), SSIDataGet(), and
SSIDataGetNonBlocking() functions.

Interrupts from the SSI module are managed using the SSIIntClear(), SSIIntDisable(), SSIIntEn-
able(), SSIIntRegister(), SSIIntStatus(), and SSIIntUnregister() functions.

The SSIConfig(), SSIDataNonBlockingGet(), and SSIDataNonBlockingPut() APIs from previous
versions of the peripheral driver library have been replaced by the SSIConfigSetExpClk(), SSI-
DataGetNonBlocking(), and SSIDataPutNonBlocking() APIs. Macros have been provided in ssi.h
to map the old APIs to the new APIs, allowing existing applications to link and run with the new
APIs. It is recommended that new applications utilize the new APIs in favor of the old ones.

18.2.2 Function Documentation

18.2.2.1 SSIConfigSetExpClk

Configures the synchronous serial interface.

Prototype:
void
SSIConfigSetExpClk(unsigned long ulBase,

unsigned long ulSSIClk,
unsigned long ulProtocol,
unsigned long ulMode,
unsigned long ulBitRate,
unsigned long ulDataWidth)

Parameters:
ulBase specifies the SSI module base address.
ulSSIClk is the rate of the clock supplied to the SSI module.
ulProtocol specifies the data transfer protocol.
ulMode specifies the mode of operation.
ulBitRate specifies the clock rate.
ulDataWidth specifies number of bits transfered per frame.

200 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function configures the synchronous serial interface. It sets the SSI protocol, mode of
operation, bit rate, and data width.

The ulProtocol parameter defines the data frame format. The ulProtocol parameter can
be one of the following values: SSI_FRF_MOTO_MODE_0, SSI_FRF_MOTO_MODE_1,
SSI_FRF_MOTO_MODE_2, SSI_FRF_MOTO_MODE_3, SSI_FRF_TI, or SSI_FRF_NMW.
The Motorola frame formats imply the following polarity and phase configurations:

Polarity Phase Mode
0 0 SSI_FRF_MOTO_MODE_0
0 1 SSI_FRF_MOTO_MODE_1
1 0 SSI_FRF_MOTO_MODE_2
1 1 SSI_FRF_MOTO_MODE_3

The ulMode parameter defines the operating mode of the SSI module. The SSI module can
operate as a master or slave; if a slave, the SSI can be configured to disable output on its serial
output line. The ulMode parameter can be one of the following values: SSI_MODE_MASTER,
SSI_MODE_SLAVE, or SSI_MODE_SLAVE_OD.

The ulBitRate parameter defines the bit rate for the SSI. This bit rate must satisfy the following
clock ratio criteria:

FSSI >= 2 ∗ bit rate (master mode)
FSSI >= 12 ∗ bit rate (slave modes)

where FSSI is the frequency of the clock supplied to the SSI module.

The ulDataWidth parameter defines the width of the data transfers, and can be a value between
4 and 16, inclusive.

The peripheral clock will be the same as the processor clock. This will be the value returned
by SysCtlClockGet(), or it can be explicitly hard coded if it is constant and known (to save the
code/execution overhead of a call to SysCtlClockGet()).

This function replaces the original SSIConfig() API and performs the same actions. A macro is
provided in ssi.h to map the original API to this API.

Returns:
None.

18.2.2.2 SSIDataGet

Gets a data element from the SSI receive FIFO.

Prototype:
void
SSIDataGet(unsigned long ulBase,

unsigned long *pulData)

Parameters:
ulBase specifies the SSI module base address.
pulData pointer to a storage location for data that was received over the SSI interface.

September 29, 2008 201

Synchronous Serial Interface (SSI)

Description:
This function will get received data from the receive FIFO of the specified SSI module, and
place that data into the location specified by the pulData parameter.

Note:
Only the lower N bits of the value written to pulData will contain valid data, where N is the data
width as configured by SSIConfigSetExpClk(). For example, if the interface is configured for
8-bit data width, only the lower 8 bits of the value written to pulData will contain valid data.

Returns:
None.

18.2.2.3 SSIDataGetNonBlocking

Gets a data element from the SSI receive FIFO.

Prototype:
long
SSIDataGetNonBlocking(unsigned long ulBase,

unsigned long *pulData)

Parameters:
ulBase specifies the SSI module base address.
pulData pointer to a storage location for data that was received over the SSI interface.

Description:
This function will get received data from the receive FIFO of the specified SSI module, and
place that data into the location specified by the ulData parameter. If there is no data in the
FIFO, then this function will return a zero.

This function replaces the original SSIDataNonBlockingGet() API and performs the same ac-
tions. A macro is provided in ssi.h to map the original API to this API.

Note:
Only the lower N bits of the value written to pulData will contain valid data, where N is the data
width as configured by SSIConfigSetExpClk(). For example, if the interface is configured for
8-bit data width, only the lower 8 bits of the value written to pulData will contain valid data.

Returns:
Returns the number of elements read from the SSI receive FIFO.

18.2.2.4 SSIDataPut

Puts a data element into the SSI transmit FIFO.

Prototype:
void
SSIDataPut(unsigned long ulBase,

unsigned long ulData)

Parameters:
ulBase specifies the SSI module base address.

202 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

ulData data to be transmitted over the SSI interface.

Description:
This function will place the supplied data into the transmit FIFO of the specified SSI module.

Note:
The upper 32 - N bits of the ulData will be discarded by the hardware, where N is the data
width as configured by SSIConfigSetExpClk(). For example, if the interface is configured for
8-bit data width, the upper 24 bits of ulData will be discarded.

Returns:
None.

18.2.2.5 SSIDataPutNonBlocking

Puts a data element into the SSI transmit FIFO.

Prototype:
long
SSIDataPutNonBlocking(unsigned long ulBase,

unsigned long ulData)

Parameters:
ulBase specifies the SSI module base address.
ulData data to be transmitted over the SSI interface.

Description:
This function will place the supplied data into the transmit FIFO of the specified SSI module. If
there is no space in the FIFO, then this function will return a zero.

This function replaces the original SSIDataNonBlockingPut() API and performs the same ac-
tions. A macro is provided in ssi.h to map the original API to this API.

Note:
The upper 32 - N bits of the ulData will be discarded by the hardware, where N is the data
width as configured by SSIConfigSetExpClk(). For example, if the interface is configured for
8-bit data width, the upper 24 bits of ulData will be discarded.

Returns:
Returns the number of elements written to the SSI transmit FIFO.

18.2.2.6 SSIDisable

Disables the synchronous serial interface.

Prototype:
void
SSIDisable(unsigned long ulBase)

Parameters:
ulBase specifies the SSI module base address.

September 29, 2008 203

Synchronous Serial Interface (SSI)

Description:
This will disable operation of the synchronous serial interface.

Returns:
None.

18.2.2.7 SSIDMADisable

Disable SSI DMA operation.

Prototype:
void
SSIDMADisable(unsigned long ulBase,

unsigned long ulDMAFlags)

Parameters:
ulBase is the base address of the SSI port.
ulDMAFlags is a bit mask of the DMA features to disable.

Description:
This function is used to disable SSI DMA features that were enabled by SSIDMAEnable(). The
specified SSI DMA features are disabled. The ulDMAFlags parameter is the logical OR of any
of the following values:

SSI_DMA_RX - disable DMA for receive
SSI_DMA_TX - disable DMA for transmit

Returns:
None.

18.2.2.8 SSIDMAEnable

Enable SSI DMA operation.

Prototype:
void
SSIDMAEnable(unsigned long ulBase,

unsigned long ulDMAFlags)

Parameters:
ulBase is the base address of the SSI port.
ulDMAFlags is a bit mask of the DMA features to enable.

Description:
The specified SSI DMA features are enabled. The SSI can be configured to use DMA for
transmit and/or receive data transfers. The ulDMAFlags parameter is the logical OR of any of
the following values:

SSI_DMA_RX - enable DMA for receive
SSI_DMA_TX - enable DMA for transmit

204 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Note:
The uDMA controller must also be set up before DMA can be used with the SSI.

Returns:
None.

18.2.2.9 SSIEnable

Enables the synchronous serial interface.

Prototype:
void
SSIEnable(unsigned long ulBase)

Parameters:
ulBase specifies the SSI module base address.

Description:
This will enable operation of the synchronous serial interface. It must be configured before it is
enabled.

Returns:
None.

18.2.2.10 SSIIntClear

Clears SSI interrupt sources.

Prototype:
void
SSIIntClear(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase specifies the SSI module base address.
ulIntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified SSI interrupt sources are cleared, so that they no longer assert. This must be
done in the interrupt handler to keep it from being called again immediately upon exit. The
ulIntFlags parameter can consist of either or both the SSI_RXTO and SSI_RXOR values.

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

September 29, 2008 205

Synchronous Serial Interface (SSI)

18.2.2.11 SSIIntDisable

Disables individual SSI interrupt sources.

Prototype:
void
SSIIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase specifies the SSI module base address.
ulIntFlags is a bit mask of the interrupt sources to be disabled.

Description:
Disables the indicated SSI interrupt sources. The ulIntFlags parameter can be any of the
SSI_TXFF, SSI_RXFF, SSI_RXTO, or SSI_RXOR values.

Returns:
None.

18.2.2.12 SSIIntEnable

Enables individual SSI interrupt sources.

Prototype:
void
SSIIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase specifies the SSI module base address.
ulIntFlags is a bit mask of the interrupt sources to be enabled.

Description:
Enables the indicated SSI interrupt sources. Only the sources that are enabled can be reflected
to the processor interrupt; disabled sources have no effect on the processor. The ulIntFlags
parameter can be any of the SSI_TXFF, SSI_RXFF, SSI_RXTO, or SSI_RXOR values.

Returns:
None.

18.2.2.13 SSIIntRegister

Registers an interrupt handler for the synchronous serial interface.

Prototype:
void
SSIIntRegister(unsigned long ulBase,

void (*pfnHandler)(void))

206 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
ulBase specifies the SSI module base address.
pfnHandler is a pointer to the function to be called when the synchronous serial interface

interrupt occurs.

Description:
This sets the handler to be called when an SSI interrupt occurs. This will enable the global
interrupt in the interrupt controller; specific SSI interrupts must be enabled via SSIIntEnable().
If necessary, it is the interrupt handler’s responsibility to clear the interrupt source via SSIInt-
Clear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

18.2.2.14 SSIIntStatus

Gets the current interrupt status.

Prototype:
unsigned long
SSIIntStatus(unsigned long ulBase,

tBoolean bMasked)

Parameters:
ulBase specifies the SSI module base address.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the SSI module. Either the raw interrupt status or the status
of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, enumerated as a bit field of SSI_TXFF, SSI_RXFF, SSI_RXTO,
and SSI_RXOR.

18.2.2.15 SSIIntUnregister

Unregisters an interrupt handler for the synchronous serial interface.

Prototype:
void
SSIIntUnregister(unsigned long ulBase)

Parameters:
ulBase specifies the SSI module base address.

September 29, 2008 207

Synchronous Serial Interface (SSI)

Description:
This function will clear the handler to be called when a SSI interrupt occurs. This will also mask
off the interrupt in the interrupt controller so that the interrupt handler no longer is called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

18.3 Programming Example

The following example shows how to use the SSI API to configure the SSI module as a master
device, and how to do a simple send of data.

char *pcChars = "SSI Master send data.";
long lIdx;

//
// Configure the SSI.
//
SSIConfigSetExpClk(SSI_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE0,

SSI_MODE_MASTER, 2000000, 8);

//
// Enable the SSI module.
//
SSIEnable(SSI_BASE);

//
// Send some data.
//
lIdx = 0;
while(pcChars[lIdx])
{

if(SSIDataPut(SSI_BASE, pcChars[lIdx]))
{

lIdx++;
}

}

208 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

19 System Control
Introduction .209
API Functions . 210
Programming Example .231

19.1 Introduction

System control determines the overall operation of the device. It controls the clocking of the device,
the set of peripherals that are enabled, configuration of the device and its resets, and provides
information about the device.

The members of the Stellaris family have a varying peripheral set and memory sizes. The device
has a set of read-only registers that indicate the size of the memories, the peripherals that are
present, and the pins that are present for peripherals that have a varying number of pins. This
information can be used to write adaptive software that will run on more than one member of the
Stellaris family.

The device can be clocked from one of five sources: an external oscillator, the main oscillator, the
internal oscillator, the internal oscillator divided by four, or the PLL. The PLL can use any of the
four oscillators as its input. Since the internal oscillator has a very wide error range (+/- 50%), it
cannot be used for applications that require specific timing; its real use is for detecting failures of
the main oscillator and the PLL, and for applications that strictly respond to external events and do
not use time-based peripherals (such as a UART). When using the PLL, the input clock frequency
is constrained to specific frequencies between 3.579545 MHz and 8.192 MHz (that is, the standard
crystal frequencies in that range). When direct clocking with an external oscillator or the main
oscillator, the frequency is constrained to between 0 Hz and 50 MHz (depending on the part). The
internal oscillator is 15 MHz, +/- 50%; its frequency will vary by device, with voltage, and with
temperature. The internal oscillator provides no tuning or frequency measurement mechanism; its
frequency is not adjustable.

Almost the entire device operates from a single clock. The ADC and PWM blocks have their own
clocks. In order to use the ADC, the PLL must be used; the PLL output will be used to create the
clock required by the ADC. The PWM has its own optional divider from the system clock; this can
be power of two divides between 1 and 64.

Three modes of operation are supported by the Stellaris family: run mode, sleep mode, and deep-
sleep mode. In run mode, the processor is actively executing code. In sleep mode, the clocking
of the device is unchanged but the processor no longer executes code (and is no longer clocked).
In deep-sleep mode, the clocking of the device may change (depending upon the run mode clock
configuration) and the processor no longer executes code (and is no longer clocked). An interrupt
will return the device to run mode from one of the sleep modes; the sleep modes are entered upon
request from the code.

The device has an internal LDO for generating the on-chip 2.5 V power supply; the output voltage
of the LDO can be adjusted between 2.25 V and 2.75 V. Depending upon the application, lower
voltage may be advantageous for its power savings, or higher voltage may be advantageous for its
improved performance. The default setting of 2.5 V is a good compromise between the two, and
should not be changed without careful consideration and evaluation.

There are several system events that, when detected, will cause system control to reset the device.
These events are the input voltage dropping too low, the LDO voltage dropping too low, an external

September 29, 2008 209

System Control

reset, a software reset request, and a watchdog timeout. The properties of some of these events
can be configured, and the reason for a reset can be determined from system control.

Each peripheral in the device can be individually enabled, disabled, or reset. Additionally, the set
of peripherals that remain enabled during sleep mode and deep-sleep mode can be configured,
allowing custom sleep and deep-sleep modes to be defined. Care must be taken with deep-sleep
mode, though, since in this mode the PLL is no longer used and the system is clocked by the input
crystal. Peripherals that depend upon a particular input clock rate (such as a UART) will not operate
as expected in deep-sleep mode due to the clock rate change; these peripherals must either be
reconfigured upon entry to and exit from deep-sleep mode, or simply not enabled in deep-sleep
mode.

There are various system events that, when detected, will cause system control to generate a
processor interrupt. These events are the PLL achieving lock, the internal LDO current limit being
exceeded, the internal oscillator failing, the main oscillator failing, the input voltage dropping too
low, the internal LDO voltage dropping too low, and the PLL failing. Each of these interrupts can
be individually enabled or disabled, and the sources must be cleared by the interrupt handler when
they occur.

This driver is contained in src/sysctl.c, with src/sysctl.h containing the API definitions for
use by applications.

19.2 API Functions

Functions
unsigned long SysCtlADCSpeedGet (void)
void SysCtlADCSpeedSet (unsigned long ulSpeed)
void SysCtlBrownOutConfigSet (unsigned long ulConfig, unsigned long ulDelay)
void SysCtlClkVerificationClear (void)
unsigned long SysCtlClockGet (void)
void SysCtlClockSet (unsigned long ulConfig)
void SysCtlDeepSleep (void)
void SysCtlDelay (unsigned long ulCount)
unsigned long SysCtlFlashSizeGet (void)
void SysCtlGPIOAHBDisable (unsigned long ulGPIOPeripheral)
void SysCtlGPIOAHBEnable (unsigned long ulGPIOPeripheral)
void SysCtlIntClear (unsigned long ulInts)
void SysCtlIntDisable (unsigned long ulInts)
void SysCtlIntEnable (unsigned long ulInts)
void SysCtlIntRegister (void (∗pfnHandler)(void))
unsigned long SysCtlIntStatus (tBoolean bMasked)
void SysCtlIntUnregister (void)
void SysCtlIOSCVerificationSet (tBoolean bEnable)
void SysCtlLDOConfigSet (unsigned long ulConfig)
unsigned long SysCtlLDOGet (void)
void SysCtlLDOSet (unsigned long ulVoltage)
void SysCtlMOSCVerificationSet (tBoolean bEnable)

210 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

void SysCtlPeripheralClockGating (tBoolean bEnable)
void SysCtlPeripheralDeepSleepDisable (unsigned long ulPeripheral)
void SysCtlPeripheralDeepSleepEnable (unsigned long ulPeripheral)
void SysCtlPeripheralDisable (unsigned long ulPeripheral)
void SysCtlPeripheralEnable (unsigned long ulPeripheral)
tBoolean SysCtlPeripheralPresent (unsigned long ulPeripheral)
void SysCtlPeripheralReset (unsigned long ulPeripheral)
void SysCtlPeripheralSleepDisable (unsigned long ulPeripheral)
void SysCtlPeripheralSleepEnable (unsigned long ulPeripheral)
tBoolean SysCtlPinPresent (unsigned long ulPin)
void SysCtlPLLVerificationSet (tBoolean bEnable)
unsigned long SysCtlPWMClockGet (void)
void SysCtlPWMClockSet (unsigned long ulConfig)
void SysCtlReset (void)
void SysCtlResetCauseClear (unsigned long ulCauses)
unsigned long SysCtlResetCauseGet (void)
void SysCtlSleep (void)
unsigned long SysCtlSRAMSizeGet (void)
void SysCtlUSBPLLDisable (void)
void SysCtlUSBPLLEnable (void)

19.2.1 Detailed Description

The SysCtl API is broken up into eight groups of functions: those that provide device information,
those that deal with device clocking, those that provide peripheral control, those that deal with the
SysCtl interrupt, those that deal with the LDO, those that deal with sleep modes, those that deal with
reset reasons, those that deal with the brown-out reset, and those that deal with clock verification
timers.

Information about the device is provided by SysCtlSRAMSizeGet(), SysCtlFlashSizeGet(),
SysCtlPeripheralPresent(), and SysCtlPinPresent().

Clocking of the device is configured with SysCtlClockSet() and SysCtlPWMClockSet(). Information
about device clocking is provided by SysCtlClockGet() and SysCtlPWMClockGet().

Peripheral enabling and reset are controlled with SysCtlPeripheralReset(), SysCtlPeripheralEn-
able(), SysCtlPeripheralDisable(), SysCtlPeripheralSleepEnable(), SysCtlPeripheralSleepDisable(),
SysCtlPeripheralDeepSleepEnable(), SysCtlPeripheralDeepSleepDisable(), and SysCtlPeripheral-
ClockGating().

The system control interrupt is managed with SysCtlIntRegister(), SysCtlIntUnregister(), SysCtlIn-
tEnable(), SysCtlIntDisable(), SysCtlIntClear(), SysCtlIntStatus().

The LDO is controlled with SysCtlLDOSet() and SysCtlLDOConfigSet(). Its status is provided by
SysCtlLDOGet().

The device is put into sleep modes with SysCtlSleep() and SysCtlDeepSleep().

The reset reason is managed with SysCtlResetCauseGet() and SysCtlResetCauseClear(). A soft-
ware reset is performed with SysCtlReset().

The brown-out reset is configured with SysCtlBrownOutConfigSet().

September 29, 2008 211

System Control

The clock verification timers are managed with SysCtlIOSCVerificationSet(), SysCtlMOSCVerifica-
tionSet(), SysCtlPLLVerificationSet(), and SysCtlClkVerificationClear().

19.2.2 Function Documentation

19.2.2.1 SysCtlADCSpeedGet

Gets the sample rate of the ADC.

Prototype:
unsigned long
SysCtlADCSpeedGet(void)

Description:
This function gets the current sample rate of the ADC.

Returns:
Returns the current ADC sample rate; will be one of SYSCTL_ADCSPEED_1MSPS,
SYSCTL_ADCSPEED_500KSPS, SYSCTL_ADCSPEED_250KSPS, or
SYSCTL_ADCSPEED_125KSPS.

19.2.2.2 SysCtlADCSpeedSet

Sets the sample rate of the ADC.

Prototype:
void
SysCtlADCSpeedSet(unsigned long ulSpeed)

Parameters:
ulSpeed is the desired sample rate of the ADC; must be one

of SYSCTL_ADCSPEED_1MSPS, SYSCTL_ADCSPEED_500KSPS,
SYSCTL_ADCSPEED_250KSPS, or SYSCTL_ADCSPEED_125KSPS.

Description:
This function sets the rate at which the ADC samples are captured by the ADC block. The
sampling speed may be limited by the hardware, so the sample rate may end up being slower
than requested. SysCtlADCSpeedGet() will return the actual speed in use.

Returns:
None.

19.2.2.3 SysCtlBrownOutConfigSet

Configures the brown-out control.

Prototype:
void
SysCtlBrownOutConfigSet(unsigned long ulConfig,

unsigned long ulDelay)

212 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
ulConfig is the desired configuration of the brown-out control. Must be the logical OR of

SYSCTL_BOR_RESET and/or SYSCTL_BOR_RESAMPLE.
ulDelay is the number of internal oscillator cycles to wait before resampling an asserted

brown-out signal. This value only has meaning when SYSCTL_BOR_RESAMPLE is set
and must be less than 8192.

Description:
This function configures how the brown-out control operates. It can detect a brown-out by
looking at only the brown-out output, or it can wait for it to be active for two consecutive samples
separated by a configurable time. When it detects a brown-out condition, it can either reset the
device or generate a processor interrupt.

Returns:
None.

19.2.2.4 SysCtlClkVerificationClear

Clears the clock verification status.

Prototype:
void
SysCtlClkVerificationClear(void)

Description:
This function clears the status of the clock verification timers, allowing them to assert another
failure if detected.

The clock verification timers are only available on Sandstorm-class devices.

Returns:
None.

19.2.2.5 SysCtlClockGet

Gets the processor clock rate.

Prototype:
unsigned long
SysCtlClockGet(void)

Description:
This function determines the clock rate of the processor clock. This is also the clock rate of all
the peripheral modules (with the exception of PWM, which has its own clock divider).

Note:
This will not return accurate results if SysCtlClockSet() has not been called to configure the
clocking of the device, or if the device is directly clocked from a crystal (or a clock source)
that is not one of the supported crystal frequencies. In the later case, this function should be
modified to directly return the correct system clock rate.

Returns:
The processor clock rate.

September 29, 2008 213

System Control

19.2.2.6 SysCtlClockSet

Sets the clocking of the device.

Prototype:
void
SysCtlClockSet(unsigned long ulConfig)

Parameters:
ulConfig is the required configuration of the device clocking.

Description:
This function configures the clocking of the device. The input crystal frequency, oscillator to be
used, use of the PLL, and the system clock divider are all configured with this function.

The ulConfig parameter is the logical OR of several different values, many of which are grouped
into sets where only one can be chosen.

The system clock divider is chosen with one of the following values: SYSCTL_SYSDIV_1,
SYSCTL_SYSDIV_2, SYSCTL_SYSDIV_3, ... SYSCTL_SYSDIV_64. Only
SYSCTL_SYSDIV_1 through SYSCTL_SYSDIV_16 are valid on Sandstorm-class devices.

The use of the PLL is chosen with either SYSCTL_USE_PLL or SYSCTL_USE_OSC.

The external crystal frequency is chosen with one of the following val-
ues: SYSCTL_XTAL_1MHZ, SYSCTL_XTAL_1_84MHZ, SYSCTL_XTAL_2MHZ,
SYSCTL_XTAL_2_45MHZ, SYSCTL_XTAL_3_57MHZ, SYSCTL_XTAL_3_68MHZ,
SYSCTL_XTAL_4MHZ, SYSCTL_XTAL_4_09MHZ, SYSCTL_XTAL_4_91MHZ,
SYSCTL_XTAL_5MHZ, SYSCTL_XTAL_5_12MHZ, SYSCTL_XTAL_6MHZ,
SYSCTL_XTAL_6_14MHZ, SYSCTL_XTAL_7_37MHZ, SYSCTL_XTAL_8MHZ,
SYSCTL_XTAL_8_19MHZ, SYSCTL_XTAL_10MHZ, SYSCTL_XTAL_12MHZ,
SYSCTL_XTAL_12_2MHZ, SYSCTL_XTAL_13_5MHZ, SYSCTL_XTAL_14_3MHZ,
SYSCTL_XTAL_16MHZ, or SYSCTL_XTAL_16_3MHZ. Values below
SYSCTL_XTAL_3_57MHZ are not valid when the PLL is in operation. On Sandstorm-
and Fury-class devices, values above SYSCTL_XTAL_8_19MHZ are not valid.

The oscillator source is chosen with one of the following values: SYSCTL_OSC_MAIN,
SYSCTL_OSC_INT, SYSCTL_OSC_INT4, SYSCTL_OSC_INT30, or SYSCTL_OSC_EXT32.
On Sandstorm-class devices, SYSCTL_OSC_INT30 and SYSCTL_OSC_EXT32 are not valid.
SYSCTL_OSC_EXT32 is only available on devices with the hibernate module, and then only
when the hibernate module has been enabled.

The internal and main oscillators are disabled with the SYSCTL_INT_OSC_DIS and
SYSCTL_MAIN_OSC_DIS flags, respectively. The external oscillator must be enabled in order
to use an external clock source. Note that attempts to disable the oscillator used to clock the
device will be prevented by the hardware.

To clock the system from an external source (such as an external crystal oscillator), use
SYSCTL_USE_OSC | SYSCTL_OSC_MAIN. To clock the system from the main oscillator,
use SYSCTL_USE_OSC | SYSCTL_OSC_MAIN. To clock the system from the PLL, use
SYSCTL_USE_PLL | SYSCTL_OSC_MAIN, and select the appropriate crystal with one of
the SYSCTL_XTAL_xxx values.

Note:
If selecting the PLL as the system clock source (that is, via SYSCTL_USE_PLL), this function
will poll the PLL lock interrupt to determine when the PLL has locked. If an interrupt handler
for the system control interrupt is in place, and it responds to and clears the PLL lock interrupt,

214 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

this function will delay until its timeout has occurred instead of completing as soon as PLL lock
is achieved.

Returns:
None.

19.2.2.7 SysCtlDeepSleep

Puts the processor into deep-sleep mode.

Prototype:
void
SysCtlDeepSleep(void)

Description:
This function places the processor into deep-sleep mode; it will not return until the processor
returns to run mode. The peripherals that are enabled via SysCtlPeripheralDeepSleepEnable()
continue to operate and can wake up the processor (if automatic clock gating is enabled with
SysCtlPeripheralClockGating(), otherwise all peripherals continue to operate).

Returns:
None.

19.2.2.8 SysCtlDelay

Provides a small delay.

Prototype:
void
SysCtlDelay(unsigned long ulCount)

Parameters:
ulCount is the number of delay loop iterations to perform.

Description:
This function provides a means of generating a constant length delay. It is written in assembly
to keep the delay consistent across tool chains, avoiding the need to tune the delay based on
the tool chain in use.

The loop takes 3 cycles/loop.

Returns:
None.

19.2.2.9 SysCtlFlashSizeGet

Gets the size of the flash.

Prototype:
unsigned long
SysCtlFlashSizeGet(void)

September 29, 2008 215

System Control

Description:
This function determines the size of the flash on the Stellaris device.

Returns:
The total number of bytes of flash.

19.2.2.10 SysCtlGPIOAHBDisable

Disables a GPIO peripheral for access from the high speed bus.

Prototype:
void
SysCtlGPIOAHBDisable(unsigned long ulGPIOPeripheral)

Parameters:
ulGPIOPeripheral is the GPIO peripheral to disable.

Description:
This function will disable the specified GPIO peripherals for access from the high speed bus.
Once disabled, the GPIO peripheral is accessed from the peripheral bus.

The ulGPIOPeripheral argument must be only one of the following values:
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, or SYSCTL_PERIPH_GPIOH.

Returns:
None.

19.2.2.11 SysCtlGPIOAHBEnable

Enables a GPIO peripheral for access from the high speed bus.

Prototype:
void
SysCtlGPIOAHBEnable(unsigned long ulGPIOPeripheral)

Parameters:
ulGPIOPeripheral is the GPIO peripheral to enable.

Description:
This function is used to enable the specified GPIO peripherals to be accessed from the high
speed bus instead of the peripheral bus. When a GPIO peripheral is enabled for high speed
access, the _AHB_BASE form of the base address should be used for GPIO functions. For
example, instead of using GPIO_PORTA_BASE as the base address for GPIO functions, use
GPIO_PORTA_AHB_BASE instead.

The ulGPIOPeripheral argument must be only one of the following values:
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, or SYSCTL_PERIPH_GPIOH.

216 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

19.2.2.12 SysCtlIntClear

Clears system control interrupt sources.

Prototype:
void
SysCtlIntClear(unsigned long ulInts)

Parameters:
ulInts is a bit mask of the interrupt sources to be cleared. Must be a logical OR of

SYSCTL_INT_PLL_LOCK, SYSCTL_INT_CUR_LIMIT, SYSCTL_INT_IOSC_FAIL,
SYSCTL_INT_MOSC_FAIL, SYSCTL_INT_POR, SYSCTL_INT_BOR, and/or
SYSCTL_INT_PLL_FAIL.

Description:
The specified system control interrupt sources are cleared, so that they no longer assert. This
must be done in the interrupt handler to keep it from being called again immediately upon exit.

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

19.2.2.13 SysCtlIntDisable

Disables individual system control interrupt sources.

Prototype:
void
SysCtlIntDisable(unsigned long ulInts)

Parameters:
ulInts is a bit mask of the interrupt sources to be disabled. Must be a logical OR of

SYSCTL_INT_PLL_LOCK, SYSCTL_INT_CUR_LIMIT, SYSCTL_INT_IOSC_FAIL,
SYSCTL_INT_MOSC_FAIL, SYSCTL_INT_POR, SYSCTL_INT_BOR, and/or
SYSCTL_INT_PLL_FAIL.

Description:
Disables the indicated system control interrupt sources. Only the sources that are enabled can
be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns:
None.

September 29, 2008 217

System Control

19.2.2.14 SysCtlIntEnable

Enables individual system control interrupt sources.

Prototype:
void
SysCtlIntEnable(unsigned long ulInts)

Parameters:
ulInts is a bit mask of the interrupt sources to be enabled. Must be a logical OR of

SYSCTL_INT_PLL_LOCK, SYSCTL_INT_CUR_LIMIT, SYSCTL_INT_IOSC_FAIL,
SYSCTL_INT_MOSC_FAIL, SYSCTL_INT_POR, SYSCTL_INT_BOR, and/or
SYSCTL_INT_PLL_FAIL.

Description:
Enables the indicated system control interrupt sources. Only the sources that are enabled can
be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns:
None.

19.2.2.15 SysCtlIntRegister

Registers an interrupt handler for the system control interrupt.

Prototype:
void
SysCtlIntRegister(void (*pfnHandler)(void))

Parameters:
pfnHandler is a pointer to the function to be called when the system control interrupt occurs.

Description:
This sets the handler to be called when a system control interrupt occurs. This will enable the
global interrupt in the interrupt controller; specific system control interrupts must be enabled
via SysCtlIntEnable(). It is the interrupt handler’s responsibility to clear the interrupt source via
SysCtlIntClear().

System control can generate interrupts when the PLL achieves lock, if the internal LDO current
limit is exceeded, if the internal oscillator fails, if the main oscillator fails, if the internal LDO
output voltage droops too much, if the external voltage droops too much, or if the PLL fails.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

19.2.2.16 SysCtlIntStatus

Gets the current interrupt status.

218 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
unsigned long
SysCtlIntStatus(tBoolean bMasked)

Parameters:
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the system controller. Either the raw interrupt status or the
status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, enumerated as a bit field of SYSCTL_INT_PLL_LOCK,
SYSCTL_INT_CUR_LIMIT, SYSCTL_INT_IOSC_FAIL, SYSCTL_INT_MOSC_FAIL,
SYSCTL_INT_POR, SYSCTL_INT_BOR, and SYSCTL_INT_PLL_FAIL.

19.2.2.17 SysCtlIntUnregister

Unregisters the interrupt handler for the system control interrupt.

Prototype:
void
SysCtlIntUnregister(void)

Description:
This function will clear the handler to be called when a system control interrupt occurs. This
will also mask off the interrupt in the interrupt controller so that the interrupt handler no longer
is called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

19.2.2.18 SysCtlIOSCVerificationSet

Configures the internal oscillator verification timer.

Prototype:
void
SysCtlIOSCVerificationSet(tBoolean bEnable)

Parameters:
bEnable is a boolean that is true if the internal oscillator verification timer should be enabled.

Description:
This function allows the internal oscillator verification timer to be enabled or disabled. When
enabled, an interrupt will be generated if the internal oscillator ceases to operate.

The internal oscillator verification timer is only available on Sandstorm-class devices.

September 29, 2008 219

System Control

Note:
Both oscillators (main and internal) must be enabled for this verification timer to operate as the
main oscillator will verify the internal oscillator.

Returns:
None.

19.2.2.19 SysCtlLDOConfigSet

Configures the LDO failure control.

Prototype:
void
SysCtlLDOConfigSet(unsigned long ulConfig)

Parameters:
ulConfig is the required LDO failure control setting; can be either SYSCTL_LDOCFG_ARST

or SYSCTL_LDOCFG_NORST.

Description:
This function allows the LDO to be configured to cause a processor reset when the output
voltage becomes unregulated.

The LDO failure control is only available on Sandstorm-class devices.

Returns:
None.

19.2.2.20 SysCtlLDOGet

Gets the output voltage of the LDO.

Prototype:
unsigned long
SysCtlLDOGet(void)

Description:
This function determines the output voltage of the LDO, as specified by the control register.

Returns:
Returns the current voltage of the LDO; will be one of SYSCTL_LDO_2_25V,
SYSCTL_LDO_2_30V, SYSCTL_LDO_2_35V, SYSCTL_LDO_2_40V,
SYSCTL_LDO_2_45V, SYSCTL_LDO_2_50V, SYSCTL_LDO_2_55V,
SYSCTL_LDO_2_60V, SYSCTL_LDO_2_65V, SYSCTL_LDO_2_70V, or
SYSCTL_LDO_2_75V.

19.2.2.21 SysCtlLDOSet

Sets the output voltage of the LDO.

220 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
SysCtlLDOSet(unsigned long ulVoltage)

Parameters:
ulVoltage is the required output voltage from the LDO. Must be one of SYSCTL_LDO_2_25V,

SYSCTL_LDO_2_30V, SYSCTL_LDO_2_35V, SYSCTL_LDO_2_40V,
SYSCTL_LDO_2_45V, SYSCTL_LDO_2_50V, SYSCTL_LDO_2_55V,
SYSCTL_LDO_2_60V, SYSCTL_LDO_2_65V, SYSCTL_LDO_2_70V, or
SYSCTL_LDO_2_75V.

Description:
This function sets the output voltage of the LDO. The default voltage is 2.5 V; it can be adjusted
+/- 10%.

Returns:
None.

19.2.2.22 SysCtlMOSCVerificationSet

Configures the main oscillator verification timer.

Prototype:
void
SysCtlMOSCVerificationSet(tBoolean bEnable)

Parameters:
bEnable is a boolean that is true if the main oscillator verification timer should be enabled.

Description:
This function allows the main oscillator verification timer to be enabled or disabled. When
enabled, an interrupt will be generated if the main oscillator ceases to operate.

The main oscillator verification timer is only available on Sandstorm-class devices.

Note:
Both oscillators (main and internal) must be enabled for this verification timer to operate as the
internal oscillator will verify the main oscillator.

Returns:
None.

19.2.2.23 SysCtlPeripheralClockGating

Controls peripheral clock gating in sleep and deep-sleep mode.

Prototype:
void
SysCtlPeripheralClockGating(tBoolean bEnable)

Parameters:
bEnable is a boolean that is true if the sleep and deep-sleep peripheral configuration should

be used and false if not.

September 29, 2008 221

System Control

Description:
This function controls how peripherals are clocked when the processor goes into sleep or deep-
sleep mode. By default, the peripherals are clocked the same as in run mode; if peripheral
clock gating is enabled they are clocked according to the configuration set by SysCtlPeriph-
eralSleepEnable(), SysCtlPeripheralSleepDisable(), SysCtlPeripheralDeepSleepEnable(), and
SysCtlPeripheralDeepSleepDisable().

Returns:
None.

19.2.2.24 SysCtlPeripheralDeepSleepDisable

Disables a peripheral in deep-sleep mode.

Prototype:
void
SysCtlPeripheralDeepSleepDisable(unsigned long ulPeripheral)

Parameters:
ulPeripheral is the peripheral to disable in deep-sleep mode.

Description:
This function causes a peripheral to stop operating when the processor goes into deep-sleep
mode. Disabling peripherals while in deep-sleep mode helps to lower the current draw of the
device, and can keep peripherals that require a particular clock frequency from operating when
the clock changes as a result of entering deep-sleep mode. If enabled (via SysCtlPeriph-
eralEnable()), the peripheral will automatically resume operation when the processor leaves
deep-sleep mode, maintaining its entire state from before deep-sleep mode was entered.

Deep-sleep mode clocking of peripherals must be enabled via SysCtlPeripheralClockGating();
if disabled, the peripheral deep-sleep mode configuration is maintained but has no effect when
deep-sleep mode is entered.

The ulPeripheral parameter must be one of the following values: SYSCTL_PERIPH_ADC,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,
SYSCTL_PERIPH_ETH, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_PWM, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1, SYSCTL_PERIPH_UART2,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, or SYSCTL_PERIPH_WDOG.

Returns:
None.

19.2.2.25 SysCtlPeripheralDeepSleepEnable

Enables a peripheral in deep-sleep mode.

222 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
SysCtlPeripheralDeepSleepEnable(unsigned long ulPeripheral)

Parameters:
ulPeripheral is the peripheral to enable in deep-sleep mode.

Description:
This function allows a peripheral to continue operating when the processor goes into deep-
sleep mode. Since the clocking configuration of the device may change, not all peripherals
can safely continue operating while the processor is in sleep mode. Those that must run at a
particular frequency (such as a UART) will not work as expected if the clock changes. It is the
responsibility of the caller to make sensible choices.

Deep-sleep mode clocking of peripherals must be enabled via SysCtlPeripheralClockGating();
if disabled, the peripheral deep-sleep mode configuration is maintained but has no effect when
deep-sleep mode is entered.

The ulPeripheral parameter must be one of the following values: SYSCTL_PERIPH_ADC,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,
SYSCTL_PERIPH_ETH, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_PWM, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1, SYSCTL_PERIPH_UART2,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, or SYSCTL_PERIPH_WDOG.

Returns:
None.

19.2.2.26 SysCtlPeripheralDisable

Disables a peripheral.

Prototype:
void
SysCtlPeripheralDisable(unsigned long ulPeripheral)

Parameters:
ulPeripheral is the peripheral to disable.

Description:
Peripherals are disabled with this function. Once disabled, they will not operate or respond to
register reads/writes.

The ulPeripheral parameter must be only one of the following values: SYSCTL_PERIPH_ADC,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,
SYSCTL_PERIPH_ETH, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,

September 29, 2008 223

System Control

SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_PWM, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1, SYSCTL_PERIPH_UART2,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, or SYSCTL_PERIPH_WDOG.

Returns:
None.

19.2.2.27 SysCtlPeripheralEnable

Enables a peripheral.

Prototype:
void
SysCtlPeripheralEnable(unsigned long ulPeripheral)

Parameters:
ulPeripheral is the peripheral to enable.

Description:
Peripherals are enabled with this function. At power-up, all peripherals are disabled; they must
be enabled in order to operate or respond to register reads/writes.

The ulPeripheral parameter must be only one of the following values: SYSCTL_PERIPH_ADC,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,
SYSCTL_PERIPH_ETH, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_PWM, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1, SYSCTL_PERIPH_UART2,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, or SYSCTL_PERIPH_WDOG.

Note:
It takes five clock cycles after the write to enable a peripheral before the the peripheral is
actually enabled. During this time, attempts to access the peripheral will result in a bus fault.
Care should be taken to ensure that the peripheral is not accessed during this brief time period.

Returns:
None.

19.2.2.28 SysCtlPeripheralPresent

Determines if a peripheral is present.

224 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
tBoolean
SysCtlPeripheralPresent(unsigned long ulPeripheral)

Parameters:
ulPeripheral is the peripheral in question.

Description:
Determines if a particular peripheral is present in the device. Each member of the Stellaris
family has a different peripheral set; this will determine which are present on this device.

The ulPeripheral parameter must be only one of the following values: SYSCTL_PERIPH_ADC,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,
SYSCTL_PERIPH_ETH, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_IEEE1588, SYSCTL_PERIPH_MPU, SYSCTL_PERIPH_PLL,
SYSCTL_PERIPH_PWM, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_TEMP,
SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2,
SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, or
SYSCTL_PERIPH_WDOG.

Returns:
Returns true if the specified peripheral is present and false if it is not.

19.2.2.29 SysCtlPeripheralReset

Performs a software reset of a peripheral.

Prototype:
void
SysCtlPeripheralReset(unsigned long ulPeripheral)

Parameters:
ulPeripheral is the peripheral to reset.

Description:
This function performs a software reset of the specified peripheral. An individual peripheral
reset signal is asserted for a brief period and then deasserted, leaving the peripheral in a
operating state but in its reset condition.

The ulPeripheral parameter must be only one of the following values: SYSCTL_PERIPH_ADC,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,
SYSCTL_PERIPH_ETH, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_PWM, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,

September 29, 2008 225

System Control

SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1, SYSCTL_PERIPH_UART2,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, or SYSCTL_PERIPH_WDOG.

Returns:
None.

19.2.2.30 SysCtlPeripheralSleepDisable

Disables a peripheral in sleep mode.

Prototype:
void
SysCtlPeripheralSleepDisable(unsigned long ulPeripheral)

Parameters:
ulPeripheral is the peripheral to disable in sleep mode.

Description:
This function causes a peripheral to stop operating when the processor goes into sleep mode.
Disabling peripherals while in sleep mode helps to lower the current draw of the device. If en-
abled (via SysCtlPeripheralEnable()), the peripheral will automatically resume operation when
the processor leaves sleep mode, maintaining its entire state from before sleep mode was
entered.

Sleep mode clocking of peripherals must be enabled via SysCtlPeripheralClockGating(); if dis-
abled, the peripheral sleep mode configuration is maintained but has no effect when sleep
mode is entered.

The ulPeripheral parameter must be only one of the following values: SYSCTL_PERIPH_ADC,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,
SYSCTL_PERIPH_ETH, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_PWM, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1, SYSCTL_PERIPH_UART2,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, or SYSCTL_PERIPH_WDOG.

Returns:
None.

19.2.2.31 SysCtlPeripheralSleepEnable

Enables a peripheral in sleep mode.

226 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
SysCtlPeripheralSleepEnable(unsigned long ulPeripheral)

Parameters:
ulPeripheral is the peripheral to enable in sleep mode.

Description:
This function allows a peripheral to continue operating when the processor goes into sleep
mode. Since the clocking configuration of the device does not change, any peripheral can
safely continue operating while the processor is in sleep mode, and can therefore wake the
processor from sleep mode.

Sleep mode clocking of peripherals must be enabled via SysCtlPeripheralClockGating(); if dis-
abled, the peripheral sleep mode configuration is maintained but has no effect when sleep
mode is entered.

The ulPeripheral parameter must be only one of the following values: SYSCTL_PERIPH_ADC,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,
SYSCTL_PERIPH_ETH, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_PWM, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1, SYSCTL_PERIPH_UART2,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, or SYSCTL_PERIPH_WDOG.

Returns:
None.

19.2.2.32 SysCtlPinPresent

Determines if a pin is present.

Prototype:
tBoolean
SysCtlPinPresent(unsigned long ulPin)

Parameters:
ulPin is the pin in question.

Description:
Determines if a particular pin is present in the device. The PWM, analog comparators, ADC,
and timers have a varying number of pins across members of the Stellaris family; this will
determine which are present on this device.

The ulPin argument must be only one of the following values: SYSCTL_PIN_PWM0,
SYSCTL_PIN_PWM1, SYSCTL_PIN_PWM2, SYSCTL_PIN_PWM3, SYSCTL_PIN_PWM4,
SYSCTL_PIN_PWM5, SYSCTL_PIN_C0MINUS, SYSCTL_PIN_C0PLUS,
SYSCTL_PIN_C0O, SYSCTL_PIN_C1MINUS, SYSCTL_PIN_C1PLUS,
SYSCTL_PIN_C1O, SYSCTL_PIN_C2MINUS, SYSCTL_PIN_C2PLUS, SYSCTL_PIN_C2O,

September 29, 2008 227

System Control

SYSCTL_PIN_ADC0, SYSCTL_PIN_ADC1, SYSCTL_PIN_ADC2, SYSCTL_PIN_ADC3,
SYSCTL_PIN_ADC4, SYSCTL_PIN_ADC5, SYSCTL_PIN_ADC6, SYSCTL_PIN_ADC7,
SYSCTL_PIN_CCP0, SYSCTL_PIN_CCP1, SYSCTL_PIN_CCP2, SYSCTL_PIN_CCP3,
SYSCTL_PIN_CCP4, SYSCTL_PIN_CCP5, SYSCTL_PIN_CCP6, SYSCTL_PIN_CCP7,
SYSCTL_PIN_32KHZ, or SYSCTL_PIN_MC_FAULT0.

Returns:
Returns true if the specified pin is present and false if it is not.

19.2.2.33 SysCtlPLLVerificationSet

Configures the PLL verification timer.

Prototype:
void
SysCtlPLLVerificationSet(tBoolean bEnable)

Parameters:
bEnable is a boolean that is true if the PLL verification timer should be enabled.

Description:
This function allows the PLL verification timer to be enabled or disabled. When enabled, an
interrupt will be generated if the PLL ceases to operate.

The PLL verification timer is only available on Sandstorm-class devices.

Note:
The main oscillator must be enabled for this verification timer to operate as it is used to check
the PLL. Also, the verification timer should be disabled while the PLL is being reconfigured via
SysCtlClockSet().

Returns:
None.

19.2.2.34 SysCtlPWMClockGet

Gets the current PWM clock configuration.

Prototype:
unsigned long
SysCtlPWMClockGet(void)

Description:
This function returns the current PWM clock configuration.

Returns:
Returns the current PWM clock configuration; will be one of SYSCTL_PWMDIV_1,
SYSCTL_PWMDIV_2, SYSCTL_PWMDIV_4, SYSCTL_PWMDIV_8, SYSCTL_PWMDIV_16,
SYSCTL_PWMDIV_32, or SYSCTL_PWMDIV_64.

228 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

19.2.2.35 SysCtlPWMClockSet

Sets the PWM clock configuration.

Prototype:
void
SysCtlPWMClockSet(unsigned long ulConfig)

Parameters:
ulConfig is the configuration for the PWM clock; it must be one of SYSCTL_PWMDIV_1,

SYSCTL_PWMDIV_2, SYSCTL_PWMDIV_4, SYSCTL_PWMDIV_8,
SYSCTL_PWMDIV_16, SYSCTL_PWMDIV_32, or SYSCTL_PWMDIV_64.

Description:
This function sets the rate of the clock provided to the PWM module as a ratio of the processor
clock. This clock is used by the PWM module to generate PWM signals; its rate forms the basis
for all PWM signals.

Note:
The clocking of the PWM is dependent upon the system clock rate as configured by SysCtl-
ClockSet().

Returns:
None.

19.2.2.36 SysCtlReset

Resets the device.

Prototype:
void
SysCtlReset(void)

Description:
This function will perform a software reset of the entire device. The processor and all periph-
erals will be reset and all device registers will return to their default values (with the exception
of the reset cause register, which will maintain its current value but have the software reset bit
set as well).

Returns:
This function does not return.

19.2.2.37 SysCtlResetCauseClear

Clears reset reasons.

Prototype:
void
SysCtlResetCauseClear(unsigned long ulCauses)

September 29, 2008 229

System Control

Parameters:
ulCauses are the reset causes to be cleared; must be a logical OR of SYSCTL_CAUSE_LDO,

SYSCTL_CAUSE_SW, SYSCTL_CAUSE_WDOG, SYSCTL_CAUSE_BOR,
SYSCTL_CAUSE_POR, and/or SYSCTL_CAUSE_EXT.

Description:
This function clears the specified sticky reset reasons. Once cleared, another reset for the
same reason can be detected, and a reset for a different reason can be distinguished (instead
of having two reset causes set). If the reset reason is used by an application, all reset causes
should be cleared after they are retrieved with SysCtlResetCauseGet().

Returns:
None.

19.2.2.38 SysCtlResetCauseGet

Gets the reason for a reset.

Prototype:
unsigned long
SysCtlResetCauseGet(void)

Description:
This function will return the reason(s) for a reset. Since the reset reasons are
sticky until either cleared by software or an external reset, multiple reset reasons
may be returned if multiple resets have occurred. The reset reason will be a
logical OR of SYSCTL_CAUSE_LDO, SYSCTL_CAUSE_SW, SYSCTL_CAUSE_WDOG,
SYSCTL_CAUSE_BOR, SYSCTL_CAUSE_POR, and/or SYSCTL_CAUSE_EXT.

Returns:
Returns the reason(s) for a reset.

19.2.2.39 SysCtlSleep

Puts the processor into sleep mode.

Prototype:
void
SysCtlSleep(void)

Description:
This function places the processor into sleep mode; it will not return until the processor returns
to run mode. The peripherals that are enabled via SysCtlPeripheralSleepEnable() continue to
operate and can wake up the processor (if automatic clock gating is enabled with SysCtlPe-
ripheralClockGating(), otherwise all peripherals continue to operate).

Returns:
None.

230 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

19.2.2.40 SysCtlSRAMSizeGet

Gets the size of the SRAM.

Prototype:
unsigned long
SysCtlSRAMSizeGet(void)

Description:
This function determines the size of the SRAM on the Stellaris device.

Returns:
The total number of bytes of SRAM.

19.2.2.41 SysCtlUSBPLLDisable

Powers down the USB PLL.

Prototype:
void
SysCtlUSBPLLDisable(void)

Description:
This function will disable the USB controller’s PLL which is used by it’s physical layer. The USB
registers are still accessible, but the physical layer will no longer function.

Returns:
None.

19.2.2.42 SysCtlUSBPLLEnable

Powers up the USB PLL.

Prototype:
void
SysCtlUSBPLLEnable(void)

Description:
This function will enable the USB controller’s PLL which is used by it’s physical layer. This call
is necessary before connecting to any external devices.

Returns:
None.

19.3 Programming Example

The following example shows how to use the SysCtl API to configure the device for normal opera-
tion.

September 29, 2008 231

System Control

//
// Configure the device to run at 20 MHz from the PLL using a 4 MHz crystal
// as the input.
//
SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | SYSCTL_XTAL_4MHZ |

SYSCTL_OSC_MAIN);

//
// Enable the GPIO blocks and the SSI.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI);

//
// Enable the GPIO blocks and the SSI in sleep mode.
//
SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_GPIOA);
SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_GPIOB);
SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_SSI);

//
// Enable peripheral clock gating.
//
SysCtlPeripheralClockGating(true);

232 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

20 System Tick (SysTick)
Introduction .233
API Functions . 233
Programming Example .237

20.1 Introduction

SysTick is a simple timer that is part of the NVIC controller in the Cortex-M3 microprocessor. Its
intended purpose is to provide a periodic interrupt for a RTOS, but it can be used for other simple
timing purposes.

The SysTick interrupt handler does not need to clear the SysTick interrupt source. This will be done
automatically by NVIC when the SysTick interrupt handler is called.

This driver is contained in src/systick.c, with src/systick.h containing the API definitions
for use by applications.

20.2 API Functions

Functions
void SysTickDisable (void)
void SysTickEnable (void)
void SysTickIntDisable (void)
void SysTickIntEnable (void)
void SysTickIntRegister (void (∗pfnHandler)(void))
void SysTickIntUnregister (void)
unsigned long SysTickPeriodGet (void)
void SysTickPeriodSet (unsigned long ulPeriod)
unsigned long SysTickValueGet (void)

20.2.1 Detailed Description

The SysTick API is fairly simple, like SysTick itself. There are functions for configuring and en-
abling SysTick (SysTickEnable(), SysTickDisable(), SysTickPeriodSet(), SysTickPeriodGet(), and
SysTickValueGet()) and functions for dealing with an interrupt handler for SysTick (SysTickIntReg-
ister(), SysTickIntUnregister(), SysTickIntEnable(), and SysTickIntDisable()).

20.2.2 Function Documentation

20.2.2.1 SysTickDisable

Disables the SysTick counter.

September 29, 2008 233

System Tick (SysTick)

Prototype:
void
SysTickDisable(void)

Description:
This will stop the SysTick counter. If an interrupt handler has been registered, it will no longer
be called until SysTick is restarted.

Returns:
None.

20.2.2.2 SysTickEnable

Enables the SysTick counter.

Prototype:
void
SysTickEnable(void)

Description:
This will start the SysTick counter. If an interrupt handler has been registered, it will be called
when the SysTick counter rolls over.

Note:
Calling this function will cause the SysTick counter to (re)commence counting from its current
value. The counter is not automatically reloaded with the period as specified in a previous call
to SysTickPeriodSet(). If an immediate reload is required, the NVIC_ST_CURRENT register
must be written to force this. Any write to this register clears the SysTick counter to 0 and will
cause a reload with the supplied period on the next clock.

Returns:
None.

20.2.2.3 SysTickIntDisable

Disables the SysTick interrupt.

Prototype:
void
SysTickIntDisable(void)

Description:
This function will disable the SysTick interrupt, preventing it from being reflected to the proces-
sor.

Returns:
None.

234 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

20.2.2.4 SysTickIntEnable

Enables the SysTick interrupt.

Prototype:
void
SysTickIntEnable(void)

Description:
This function will enable the SysTick interrupt, allowing it to be reflected to the processor.

Note:
The SysTick interrupt handler does not need to clear the SysTick interrupt source as this is
done automatically by NVIC when the interrupt handler is called.

Returns:
None.

20.2.2.5 SysTickIntRegister

Registers an interrupt handler for the SysTick interrupt.

Prototype:
void
SysTickIntRegister(void (*pfnHandler)(void))

Parameters:
pfnHandler is a pointer to the function to be called when the SysTick interrupt occurs.

Description:
This sets the handler to be called when a SysTick interrupt occurs.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

20.2.2.6 SysTickIntUnregister

Unregisters the interrupt handler for the SysTick interrupt.

Prototype:
void
SysTickIntUnregister(void)

Description:
This function will clear the handler to be called when a SysTick interrupt occurs.

See also:
IntRegister() for important information about registering interrupt handlers.

September 29, 2008 235

System Tick (SysTick)

Returns:
None.

20.2.2.7 SysTickPeriodGet

Gets the period of the SysTick counter.

Prototype:
unsigned long
SysTickPeriodGet(void)

Description:
This function returns the rate at which the SysTick counter wraps; this equates to the number
of processor clocks between interrupts.

Returns:
Returns the period of the SysTick counter.

20.2.2.8 SysTickPeriodSet

Sets the period of the SysTick counter.

Prototype:
void
SysTickPeriodSet(unsigned long ulPeriod)

Parameters:
ulPeriod is the number of clock ticks in each period of the SysTick counter; must be between

1 and 16,777,216, inclusive.

Description:
This function sets the rate at which the SysTick counter wraps; this equates to the number of
processor clocks between interrupts.

Note:
Calling this function does not cause the SysTick counter to reload immediately. If an immediate
reload is required, the NVIC_ST_CURRENT register must be written. Any write to this register
clears the SysTick counter to 0 and will cause a reload with the ulPeriod supplied here on the
next clock after the SysTick is enabled.

Returns:
None.

20.2.2.9 SysTickValueGet

Gets the current value of the SysTick counter.

Prototype:
unsigned long
SysTickValueGet(void)

236 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function returns the current value of the SysTick counter; this will be a value between the
period - 1 and zero, inclusive.

Returns:
Returns the current value of the SysTick counter.

20.3 Programming Example

The following example shows how to use the SysTick API to configure the SysTick counter and
read its value.

unsigned long ulValue;

//
// Configure and enable the SysTick counter.
//
SysTickPeriodSet(1000);
SysTickEnable();

//
// Delay for some time...
//

//
// Read the current SysTick value.
//
ulValue = SysTickValueGet();

September 29, 2008 237

System Tick (SysTick)

238 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

21 Timer
Introduction .239
API Functions . 239
Programming Example .251

21.1 Introduction

The timer API provides a set of functions for dealing with the timer module. Functions are pro-
vided to configure and control the timer, along with functions to modify timer/counter values, and to
manage interrupt handling for the timer.

The timer module provides two 16-bit timer/counters that can be configured to operate indepen-
dently as timers or event counters, or they can be configured to operate as one 32-bit timer or one
32-bit Real Time Clock (RTC). For the purpose of this API, the two timers provided by the timer are
referred to as TimerA and TimerB.

When configured as either a 32-bit or 16-bit timer, a timer can be set up to run as a one-shot timer
or a continuous timer. If configured as a one-shot timer, when it reaches zero the timer will cease
counting. If configured as a continuous timer, when it reaches zero the timer will continue counting
from a reloaded value. When configured as a 32-bit timer, the timer can also be configured to
operate as an RTC. In that case, the timer expects to be driven by a 32 KHz external clock, which
is divided down to produce 1 second clock ticks.

When in 16-bit mode, the timer can also be configured for event capture or as a Pulse Width
Modulation (PWM) generator. When configured for event capture, the timer acts as a counter. It
can be configured to either count the time between events, or it can count the events themselves.
The type of event being counted can be configured as a positive edge, a negative edge, or both
edges. When a timer is configured as a PWM generator, the input line used to capture events
becomes an output line, and the timer is used to drive an edge-aligned pulse onto that line.

The timer module also provides the ability to control other functional parameters, such as output
inversion, output triggers, and timer behavior during stalls.

Control is also provided over interrupt sources and events. Interrupts can be generated to indicate
that an event has been captured, or that a certain number of events have been captured. Interrupts
can also be generated when the timer has counted down to zero, or when the RTC matches a
certain value.

This driver is contained in src/timer.c, with src/timer.h containing the API definitions for use
by applications.

21.2 API Functions

Functions
void TimerConfigure (unsigned long ulBase, unsigned long ulConfig)
void TimerControlEvent (unsigned long ulBase, unsigned long ulTimer, unsigned long ulEvent)
void TimerControlLevel (unsigned long ulBase, unsigned long ulTimer, tBoolean bInvert)

September 29, 2008 239

Timer

void TimerControlStall (unsigned long ulBase, unsigned long ulTimer, tBoolean bStall)
void TimerControlTrigger (unsigned long ulBase, unsigned long ulTimer, tBoolean bEnable)
void TimerDisable (unsigned long ulBase, unsigned long ulTimer)
void TimerEnable (unsigned long ulBase, unsigned long ulTimer)
void TimerIntClear (unsigned long ulBase, unsigned long ulIntFlags)
void TimerIntDisable (unsigned long ulBase, unsigned long ulIntFlags)
void TimerIntEnable (unsigned long ulBase, unsigned long ulIntFlags)
void TimerIntRegister (unsigned long ulBase, unsigned long ulTimer, void (∗pfnHandler)(void))
unsigned long TimerIntStatus (unsigned long ulBase, tBoolean bMasked)
void TimerIntUnregister (unsigned long ulBase, unsigned long ulTimer)
unsigned long TimerLoadGet (unsigned long ulBase, unsigned long ulTimer)
void TimerLoadSet (unsigned long ulBase, unsigned long ulTimer, unsigned long ulValue)
unsigned long TimerMatchGet (unsigned long ulBase, unsigned long ulTimer)
void TimerMatchSet (unsigned long ulBase, unsigned long ulTimer, unsigned long ulValue)
unsigned long TimerPrescaleGet (unsigned long ulBase, unsigned long ulTimer)
void TimerPrescaleSet (unsigned long ulBase, unsigned long ulTimer, unsigned long ulValue)
void TimerRTCDisable (unsigned long ulBase)
void TimerRTCEnable (unsigned long ulBase)
unsigned long TimerValueGet (unsigned long ulBase, unsigned long ulTimer)

21.2.1 Detailed Description

The timer API is broken into three groups of functions: those that deal with timer configuration and
control, those that deal with timer contents, and those that deal with interrupt handling.

Timer configuration is handled by TimerConfigure(), which performs the high level setup of the
timer module; that is, it is used to set up 32- or 16-bit modes, and to select between PWM, capture,
and timer operations. Timer control is performed by TimerEnable(), TimerDisable(), TimerCon-
trolLevel(), TimerControlTrigger(), TimerControlEvent(), TimerControlStall(), TimerRTCEnable(),
and TimerRTCDisable().

Timer content is managed with TimerLoadSet(), TimerLoadGet(), TimerPrescaleSet(),
TimerPrescaleGet(), TimerMatchSet(), TimerMatchGet(), TimerPrescaleMatchSet(), Timer-
PrescaleMatchGet(), and TimerValueGet().

The interrupt handler for the Timer interrupt is managed with TimerIntRegister() and TimerIntUnreg-
ister(). The individual interrupt sources within the timer module are managed with TimerIntEnable(),
TimerIntDisable(), TimerIntStatus(), and TimerIntClear().

The TimerQuiesce() API from previous versions of the peripheral driver library has been depre-
cated. SysCtlPeripheralReset() should be used instead to return the timer to its reset state.

21.2.2 Function Documentation

21.2.2.1 TimerConfigure

Configures the timer(s).

240 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
TimerConfigure(unsigned long ulBase,

unsigned long ulConfig)

Parameters:
ulBase is the base address of the timer module.
ulConfig is the configuration for the timer.

Description:
This function configures the operating mode of the timer(s). The timer module is disabled
before being configured, and is left in the disabled state. The configuration is specified in
ulConfig as one of the following values:

TIMER_CFG_32_BIT_OS - 32-bit one shot timer
TIMER_CFG_32_BIT_PER - 32-bit periodic timer
TIMER_CFG_32_RTC - 32-bit real time clock timer
TIMER_CFG_16_BIT_PAIR - Two 16-bit timers

When configured for a pair of 16-bit timers, each timer is separately configured. The first timer
is configured by setting ulConfig to the result of a logical OR operation between one of the
following values and ulConfig:

TIMER_CFG_A_ONE_SHOT - 16-bit one shot timer
TIMER_CFG_A_PERIODIC - 16-bit periodic timer
TIMER_CFG_A_CAP_COUNT - 16-bit edge count capture
TIMER_CFG_A_CAP_TIME - 16-bit edge time capture
TIMER_CFG_A_PWM - 16-bit PWM output

Similarly, the second timer is configured by setting ulConfig to the result of a logical OR oper-
ation between one of the corresponding TIMER_CFG_B_∗ values and ulConfig.

Returns:
None.

21.2.2.2 TimerControlEvent

Controls the event type.

Prototype:
void
TimerControlEvent(unsigned long ulBase,

unsigned long ulTimer,
unsigned long ulEvent)

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to be adjusted; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
ulEvent specifies the type of event; must be one of TIMER_EVENT_POS_EDGE,

TIMER_EVENT_NEG_EDGE, or TIMER_EVENT_BOTH_EDGES.

September 29, 2008 241

Timer

Description:
This function sets the signal edge(s) that will trigger the timer when in capture mode.

Returns:
None.

21.2.2.3 TimerControlLevel

Controls the output level.

Prototype:
void
TimerControlLevel(unsigned long ulBase,

unsigned long ulTimer,
tBoolean bInvert)

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
bInvert specifies the output level.

Description:
This function sets the PWM output level for the specified timer. If the bInvert parameter is true,
then the timer’s output will be made active low; otherwise, it will be made active high.

Returns:
None.

21.2.2.4 TimerControlStall

Controls the stall handling.

Prototype:
void
TimerControlStall(unsigned long ulBase,

unsigned long ulTimer,
tBoolean bStall)

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to be adjusted; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
bStall specifies the response to a stall signal.

Description:
This function controls the stall response for the specified timer. If the bStall parameter is true,
then the timer will stop counting if the processor enters debug mode; otherwise the timer will
keep running while in debug mode.

Returns:
None.

242 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

21.2.2.5 TimerControlTrigger

Enables or disables the trigger output.

Prototype:
void
TimerControlTrigger(unsigned long ulBase,

unsigned long ulTimer,
tBoolean bEnable)

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer to adjust; must be one of TIMER_A, TIMER_B, or TIMER_BOTH.
bEnable specifies the desired trigger state.

Description:
This function controls the trigger output for the specified timer. If the bEnable parameter is
true, then the timer’s output trigger is enabled; otherwise it is disabled.

Returns:
None.

21.2.2.6 TimerDisable

Disables the timer(s).

Prototype:
void
TimerDisable(unsigned long ulBase,

unsigned long ulTimer)

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to disable; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.

Description:
This will disable operation of the timer module.

Returns:
None.

21.2.2.7 TimerEnable

Enables the timer(s).

Prototype:
void
TimerEnable(unsigned long ulBase,

unsigned long ulTimer)

September 29, 2008 243

Timer

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to enable; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.

Description:
This will enable operation of the timer module. The timer must be configured before it is en-
abled.

Returns:
None.

21.2.2.8 TimerIntClear

Clears timer interrupt sources.

Prototype:
void
TimerIntClear(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the timer module.
ulIntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified timer interrupt sources are cleared, so that they no longer assert. This must be
done in the interrupt handler to keep it from being called again immediately upon exit.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to TimerIntEn-
able().

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

21.2.2.9 TimerIntDisable

Disables individual timer interrupt sources.

Prototype:
void
TimerIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

244 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
ulBase is the base address of the timer module.
ulIntFlags is the bit mask of the interrupt sources to be disabled.

Description:
Disables the indicated timer interrupt sources. Only the sources that are enabled can be re-
flected to the processor interrupt; disabled sources have no effect on the processor.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to TimerIntEn-
able().

Returns:
None.

21.2.2.10 TimerIntEnable

Enables individual timer interrupt sources.

Prototype:
void
TimerIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the timer module.
ulIntFlags is the bit mask of the interrupt sources to be enabled.

Description:
Enables the indicated timer interrupt sources. Only the sources that are enabled can be re-
flected to the processor interrupt; disabled sources have no effect on the processor.

The ulIntFlags parameter must be the logical OR of any combination of the following:

TIMER_CAPB_EVENT - Capture B event interrupt
TIMER_CAPB_MATCH - Capture B match interrupt
TIMER_TIMB_TIMEOUT - Timer B timeout interrupt
TIMER_RTC_MATCH - RTC interrupt mask
TIMER_CAPA_EVENT - Capture A event interrupt
TIMER_CAPA_MATCH - Capture A match interrupt
TIMER_TIMA_TIMEOUT - Timer A timeout interrupt

Returns:
None.

21.2.2.11 TimerIntRegister

Registers an interrupt handler for the timer interrupt.

Prototype:
void
TimerIntRegister(unsigned long ulBase,

September 29, 2008 245

Timer

unsigned long ulTimer,
void (*pfnHandler)(void))

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s); must be one of TIMER_A, TIMER_B, or TIMER_BOTH.
pfnHandler is a pointer to the function to be called when the timer interrupt occurs.

Description:
This sets the handler to be called when a timer interrupt occurs. This will enable the global in-
terrupt in the interrupt controller; specific timer interrupts must be enabled via TimerIntEnable().
It is the interrupt handler’s responsibility to clear the interrupt source via TimerIntClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

21.2.2.12 TimerIntStatus

Gets the current interrupt status.

Prototype:
unsigned long
TimerIntStatus(unsigned long ulBase,

tBoolean bMasked)

Parameters:
ulBase is the base address of the timer module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the timer module. Either the raw interrupt status or the
status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, enumerated as a bit field of values described in TimerIntEnable().

21.2.2.13 TimerIntUnregister

Unregisters an interrupt handler for the timer interrupt.

Prototype:
void
TimerIntUnregister(unsigned long ulBase,

unsigned long ulTimer)

Parameters:
ulBase is the base address of the timer module.

246 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

ulTimer specifies the timer(s); must be one of TIMER_A, TIMER_B, or TIMER_BOTH.

Description:
This function will clear the handler to be called when a timer interrupt occurs. This will also
mask off the interrupt in the interrupt controller so that the interrupt handler no longer is called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

21.2.2.14 TimerLoadGet

Gets the timer load value.

Prototype:
unsigned long
TimerLoadGet(unsigned long ulBase,

unsigned long ulTimer)

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer; must be one of TIMER_A or TIMER_B. Only TIMER_A should be

used when the timer is configured for 32-bit operation.

Description:
This function gets the currently programmed interval load value for the specified timer.

Returns:
Returns the load value for the timer.

21.2.2.15 TimerLoadSet

Sets the timer load value.

Prototype:
void
TimerLoadSet(unsigned long ulBase,

unsigned long ulTimer,
unsigned long ulValue)

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH. Only TIMER_A should be used when the timer is configured for 32-bit
operation.

ulValue is the load value.

Description:
This function sets the timer load value; if the timer is running then the value will be immediately
loaded into the timer.

September 29, 2008 247

Timer

Returns:
None.

21.2.2.16 TimerMatchGet

Gets the timer match value.

Prototype:
unsigned long
TimerMatchGet(unsigned long ulBase,

unsigned long ulTimer)

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer; must be one of TIMER_A or TIMER_B. Only TIMER_A should be

used when the timer is configured for 32-bit operation.

Description:
This function gets the match value for the specified timer.

Returns:
Returns the match value for the timer.

21.2.2.17 TimerMatchSet

Sets the timer match value.

Prototype:
void
TimerMatchSet(unsigned long ulBase,

unsigned long ulTimer,
unsigned long ulValue)

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH. Only TIMER_A should be used when the timer is configured for 32-bit
operation.

ulValue is the match value.

Description:
This function sets the match value for a timer. This is used in capture count mode to determine
when to interrupt the processor and in PWM mode to determine the duty cycle of the output
signal.

Returns:
None.

248 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

21.2.2.18 TimerPrescaleGet

Get the timer prescale value.

Prototype:
unsigned long
TimerPrescaleGet(unsigned long ulBase,

unsigned long ulTimer)

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer; must be one of TIMER_A or TIMER_B.

Description:
This function gets the value of the input clock prescaler. The prescaler is only operational when
in 16-bit mode and is used to extend the range of the 16-bit timer modes.

Returns:
The value of the timer prescaler.

21.2.2.19 TimerPrescaleSet

Set the timer prescale value.

Prototype:
void
TimerPrescaleSet(unsigned long ulBase,

unsigned long ulTimer,
unsigned long ulValue)

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
ulValue is the timer prescale value; must be between 0 and 255, inclusive.

Description:
This function sets the value of the input clock prescaler. The prescaler is only operational when
in 16-bit mode and is used to extend the range of the 16-bit timer modes.

Returns:
None.

21.2.2.20 TimerRTCDisable

Disable RTC counting.

Prototype:
void
TimerRTCDisable(unsigned long ulBase)

September 29, 2008 249

Timer

Parameters:
ulBase is the base address of the timer module.

Description:
This function causes the timer to stop counting when in RTC mode.

Returns:
None.

21.2.2.21 TimerRTCEnable

Enable RTC counting.

Prototype:
void
TimerRTCEnable(unsigned long ulBase)

Parameters:
ulBase is the base address of the timer module.

Description:
This function causes the timer to start counting when in RTC mode. If not configured for RTC
mode, this will do nothing.

Returns:
None.

21.2.2.22 TimerValueGet

Gets the current timer value.

Prototype:
unsigned long
TimerValueGet(unsigned long ulBase,

unsigned long ulTimer)

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer; must be one of TIMER_A or TIMER_B. Only TIMER_A should be

used when the timer is configured for 32-bit operation.

Description:
This function reads the current value of the specified timer.

Returns:
Returns the current value of the timer.

250 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

21.3 Programming Example

The following example shows how to use the timer API to configure the timer as a 16-bit one shot
timer and a 16-bit edge capture counter.

//
// Configure TimerA as a 16-bit one shot timer, and TimerB as a 16-bit edge
// capture counter.
//
TimerConfigure(TIMER0_BASE, (TIMER_CFG_16_BIT_PAIR | TIMER_CFG_A_ONE_SHOT |

TIMER_CFG_B_CAP_COUNT));

//
// Configure the counter (TimerB) to count both edges.
//
TimerControlEvent(TIMER0_BASE, TIMER_B, TIMER_EVENT_BOTH_EDGES);

//
// Enable the timers.
//
TimerEnable(TIMER0_BASE, TIMER_BOTH);

September 29, 2008 251

Timer

252 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

22 UART
Introduction .253
API Functions . 253
Programming Example .267

22.1 Introduction

The Universal Asynchronous Receiver/Transmitter (UART) API provides a set of functions for using
the Stellaris UART modules. Functions are provided to configure and control the UART modules,
to send and receive data, and to manage interrupts for the UART modules.

The Stellaris UART performs the functions of parallel-to-serial and serial-to-parallel conversions. It
is very similar in functionality to a 16C550 UART, but is not register-compatible.

Some of the features of the Stellaris UART are:

A 16x12 bit receive FIFO and a 16x8 bit transmit FIFO.

Programmable baud rate generator.

Automatic generation and stripping of start, stop, and parity bits.

Line break generation and detection.

Programmable serial interface

• 5, 6, 7, or 8 data bits
• even, odd, stick, or no parity bit generation and detection
• 1 or 2 stop bit generation
• baud rate generation, from DC to processor clock/16

IrDA serial-IR (SIR) encoder/decoder.

DMA interface

This driver is contained in src/uart.c, with src/uart.h containing the API definitions for use
by applications.

22.2 API Functions

Functions
void UARTBreakCtl (unsigned long ulBase, tBoolean bBreakState)
tBoolean UARTBusy (unsigned long ulBase)
long UARTCharGet (unsigned long ulBase)
long UARTCharGetNonBlocking (unsigned long ulBase)
void UARTCharPut (unsigned long ulBase, unsigned char ucData)
tBoolean UARTCharPutNonBlocking (unsigned long ulBase, unsigned char ucData)
tBoolean UARTCharsAvail (unsigned long ulBase)
void UARTConfigGetExpClk (unsigned long ulBase, unsigned long ulUARTClk, unsigned long
∗pulBaud, unsigned long ∗pulConfig)

September 29, 2008 253

UART

void UARTConfigSetExpClk (unsigned long ulBase, unsigned long ulUARTClk, unsigned long
ulBaud, unsigned long ulConfig)
void UARTDisable (unsigned long ulBase)
void UARTDisableSIR (unsigned long ulBase)
void UARTDMADisable (unsigned long ulBase, unsigned long ulDMAFlags)
void UARTDMAEnable (unsigned long ulBase, unsigned long ulDMAFlags)
void UARTEnable (unsigned long ulBase)
void UARTEnableSIR (unsigned long ulBase, tBoolean bLowPower)
void UARTFIFOLevelGet (unsigned long ulBase, unsigned long ∗pulTxLevel, unsigned long
∗pulRxLevel)
void UARTFIFOLevelSet (unsigned long ulBase, unsigned long ulTxLevel, unsigned long ul-
RxLevel)
void UARTIntClear (unsigned long ulBase, unsigned long ulIntFlags)
void UARTIntDisable (unsigned long ulBase, unsigned long ulIntFlags)
void UARTIntEnable (unsigned long ulBase, unsigned long ulIntFlags)
void UARTIntRegister (unsigned long ulBase, void (∗pfnHandler)(void))
unsigned long UARTIntStatus (unsigned long ulBase, tBoolean bMasked)
void UARTIntUnregister (unsigned long ulBase)
unsigned long UARTParityModeGet (unsigned long ulBase)
void UARTParityModeSet (unsigned long ulBase, unsigned long ulParity)
void UARTRxErrorClear (unsigned long ulBase)
unsigned long UARTRxErrorGet (unsigned long ulBase)
tBoolean UARTSpaceAvail (unsigned long ulBase)

22.2.1 Detailed Description

The UART API provides the set of functions required to implement an interrupt driven UART driver.
These functions may be used to control any of the available UART ports on a Stellaris microcon-
troller, and can be used with one port without causing conflicts with the other port.

The UART API is broken into three groups of functions: those that deal with configuration and con-
trol of the UART modules, those used to send and receive data, and those that deal with interrupt
handling.

Configuration and control of the UART are handled by the UARTConfigGetExpClk(), UARTCon-
figSetExpClk(), UARTDisable(), UARTEnable(), UARTParityModeGet(), and UARTParityModeSet()
functions. The DMA interface can be enabled or disabled by the UARTDMAEnable() and UARTD-
MADisable() functions.

Sending and receiving data via the UART is handled by the UARTCharGet(), UARTCharGet-
NonBlocking(), UARTCharPut(), UARTCharPutNonBlocking(), UARTBreakCtl(), UARTCharsAvail(),
and UARTSpaceAvail() functions.

Managing the UART interrupts is handled by the UARTIntClear(), UARTIntDisable(), UARTIntEn-
able(), UARTIntRegister(), UARTIntStatus(), and UARTIntUnregister() functions.

The UARTConfigSet(), UARTConfigGet(), UARTCharNonBlockingGet(), and UARTCharNonBlock-
ingPut() APIs from previous versions of the peripheral driver library have been replaced
by the UARTConfigSetExpClk(), UARTConfigGetExpClk(), UARTCharGetNonBlocking(), and
UARTCharPutNonBlocking() APIs, respectively. Macros have been provided in uart.h to map
the old APIs to the new APIs, allowing existing applications to link and run with the new APIs. It is
recommended that new applications utilize the new APIs in favor of the old ones.

254 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

22.2.2 Function Documentation

22.2.2.1 UARTBreakCtl

Causes a BREAK to be sent.

Prototype:
void
UARTBreakCtl(unsigned long ulBase,

tBoolean bBreakState)

Parameters:
ulBase is the base address of the UART port.
bBreakState controls the output level.

Description:
Calling this function with bBreakState set to true will assert a break condition on the UART.
Calling this function with bBreakState set to false will remove the break condition. For proper
transmission of a break command, the break must be asserted for at least two complete frames.

Returns:
None.

22.2.2.2 UARTBusy

Determines whether the UART transmitter is busy or not.

Prototype:
tBoolean
UARTBusy(unsigned long ulBase)

Parameters:
ulBase is the base address of the UART port.

Description:
Allows the caller to determine whether all transmitted bytes have cleared the transmitter hard-
ware. If false is returned, the transmit FIFO is empty and all bits of the last transmitted char-
acter, including all stop bits, have left the hardware shift register.

Returns:
Returns true if the UART is transmitting or false if all transmissions are complete.

22.2.2.3 UARTCharGet

Waits for a character from the specified port.

Prototype:
long
UARTCharGet(unsigned long ulBase)

September 29, 2008 255

UART

Parameters:
ulBase is the base address of the UART port.

Description:
Gets a character from the receive FIFO for the specified port. If there are no characters avail-
able, this function will wait until a character is received before returning.

Returns:
Returns the character read from the specified port, cast as an long.

22.2.2.4 UARTCharGetNonBlocking

Receives a character from the specified port.

Prototype:
long
UARTCharGetNonBlocking(unsigned long ulBase)

Parameters:
ulBase is the base address of the UART port.

Description:
Gets a character from the receive FIFO for the specified port.

This function replaces the original UARTCharNonBlockingGet() API and performs the same
actions. A macro is provided in uart.h to map the original API to this API.

Returns:
Returns the character read from the specified port, cast as a long. A -1 will be returned if
there are no characters present in the receive FIFO. The UARTCharsAvail() function should be
called before attempting to call this function.

22.2.2.5 UARTCharPut

Waits to send a character from the specified port.

Prototype:
void
UARTCharPut(unsigned long ulBase,

unsigned char ucData)

Parameters:
ulBase is the base address of the UART port.
ucData is the character to be transmitted.

Description:
Sends the character ucData to the transmit FIFO for the specified port. If there is no space
available in the transmit FIFO, this function will wait until there is space available before return-
ing.

Returns:
None.

256 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

22.2.2.6 UARTCharPutNonBlocking

Sends a character to the specified port.

Prototype:
tBoolean
UARTCharPutNonBlocking(unsigned long ulBase,

unsigned char ucData)

Parameters:
ulBase is the base address of the UART port.
ucData is the character to be transmitted.

Description:
Writes the character ucData to the transmit FIFO for the specified port. This function does not
block, so if there is no space available, then a false is returned, and the application will have
to retry the function later.

This function replaces the original UARTCharNonBlockingPut() API and performs the same
actions. A macro is provided in uart.h to map the original API to this API.

Returns:
Returns true if the character was successfully placed in the transmit FIFO, and false if there
was no space available in the transmit FIFO.

22.2.2.7 UARTCharsAvail

Determines if there are any characters in the receive FIFO.

Prototype:
tBoolean
UARTCharsAvail(unsigned long ulBase)

Parameters:
ulBase is the base address of the UART port.

Description:
This function returns a flag indicating whether or not there is data available in the receive FIFO.

Returns:
Returns true if there is data in the receive FIFO, and false if there is no data in the receive
FIFO.

22.2.2.8 UARTConfigGetExpClk

Gets the current configuration of a UART.

Prototype:
void
UARTConfigGetExpClk(unsigned long ulBase,

unsigned long ulUARTClk,

September 29, 2008 257

UART

unsigned long *pulBaud,
unsigned long *pulConfig)

Parameters:
ulBase is the base address of the UART port.
ulUARTClk is the rate of the clock supplied to the UART module.
pulBaud is a pointer to storage for the baud rate.
pulConfig is a pointer to storage for the data format.

Description:
The baud rate and data format for the UART is determined, given an explicitly provided periph-
eral clock (hence the ExpClk suffix). The returned baud rate is the actual baud rate; it may
not be the exact baud rate requested or an “official” baud rate. The data format returned in
pulConfig is enumerated the same as the ulConfig parameter of UARTConfigSetExpClk().

The peripheral clock will be the same as the processor clock. This will be the value returned
by SysCtlClockGet(), or it can be explicitly hard coded if it is constant and known (to save the
code/execution overhead of a call to SysCtlClockGet()).

This function replaces the original UARTConfigGet() API and performs the same actions. A
macro is provided in uart.h to map the original API to this API.

Returns:
None.

22.2.2.9 UARTConfigSetExpClk

Sets the configuration of a UART.

Prototype:
void
UARTConfigSetExpClk(unsigned long ulBase,

unsigned long ulUARTClk,
unsigned long ulBaud,
unsigned long ulConfig)

Parameters:
ulBase is the base address of the UART port.
ulUARTClk is the rate of the clock supplied to the UART module.
ulBaud is the desired baud rate.
ulConfig is the data format for the port (number of data bits, number of stop bits, and parity).

Description:
This function will configure the UART for operation in the specified data format. The baud rate
is provided in the ulBaud parameter and the data format in the ulConfig parameter.

The ulConfig parameter is the logical OR of three values: the number of data bits, the
number of stop bits, and the parity. UART_CONFIG_WLEN_8, UART_CONFIG_WLEN_7,
UART_CONFIG_WLEN_6, and UART_CONFIG_WLEN_5 select from eight to five data bits
per byte (respectively). UART_CONFIG_STOP_ONE and UART_CONFIG_STOP_TWO
select one or two stop bits (respectively). UART_CONFIG_PAR_NONE,
UART_CONFIG_PAR_EVEN, UART_CONFIG_PAR_ODD, UART_CONFIG_PAR_ONE,

258 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

and UART_CONFIG_PAR_ZERO select the parity mode (no parity bit, even parity bit, odd
parity bit, parity bit always one, and parity bit always zero, respectively).

The peripheral clock will be the same as the processor clock. This will be the value returned
by SysCtlClockGet(), or it can be explicitly hard coded if it is constant and known (to save the
code/execution overhead of a call to SysCtlClockGet()).

This function replaces the original UARTConfigSet() API and performs the same actions. A
macro is provided in uart.h to map the original API to this API.

Returns:
None.

22.2.2.10 UARTDisable

Disables transmitting and receiving.

Prototype:
void
UARTDisable(unsigned long ulBase)

Parameters:
ulBase is the base address of the UART port.

Description:
Clears the UARTEN, TXE, and RXE bits, then waits for the end of transmission of the current
character, and flushes the transmit FIFO.

Returns:
None.

22.2.2.11 UARTDisableSIR

Disables SIR (IrDA) mode on the specified UART.

Prototype:
void
UARTDisableSIR(unsigned long ulBase)

Parameters:
ulBase is the base address of the UART port.

Description:
Clears the SIREN (IrDA) and SIRLP (Low Power) bits.

Note:
SIR (IrDA) operation is not supported on Sandstorm-class devices.

Returns:
None.

September 29, 2008 259

UART

22.2.2.12 UARTDMADisable

Disable UART DMA operation.

Prototype:
void
UARTDMADisable(unsigned long ulBase,

unsigned long ulDMAFlags)

Parameters:
ulBase is the base address of the UART port.
ulDMAFlags is a bit mask of the DMA features to disable.

Description:
This function is used to disable UART DMA features that were enabled by UARTDMAEnable().
The specified UART DMA features are disabled. The ulDMAFlags parameter is the logical OR
of any of the following values:

UART_DMA_RX - disable DMA for receive
UART_DMA_TX - disable DMA for transmit
UART_DMA_ERR_RXSTOP - do not disable DMA receive on UART error

Returns:
None.

22.2.2.13 UARTDMAEnable

Enable UART DMA operation.

Prototype:
void
UARTDMAEnable(unsigned long ulBase,

unsigned long ulDMAFlags)

Parameters:
ulBase is the base address of the UART port.
ulDMAFlags is a bit mask of the DMA features to enable.

Description:
The specified UART DMA features are enabled. The UART can be configured to use DMA for
transmit or receive, and to disable receive if an error occurs. The ulDMAFlags parameter is the
logical OR of any of the following values:

UART_DMA_RX - enable DMA for receive
UART_DMA_TX - enable DMA for transmit
UART_DMA_ERR_RXSTOP - disable DMA receive on UART error

Note:
The uDMA controller must also be set up before DMA can be used with the UART.

Returns:
None.

260 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

22.2.2.14 UARTEnable

Enables transmitting and receiving.

Prototype:
void
UARTEnable(unsigned long ulBase)

Parameters:
ulBase is the base address of the UART port.

Description:
Sets the UARTEN, TXE, and RXE bits, and enables the transmit and receive FIFOs.

Returns:
None.

22.2.2.15 UARTEnableSIR

Enables SIR (IrDA) mode on the specified UART.

Prototype:
void
UARTEnableSIR(unsigned long ulBase,

tBoolean bLowPower)

Parameters:
ulBase is the base address of the UART port.
bLowPower indicates if SIR Low Power Mode is to be used.

Description:
Enables the SIREN control bit for IrDA mode on the UART. If the bLowPower flag is set, then
SIRLP bit will also be set.

Note:
SIR (IrDA) operation is not supported on Sandstorm-class devices.

Returns:
None.

22.2.2.16 UARTFIFOLevelGet

Gets the FIFO level at which interrupts are generated.

Prototype:
void
UARTFIFOLevelGet(unsigned long ulBase,

unsigned long *pulTxLevel,
unsigned long *pulRxLevel)

Parameters:
ulBase is the base address of the UART port.

September 29, 2008 261

UART

pulTxLevel is a pointer to storage for the transmit FIFO level, returned as one of
UART_FIFO_TX1_8, UART_FIFO_TX2_8, UART_FIFO_TX4_8, UART_FIFO_TX6_8, or
UART_FIFO_TX7_8.

pulRxLevel is a pointer to storage for the receive FIFO level, returned as one of
UART_FIFO_RX1_8, UART_FIFO_RX2_8, UART_FIFO_RX4_8, UART_FIFO_RX6_8, or
UART_FIFO_RX7_8.

Description:
This function gets the FIFO level at which transmit and receive interrupts will be generated.

Returns:
None.

22.2.2.17 UARTFIFOLevelSet

Sets the FIFO level at which interrupts are generated.

Prototype:
void
UARTFIFOLevelSet(unsigned long ulBase,

unsigned long ulTxLevel,
unsigned long ulRxLevel)

Parameters:
ulBase is the base address of the UART port.
ulTxLevel is the transmit FIFO interrupt level, specified as one of UART_FIFO_TX1_8,

UART_FIFO_TX2_8, UART_FIFO_TX4_8, UART_FIFO_TX6_8, or UART_FIFO_TX7_8.
ulRxLevel is the receive FIFO interrupt level, specified as one of UART_FIFO_RX1_8,

UART_FIFO_RX2_8, UART_FIFO_RX4_8, UART_FIFO_RX6_8, or UART_FIFO_RX7_8.

Description:
This function sets the FIFO level at which transmit and receive interrupts will be generated.

Returns:
None.

22.2.2.18 UARTIntClear

Clears UART interrupt sources.

Prototype:
void
UARTIntClear(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the UART port.
ulIntFlags is a bit mask of the interrupt sources to be cleared.

262 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
The specified UART interrupt sources are cleared, so that they no longer assert. This must be
done in the interrupt handler to keep it from being called again immediately upon exit.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to UARTIntEn-
able().

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

22.2.2.19 UARTIntDisable

Disables individual UART interrupt sources.

Prototype:
void
UARTIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the UART port.
ulIntFlags is the bit mask of the interrupt sources to be disabled.

Description:
Disables the indicated UART interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to UARTIntEn-
able().

Returns:
None.

22.2.2.20 UARTIntEnable

Enables individual UART interrupt sources.

Prototype:
void
UARTIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

Parameters:
ulBase is the base address of the UART port.

September 29, 2008 263

UART

ulIntFlags is the bit mask of the interrupt sources to be enabled.

Description:
Enables the indicated UART interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor.

The ulIntFlags parameter is the logical OR of any of the following:

UART_INT_OE - Overrun Error interrupt
UART_INT_BE - Break Error interrupt
UART_INT_PE - Parity Error interrupt
UART_INT_FE - Framing Error interrupt
UART_INT_RT - Receive Timeout interrupt
UART_INT_TX - Transmit interrupt
UART_INT_RX - Receive interrupt

Returns:
None.

22.2.2.21 UARTIntRegister

Registers an interrupt handler for a UART interrupt.

Prototype:
void
UARTIntRegister(unsigned long ulBase,

void (*pfnHandler)(void))

Parameters:
ulBase is the base address of the UART port.
pfnHandler is a pointer to the function to be called when the UART interrupt occurs.

Description:
This function does the actual registering of the interrupt handler. This will enable the global
interrupt in the interrupt controller; specific UART interrupts must be enabled via UARTIntEn-
able(). It is the interrupt handler’s responsibility to clear the interrupt source.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

22.2.2.22 UARTIntStatus

Gets the current interrupt status.

Prototype:
unsigned long
UARTIntStatus(unsigned long ulBase,

tBoolean bMasked)

264 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
ulBase is the base address of the UART port.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the specified UART. Either the raw interrupt status or the
status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, enumerated as a bit field of values described in UARTIn-
tEnable().

22.2.2.23 UARTIntUnregister

Unregisters an interrupt handler for a UART interrupt.

Prototype:
void
UARTIntUnregister(unsigned long ulBase)

Parameters:
ulBase is the base address of the UART port.

Description:
This function does the actual unregistering of the interrupt handler. It will clear the handler to
be called when a UART interrupt occurs. This will also mask off the interrupt in the interrupt
controller so that the interrupt handler no longer is called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

22.2.2.24 UARTParityModeGet

Gets the type of parity currently being used.

Prototype:
unsigned long
UARTParityModeGet(unsigned long ulBase)

Parameters:
ulBase is the base address of the UART port.

Description:
This function gets the type of parity used for transmitting data, and expected when receiving
data.

September 29, 2008 265

UART

Returns:
Returns the current parity settings, specified as one of UART_CONFIG_PAR_NONE,
UART_CONFIG_PAR_EVEN, UART_CONFIG_PAR_ODD, UART_CONFIG_PAR_ONE, or
UART_CONFIG_PAR_ZERO.

22.2.2.25 UARTParityModeSet

Sets the type of parity.

Prototype:
void
UARTParityModeSet(unsigned long ulBase,

unsigned long ulParity)

Parameters:
ulBase is the base address of the UART port.
ulParity specifies the type of parity to use.

Description:
Sets the type of parity to use for transmitting and expect when receiving. The ulPar-
ity parameter must be one of UART_CONFIG_PAR_NONE, UART_CONFIG_PAR_EVEN,
UART_CONFIG_PAR_ODD, UART_CONFIG_PAR_ONE, or UART_CONFIG_PAR_ZERO.
The last two allow direct control of the parity bit; it will always be either be one or zero based
on the mode.

Returns:
None.

22.2.2.26 UARTRxErrorClear

Clears all reported receiver errors.

Prototype:
void
UARTRxErrorClear(unsigned long ulBase)

Parameters:
ulBase is the base address of the UART port.

Description:
This function is used to clear all receiver error conditions reported via UARTRxErrorGet(). If
using the overrun, framing error, parity error or break interrupts, this function must be called
after clearing the interrupt to ensure that later errors of the same type trigger another interrupt.

Returns:
None.

266 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

22.2.2.27 UARTRxErrorGet

Gets current receiver errors.

Prototype:
unsigned long
UARTRxErrorGet(unsigned long ulBase)

Parameters:
ulBase is the base address of the UART port.

Description:
This function returns the current state of each of the 4 receiver error sources. The returned
errors are equivalent to the four error bits returned via the previous call to UARTCharGet() or
UARTCharGetNonBlocking() with the exception that the overrun error is set immediately the
overrun occurs rather than when a character is next read.

Returns:
Returns a logical OR combination of the receiver error flags, UART_RXERROR_FRAMING,
UART_RXERROR_PARITY, UART_RXERROR_BREAK and UART_RXERROR_OVERRUN.

22.2.2.28 UARTSpaceAvail

Determines if there is any space in the transmit FIFO.

Prototype:
tBoolean
UARTSpaceAvail(unsigned long ulBase)

Parameters:
ulBase is the base address of the UART port.

Description:
This function returns a flag indicating whether or not there is space available in the transmit
FIFO.

Returns:
Returns true if there is space available in the transmit FIFO, and false if there is no space
available in the transmit FIFO.

22.3 Programming Example

The following example shows how to use the UART API to initialize the UART, transmit characters,
and receive characters.

//
// Initialize the UART. Set the baud rate, number of data bits, turn off
// parity, number of stop bits, and stick mode.
//
UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 38400,

(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |

September 29, 2008 267

UART

UART_CONFIG_PAR_NONE));

//
// Enable the UART.
//
UARTEnable(UART0_BASE);

//
// Check for characters. This will spin here until a character is placed
// into the receive FIFO.
//
while(!UARTCharsAvail(UART0_BASE))
{
}

//
// Get the character(s) in the receive FIFO.
//
while(UARTCharGetNonBlocking(UART0_BASE))
{
}

//
// Put a character in the output buffer.
//
UARTCharPut(UART0_BASE, ’c’));

//
// Disable the UART.
//
UARTDisable(UART0_BASE);

268 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

23 uDMA Controller
Introduction .269
API Functions . 270
Programming Example .284

23.1 Introduction

The microDMA (uDMA) API provides functions to configure the Stellaris uDMA (Direct Memory
Access) controller. The uDMA controller is designed to work with the the ARM Cortex-M3 processor
and provides an efficient and low-overhead means of transferring blocks of data in the system.

The uDMA controller has the following features:

dedicated channels for supported peripherals

one channel each for receive and transmit for devices with receive and transmit paths

dedicated channel for software initiated data transfers

channels can be independently configured and operated

an arbitration scheme that is configurable per channel

two levels of priority

subordinate to Cortex-M3 processor bus usage

data sizes of 8, 16, or 32 bits

address increment of byte, half-word, word, or none

maskable device requests

optional software initiated transfers on any channel

interrupt on transfer completion

The uDMA controller supports several different transfer modes, allowing for complex transfer
schemes. The following transfer modes are provided:

Basic mode performs a simple transfer when request is asserted by a device. This is ap-
propriate to use with peripherals where the peripheral asserts the request line whenever data
should be transferred. The transfer will stop if request is de-asserted, even if the transfer is
not complete.

Auto-request mode performs a simple transfer that is started by a request, but will always
complete the entire transfer, even if request is de-asserted. This is appropriate to use with
software initiated transfers.

Ping-Pong mode is used to transfer data to or from two buffers, switching from one buffer to
the other as each buffer fills. This mode is appropriate to use with peripherals as a way to
ensure a continuous flow of data to or from the peripheral. However, it is more complex to set
up and requires code to manage the ping-pong buffers in the interrupt handler.

Memory scatter/gather mode is a complex mode that provides a way to set up a list of trans-
fer "tasks" for the uDMA controller. Blocks of data can be transferred to and from arbitrary
locations in memory.

September 29, 2008 269

uDMA Controller

Peripheral scatter/gather mode is similar to memory scatter/gather mode except that it is
controlled by a peripheral request.

Detailed explanation of the various transfer modes is beyond the scope of this document. Please
refer to the device data sheet for more information on the operation of the uDMA controller.

The naming convention for the microDMA controller is to use the Greek letter "mu" to represent
"micro". For the purposes of this document, and in the software library function names, a lower
case "u" will be used in place of "mu" when the controller is referred to as "uDMA".

This driver is contained in src/udma.c, with src/udma.h containing the API definitions for use
by applications.

23.2 API Functions

Functions
void uDMAChannelAttributeDisable (unsigned long ulChannel, unsigned long ulAttr)
void uDMAChannelAttributeEnable (unsigned long ulChannel, unsigned long ulAttr)
unsigned long uDMAChannelAttributeGet (unsigned long ulChannel)
void uDMAChannelControlSet (unsigned long ulChannel, unsigned long ulControl)
void uDMAChannelDisable (unsigned long ulChannel)
void uDMAChannelEnable (unsigned long ulChannel)
tBoolean uDMAChannelIsEnabled (unsigned long ulChannel)
unsigned long uDMAChannelModeGet (unsigned long ulChannel)
void uDMAChannelRequest (unsigned long ulChannel)
unsigned long uDMAChannelSizeGet (unsigned long ulChannel)
void uDMAChannelTransferSet (unsigned long ulChannel, unsigned long ulMode, void
∗pvSrcAddr, void ∗pvDstAddr, unsigned long ulTransferSize)
void ∗ uDMAControlBaseGet (void)
void uDMAControlBaseSet (void ∗pControlTable)
void uDMADisable (void)
void uDMAEnable (void)
void uDMAErrorStatusClear (void)
unsigned long uDMAErrorStatusGet (void)
void uDMAIntRegister (unsigned long ulIntChannel, void (∗pfnHandler)(void))
void uDMAIntUnregister (unsigned long ulIntChannel)

23.2.1 Detailed Description

The uDMA APIs provide a means to enable and configure the Stellaris microDMA controller to
perform DMA transfers.

The general order of function calls to set up and perform a uDMA transfer is the following:

uDMAEnable() is called once to enable the controller.

uDMAControlBaseSet() is called once to set the channel control table.

270 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

uDMAChannelAttributeEnable() is called once or infrequently to configure the behavior of the
channel.
uDMAChannelControlSet() is used to set up characteristics of the data transfer. It only needs
to be called once if the nature of the data transfer does not change.
uDMAChannelTransferSet() is used to set the buffer pointers and size for a transfer. It is called
before each new transfer.
uDMAChannelEnable() enables a channel to perform data transfers.
uDMAChannelRequest() is used to initiate a software based transfer. This is normally not used
for peripheral based transfers.

In order to use the uDMA controller, you must first enable it by calling uDMAEnable(). You can later
disable it, if no longer needed, by calling uDMADisable().

Once the uDMA controller is enabled, you must tell it where to find the channel control structures in
system memory. This is done by using the function uDMAControlBaseSet() and passing a pointer to
the base of the channel control structure. The control structure must be allocated by the application.
One way to do this is to declare an array of data type char or unsigned char. In order to support
all channels and transfer modes, the control table array should be 1024 bytes, but it can be fewer
depending on transfer modes used and number of channels actually used.

Note:
The control table must be aligned on a 1024 byte boundary.

The uDMA controller supports multiple channels. Each channel has a set of attribute flags to
control certain uDMA features and channel behavior. The attribute flags are set with the function
uDMAChannelAttributeEnable() and cleared with uDMAChannelAttributeDisable(). The setting of
the channel attribute flags can be queried by using the function uDMAChannelAttributeGet().

Next, the control parameters of the DMA transfer must be set. These parameters control the size
and address increment of the data items to be transferred. The function uDMAChannelControlSet()
is used to set up these control parameters.

All of the functions mentioned so far are used only once or infrequently to set up the uDMA channel
and transfer. In order to set the transfer addresses, transfer size, and transfer mode, use the
function uDMAChannelTransferSet(). This function must be called for each new transfer. Once
everything is set up, then channel is enabled by calling uDMAChannelEnable(), which must be
done before each new transfer. The uDMA controller will automatically disable the channel at the
completion of a transfer. A channel can be manually disabled by using uDMAChannelDisable().

There are additional functions that can be used to query the status of a channel, either from an
interrupt handler or in polling fashion. The function uDMAChannelSizeGet() is used to find the
amount of data remaining to transfer on a channel. This will be zero when a transfer is complete.
The function uDMAChannelModeGet() can be used to find the transfer mode of a uDMA channel.
This is usually used to see if the mode indicates stopped which means that a transfer has completed
on a channel that was previously running. The function uDMAChannelIsEnabled() can be used to
determine if a particular channel is enabled.

If the application is using run-time interrupt registration (see IntRegister()), then the function uD-
MAIntRegister() can be used to install an interrupt handler for the uDMA controller. This function
will also enable the interrupt on the system interrupt controller. If compile-time interrupt registration
is used, then call the function IntEnable() to enable uDMA interrupts. When an interrupt handler
has been installed with uDMAIntRegister(), it can be removed by calling uDMAIntUnregister().

This interrupt handler is only for software initiated transfers or errors. uDMA interrupts for a periph-
eral occur on the peripheral’s dedicated interrupt channel, and should be handled by the peripheral

September 29, 2008 271

uDMA Controller

interrupt handler. It is not necessary to acknowledge or clear uDMA interrupt sources. They are
cleared automatically when they are serviced.

The uDMA interrupt handler should use the function uDMAErrorStatusGet() to test if a uDMA error
occurred. If so, the interrupt must be cleared by calling uDMAErrorStatusClear().

Note:
Many of the API functions take a channel parameter that includes the logical OR of one of
the values UDMA_PRI_SELECT or UDMA_ALT_SELECT to choose the primary or alternate
control structure. For Basic and Auto transfer modes, only the primary control structure is
needed. The alternate contol structure is only needed for complex transfer modes of Ping-
pong or Scatter/gather. Refer to the device data sheet for detailed information about transfer
modes.

23.2.2 Function Documentation

23.2.2.1 uDMAChannelAttributeDisable

Disables attributes of a uDMA channel.

Prototype:
void
uDMAChannelAttributeDisable(unsigned long ulChannel,

unsigned long ulAttr)

Parameters:
ulChannel is the channel to configure.
ulAttr is a combination of attributes for the channel.

Description:
This function is used to disable attributes of a uDMA channel.

The ulChannel parameter must be one of the following:

UDMA_CHANNEL_UART0RX for UART 0 receive channel
UDMA_CHANNEL_UART0TX for UART 0 transmit channel
UDMA_CHANNEL_UART1RX for UART 1 receive channel
UDMA_CHANNEL_UART1TX for UART 1 transmit channel
UDMA_CHANNEL_SSI0RX for SSI 0 receive channel
UDMA_CHANNEL_SSI0TX for SSI 0 transmit channel
UDMA_CHANNEL_SSI1RX for SSI 1 receive channel
UDMA_CHANNEL_SSI1TX for SSI 1 transmit channel
UDMA_CHANNEL_SW for the software dedicated uDMA channel

And for microcontrollers that have a USB peripheral:

UDMA_CHANNEL_USBEP1RX for USB endpoint 1 receive
UDMA_CHANNEL_USBEP1TX for USB endpoint 1 transmit
UDMA_CHANNEL_USBEP2RX for USB endpoint 2 receive
UDMA_CHANNEL_USBEP2TX for USB endpoint 2 transmit
UDMA_CHANNEL_USBEP3RX for USB endpoint 3 receive

272 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

UDMA_CHANNEL_USBEP3TX for USB endpoint 3 transmit

The ulAttr parameter is the logical OR of any of the following:

UDMA_ATTR_USEBURST is used to restrict transfers to use only a burst mode.
UDMA_ATTR_ALTSELECT is used to select the alternate control structure for this chan-
nel.
UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.
UDMA_ATTR_REQMASK is used to mask the hardware request signal from the periph-
eral for this channel.

Returns:
None.

23.2.2.2 uDMAChannelAttributeEnable

Enables attributes of a uDMA channel.

Prototype:
void
uDMAChannelAttributeEnable(unsigned long ulChannel,

unsigned long ulAttr)

Parameters:
ulChannel is the channel to configure.
ulAttr is a combination of attributes for the channel.

Description:
The ulChannel parameter must be one of the following:

UDMA_CHANNEL_UART0RX for UART 0 receive channel
UDMA_CHANNEL_UART0TX for UART 0 transmit channel
UDMA_CHANNEL_UART1RX for UART 1 receive channel
UDMA_CHANNEL_UART1TX for UART 1 transmit channel
UDMA_CHANNEL_SSI0RX for SSI 0 receive channel
UDMA_CHANNEL_SSI0TX for SSI 0 transmit channel
UDMA_CHANNEL_SSI1RX for SSI 1 receive channel
UDMA_CHANNEL_SSI1TX for SSI 1 transmit channel
UDMA_CHANNEL_SW for the software dedicated uDMA channel

And for microcontrollers that have a USB peripheral:

UDMA_CHANNEL_USBEP1RX for USB endpoint 1 receive
UDMA_CHANNEL_USBEP1TX for USB endpoint 1 transmit
UDMA_CHANNEL_USBEP2RX for USB endpoint 2 receive
UDMA_CHANNEL_USBEP2TX for USB endpoint 2 transmit
UDMA_CHANNEL_USBEP3RX for USB endpoint 3 receive
UDMA_CHANNEL_USBEP3TX for USB endpoint 3 transmit

The ulAttr parameter is the logical OR of any of the following:

UDMA_ATTR_USEBURST is used to restrict transfers to use only a burst mode.

September 29, 2008 273

uDMA Controller

UDMA_ATTR_ALTSELECT is used to select the alternate control structure for this chan-
nel.
UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.
UDMA_ATTR_REQMASK is used to mask the hardware request signal from the periph-
eral for this channel.

Returns:
None.

23.2.2.3 uDMAChannelAttributeGet

Gets the enabled attributes of a uDMA channel.

Prototype:
unsigned long
uDMAChannelAttributeGet(unsigned long ulChannel)

Parameters:
ulChannel is the channel to configure.

Description:
This function returns a combination of flags representing the attributes of the uDMA channel.

The ulChannel parameter must be one of the following:

UDMA_CHANNEL_UART0RX for UART 0 receive channel
UDMA_CHANNEL_UART0TX for UART 0 transmit channel
UDMA_CHANNEL_UART1RX for UART 1 receive channel
UDMA_CHANNEL_UART1TX for UART 1 transmit channel
UDMA_CHANNEL_SSI0RX for SSI 0 receive channel
UDMA_CHANNEL_SSI0TX for SSI 0 transmit channel
UDMA_CHANNEL_SSI1RX for SSI 1 receive channel
UDMA_CHANNEL_SSI1TX for SSI 1 transmit channel
UDMA_CHANNEL_SW for the software dedicated uDMA channel

And for microcontrollers that have a USB peripheral:

UDMA_CHANNEL_USBEP1RX for USB endpoint 1 receive
UDMA_CHANNEL_USBEP1TX for USB endpoint 1 transmit
UDMA_CHANNEL_USBEP2RX for USB endpoint 2 receive
UDMA_CHANNEL_USBEP2TX for USB endpoint 2 transmit
UDMA_CHANNEL_USBEP3RX for USB endpoint 3 receive
UDMA_CHANNEL_USBEP3TX for USB endpoint 3 transmit

Returns:
Returns the logical OR of the attributes of the uDMA channel, which can be any of the following:

UDMA_ATTR_USEBURST is used to restrict transfers to use only a burst mode.
UDMA_ATTR_ALTSELECT is used to select the alternate control structure for this chan-
nel.
UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.
UDMA_ATTR_REQMASK is used to mask the hardware request signal from the periph-
eral for this channel.

274 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

23.2.2.4 uDMAChannelControlSet

Sets the control parameters for a uDMA channel.

Prototype:
void
uDMAChannelControlSet(unsigned long ulChannel,

unsigned long ulControl)

Parameters:
ulChannel is the logical OR of the uDMA channel number with UDMA_PRI_SELECT or

UDMA_ALT_SELECT.
ulControl is logical OR of several control values to set the control parameters for the channel.

Description:
This function is used to set control parameters for a uDMA transfer. These are typically param-
eters that are not changed often.

The ulChannel parameter is one of the choices documented in the uDMAChannelEnable()
function. It should be the logical OR of the channel with one of UDMA_PRI_SELECT or
UDMA_ALT_SELECT to choose whether the primary or alternate data structure is used.

The ulControl parameter is the logical OR of five values: the data size, the source address
increment, the destination address increment, the arbitration size, and the use burst flag. The
choices available for each of these values is described below.

Choose the data size from one of UDMA_SIZE_8, UDMA_SIZE_16, or UDMA_SIZE_32 to
select a data size of 8, 16, or 32 bits.

Choose the source address increment from one of UDMA_SRC_INC_8,
UDMA_SRC_INC_16, UDMA_SRC_INC_32, or UDMA_SRC_INC_NONE to select an
address increment of 8-bit bytes, 16-bit halfwords, 32-bit words, or to select non-incrementing.

Choose the destination address increment from one of UDMA_DST_INC_8,
UDMA_DST_INC_16, UDMA_DST_INC_32, or UDMA_DST_INC_NONE to select an
address increment of 8-bit bytes, 16-bit halfwords, 32-bit words, or to select non-incrementing.

The arbitration size determines how many items are transferred before the uDMA controller re-
arbitrates for the bus. Choose the arbitration size from one of UDMA_ARB_1, UDMA_ARB_2,
UDMA_ARB_4, UDMA_ARB_8, through UDMA_ARB_1024 to select the arbitration size from
1 to 1024 items, in powers of 2.

The value UDMA_NEXT_USEBURST is used to force the channel to only respond to burst
requests at the tail end of a scatter-gather transfer.

Note:
The address increment cannot be smaller than the data size.

Returns:
None.

23.2.2.5 uDMAChannelDisable

Disables a uDMA channel for operation.

September 29, 2008 275

uDMA Controller

Prototype:
void
uDMAChannelDisable(unsigned long ulChannel)

Parameters:
ulChannel is the channel number to disable.

Description:
This function disables a specific uDMA channel. Once disabled, a channel will not respond to
uDMA transfer requests until re-enabled via uDMAChannelEnable().

The ulChannel parameter must be one of the following:

UDMA_CHANNEL_UART0RX for UART 0 receive channel
UDMA_CHANNEL_UART0TX for UART 0 transmit channel
UDMA_CHANNEL_UART1RX for UART 1 receive channel
UDMA_CHANNEL_UART1TX for UART 1 transmit channel
UDMA_CHANNEL_SSI0RX for SSI 0 receive channel
UDMA_CHANNEL_SSI0TX for SSI 0 transmit channel
UDMA_CHANNEL_SSI1RX for SSI 1 receive channel
UDMA_CHANNEL_SSI1TX for SSI 1 transmit channel
UDMA_CHANNEL_SW for the software dedicated uDMA channel

And for microcontrollers that have a USB peripheral:

UDMA_CHANNEL_USBEP1RX for USB endpoint 1 receive
UDMA_CHANNEL_USBEP1TX for USB endpoint 1 transmit
UDMA_CHANNEL_USBEP2RX for USB endpoint 2 receive
UDMA_CHANNEL_USBEP2TX for USB endpoint 2 transmit
UDMA_CHANNEL_USBEP3RX for USB endpoint 3 receive
UDMA_CHANNEL_USBEP3TX for USB endpoint 3 transmit

Returns:
None.

23.2.2.6 uDMAChannelEnable

Enables a uDMA channel for operation.

Prototype:
void
uDMAChannelEnable(unsigned long ulChannel)

Parameters:
ulChannel is the channel number to enable.

Description:
This function enables a specific uDMA channel for use. This function must be used to enable
a channel before it can be used to perform a uDMA transfer.

When a uDMA transfer is completed, the channel will be automatically disabled by the uDMA
controller. Therefore, this function should be called prior to starting up any new transfer.

The ulChannel parameter must be one of the following:

276 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

UDMA_CHANNEL_UART0RX for UART 0 receive channel
UDMA_CHANNEL_UART0TX for UART 0 transmit channel
UDMA_CHANNEL_UART1RX for UART 1 receive channel
UDMA_CHANNEL_UART1TX for UART 1 transmit channel
UDMA_CHANNEL_SSI0RX for SSI 0 receive channel
UDMA_CHANNEL_SSI0TX for SSI 0 transmit channel
UDMA_CHANNEL_SSI1RX for SSI 1 receive channel
UDMA_CHANNEL_SSI1TX for SSI 1 transmit channel
UDMA_CHANNEL_SW for the software dedicated uDMA channel

And for microcontrollers that have a USB peripheral:

UDMA_CHANNEL_USBEP1RX for USB endpoint 1 receive
UDMA_CHANNEL_USBEP1TX for USB endpoint 1 transmit
UDMA_CHANNEL_USBEP2RX for USB endpoint 2 receive
UDMA_CHANNEL_USBEP2TX for USB endpoint 2 transmit
UDMA_CHANNEL_USBEP3RX for USB endpoint 3 receive
UDMA_CHANNEL_USBEP3TX for USB endpoint 3 transmit

Returns:
None.

23.2.2.7 uDMAChannelIsEnabled

Checks if a uDMA channel is enabled for operation.

Prototype:
tBoolean
uDMAChannelIsEnabled(unsigned long ulChannel)

Parameters:
ulChannel is the channel number to check.

Description:
This function checks to see if a specific uDMA channel is enabled. This can be used to check
the status of a transfer, since the channel will be automatically disabled at the end of a transfer.

The ulChannel parameter must be one of the following:

UDMA_CHANNEL_UART0RX for UART 0 receive channel
UDMA_CHANNEL_UART0TX for UART 0 transmit channel
UDMA_CHANNEL_UART1RX for UART 1 receive channel
UDMA_CHANNEL_UART1TX for UART 1 transmit channel
UDMA_CHANNEL_SSI0RX for SSI 0 receive channel
UDMA_CHANNEL_SSI0TX for SSI 0 transmit channel
UDMA_CHANNEL_SSI1RX for SSI 1 receive channel
UDMA_CHANNEL_SSI1TX for SSI 1 transmit channel
UDMA_CHANNEL_SW for the software dedicated uDMA channel

And for microcontrollers that have a USB peripheral:

September 29, 2008 277

uDMA Controller

UDMA_CHANNEL_USBEP1RX for USB endpoint 1 receive
UDMA_CHANNEL_USBEP1TX for USB endpoint 1 transmit
UDMA_CHANNEL_USBEP2RX for USB endpoint 2 receive
UDMA_CHANNEL_USBEP2TX for USB endpoint 2 transmit
UDMA_CHANNEL_USBEP3RX for USB endpoint 3 receive
UDMA_CHANNEL_USBEP3TX for USB endpoint 3 transmit

Returns:
Returns true if the channel is enabled, false if disabled.

23.2.2.8 uDMAChannelModeGet

Gets the transfer mode for a uDMA channel.

Prototype:
unsigned long
uDMAChannelModeGet(unsigned long ulChannel)

Parameters:
ulChannel is the logical or of the uDMA channel number with either UDMA_PRI_SELECT or

UDMA_ALT_SELECT.

Description:
This function is used to get the transfer mode for the uDMA channel. It can be used to
query the status of a transfer on a channel. When the transfer is complete the mode will
be UDMA_MODE_STOP.

The ulChannel parameter is one of the choices documented in the uDMAChannelEnable()
function. It should be the logical OR of the channel with either UDMA_PRI_SELECT or
UDMA_ALT_SELECT to choose whether the primary or alternate data structure is used.

Returns:
Returns the transfer mode of the specified channel and control structure, which will be one of
the following values: UDMA_MODE_STOP, UDMA_MODE_BASIC, UDMA_MODE_AUTO,
UDMA_MODE_PINGPONG, UDMA_MODE_MEM_SCATTER_GATHER, or
UDMA_MODE_PER_SCATTER_GATHER.

23.2.2.9 uDMAChannelRequest

Requests a uDMA channel to start a transfer.

Prototype:
void
uDMAChannelRequest(unsigned long ulChannel)

Parameters:
ulChannel is the channel number on which to request a uDMA transfer.

278 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function allows software to request a uDMA channel to begin a transfer. This could be
used for performing a memory to memory transfer, or if for some reason a transfer needs to be
initiated by software instead of the peripheral associated with that channel.

The ulChannel parameter must be one of the following:

UDMA_CHANNEL_UART0RX for UART 0 receive channel
UDMA_CHANNEL_UART0TX for UART 0 transmit channel
UDMA_CHANNEL_UART1RX for UART 1 receive channel
UDMA_CHANNEL_UART1TX for UART 1 transmit channel
UDMA_CHANNEL_SSI0RX for SSI 0 receive channel
UDMA_CHANNEL_SSI0TX for SSI 0 transmit channel
UDMA_CHANNEL_SSI1RX for SSI 1 receive channel
UDMA_CHANNEL_SSI1TX for SSI 1 transmit channel
UDMA_CHANNEL_SW for the software dedicated uDMA channel

And for microcontrollers that have a USB peripheral:

UDMA_CHANNEL_USBEP1RX for USB endpoint 1 receive
UDMA_CHANNEL_USBEP1TX for USB endpoint 1 transmit
UDMA_CHANNEL_USBEP2RX for USB endpoint 2 receive
UDMA_CHANNEL_USBEP2TX for USB endpoint 2 transmit
UDMA_CHANNEL_USBEP3RX for USB endpoint 3 receive
UDMA_CHANNEL_USBEP3TX for USB endpoint 3 transmit

Note:
If the channel is UDMA_CHANNEL_SW and interrupts are used, then the completion will be
signalled on the uDMA dedicated interrupt. If a peripheral channel is used, then the completion
will be signalled on the peripheral’s interrupt.

Returns:
None.

23.2.2.10 uDMAChannelSizeGet

Gets the current transfer size for a uDMA channel.

Prototype:
unsigned long
uDMAChannelSizeGet(unsigned long ulChannel)

Parameters:
ulChannel is the logical or of the uDMA channel number with either UDMA_PRI_SELECT or

UDMA_ALT_SELECT.

Description:
This function is used to get the uDMA transfer size for a channel. The transfer size is the
number of items to transfer, where the size of an item might be 8, 16, or 32 bits. If a partial
transfer has already occurred, then the number of remaining items will be returned. If the
transfer is complete, then 0 will be returned.

September 29, 2008 279

uDMA Controller

The ulChannel parameter is one of the choices documented in the uDMAChannelEnable()
function. It should be the logical OR of the channel with either UDMA_PRI_SELECT or
UDMA_ALT_SELECT to choose whether the primary or alternate data structure is used.

Returns:
Returns the number of items remaining to transfer.

23.2.2.11 uDMAChannelTransferSet

Sets the transfer parameters for a uDMA channel.

Prototype:
void
uDMAChannelTransferSet(unsigned long ulChannel,

unsigned long ulMode,
void *pvSrcAddr,
void *pvDstAddr,
unsigned long ulTransferSize)

Parameters:
ulChannel is the logical or of the uDMA channel number with either UDMA_PRI_SELECT or

UDMA_ALT_SELECT.
ulMode is the type of uDMA transfer.
pvSrcAddr is the source address for the transfer.
pvDstAddr is the destination address for the transfer.
ulTransferSize is the number of data items to transfer.

Description:
This function is used to set the parameters for a uDMA transfer. These are typically parameters
that are changed often. The function uDMAChannelControlSet() MUST be called at least once
for this channel prior to calling this function.

The ulChannel parameter is one of the choices documented in the uDMAChannelEnable()
function. It should be the logical OR of the channel with either UDMA_PRI_SELECT or
UDMA_ALT_SELECT to choose whether the primary or alternate data structure is used.

The ulMode parameter should be one of the following values:

UDMA_MODE_STOP stops the uDMA transfer. The controller sets the mode to this value
at the end of a transfer.
UDMA_MODE_BASIC to perform a basic transfer based on request.
UDMA_MODE_AUTO to perform a transfer that will always complete once started even if
request is removed.
UDMA_MODE_PINGPONG to set up a transfer that switches between the primary and
alternate control structures for the channel. This allows use of ping-pong buffering for
uDMA transfers.
UDMA_MODE_MEM_SCATTER_GATHER to set up a memory scatter-gather transfer.
UDMA_MODE_PER_SCATTER_GATHER to set up a peripheral scatter-gather transfer.

The pvSrcAddr and pvDstAddr parameters are pointers to the first location of the data to be
transferred. These addresses should be aligned according to the item size. The compiler will
take care of this if the pointers are pointing to storage of the appropriate data type.

280 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

The ulTransferSize parameter is the number of data items, not the number of bytes.

The two scatter/gather modes, memory and peripheral, are actually different depending on
whether the primary or alternate control structure is selected. This function will look for the
UDMA_PRI_SELECT and UDMA_ALT_SELECT flag along with the channel number and will
set the scatter/gather mode as appropriate for the primary or alternate control structure.

The channel must also be enabled using uDMAChannelEnable() after calling this function. The
transfer will not begin until the channel has been set up and enabled. Note that the channel
is automatically disabled after the transfer is completed, meaning that uDMAChannelEnable()
must be called again after setting up the next transfer.

Note:
Great care must be taken to not modify a channel control stucture that is in use or else the
results will be unpredictable, including the possibility of undesired data transfers to or from
memory or peripherals. For BASIC and AUTO modes, it is safe to make changes when the
channel is disabled, or the uDMAChannelModeGet() returns UDMA_MODE_STOP. For PING-
PONG or one of the SCATTER_GATHER modes, it is safe to modify the primary or alternate
control structure only when the other is being used. The uDMAChannelModeGet() function will
return UDMA_MODE_STOP when a channel control structure is inactive and safe to modify.

Returns:
None.

23.2.2.12 uDMAControlBaseGet

Gets the base address for the channel control table.

Prototype:
void *
uDMAControlBaseGet(void)

Description:
This function gets the base address of the channel control table. This table resides in system
memory and holds control information for each uDMA channel.

Returns:
Returns a pointer to the base address of the channel control table.

23.2.2.13 uDMAControlBaseSet

Sets the base address for the channel control table.

Prototype:
void
uDMAControlBaseSet(void *pControlTable)

Parameters:
pControlTable is a pointer to the 1024 byte aligned base address of the uDMA channel control

table.

September 29, 2008 281

uDMA Controller

Description:
This function sets the base address of the channel control table. This table resides in system
memory and holds control information for each uDMA channel. The table must be aligned on
a 1024 byte boundary. The base address must be set before any of the channel functions can
be used.

The size of the channel control table depends on the number of uDMA channels, and which
transfer modes are used. Refer to the introductory text and the microcontroller datasheet for
more information about the channel control table.

Returns:
None.

23.2.2.14 uDMADisable

Disables the uDMA controller for use.

Prototype:
void
uDMADisable(void)

Description:
This function disables the uDMA controller. Once disabled, the uDMA controller will not operate
until re-enabled with uDMAEnable().

Returns:
None.

23.2.2.15 uDMAEnable

Enables the uDMA controller for use.

Prototype:
void
uDMAEnable(void)

Description:
This function enables the uDMA controller. The uDMA controller must be enabled before it can
be configured and used.

Returns:
None.

23.2.2.16 uDMAErrorStatusClear

Clears the uDMA error interrupt.

Prototype:
void
uDMAErrorStatusClear(void)

282 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function clears a pending uDMA error interrupt. It should be called from within the uDMA
error interrupt handler to clear the interrupt.

Returns:
None.

23.2.2.17 uDMAErrorStatusGet

Gets the uDMA error status.

Prototype:
unsigned long
uDMAErrorStatusGet(void)

Description:
This function returns the uDMA error status. It should be called from within the uDMA error
interrupt handler to determine if a uDMA error occurred.

Returns:
Returns non-zero if a uDMA error is pending.

23.2.2.18 uDMAIntRegister

Registers an interrupt handler for the uDMA controller.

Prototype:
void
uDMAIntRegister(unsigned long ulIntChannel,

void (*pfnHandler)(void))

Parameters:
ulIntChannel identifies which uDMA interrupt is to be registered.
pfnHandler is a pointer to the function to be called when the interrupt is activated.

Description:
This sets and enables the handler to be called when the uDMA controller generates an inter-
rupt. The ulIntChannel parameter should be one of the following:

UDMA_INT_SW to register an interrupt handler to process interrupts from the uDMA soft-
ware channel (UDMA_CHANNEL_SW)
UDMA_INT_ERR to register an interrupt handler to process uDMA error interrupts

See also:
IntRegister() for important information about registering interrupt handlers.

Note:
The interrupt handler for uDMA is for transfer completion when the channel
UDMA_CHANNEL_SW is used, and for error interrupts. The interrupts for each periph-
eral channel are handled through the individual peripheral interrupt handlers.

Returns:
None.

September 29, 2008 283

uDMA Controller

23.2.2.19 uDMAIntUnregister

Unregisters an interrupt handler for the uDMA controller.

Prototype:
void
uDMAIntUnregister(unsigned long ulIntChannel)

Parameters:
ulIntChannel identifies which uDMA interrupt to unregister.

Description:
This function will disable and clear the handler to be called for the specified uDMA interrupt.
The ulIntChannel parameter should be one of UDMA_INT_SW or UDMA_INT_ERR as docu-
mented for the function uDMAIntRegister().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

23.3 Programming Example

The following example sets up the uDMA controller to perform a software initiated memory-to-
memory transfer:

//
// The application must allocate the channel control table.
// This one is a full table for all modes and channels.
// NOTE: This table must be 1024 byte aligned.
//
unsigned char ucDMAControlTable[1024];

//
// Source and destination buffers used for the DMA transfer.
//
unsigned char ucSourceBuffer[256];
unsigned char ucDestBuffer[256];

//
// Enable the uDMA controller.
//
uDMAEnable();

//
// Set the base for the channel control table.
//
uDMAControlBaseSet(&ucDMAControlTable[0]);

//
// No attributes need to be set for a software based transfer.
// They will be cleared by default, but are explicitly cleared
// here, in case they were set elsewhere.
//
uDMAChannelAttributeDisable(UDMA_CONFIG_ALL);

284 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

//
// Now set up the characteristics of the transfer. It will
// be 8 bit data size, with source and destination increments
// in bytes, to perform a byte-wise buffer copy. A bus arbitration
// size of 8 is used.
//
uDMAChannelControlSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,

UDMA_SIZE_8 | UDMA_SRC_INC_8 |
UDMA_DST_INC_8 | UDMA_ARB_8);

//
// The transfer buffers and transfer size will now be configured.
// The transfer will use AUTO mode, which means that the
// transfer will automatically run to completion after the first
// request.
//
uDMAChannelTransferSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,

UDMA_MODE_AUTO, ucSourceBuffer, ucDestBuffer,
sizeof(ucDestBuffer));

//
// Finally, the channel must be enabled. Since this is a software
// initiated transfer, a request must also be made. This will
// start the transfer running.
//
uDMAChannelEnable(UDMA_CHANNEL_SW);
uDMAChannelRequest(UDMA_CHANNEL_SW);

September 29, 2008 285

uDMA Controller

286 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

24 USB Controller
Introduction .287
Using uDMA with USB . 287
API Functions . 291
Programming Example .319

24.1 Introduction

The USB APIs provide a set of functions that are used to access the Stellaris USB device or
host controllers. The APIs are split into groups according to the functionality provided by the USB
controller present in the microcontroller. Because of this, the driver has to handle microcontrollers
that have only a USB device interface, a host and/or device interface, or microcontrollers that have
an OTG interface, The groups are the following: USBDev, USBHost, USBOTG, USBEndpoint, and
USBFIFO. The APIs in the USBDev group are only used with microcontrollers that have a USB
device controller. The APIs in the USBHost group can only be used with microcontrollers that have
a USB host controller. The USBOTG APIs are used by microcontrollers with an OTG interface. With
USB OTG controllers, once the mode of the USB controller is configured, the device or host APIs
should be used. The remainder of the APIs are used for both USB host and USB device controllers.
The USBEndpoint APIs are used to configure and access the endpoints while the USBFIFO APIs
are used to configure the size and location of the FIFOs.

24.2 Using USB with the uDMA Controller

The USB controller can be used with the uDMA for either sending or receiving data with both host
and device controllers. The uDMA controller cannot be used to access endpoint 0, however all
other endpoints are capable of using the uDMA controller. The uDMA channel numbers for USB
are defined by the following values:

DMA_CHANNEL_USBEP1RX

DMA_CHANNEL_USBEP1TX

DMA_CHANNEL_USBEP2RX

DMA_CHANNEL_USBEP2TX

DMA_CHANNEL_USBEP3RX

DMA_CHANNEL_USBEP3TX

Since the uDMA controller views transfers as either transmit or receive, and the USB controller
operates on IN/OUT transactions, some care must be taken to use the correct uDMA channel
with the correct endpoint. USB host IN and USB device OUT endpoints both use receive uDMA
channels while USB host OUT and USB device IN endpoints will use transmit uDMA channels.

When configuring the endpoint there are additional DMA settings needed. When calling USBDe-
vEndpointConfig() for an endpoint that will use uDMA, extra flags need to be added to the ulFlags
parameter. These flags are one of USB_EP_DMA_MODE_0 or USB_EP_DMA_MODE_1 to con-
trol the mode of the DMA transaction, and likely USB_EP_AUTO_SET to allow the data to be

September 29, 2008 287

USB Controller

transmitted automatically once a packet is ready. USB_EP_DMA_MODE_0 will generate an inter-
rupt whenever there is more space available in the FIFO. This allows the application code to perform
operations between each packet.USB_EP_DMA_MODE_1 will only interrupt when the DMA trans-
fer complete or there is some type of error condition. This can be used for larger transmissions that
require no interaction between packets. USB_EP_AUTO_SET should normally be specified when
using uDMA to prevent the need for application code to start the actual transfer of data.

Example: Endpoint configuration for a device IN endpoint:

//
// Endpoint 1 is a device mode BULK IN endpoint using DMA.
//
USBDevEndpointConfig(

USB0_BASE,
USB_EP_1,
64,
USB_EP_MODE_BULK | USB_EP_DEV_IN |
USB_EP_DMA_MODE_0 | USB_EP_AUTO_SET);

The application must provide the configuration of the actual uDMA controller. First, to clear out any
previous settings, the application should call DMAChannelAttributeClear(). Then the application
should call DMAChannelAttributeSet() for the uDMA channel that corresponds to the endpoint, and
specify the DMA_CONFIG_USEBURST flag.

Note:
All uDMA transfers used by the USB controller must enable burst mode.

The application needs to indicate the size of each DMA transactions, combined with the source and
destination increments and the arbitration level for the uDMA controller.

Example: Configure endpoint 1 transmit channel.

//
// Set up the DMA for USB transmit.
//
DMAChannelAttributeClear(

DMA_CHANNEL_USBEP1TX,
DMA_CONFIG_ALL);

//
// Enable uDMA burst mode.
//
DMAChannelAttributeSet(

DMA_CHANNEL_USBEP1TX,
DMA_CONFIG_USEBURST);

//
// Data size is 8 bits and the source has a one byte increment.
// Destination has no increment as it is a FIFO.
//
DMAChannelControlSet(

DMA_CHANNEL_USBEP1TX,
DMA_DATA_SIZE_8,
DMA_ADDR_INC_8,
DMA_ADDR_INC_NONE,
DMA_ARB_64,
0);

The next step is to actually start the uDMA transfer once the data is ready to be sent. There are the
only two calls that the application needs to call to start a new transfer. Normally all of the previous

288 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

uDMA configuration can stay the same. The first call, DMAChannelTransferSet(), resets the source
and destination addresses for the DMA transfer and specifies how much data will be sent. The next
call, DMAChannelEnable() actually allows the DMA controller to begin requesting data.

Example: Start the transfer of data on endpoint 1.

//
// Configure the address and size of the data to transfer.
//
DMAChannelTransferSet(

DMA_CHANNEL_USBEP1TX,
DMA_MODE_BASIC,
pData,
USBFIFOAddr(USB0_BASE, USB_EP_1),
64);

//
// Start the transfer.
//
DMAChannelEnable(DMA_CHANNEL_USBEP1TX);

Because the uDMA interrupt occurs on the same interrupt vector as any other USB interrupt, the
application must perform an extra check to determine what was the actual source of the interrupt.
It is important to note that this DMA interrupt does not mean that the USB transfer is complete,
but that the data has been transferred to the USB controller’s FIFO. There will also be an interrupt
indicating that the USB transfer is complete. However, both events need to be handled in the same
interrupt routine. This because if other code in the system holds off the USB interrupt routine, both
the uDMA complete and transfer complete can occur before the USB interrupt handler is called.
The USB has no status bit indicating that the interrupt was due to a DMA complete, which means
that the application must remember if a DMA transaction was in progress. The example below
shows the g_ulFlags global variable being used to remember that a DMA transfer was pending.

Example: Interrupt handling with uDMA.

if((g_ulFlags & EP1_DMA_IN_PEND) &&
(DMAChannelModeGet(DMA_CHANNEL_USBEP1TX) == DMA_MODE_STOP))

{
//
// Handle the DMA complete case.
//
...

}

//
// Get the interrupt status.
//
ulStatus = USBIntStatus(USB0_BASE);

if(ulStatus & USB_INT_DEV_IN_EP1)
{

//
// Handler the transfer complete case.
//
...

}

To use the USB device controller with an OUT endpoint, the application must use a receive
uDMA channel. When calling USBDevEndpointConfig() for an endpoint that uses uDMA, the
application must set extra flags in the ulFlags parameter. The USB_EP_DMA_MODE_0 and
USB_EP_DMA_MODE_1 control the mode of the transaction, USB_EP_AUTO_CLEAR allows the
data to be received automatically without needing to manually acknowledge that the data has been

September 29, 2008 289

USB Controller

read. USB_EP_DMA_MODE_0 will not generate an interrupt when each packet is sent over USB
and will only interrupt when the DMA transfer is complete. USB_EP_DMA_MODE_1 will interrupt
when the DMA transfer complete or a short packet is received. This is useful for BULK endpoints
that may not have prior knowledge of how much data is being received. USB_EP_AUTO_CLEAR
should normally be specified when using uDMA to prevent the need for application code to ac-
knowledge that the data has been read from the FIFO. The example below configures endpoint 1
as a Device mode Bulk OUT endpoint using DMA mode 1 with a max packet size of 64 bytes.

Example: Configure endpoint 1 receive channel:

//
// Endpoint 1 is a device mode BULK OUT endpoint using DMA.
//
USBDevEndpointConfig(

USB0_BASE,
USB_EP_1,
64,
USB_EP_DEV_OUT | USB_EP_MODE_BULK |
USB_EP_DMA_MODE_1 | USB_EP_AUTO_CLEAR);

Next the configuration of the actual uDMA controller is needed. Like the transmit case, the first a
call to DMAChannelAttributeClear() is made to clear any previous settings. This is followed by a
call to DMAChannelAttributeSet() with the DMA_CONFIG_USEBURST value.

Note:
All uDMA transfers used by the USB controller must use burst mode.

The final call sets the read access size to 8 bits wide, the source address increment to 0, the
destination address increment to 8 bits and the uDMA arbitration size to 64 bytes.

Example: Configure endpoint 1 transmit channel.

//
// Clear out any uDMA settings.
//
DMAChannelAttributeClear(

DMA_CHANNEL_USBEP1RX,
DMA_CONFIG_ALL);

DMAChannelAttributeSet(
DMA_CHANNEL_USBEP1RX,
DMA_CONFIG_USEBURST);

DMAChannelControlSet(
DMA_CHANNEL_USBEP1RX,
DMA_DATA_SIZE_8,
DMA_ADDR_INC_NONE,
DMA_ADDR_INC_8,
DMA_ARB_64,
0);

The next step is to actually start the uDMA transfer. Unlike the transfer side, if the application is
ready, this can be set up right away to wait for incoming data. Like the transmit case, these are
the only calls needed to start a new transfer, normally all of the previous uDMA configuration can
remain the same.

Example: Start requesting of data on endpoint 1.

//

290 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

// Configure the address and size of the data to transfer. The transfer
// is from the USB FIFO for endpoint 0 to g_DataBufferIn.
//
DMAChannelTransferSet(

DMA_CHANNEL_USBEP1RX,
DMA_MODE_BASIC,
USBFIFOAddr(USB0_BASE, USB_EP_1),
g_DataBufferIn,
64);

//
// Enable the uDMA channel and wait for data.
//
DMAChannelEnable(DMA_CHANNEL_USBEP1RX);

The uDMA interrupt occurs on the same interrupt vector as any other USB interrupt, this means
that the application needs to check to see what was the actual source of the interrupt. It is possible
that the USB interrupt does not indicate that the USB transfer was complete. The interrupt could
also have been caused by a short packet, error, or even a transmit complete. This requires that the
application check both receive cases to determine if this is related to receiving data on the endpoint.
Because the USB has no status bit indicating that the interrupt was due to a DMA complete, the
application must remember if a DMA transaction was in progress.

Example: Interrupt handling with uDMA.

//
// Get the current interrupt status.
//
ulStatus = USBIntStatus(USB0_BASE);

if(ulStatus & USB_INT_DEV_OUT_EP1)
{

//
// Handle a short packet.
//
...

}
else if((g_ulFlags & EP1_DMA_OUT_PEND) &&

(DMAChannelModeGet(DMA_CHANNEL_USBEP1RX) == DMA_MODE_STOP)
{

//
// Handle the DMA complete case.
//
...

//
// Restart receive DMA if desired.
//
...

}

24.3 API Functions

Functions
unsigned long USBDevAddrGet (unsigned long ulBase)
void USBDevAddrSet (unsigned long ulBase, unsigned long ulAddress)
void USBDevConnect (unsigned long ulBase)

September 29, 2008 291

USB Controller

void USBDevDisconnect (unsigned long ulBase)
void USBDevEndpointConfig (unsigned long ulBase, unsigned long ulEndpoint, unsigned long
ulMaxPacketSize, unsigned long ulFlags)
void USBDevEndpointConfigGet (unsigned long ulBase, unsigned long ulEndpoint, unsigned
long ∗pulMaxPacketSize, unsigned long ∗pulFlags)
void USBDevEndpointDataAck (unsigned long ulBase, unsigned long ulEndpoint, tBoolean
bIsLastPacket)
void USBDevEndpointStall (unsigned long ulBase, unsigned long ulEndpoint, unsigned long
ulFlags)
void USBDevEndpointStallClear (unsigned long ulBase, unsigned long ulEndpoint, unsigned
long ulFlags)
void USBDevEndpointStatusClear (unsigned long ulBase, unsigned long ulEndpoint, unsigned
long ulFlags)
unsigned long USBEndpointDataAvail (unsigned long ulBase, unsigned long ulEndpoint)
long USBEndpointDataGet (unsigned long ulBase, unsigned long ulEndpoint, unsigned char
∗pucData, unsigned long ∗pulSize)
long USBEndpointDataPut (unsigned long ulBase, unsigned long ulEndpoint, unsigned char
∗pucData, unsigned long ulSize)
long USBEndpointDataSend (unsigned long ulBase, unsigned long ulEndpoint, unsigned long
ulTransType)
void USBEndpointDataToggleClear (unsigned long ulBase, unsigned long ulEndpoint, un-
signed long ulFlags)
unsigned long USBEndpointStatus (unsigned long ulBase, unsigned long ulEndpoint)
unsigned long USBFIFOAddrGet (unsigned long ulBase, unsigned long ulEndpoint)
void USBFIFOConfigGet (unsigned long ulBase, unsigned long ulEndpoint, unsigned long
∗pulFIFOAddress, unsigned long ∗pulFIFOSize, unsigned long ulFlags)
void USBFIFOConfigSet (unsigned long ulBase, unsigned long ulEndpoint, unsigned long ul-
FIFOAddress, unsigned long ulFIFOSize, unsigned long ulFlags)
void USBFIFOFlush (unsigned long ulBase, unsigned long ulEndpoint, unsigned long ulFlags)
unsigned long USBFrameNumberGet (unsigned long ulBase)
unsigned long USBHostAddrGet (unsigned long ulBase, unsigned long ulEndpoint, unsigned
long ulFlags)
void USBHostAddrSet (unsigned long ulBase, unsigned long ulEndpoint, unsigned long
ulAddr, unsigned long ulFlags)
void USBHostEndpointConfig (unsigned long ulBase, unsigned long ulEndpoint, unsigned
long ulMaxPayload, unsigned long ulNAKPollInterval, unsigned long ulTargetEndpoint, un-
signed long ulFlags)
void USBHostEndpointDataAck (unsigned long ulBase, unsigned long ulEndpoint)
void USBHostEndpointDataToggle (unsigned long ulBase, unsigned long ulEndpoint, tBoolean
bDataToggle, unsigned long ulFlags)
void USBHostEndpointStatusClear (unsigned long ulBase, unsigned long ulEndpoint, un-
signed long ulFlags)
unsigned long USBHostHubAddrGet (unsigned long ulBase, unsigned long ulEndpoint, un-
signed long ulFlags)
void USBHostHubAddrSet (unsigned long ulBase, unsigned long ulEndpoint, unsigned long
ulAddr, unsigned long ulFlags)
void USBHostPwrDisable (unsigned long ulBase)
void USBHostPwrEnable (unsigned long ulBase)

292 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

void USBHostPwrFaultConfig (unsigned long ulBase, unsigned long ulFlags)
void USBHostPwrFaultDisable (unsigned long ulBase)
void USBHostPwrFaultEnable (unsigned long ulBase)
void USBHostRequestIN (unsigned long ulBase, unsigned long ulEndpoint)
void USBHostRequestStatus (unsigned long ulBase)
void USBHostReset (unsigned long ulBase, tBoolean bStart)
void USBHostResume (unsigned long ulBase, tBoolean bStart)
unsigned long USBHostSpeedGet (unsigned long ulBase)
void USBHostSuspend (unsigned long ulBase)
void USBIntDisable (unsigned long ulBase, unsigned long ulFlags)
void USBIntEnable (unsigned long ulBase, unsigned long ulFlags)
void USBIntRegister (unsigned long ulBase, void (∗pfnHandler)(void))
unsigned long USBIntStatus (unsigned long ulBase)
void USBIntUnregister (unsigned long ulBase)
void USBOTGSessionRequest (unsigned long ulBase, tBoolean bStart)

24.3.1 Detailed Description

The USB APIs provide all of the functions needed by an application to implement a USB device
or USB host stack. The APIs abstract the IN/OUT nature of endpoints based on the type of USB
controller that is in use. Any API that uses the IN/OUT terminology will comply with the standard
USB interpretation of these terms. For example, an OUT endpoint on a microcontroller that has
only a device interface will actually receive data on this endpoint, while a microcontroller that has a
host interface will actually transmit data on an OUT endpoint.

Another important fact to understand is that all endpoints in the USB controller, whether host or
device, have two "sides" to them. This allows each endpoint to both transmit and receive data. An
application can use a single endpoint for both and IN and OUT transactions. For example: In device
mode, endpoint 1 could be configured to have BULK IN and BULK OUT handled by endpoint 1. It
is important to note that the endpoint number used is the endpoint number reported to the host.
For microcontrollers with host controllers, the application can use an endpoint communicate with
both IN and OUT endpoints of different types as well. For example: Endpoint 2 could be used to
communicate with one device’s interrupt IN endpoint and another device’s bulk OUT endpoint at
the same time. This effectively gives the application one dedicated control endpoint for IN or OUT
control transactions on endpoint 0, and three IN endpoints and three OUT endpoints.

The USB controller has a configurable FIFOs in devices that have a USB device controller as well as
those that have a host controller. The overall size of the FIFO RAM is 4096 bytes. It is important to
note that the first 64 bytes of this memory are dedicated to endpoint 0 for control transactions. The
remaining 4032 bytes are configurable however the application desires. The FIFO configuration is
usually set at the beginning of the application and not modified once the USB controller is in use.
The FIFO configuration uses the USBFIFOConfig() API to set the starting address and the size of
the FIFOs that are dedicated to each endpoint.

Example: FIFO Configuration

0-64 - endpoint 0 IN/OUT (64 bytes).

64-576 - endpoint 1 IN (512 bytes).

576-1088 - endpoint 1 OUT (512 bytes).

1088-1600 - endpoint 2 IN (512 bytes).

September 29, 2008 293

USB Controller

//
// FIFO for endpoint 1 IN starts at address 64 and is 512 bytes in size.
//
USBFIFOConfig(USB0_BASE, USB_EP_1, 64, USB_FIFO_SZ_512, USB_EP_DEV_IN);

//
// FIFO for endpoint 1 OUT starts at address 576 and is 512 bytes in size.
//
USBFIFOConfig(USB0_BASE, USB_EP_1, 576,

USB_FIFO_SZ_512, USB_EP_DEV_OUT);

//
// FIFO for endpoint 2 IN starts at address 1088 and is 512 bytes in size.
//
USBFIFOConfig(USB0_BASE, USB_EP_2, 1088, USB_FIFO_SZ_512, USB_EP_DEV_IN);

24.3.2 Function Documentation

24.3.2.1 USBDevAddrGet

Returns the current device address in device mode.

Prototype:
unsigned long
USBDevAddrGet(unsigned long ulBase)

Parameters:
ulBase specifies the USB module base address.

Description:
This function will return the current device address. This address was set by a call to USBDe-
vAddrSet().

Note:
This function should only be called in device mode.

Returns:
The current device address.

24.3.2.2 USBDevAddrSet

Sets the address in device mode.

Prototype:
void
USBDevAddrSet(unsigned long ulBase,

unsigned long ulAddress)

Parameters:
ulBase specifies the USB module base address.
ulAddress is the address to use for a device.

Description:
This function will set the device address on the USB bus. This address was likely received via
a SET ADDRESS command from the host controller.

294 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Note:
This function should only be called in device mode.

Returns:
None.

24.3.2.3 USBDevConnect

Connects the USB controller to the bus in device mode.

Prototype:
void
USBDevConnect(unsigned long ulBase)

Parameters:
ulBase specifies the USB module base address.

Description:
This function will cause the soft connect feature of the USB controller to be enabled. Call
USBDisconnect() to remove the USB device from the bus.

Note:
This function should only be called in device mode.

Returns:
None.

24.3.2.4 USBDevDisconnect

Removes the USB controller from the bus in device mode.

Prototype:
void
USBDevDisconnect(unsigned long ulBase)

Parameters:
ulBase specifies the USB module base address.

Description:
This function will cause the soft connect feature of the USB controller to remove the device
from the USB bus. A call to USBDevConnect() is needed to reconnect to the bus.

Note:
This function should only be called in device mode.

Returns:
None.

September 29, 2008 295

USB Controller

24.3.2.5 USBDevEndpointConfig

Sets the configuration for an endpoint.

Prototype:
void
USBDevEndpointConfig(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulMaxPacketSize,
unsigned long ulFlags)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulMaxPacketSize is the maximum packet size for this endpoint.
ulFlags are used to configure other endpoint settings.

Description:
This function will set the basic configuration for an endpoint in device mode. Endpiont zero does
not have a dynamic configuration, so this function should not be called for endpoint zero. The
ulFlags parameter determines some of the configuration while the other parameters provide
the rest.

The USB_EP_MODE_ flags define what the type is for the given endpoint.

USB_EP_MODE_CTRL is a control endpoint.
USB_EP_MODE_ISOC is an isochronous endpoint.
USB_EP_MODE_BULK is a bulk endpoint.
USB_EP_MODE_INT is an interrupt endpoint.

The USB_EP_DMA_MODE_ flags determines the type of DMA access to the endpoint data FI-
FOs. The choice of the DMA mode depends on how the DMA controller is configured and how
it is being used. See the “Using USB with the uDMA Controller” section for more information
on DMA configuration.

When configuring an IN endpoint, the USB_EP_AUTO_SET bit can be specified to cause the
automatic transmission of data on the USB bus as soon as ulMaxPacketSize bytes of data are
written into the FIFO for this endpoint. This is commonly used with DMA as no interaction is
required to start the transmission of data.

When configuring an OUT endpoint, the USB_EP_AUTO_REQUEST bit is specified to trigger
the request for more data once the FIFO has been drained enough to receive ulMaxPacketSize
more bytes of data. Also for OUT endpoints, the USB_EP_AUTO_CLEAR bit can be used to
clear the data packet ready flag automatically once the data has been read from the FIFO. If
this is not used, this flag must be manually cleared via a call to USBDevEndpointStatusClear().
Both of these settings can be used to remove the need for extra calls when using the controller
in DMA mode.

Note:
This function should only be called in device mode.

Returns:
None.

296 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

24.3.2.6 USBDevEndpointConfigGet

Gets the current configuration for an endpoint.

Prototype:
void
USBDevEndpointConfigGet(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long *pulMaxPacketSize,
unsigned long *pulFlags)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
pulMaxPacketSize is a pointer which will be written with the maximum packet size for this

endpoint.
pulFlags is a pointer which will be written with the current endpoint settings. On entry to

the function, this pointer must contain either USB_EP_DEV_IN or USB_EP_DEV_OUT to
indicate whether the IN or OUT endpoint is to be queried.

Description:
This function will return the basic configuration for an endpoint in device mode. The values re-
turned in ∗pulMaxPacketSize and ∗pulFlags are equivalent to the ulMaxPacketSize and ulFlags
previously passed to USBDevEndpointConfig for this endpoint.

Note:
This function should only be called in device mode.

Returns:
None.

24.3.2.7 USBDevEndpointDataAck

Acknowledge that data was read from the given endpoint’s FIFO in device mode.

Prototype:
void
USBDevEndpointDataAck(unsigned long ulBase,

unsigned long ulEndpoint,
tBoolean bIsLastPacket)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
bIsLastPacket indicates if this is the last packet.

Description:
This function acknowledges that the data was read from the endpoint’s FIFO. The bIsLast-
Packet parameter is set to a true value if this is the last in a series of data packets on endpoint
zero. The bIsLastPacket parameter is not used for endpoints other than endpoint zero. This
call can be used if processing is required between reading the data and acknowledging that
the data has been read.

September 29, 2008 297

USB Controller

Note:
This function should only be called in device mode.

Returns:
None.

24.3.2.8 USBDevEndpointStall

Stalls the specified endpoint in device mode.

Prototype:
void
USBDevEndpointStall(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint specifies the endpoint to stall.
ulFlags specifies whether to stall the IN or OUT endpoint.

Description:
This function will cause to endpoint number passed in to go into a stall condition. If the ulFlags
parameter is USB_EP_DEV_IN then the stall will be issued on the IN portion of this endpoint. If
the ulFlags parameter is USB_EP_DEV_OUT then the stall will be issued on the OUT portion
of this endpoint.

Note:
This function should only be called in device mode.

Returns:
None.

24.3.2.9 USBDevEndpointStallClear

Clears the stall condition on the specified endpoint in device mode.

Prototype:
void
USBDevEndpointStallClear(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint specifies which endpoint to remove the stall condition.
ulFlags specifies whether to remove the stall condition from the IN or the OUT portion of this

endpoint.

298 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function will cause the endpoint number passed in to exit the stall condition. If the ulFlags
parameter is USB_EP_DEV_IN then the stall will be cleared on the IN portion of this endpoint.
If the ulFlags parameter is USB_EP_DEV_OUT then the stall will be cleared on the OUT
portion of this endpoint.

Note:
This function should only be called in device mode.

Returns:
None.

24.3.2.10 USBDevEndpointStatusClear

Clears the status bits in this endpoint in device mode.

Prototype:
void
USBDevEndpointStatusClear(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulFlags are the status bits that will be cleared.

Description:
This function will clear the status of any bits that are passed in the ulFlags parameter. The
ulFlags parameter can take the value returned from the USBEndpointStatus() call.

Note:
This function should only be called in device mode.

Returns:
None.

24.3.2.11 USBEndpointDataAvail

Determine the number of bytes of data available in a given endpoint’s FIFO.

Prototype:
unsigned long
USBEndpointDataAvail(unsigned long ulBase,

unsigned long ulEndpoint)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.

September 29, 2008 299

USB Controller

Description:
This function will return the number of bytes of data currently available in the FIFO for the given
receive (OUT) endpoint. It may be used prior to calling USBEndpointDataGet() to determine
the size of buffer required to hold the newly-received packet.

Returns:
This call will return the number of bytes available in a given endpoint FIFO.

24.3.2.12 USBEndpointDataGet

Retrieves data from the given endpoint’s FIFO.

Prototype:
long
USBEndpointDataGet(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned char *pucData,
unsigned long *pulSize)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
pucData is a pointer to the data area used to return the data from the FIFO.
pulSize is initially the size of the buffer passed into this call via the pucData parameter. It will

be set to the amount of data returned in the buffer.

Description:
This function will return the data from the FIFO for the given endpoint. The pulSize parameter
should indicate the size of the buffer passed in the pulData parameter. The data in the pulSize
parameter will be changed to match the amount of data returned in the pucData parameter. If
a zero byte packet was received this call will not return a error but will instead just return a zero
in the pulSize parameter. The only error case occurs when there is no data packet available.

Returns:
This call will return 0, or -1 if no packet was received.

24.3.2.13 USBEndpointDataPut

Puts data into the given endpoint’s FIFO.

Prototype:
long
USBEndpointDataPut(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned char *pucData,
unsigned long ulSize)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.

300 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

pucData is a pointer to the data area used as the source for the data to put into the FIFO.
ulSize is the amount of data to put into the FIFO.

Description:
This function will put the data from the pucData parameter into the FIFO for this endpoint. If
a packet is already pending for transmission then this call will not put any of the data into the
FIFO and will return -1. Care should be taken to not write more data than can fit into the FIFO
allocated by the call to USBFIFOConfig().

Returns:
This call will return 0 on success, or -1 to indicate that the FIFO is in use and cannot be written.

24.3.2.14 USBEndpointDataSend

Starts the transfer of data from an endpoint’s FIFO.

Prototype:
long
USBEndpointDataSend(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulTransType)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulTransType is set to indicate what type of data is being sent.

Description:
This function will start the transfer of data from the FIFO for a given endpoint. This is necessary
if the USB_EP_AUTO_SET bit was not enabled for the endpoint. Setting the ulTransType
parameter will allow the appropriate signaling on the USB bus for the type of transaction being
requested. The ulTransType parameter should be one of the following:

USB_TRANS_OUT for OUT transaction on any endpoint in host mode.
USB_TRANS_IN for IN transaction on any endpoint in device mode.
USB_TRANS_IN_LAST for the last IN transactions on endpoint zero in a sequence of IN
transactions.
USB_TRANS_SETUP for setup transactions on endpoint zero.
USB_TRANS_STATUS for status results on endpoint zero.

Returns:
This call will return 0 on success, or -1 if a transmission is already in progress.

24.3.2.15 USBEndpointDataToggleClear

Sets the Data toggle on an endpoint to zero.

Prototype:
void
USBEndpointDataToggleClear(unsigned long ulBase,

September 29, 2008 301

USB Controller

unsigned long ulEndpoint,
unsigned long ulFlags)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint specifies the endpoint to reset the data toggle.
ulFlags specifies whether to access the IN or OUT endpoint.

Description:
This function will cause the controller to clear the data toggle for an endpoint. This call is not
valid for endpoint zero and can be made with host or device controllers.

The ulFlags parameter should be one of USB_EP_HOST_OUT, USB_EP_HOST_IN,
USB_EP_DEV_OUT, or USB_EP_DEV_IN.

Returns:
None.

24.3.2.16 USBEndpointStatus

Returns the current status of an endpoint.

Prototype:
unsigned long
USBEndpointStatus(unsigned long ulBase,

unsigned long ulEndpoint)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.

Description:
This function will return the status of a given endpoint. If any of these status bits need to be
cleared, then these these values must be cleared by calling the USBDevEndpointStatusClear()
or USBHostEndpointStatusClear() functions.

The following are the status flags for host mode:

USB_HOST_IN_PID_ERROR - PID error on the given endpoint.
USB_HOST_IN_NOT_COMP - The device failed to respond to an IN request.
USB_HOST_IN_STALL - A stall was received on an IN endpoint.
USB_HOST_IN_DATA_ERROR - There was a CRC or bit-stuff error on an IN endpoint in
Isochronous mode.
USB_HOST_IN_NAK_TO - NAKs received on this IN endpoint for more than the specified
timeout period.
USB_HOST_IN_ERROR - Failed to communicate with a device using this IN endpoint.
USB_HOST_IN_FIFO_FULL - This IN endpoint’s FIFO is full.
USB_HOST_IN_PKTRDY - Data packet ready on this IN endpoint.
USB_HOST_OUT_NAK_TO - NAKs received on this OUT endpoint for more than the
specified timeout period.
USB_HOST_OUT_NOT_COMP - The device failed to respond to an OUT request.

302 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

USB_HOST_OUT_STALL - A stall was received on this OUT endpoint.
USB_HOST_OUT_ERROR - Failed to communicate with a device using this OUT end-
point.
USB_HOST_OUT_FIFO_NE - This endpoint’s OUT FIFO is not empty.
USB_HOST_OUT_PKTPEND - The data transfer on this OUT endpoint has not com-
pleted.
USB_HOST_EP0_NAK_TO - NAKs received on endpoint zero for more than the specified
timeout period.
USB_HOST_EP0_ERROR - The device failed to respond to a request on endpoint zero.
USB_HOST_EP0_IN_STALL - A stall was received on endpoint zero for an IN transaction.
USB_HOST_EP0_IN_PKTRDY - Data packet ready on endpoint zero for an IN transaction.

The following are the status flags for device mode:

USB_DEV_OUT_SENT_STALL - A stall was sent on this OUT endpoint.
USB_DEV_OUT_DATA_ERROR - There was a CRC or bit-stuff error on an OUT endpoint.
USB_DEV_OUT_OVERRUN - An OUT packet was not loaded due to a full FIFO.
USB_DEV_OUT_FIFO_FULL - The OUT endpoint’s FIFO is full.
USB_DEV_OUT_PKTRDY - There is a data packet ready in the OUT endpoint’s FIFO.
USB_DEV_IN_NOT_COMP - A larger packet was split up, more data to come.
USB_DEV_IN_SENT_STALL - A stall was sent on this IN endpoint.
USB_DEV_IN_UNDERRUN - Data was requested on the IN endpoint and no data was
ready.
USB_DEV_IN_FIFO_NE - The IN endpoint’s FIFO is not empty.
USB_DEV_IN_PKTPEND - The data transfer on this IN endpoint has not completed.
USB_DEV_EP0_SETUP_END - A control transaction ended before Data End condition
was sent.
USB_DEV_EP0_SENT_STALL - A stall was sent on endpoint zero.
USB_DEV_EP0_IN_PKTPEND - The data transfer on endpoint zero has not completed.
USB_DEV_EP0_OUT_PKTRDY - There is a data packet ready in endpoint zero’s OUT
FIFO.

Returns:
The current status flags for the endpoint depending on mode.

24.3.2.17 USBFIFOAddrGet

Returns the absolute FIFO address for a given endpoint.

Prototype:
unsigned long
USBFIFOAddrGet(unsigned long ulBase,

unsigned long ulEndpoint)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint specifies which endpoint’s FIFO address to return.

September 29, 2008 303

USB Controller

Description:
This function returns the actual physical address of the FIFO. This is needed when the USB is
going to be used with the uDMA controller and the source or destination address needs to be
set to the physical FIFO address for a given endpoint.

Returns:
None.

24.3.2.18 USBFIFOConfigGet

Returns the FIFO configuration for an endpoint.

Prototype:
void
USBFIFOConfigGet(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long *pulFIFOAddress,
unsigned long *pulFIFOSize,
unsigned long ulFlags)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
pulFIFOAddress is the starting address for the FIFO.
pulFIFOSize is the size of the FIFO in bytes.
ulFlags specifies what information to retrieve from the FIFO configuration.

Description:
This function will return the starting address and size of the FIFO for a given endpoint. End-
point zero does not have a dynamically configurable FIFO so this function should not be called
for endpoint zero. The ulFlags parameter specifies whether the endpoint’s OUT or IN FIFO
should be read. If in host mode, the ulFlags parameter should be USB_EP_HOST_OUT
or USB_EP_HOST_IN, and if in device mode the ulFlags parameter should be either
USB_EP_DEV_OUT or USB_EP_DEV_IN.

Returns:
None.

24.3.2.19 USBFIFOConfigSet

Sets the FIFO configuration for an endpoint.

Prototype:
void
USBFIFOConfigSet(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFIFOAddress,
unsigned long ulFIFOSize,
unsigned long ulFlags)

304 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulFIFOAddress is the starting address for the FIFO.
ulFIFOSize is the size of the FIFO in bytes.
ulFlags specifies what information to set in the FIFO configuration.

Description:
This function will set the starting FIFO RAM address and size of the FIFO for a given end-
point. Endpoint zero does not have a dynamically configurable FIFO so this function should
not be called for endpoint zero. The ulFIFOSize parameter should be one of the values in
the USB_FIFO_SZ_ values. If the endpoint is going to use double buffering it should use the
values with the _DB at the end of the value. For example, use USB_FIFO_SZ_16_DB to con-
figure an endpoint to have a 16 byte double buffered FIFO. If a double buffered FIFO is used,
then the actual size of the FIFO will be twice the size indicated by the ulFIFOSize parameter.
This means that the USB_FIFO_SZ_16_DB value will use 32 bytes of the USB controller’s
FIFO memory.

The ulFIFOAddress value should be a multiple of 8 bytes and directly indicates the start-
ing address in the USB controller’s FIFO RAM. For example, a value of 64 indicates that
the FIFO should start 64 bytes into the USB controller’s FIFO memory. The ulFlags value
specifies whether the endpoint’s OUT or IN FIFO should be configured. If in host mode, use
USB_EP_HOST_OUT or USB_EP_HOST_IN, and if in device mode use USB_EP_DEV_OUT
or USB_EP_DEV_IN.

Returns:
None.

24.3.2.20 USBFIFOFlush

Forces a flush of an endpoint’s FIFO.

Prototype:
void
USBFIFOFlush(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulFlags specifies if the IN or OUT endpoint should be accessed.

Description:
This function will force the controller to flush out the data in the FIFO. The function can be
called with either host or device controllers and requires the ulFlags parameter be one of
USB_EP_HOST_OUT, USB_EP_HOST_IN, USB_EP_DEV_OUT, or USB_EP_DEV_IN.

Returns:
None.

September 29, 2008 305

USB Controller

24.3.2.21 USBFrameNumberGet

Get the current frame number.

Prototype:
unsigned long
USBFrameNumberGet(unsigned long ulBase)

Parameters:
ulBase specifies the USB module base address.

Description:
This function returns the last frame number received.

Returns:
The last frame number received.

24.3.2.22 USBHostAddrGet

Gets the current functional device address for an endpoint.

Prototype:
unsigned long
USBHostAddrGet(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulFlags determines if this is an IN or an OUT endpoint.

Description:
This function returns the current functional address that an endpoint is using to communicate
with a device. The ulFlags parameter determines if the IN or OUT endpoint’s device address
is returned.

Note:
This function should only be called in host mode.

Returns:
Returns the current function address being used by an endpoint.

24.3.2.23 USBHostAddrSet

Sets the functional address for the device that is connected to an endpoint in host mode.

Prototype:
void
USBHostAddrSet(unsigned long ulBase,

unsigned long ulEndpoint,

306 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

unsigned long ulAddr,
unsigned long ulFlags)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulAddr is the functional address for the controller to use for this endpoint.
ulFlags determines if this is an IN or an OUT endpoint.

Description:
This function will set the functional address for a device that is using this endpoint for commu-
nication. This ulAddr parameter is the address of the target device that this endpoint will be
used to communicate with. The ulFlags parameter indicates if the IN or OUT endpoint should
be set.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.2.24 USBHostEndpointConfig

Sets the base configuration for a host endpoint.

Prototype:
void
USBHostEndpointConfig(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulMaxPayload,
unsigned long ulNAKPollInterval,
unsigned long ulTargetEndpoint,
unsigned long ulFlags)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulMaxPayload is the maximum payload for this endpoint.
ulNAKPollInterval is the either the NAK timeout limit or the polling interval depending on the

type of endpoint.
ulTargetEndpoint is the endpoint that the host endpoint is targeting.
ulFlags are used to configure other endpoint settings.

Description:
This function will set the basic configuration for the transmit or receive portion of an endpoint
in host mode. The ulFlags parameter determines some of the configuration while the other
parameters provide the rest. The ulFlags parameter determines whether this is an IN end-
point (USB_EP_HOST_IN or USB_EP_DEV_IN) or an OUT endpoint (USB_EP_HOST_OUT
or USB_EP_DEV_OUT), whether this is a Full speed endpoint (USB_EP_SPEED_FULL) or a
Low speed endpoint (USB_EP_SPEED_LOW).

The USB_EP_MODE_ flags control the type of the endpoint.

September 29, 2008 307

USB Controller

USB_EP_MODE_CTRL is a control endpoint.
USB_EP_MODE_ISOC is an isochronous endpoint.
USB_EP_MODE_BULK is a bulk endpoint.
USB_EP_MODE_INT is an interrupt endpoint.

The ulNAKPollInterval parameter has different meanings based on the USB_EP_MODE value
and whether or not this call is being made for endpoint zero or another endpoint. For endpoint
zero or any Bulk endpoints, this value always indicates the number of frames to allow a device
to NAK before considering it a timeout. If this endpoint is an isochronous or interrupt endpoint,
this value is the polling interval for this endpoint.

For interrupt endpoints the polling interval is simply the number of frames between polling an
interrupt endpoint. For isochronous endpoints this value represents a polling interval of 2 ∧

(ulNAKPollInterval - 1) frames. When used as a NAK timeout, the ulNAKPollInterval value
specifies 2 ∧ (ulNAKPollInterval - 1) frames before issuing a time out. There are two special
time out values that can be specified when setting the ulNAKPollInterval value. The first is
MAX_NAK_LIMIT which is the maximum value that can be passed in this variable. The other
is DISABLE_NAK_LIMIT which indicates that there should be no limit on the number of NAKs.

The USB_EP_DMA_MODE_ flags enables the type of DMA used to access the endpoint’s
data FIFOs. The choice of the DMA mode depends on how the DMA controller is configured
and how it is being used. See the “Using USB with the uDMA Controller” section for more
information on DMA configuration.

When configuring the OUT portion of an endpoint, the USB_EP_AUTO_SET bit is specified
to cause the transmission of data on the USB bus to start as soon as the number of bytes
specified by ulMaxPayload have been written into the OUT FIFO for this endpoint.

When configuring the IN portion of an endpoint, the USB_EP_AUTO_REQUEST bit can be
specified to trigger the request for more data once the FIFO has been drained enough to fit
ulMaxPayload bytes. The USB_EP_AUTO_CLEAR bit can be used to clear the data packet
ready flag automatically once the data has been read from the FIFO. If this is not used, this
flag must be manually cleared via a call to USBDevEndpointStatusClear() or USBHostEnd-
pointStatusClear().

Note:
This function should only be called in host mode.

Returns:
None.

24.3.2.25 USBHostEndpointDataAck

Acknowledge that data was read from the given endpoint’s FIFO in host mode.

Prototype:
void
USBHostEndpointDataAck(unsigned long ulBase,

unsigned long ulEndpoint)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.

308 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function acknowledges that the data was read from the endpoint’s FIFO. This call is used
if processing is required between reading the data and acknowledging that the data has been
read.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.2.26 USBHostEndpointDataToggle

Sets the value data toggle on an endpoint in host mode.

Prototype:
void
USBHostEndpointDataToggle(unsigned long ulBase,

unsigned long ulEndpoint,
tBoolean bDataToggle,
unsigned long ulFlags)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint specifies the endpoint to reset the data toggle.
bDataToggle specifies whether to set the state to DATA0 or DATA1.
ulFlags specifies whether to set the IN or OUT endpoint.

Description:
This function is used to force the state of the data toggle in host mode. If the value passed in
the bDataToggle parameter is false, then the data toggle will be set to the DATA0 state, and if
it is true it will be set to the DATA1 state. The ulFlags parameter can be USB_EP_HOST_IN or
USB_EP_HOST_OUT to access the desired portion of this endpoint. The ulFlags parameter
is ignored for endpoint zero.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.2.27 USBHostEndpointStatusClear

Clears the status bits in this endpoint in host mode.

Prototype:
void
USBHostEndpointStatusClear(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

September 29, 2008 309

USB Controller

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulFlags are the status bits that will be cleared.

Description:
This function will clear the status of any bits that are passed in the ulFlags parameter. The
ulFlags parameter can take the value returned from the USBEndpointStatus() call.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.2.28 USBHostHubAddrGet

Get the current device hub address for this endpoint.

Prototype:
unsigned long
USBHostHubAddrGet(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulFlags determines if this is an IN or an OUT endpoint.

Description:
This function will return the current hub address that an endpoint is using to communicate with
a device. The ulFlags parameter determines if the device address for the IN or OUT endpoint
is returned.

Note:
This function should only be called in host mode.

Returns:
This function returns the current hub address being used by an endpoint.

24.3.2.29 USBHostHubAddrSet

Set the hub address for the device that is connected to an endpoint.

Prototype:
void
USBHostHubAddrSet(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulAddr,
unsigned long ulFlags)

310 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulAddr is the hub address for the device using this endpoint.
ulFlags determines if this is an IN or an OUT endpoint.

Description:
This function will set the hub address for a device that is using this endpoint for communication.
The ulFlags parameter determines if the device address for the IN or the OUT endpoint is set
by this call.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.2.30 USBHostPwrDisable

Disables the external power pin.

Prototype:
void
USBHostPwrDisable(unsigned long ulBase)

Parameters:
ulBase specifies the USB module base address.

Description:
This function disables the USBEPEN signal to disable an external power supply in host mode
operation.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.2.31 USBHostPwrEnable

Enables the external power pin.

Prototype:
void
USBHostPwrEnable(unsigned long ulBase)

Parameters:
ulBase specifies the USB module base address.

Description:
This function enables the USBEPEN signal to enable an external power supply in host mode
operation.

September 29, 2008 311

USB Controller

Note:
This function should only be called in host mode.

Returns:
None.

24.3.2.32 USBHostPwrFaultConfig

Sets the configuration for USB power fault.

Prototype:
void
USBHostPwrFaultConfig(unsigned long ulBase,

unsigned long ulFlags)

Parameters:
ulBase specifies the USB module base address.
ulFlags specifies the configuration of the power fault.

Description:
This function will set the behavior of the USB controller during a power fault and the behavior
of the USBPEN pin. The flags specify the power fault level sensitivity, the power fault action,
and the power enable level and source. One of the following can be selected as the power fault
level sensitivity:

USB_HOST_PWRFLT_LOW - Power fault is indicated by the pin being driven low.
USB_HOST_PWRFLT_HIGH - Power fault is indicated by the pin being driven! high.

One of the following can be selected as the power fault action:

USB_HOST_PWRFLT_EP_NONE - No automatic action when power fault detected.
USB_HOST_PWRFLT_EP_TRI - Automatically Tri-state the USBEPEN pin on a power
fault.
USB_HOST_PWRFLT_EP_LOW - Automatically drive USBEPEN pin low on a power fault.
USB_HOST_PWRFLT_EP_HIGH - Automatically drive USBEPEN pin high on a power
fault.

One of the following can be selected as the power enable level and source:

USB_HOST_PWREN_LOW - USBEPEN is driven low when power is enabled.
USB_HOST_PWREN_HIGH - USBEPEN is driven high when power is enabled.
USB_HOST_PWREN_VBLOW - USBEPEN is driven high when VBUS is low.
USB_HOST_PWREN_VBHIGH - USBEPEN is driven high when VBUS is high.

Note:
This function should only be called in host mode.

Returns:
None.

312 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

24.3.2.33 USBHostPwrFaultDisable

Disables power fault detection.

Prototype:
void
USBHostPwrFaultDisable(unsigned long ulBase)

Parameters:
ulBase specifies the USB module base address.

Description:
This function disables power fault detection in the USB controller.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.2.34 USBHostPwrFaultEnable

Enables power fault detection.

Prototype:
void
USBHostPwrFaultEnable(unsigned long ulBase)

Parameters:
ulBase specifies the USB module base address.

Description:
This function enables power fault detection in the USB controller. If the USBPFLT pin is not in
use this function should not be used.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.2.35 USBHostRequestIN

Schedules a request for an IN transaction on an endpoint in host mode.

Prototype:
void
USBHostRequestIN(unsigned long ulBase,

unsigned long ulEndpoint)

Parameters:
ulBase specifies the USB module base address.

September 29, 2008 313

USB Controller

ulEndpoint is the endpoint to access.

Description:
This function will schedule a request for an IN transaction. When the USB device being com-
municated with responds the data, the data can be retrieved by calling USBEndpointDataGet()
or via a DMA transfer.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.2.36 USBHostRequestStatus

Issues a request for a status IN transaction on endpoint zero.

Prototype:
void
USBHostRequestStatus(unsigned long ulBase)

Parameters:
ulBase specifies the USB module base address.

Description:
This function is used to cause a request for an status IN transaction from a device on endpoint
zero. This function can only be used with endpoint zero as that is the only control endpoint that
supports this ability. This is used to complete the last phase of a control transaction to a device
and an interrupt will be signaled when the status packet has been received.

Returns:
None.

24.3.2.37 USBHostReset

Handles the USB bus reset condition.

Prototype:
void
USBHostReset(unsigned long ulBase,

tBoolean bStart)

Parameters:
ulBase specifies the USB module base address.
bStart specifies whether to start or stop signaling reset on the USB bus.

Description:
When this function is called with the bStart parameter set to true, this function will cause the
start of a reset condition on the USB bus. The caller should then delay at least 20ms before
calling this function again with the bStart parameter set to false.

314 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Note:
This function should only be called in host mode.

Returns:
None.

24.3.2.38 USBHostResume

Handles the USB bus resume condition.

Prototype:
void
USBHostResume(unsigned long ulBase,

tBoolean bStart)

Parameters:
ulBase specifies the USB module base address.
bStart specifies if the USB controller is entering or leaving the resume signaling state.

Description:
When in device mode this function will bring the USB controller out of the suspend state. This
call should first be made with the bStart parameter set to true to start resume signaling. The
device application should then delay at least 10ms but not more than 15ms before calling this
function with the bStart parameter set to false.

When in host mode this function will signal devices to leave the suspend state. This call
should first be made with the bStart parameter set to true to start resume signaling. The
host application should then delay at least 20ms before calling this function with the bStart
parameter set to false. This will cause the controller to complete the resume signaling on the
USB bus.

Returns:
None.

24.3.2.39 USBHostSpeedGet

Returns the current speed of the USB device connected.

Prototype:
unsigned long
USBHostSpeedGet(unsigned long ulBase)

Parameters:
ulBase specifies the USB module base address.

Description:
This function will return the current speed of the USB bus.

Note:
This function should only be called in host mode.

Returns:
Returns either USB_LOW_SPEED, USB_FULL_SPEED, or USB_UNDEF_SPEED.

September 29, 2008 315

USB Controller

24.3.2.40 USBHostSuspend

Puts the USB bus in a suspended state.

Prototype:
void
USBHostSuspend(unsigned long ulBase)

Parameters:
ulBase specifies the USB module base address.

Description:
When used in host mode, this function will put the USB bus in the suspended state.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.2.41 USBIntDisable

Disables the sources for USB interrupts.

Prototype:
void
USBIntDisable(unsigned long ulBase,

unsigned long ulFlags)

Parameters:
ulBase specifies the USB module base address.
ulFlags specifies which interrupts to disable.

Description:
This function will disable the USB controller from generating the interrupts indicated by the
ulFlags parameter. There are three groups of interrupt sources, IN Endpoints, OUT End-
points, and general status changes, specified by USB_INT_HOST_IN, USB_INT_HOST_OUT,
USB_INT_DEV_IN, USB_INT_DEV_OUT, and USB_INT_STATUS. If USB_INT_ALL is spec-
ified then all interrupts will be disabled.

Returns:
None.

24.3.2.42 USBIntEnable

Enables the sources for USB interrupts.

Prototype:
void
USBIntEnable(unsigned long ulBase,

unsigned long ulFlags)

316 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
ulBase specifies the USB module base address.
ulFlags specifies which interrupts to enable.

Description:
This function will enable the USB controller’s ability to generate the interrupts indicated by
the ulFlags parameter. There are three groups of interrupt sources, IN Endpoints, OUT End-
points, and general status changes, specified by USB_INT_HOST_IN, USB_INT_HOST_OUT,
USB_INT_DEV_IN, USB_INT_DEV_OUT, and USB_STATUS. If USB_INT_ALL is specified
then all interrupts will be enabled.

Note:
A call must be made to enable the interrupt in the main interrupt controller to receive interrupts.
The USBIntRegister() API performs this controller level interrupt enable. However if static
interrupt handlers are used then then a call to IntEnable() must be made in order to allow
any USB interrupts to occur.

Returns:
None.

24.3.2.43 USBIntRegister

Registers an interrupt handler for the USB controller.

Prototype:
void
USBIntRegister(unsigned long ulBase,

void (*pfnHandler)(void))

Parameters:
ulBase specifies the USB module base address.
pfnHandler is a pointer to the function to be called when a USB interrupt occurs.

Description:
This sets the handler to be called when a USB interrupt occurs. This will also enable the global
USB interrupt in the interrupt controller. The specific desired USB interrupts must be enabled
via a separate call to USBIntEnable(). It is the interrupt handler’s responsibility to clear the
interrupt sources via a call to USBIntStatus().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

24.3.2.44 USBIntStatus

Returns the status of the USB interrupts.

Prototype:
unsigned long
USBIntStatus(unsigned long ulBase)

September 29, 2008 317

USB Controller

Parameters:
ulBase specifies the USB module base address.

Description:
This function will read the source of the interrupt for the USB controller. There are three groups
of interrupt sources, IN Endpoints, OUT Endpoints, and general status changes. This call
will return the current status for all of these interrupts. The bit values returned should be
compared against the USB_HOST_IN, USB_HOST_OUT, USB_HOST_EP0, USB_DEV_IN,
USB_DEV_OUT, and USB_DEV_EP0 values.

Note:
This call will clear the source of all of the general status interrupts.

Returns:
Returns the status of the sources for the USB controller’s interrupt.

24.3.2.45 USBIntUnregister

Unregisters an interrupt handler for the USB controller.

Prototype:
void
USBIntUnregister(unsigned long ulBase)

Parameters:
ulBase specifies the USB module base address.

Description:
This function unregister the interrupt handler. This function will also disable the USB interrupt
in the interrupt controller.

See also:
IntRegister() for important information about registering or unregistering interrupt handlers.

Returns:
None.

24.3.2.46 USBOTGSessionRequest

Starts or ends a session.

Prototype:
void
USBOTGSessionRequest(unsigned long ulBase,

tBoolean bStart)

Parameters:
ulBase specifies the USB module base address.
bStart specifies if this call starts or ends a session.

318 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function is used in OTG mode to start a session request or end a session. If the bStart
parameter is set to true, then this function start a session and if it is false it will end a session.

Returns:
None.

24.4 Programming Example

This example code makes the calls necessary to configure end point 1, in device mode, as a bulk
IN end point. The first call configures end point 1 to have a maximum packet size of 64 bytes
and makes it a bulk IN end point. The call to USBFIFOConfig() sets the starting address to 64
bytes in and 64 bytes long. It specifies USB_EP_DEV_IN to indicate that this is a device mode
IN endpoint. The next two calls demonstrate how to fill the data FIFO for this endpoint and then
have it scheduled for transmission on the USB bus. The USBEndpointDataPut() call puts data into
the FIFO but does not actually start the data transmission. The USBEndpointDataSend() call will
schedule the transmission to go out the next time the host controller requests data on this endpoint.

//
// Configure Endpoint 1.
//
USBDevEndpointConfig(USB0_BASE, USB_EP_1, 64, DISABLE_NAK_LIMIT,

USB_EP_MODE_BULK | USB_EP_DEV_IN);

//
// Configure FIFO as a device IN endpoint FIFO starting at address 64
// and is 64 bytes in size.
//
USBFIFOConfig(USB0_BASE, USB_EP_1, 64, USB_FIFO_SZ_64, USB_EP_DEV_IN);

...

//
// Put the data in the FIFO.
//
USBEndpointDataPut(USB0_BASE, USB_EP_1, pucData, 64);

//
// Start the transmission of data.
//
USBEndpointDataSend(USB0_BASE, USB_EP_1, USB_TRANS_IN);

September 29, 2008 319

USB Controller

320 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

25 Watchdog Timer
Introduction .321
API Functions . 321
Programming Example .329

25.1 Introduction

The Watchdog Timer API provides a set of functions for using the Stellaris watchdog timer mod-
ules. Functions are provided to deal with the watchdog timer interrupts, and to handle status and
configuration of the watchdog timer.

The watchdog timer module’s function is to prevent system hangs. The watchdog timer module
consists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a
locking register. Once the watchdog timer has been configured, the lock register can be written to
prevent the timer configuration from being inadvertently altered.

The watchdog timer can be configured to generate an interrupt to the processor upon its first time-
out, and to generate a reset signal upon its second timeout. The watchdog timer module generates
the first timeout signal when the 32-bit counter reaches the zero state after being enabled; en-
abling the counter also enables the watchdog timer interrupt. After the first timeout event, the 32-bit
counter is reloaded with the value of the watchdog timer load register, and the timer resumes count-
ing down from that value. If the timer counts down to its zero state again before the first timeout
interrupt is cleared, and the reset signal has been enabled, the watchdog timer asserts its reset
signal to the system. If the interrupt is cleared before the 32-bit counter reaches its second timeout,
the 32-bit counter is loaded with the value in the load register, and counting resumes from that
value. If the load register is written with a new value while the watchdog timer counter is counting,
then the counter is loaded with the new value and continues counting.

This driver is contained in src/watchdog.c, with src/watchdog.h containing the API defini-
tions for use by applications.

25.2 API Functions

Functions
void WatchdogEnable (unsigned long ulBase)
void WatchdogIntClear (unsigned long ulBase)
void WatchdogIntEnable (unsigned long ulBase)
void WatchdogIntRegister (unsigned long ulBase, void (∗pfnHandler)(void))
unsigned long WatchdogIntStatus (unsigned long ulBase, tBoolean bMasked)
void WatchdogIntUnregister (unsigned long ulBase)
void WatchdogLock (unsigned long ulBase)
tBoolean WatchdogLockState (unsigned long ulBase)
unsigned long WatchdogReloadGet (unsigned long ulBase)
void WatchdogReloadSet (unsigned long ulBase, unsigned long ulLoadVal)
void WatchdogResetDisable (unsigned long ulBase)

September 29, 2008 321

Watchdog Timer

void WatchdogResetEnable (unsigned long ulBase)
tBoolean WatchdogRunning (unsigned long ulBase)
void WatchdogStallDisable (unsigned long ulBase)
void WatchdogStallEnable (unsigned long ulBase)
void WatchdogUnlock (unsigned long ulBase)
unsigned long WatchdogValueGet (unsigned long ulBase)

25.2.1 Detailed Description

The Watchdog Timer API is broken into two groups of functions: those that deal with interrupts, and
those that handle status and configuration.

The Watchdog Timer interrupts are handled by the WatchdogIntRegister(), WatchdogIntUnregis-
ter(), WatchdogIntEnable(), WatchdogIntClear(), and WatchdogIntStatus() functions.

Status and configuration functions for the Watchdog Timer module are WatchdogEnable(), Watch-
dogRunning(), WatchdogLock(), WatchdogUnlock(), WatchdogLockState(), WatchdogReloadSet(),
WatchdogReloadGet(), WatchdogValueGet(), WatchdogResetEnable(), WatchdogResetDisable(),
WatchdogStallEnable(), and WatchdogStallDisable().

25.2.2 Function Documentation

25.2.2.1 WatchdogEnable

Enables the watchdog timer.

Prototype:
void
WatchdogEnable(unsigned long ulBase)

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
This will enable the watchdog timer counter and interrupt.

Note:
This function will have no effect if the watchdog timer has been locked.

See also:
WatchdogLock(), WatchdogUnlock()

Returns:
None.

25.2.2.2 WatchdogIntClear

Clears the watchdog timer interrupt.

322 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
WatchdogIntClear(unsigned long ulBase)

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
The watchdog timer interrupt source is cleared, so that it no longer asserts.

Note:
Since there is a write buffer in the Cortex-M3 processor, it may take several clock cycles before
the interrupt source is actually cleared. Therefore, it is recommended that the interrupt source
be cleared early in the interrupt handler (as opposed to the very last action) to avoid returning
from the interrupt handler before the interrupt source is actually cleared. Failure to do so may
result in the interrupt handler being immediately reentered (since NVIC still sees the interrupt
source asserted).

Returns:
None.

25.2.2.3 WatchdogIntEnable

Enables the watchdog timer interrupt.

Prototype:
void
WatchdogIntEnable(unsigned long ulBase)

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
Enables the watchdog timer interrupt.

Note:
This function will have no effect if the watchdog timer has been locked.

See also:
WatchdogLock(), WatchdogUnlock(), WatchdogEnable()

Returns:
None.

25.2.2.4 WatchdogIntRegister

Registers an interrupt handler for watchdog timer interrupt.

Prototype:
void
WatchdogIntRegister(unsigned long ulBase,

void (*pfnHandler)(void))

September 29, 2008 323

Watchdog Timer

Parameters:
ulBase is the base address of the watchdog timer module.
pfnHandler is a pointer to the function to be called when the watchdog timer interrupt occurs.

Description:
This function does the actual registering of the interrupt handler. This will enable the global
interrupt in the interrupt controller; the watchdog timer interrupt must be enabled via Watch-
dogEnable(). It is the interrupt handler’s responsibility to clear the interrupt source via Watch-
dogIntClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

25.2.2.5 WatchdogIntStatus

Gets the current watchdog timer interrupt status.

Prototype:
unsigned long
WatchdogIntStatus(unsigned long ulBase,

tBoolean bMasked)

Parameters:
ulBase is the base address of the watchdog timer module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the watchdog timer module. Either the raw interrupt status
or the status of interrupt that is allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, where a 1 indicates that the watchdog interrupt is active,
and a 0 indicates that it is not active.

25.2.2.6 WatchdogIntUnregister

Unregisters an interrupt handler for the watchdog timer interrupt.

Prototype:
void
WatchdogIntUnregister(unsigned long ulBase)

Parameters:
ulBase is the base address of the watchdog timer module.

324 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function does the actual unregistering of the interrupt handler. This function will clear
the handler to be called when a watchdog timer interrupt occurs. This will also mask off the
interrupt in the interrupt controller so that the interrupt handler no longer is called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

25.2.2.7 WatchdogLock

Enables the watchdog timer lock mechanism.

Prototype:
void
WatchdogLock(unsigned long ulBase)

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
Locks out write access to the watchdog timer configuration registers.

Returns:
None.

25.2.2.8 WatchdogLockState

Gets the state of the watchdog timer lock mechanism.

Prototype:
tBoolean
WatchdogLockState(unsigned long ulBase)

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
Returns the lock state of the watchdog timer registers.

Returns:
Returns true if the watchdog timer registers are locked, and false if they are not locked.

25.2.2.9 WatchdogReloadGet

Gets the watchdog timer reload value.

September 29, 2008 325

Watchdog Timer

Prototype:
unsigned long
WatchdogReloadGet(unsigned long ulBase)

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
This function gets the value that is loaded into the watchdog timer when the count reaches
zero for the first time.

See also:
WatchdogReloadSet()

Returns:
None.

25.2.2.10 WatchdogReloadSet

Sets the watchdog timer reload value.

Prototype:
void
WatchdogReloadSet(unsigned long ulBase,

unsigned long ulLoadVal)

Parameters:
ulBase is the base address of the watchdog timer module.
ulLoadVal is the load value for the watchdog timer.

Description:
This function sets the value to load into the watchdog timer when the count reaches zero for
the first time; if the watchdog timer is running when this function is called, then the value will
be immediately loaded into the watchdog timer counter. If the ulLoadVal parameter is 0, then
an interrupt is immediately generated.

Note:
This function will have no effect if the watchdog timer has been locked.

See also:
WatchdogLock(), WatchdogUnlock(), WatchdogReloadGet()

Returns:
None.

25.2.2.11 WatchdogResetDisable

Disables the watchdog timer reset.

Prototype:
void
WatchdogResetDisable(unsigned long ulBase)

326 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
Disables the capability of the watchdog timer to issue a reset to the processor upon a second
timeout condition.

Note:
This function will have no effect if the watchdog timer has been locked.

See also:
WatchdogLock(), WatchdogUnlock()

Returns:
None.

25.2.2.12 WatchdogResetEnable

Enables the watchdog timer reset.

Prototype:
void
WatchdogResetEnable(unsigned long ulBase)

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
Enables the capability of the watchdog timer to issue a reset to the processor upon a second
timeout condition.

Note:
This function will have no effect if the watchdog timer has been locked.

See also:
WatchdogLock(), WatchdogUnlock()

Returns:
None.

25.2.2.13 WatchdogRunning

Determines if the watchdog timer is enabled.

Prototype:
tBoolean
WatchdogRunning(unsigned long ulBase)

Parameters:
ulBase is the base address of the watchdog timer module.

September 29, 2008 327

Watchdog Timer

Description:
This will check to see if the watchdog timer is enabled.

Returns:
Returns true if the watchdog timer is enabled, and false if it is not.

25.2.2.14 WatchdogStallDisable

Disables stalling of the watchdog timer during debug events.

Prototype:
void
WatchdogStallDisable(unsigned long ulBase)

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
This function disables the debug mode stall of the watchdog timer. By doing so, the watchdog
timer continues to count regardless of the processor debug state.

Returns:
None.

25.2.2.15 WatchdogStallEnable

Enables stalling of the watchdog timer during debug events.

Prototype:
void
WatchdogStallEnable(unsigned long ulBase)

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
This function allows the watchdog timer to stop counting when the processor is stopped by the
debugger. By doing so, the watchdog is prevented from expiring (typically almost immediately
from a human time perspective) and resetting the system (if reset is enabled). The watchdog
will instead expired after the appropriate number of processor cycles have been executed while
debugging (or at the appropriate time after the processor has been restarted).

Returns:
None.

25.2.2.16 WatchdogUnlock

Disables the watchdog timer lock mechanism.

328 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
WatchdogUnlock(unsigned long ulBase)

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
Enables write access to the watchdog timer configuration registers.

Returns:
None.

25.2.2.17 WatchdogValueGet

Gets the current watchdog timer value.

Prototype:
unsigned long
WatchdogValueGet(unsigned long ulBase)

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
This function reads the current value of the watchdog timer.

Returns:
Returns the current value of the watchdog timer.

25.3 Programming Example

The following example shows how to set up the watchdog timer API to reset the processor after two
timeouts.

//
// Check to see if the registers are locked, and if so, unlock them.
//
if(WatchdogLockState(WATCHDOG_BASE) == true)
{

WatchdogUnlock(WATCHDOG_BASE);
}

//
// Initialize the watchdog timer.
//
WatchdogReloadSet(WATCHDOG_BASE, 0xFEEFEE);

//
// Enable the reset.
//
WatchdogResetEnable(WATCHDOG_BASE);

//

September 29, 2008 329

Watchdog Timer

// Enable the watchdog timer.
//
WatchdogEnable(WATCHDOG_BASE);

//
// Wait for the reset to occur.
//
while(1)
{
}

330 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

26 Using the ROM
Introduction .331
Direct ROM Calls . 331
Mapped ROM Calls . 332
Firmware Update . 333

26.1 Introduction

Stellaris DustDevil-class devices have portions of the peripheral driver library stored in an on-chip
ROM. By utilizing the code in the on-chip ROM, more flash is available for use by the application.
The boot loader is also contained within the ROM, which can be called by an application in order to
start a firmware update.

26.2 Direct ROM Calls

In order to call the ROM, the following steps must be performed:

The device on which the application will be run must be defined. This is done by defining a
preprocessor symbol, which can be done either within the source code or in the project that
builds the application. The later is more flexible if code is shared between projects.

src/rom.h is included by the source code desiring to call the ROM.

The ROM version of a peripheral driver library function is called. For example, if GPIODirMod-
eSet() is to be called in the ROM, ROM_GPIODirModeSet() is used instead.

A define is used to to select the device being used since the set of functions available in the ROM
must be a compile-time decision; checking at run-time does not provide any flash savings since
both the ROM call and the flash version of the API would be in the application flash image.

The following define is recognized by src/rom.h:

TARGET_IS_DUSTDEVIL_RA0 The application is being built to run on a DustDevil-class de-
vice, silicon revision A0.

By using ROM_Function(), the ROM will be explicitly called. If the function in question is not avail-
able in the ROM, a compiler error will be produced.

See the Stellaris ROM User’s Guide for details of the APIs available in the ROM.

The following is an example of calling a function in the ROM, defining the device in question using
a #define in the source instead of in the project file:

#define TARGET_IS_DUSTDEVIL_RA0
#include "../src/rom.h"
#include "../src/systick.h"

int

September 29, 2008 331

Using the ROM

main(void)
{

ROM_SysTickPeriodSet(0x1000);
ROM_SysTickEnable();

// ...
}

26.3 Mapped ROM Calls

When code is intended to be shared between projects, and some of the projects run on devices with
a ROM and some run on devices without a ROM, it is convenient to have the code automatically
call the ROM or the flash version of the API without having #ifdef-s in the code. rom_map.h
provides an automatic mapping feature for accessing the ROM. Similar to the ROM_Function()
APIs provided by rom.h, a set of MAP_Function() APIs are provided. If the function is available in
ROM, MAP_Function() will simply call ROM_Function(); otherwise it will call Function().

In order to use the mapped ROM calls, the following steps must be performed:

Follow the above steps for including and using src/rom.h.

Include src/rom_map.h.

Continuing the above example, call MAP_GPIODirModeSet() in the source code.

As in the direct ROM call method, the choice of calling ROM versus the flash version is made at
compile-time. The only APIs that are provided via the ROM mapping feature are ones that are
available in the ROM, which is not every API available in the peripheral driver library.

The following is an example of calling a function in shared code, where the device in question is
defined in the project file:

#include "../src/rom.h"
#include "../src/rom_map.h"
#include "../src/systick.h"

void
SetupSysTick(void)
{

MAP_SysTickPeriodSet(0x1000);
Map_SysTickEnable();

}

When built for a device that does not have a ROM, this is equivalent to:

#include "../src/systick.h"

void
SetupSysTick(void)
{

SysTickPeriodSet(0x1000);
SysTickEnable();

}

When built for a device that has a ROM, however, this is eqivalent to:

332 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

#include "../src/rom.h"
#include "../src/systick.h"

void
SetupSysTick(void)
{

ROM_SysTickPeriodSet(0x1000);
ROM_SysTickEnable();

}

26.4 Firmware Update

Functions
void UpdateI2C (void)
void UpdateSSI (void)
void UpdateUART (void)

26.4.1 Detailed Description

There are a set of APIs in the ROM for restarting the boot loader in order to commence a firmware
update. Multiple calls are provided since each selects a particular interface to be used for the
update process, bypassing the interface selection step of the normal boot loader (including the
auto-bauding in the UART interface).

See the Stellaris ROM User’s Guide for details of the firmware update APIs in the ROM.

26.4.2 Function Documentation

26.4.2.1 UpdateI2C

Starts an update over the I2C0 interface.

Prototype:
void
UpdateI2C(void)

Description:
Calling this function commences an update of the firmware via the I2C0 interface. This function
assumes that the I2C0 interface has already been configured and is currently operational. The
I2C0 slave is used for data transfer, and the I2C0 master is used to monitor bus busy conditions
(therefore, both must be enabled).

Returns:
Never returns.

September 29, 2008 333

Using the ROM

26.4.2.2 UpdateSSI

Starts an update over the SSI0 interface.

Prototype:
void
UpdateSSI(void)

Description:
Calling this function commences an update of the firmware via the SSI0 interface. This function
assumes that the SSI0 interface has already been configured and is currently oprational.

Returns:
Never returns.

26.4.2.3 UpdateUART

Starts an update over the UART0 interface.

Prototype:
void
UpdateUART(void)

Description:
Calling this function commences an update of the firmware via the UART0 interface. This
function assumes that the UART0 interface has already been configured and is currently oper-
ational.

Returns:
Never returns.

334 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

27 Utility Functions
Introduction .335
API Functions . 335

27.1 Introduction

The utility functions are a loose collection of functions that are not specific to any Stellaris periph-
eral or board. These functions provide mechanisms for communicating with the debugger and for
providing a simple serial terminal on one of the UARTs. There are also lightweight implementations
of functions for printf style formatted output.

27.2 API Functions

Functions
int CmdLineProcess (char ∗pcCmdLine)
int DiagClose (int iHandle)
char ∗ DiagCommandString (char ∗pcBuf, unsigned long ulLen)
void DiagExit (int iRet)
long DiagFlen (int iHandle)
int DiagOpen (const char ∗pcName, int iMode)
int DiagOpenStdio (void)
void DiagPrintf (int iHandle, const char ∗pcString,...)
int DiagRead (int iHandle, char ∗pcBuf, unsigned long ulLen, int iMode)
int DiagWrite (int iHandle, const char ∗pcBuf, unsigned long ulLen, int iMode)
unsigned char ∗ FlashPBGet (void)
void FlashPBInit (unsigned long ulStart, unsigned long ulEnd, unsigned long ulSize)
void FlashPBSave (unsigned char ∗pucBuffer)
void lwIPEthernetIntHandler (void)
void lwIPInit (const unsigned char ∗pucMAC, unsigned long ulIPAddr, unsigned long ulNet-
Mask, unsigned long ulGWAddr, unsigned long ulIPMode)
unsigned long lwIPLocalGWAddrGet (void)
unsigned long lwIPLocalIPAddrGet (void)
void lwIPLocalMACGet (unsigned char ∗pucMAC)
unsigned long lwIPLocalNetMaskGet (void)
void lwIPNetworkConfigChange (unsigned long ulIPAddr, unsigned long ulNetMask, unsigned
long ulGWAddr, unsigned long ulIPMode)
void lwIPTimer (unsigned long ulTimeMS)
void RingBufAdvanceRead (tRingBufObject ∗ptRingBuf, unsigned long ulNumBytes)
void RingBufAdvanceWrite (tRingBufObject ∗ptRingBuf, unsigned long ulNumBytes)
unsigned long RingBufContigFree (tRingBufObject ∗ptRingBuf)
unsigned long RingBufContigUsed (tRingBufObject ∗ptRingBuf)

September 29, 2008 335

Utility Functions

tBoolean RingBufEmpty (tRingBufObject ∗ptRingBuf)
void RingBufFlush (tRingBufObject ∗ptRingBuf)
unsigned long RingBufFree (tRingBufObject ∗ptRingBuf)
tBoolean RingBufFull (tRingBufObject ∗ptRingBuf)
void RingBufInit (tRingBufObject ∗ptRingBuf, unsigned char ∗pucBuf, unsigned long ulSize)
void RingBufRead (tRingBufObject ∗ptRingBuf, unsigned char ∗pucData, unsigned long ul-
Length)
unsigned char RingBufReadOne (tRingBufObject ∗ptRingBuf)
unsigned long RingBufSize (tRingBufObject ∗ptRingBuf)
unsigned long RingBufUsed (tRingBufObject ∗ptRingBuf)
void RingBufWrite (tRingBufObject ∗ptRingBuf, unsigned char ∗pucData, unsigned long ul-
Length)
void RingBufWriteOne (tRingBufObject ∗ptRingBuf, unsigned char ucData)
void SoftwareUpdateBegin (void)
void SoftwareUpdateInit (tSoftwareUpdateRequested pfnCallback)
void UARTFlushRx (void)
void UARTFlushTx (tBoolean bDiscard)
int UARTgets (char ∗pcBuf, unsigned long ulLen)
int UARTPeek (unsigned char ucChar)
void UARTprintf (const char ∗pcString,...)
void UARTStdioInit (unsigned long ulPortNum)
void ulocaltime (unsigned long ulTime, tTime ∗psTime)
int usnprintf (char ∗pcBuf, unsigned long ulSize, const char ∗pcString,...)
int usprintf (char ∗pcBuf, const char ∗pcString,...)
char ∗ ustrstr (const char ∗pcHaystack, const char ∗pcNeedle)
unsigned long ustrtoul (const char ∗pcStr, const char ∗∗ppcStrRet, int iBase)
int uvsnprintf (char ∗pcBuf, unsigned long ulSize, const char ∗pcString, va_list vaArgP)

27.2.1 Detailed Description

The first group of utility functions are the diagnostic functions (“Diag”) used for interacting with the
debugger (if the debugger supports that feature). The Diag functions allow the program to open a
handle on the file system of the host system, allowing reading or writing of files, or communication
with a console. This feature is sometimes referred to as “semihosting”. Not all debuggers support
all of these features. The debugger specific support is provided in a source file that is linked into
the application. The source files for debugger support can be found in the “utils” directory.

The Diag functions are used as follows: DiagOpen() is used to open a file on the host system.
DiagOpenStdio() is used to open a handle to the console, typically for displaying messages to the
user. Once a handle is opened, it can be closed with DiagClose(). The functions DiagRead() and
DiagWrite() are used for reading and writing to the host, while DiagPrintf() provides printf style
formatting of output. DiagFlen() is used to find the size of a file, DiagCommandString() used to
get the command line arguments from the debugger, and DiagExit() to exit the program and return
control to the debugger.

The second group of utility functions is used to provide a simple UART based console. UARTSt-
dioInit() is used to initialize a specific UART to be used as the console serial port. Then the function
UARTprintf() can be used to send formatted output to the serial port, which UARTgets() can be

336 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

used to get a line of input from the serial console. By default, the uartstdio module operates in a
blocking mode. To allow non-blocking operation in which transmit and receive buffers are used and
data transfer is managed under interrupt control, a build-time switch (UART_BUFFERED) may be
defined.

The above functions, along with CmdLineProcess() can be used to implement a simple command
line processor. The function CmdLineProcess() will break up any command line in a buffer into
command line arguments in “argc, argv” form, match the first argument to a command name in a
command table, and then call the function that implements the command.

The third group of functions are used for providing simple forms of some standard library string
formatting functions. If the simplified functions meet the needs of the application for formatted
output, then they may be used in place of the equivalent standard library functions, which may save
on overall code size.

The library formatting functions are usprintf() which is a simplified replacement for sprintf(). Like-
wise usnprintf() and uvsnprintf() are simplified replacements for snprintf() and vsnprintf() from the
standard library. These functions are lighter weight than the equivalent library function because
they offer simpler and reduced conversion options, and elimination of floating point support. If
these features are needed then the standard library can still be used.

The fourth group of functions are used for providing a simple, fault-tolerant, persistent storage
mechanism for storing parameter information for an application.

The FlashPBInit() function is used to initialize a parameter block. The primary conditions for the
parameter block are that flash region used to store the parameter blocks must contain at least two
(2) erase blocks of flash to ensure fault tolerance, and the size of the parameter block must be an
integral divisor of the the size of an erase block. FlashPBGet() and FlashPBSave() are used to read
and write parameter block data into the parameter region. The only constaints on the content of
the parameter block are that the first two bytes of the block are reserved for use by the read/write
functions as a sequence number and checksum, respectively.

The fifth group of functions are used to provide a simple abstraction layer for the lwIP version 1.3.0
TCP/IP stack.

The lwIPInit() function is used to initialize the lwIP TCP/IP stack, based on the options defined
in lwipopts.h. The lwIPEthernetIntHandler() is the interrupt handler function for use with the lwIP
TCP/IP stack. This handler will process transmit and receive packets. If no RTOS is being used,
the interrupt handler will also service the lwIP timers. The lwIPTimer() function is to be called
periodically to support the TCP, ARP, DHCP and other timers used by the lwIP TCP/IP stack. If no
RTOS is being used, this timer function will simply trigger an Ethernet interrupt to allow the interrupt
handler to service the timers.

Refer to the individual function documentation for the name of it’s source and header files.

27.2.2 Function Documentation

27.2.2.1 CmdLineProcess

Process a command line string into arguments and execute the command.

Prototype:
int
CmdLineProcess(char *pcCmdLine)

September 29, 2008 337

Utility Functions

Parameters:
pcCmdLine points to a string that contains a command line that was obtained by an applica-

tion by some means.

Description:
This function will take the supplied command line string and break it up into individual argu-
ments. The first argument is treated as a command and is searched for in the command table.
If the command is found, then the command function is called and all of the command line
arguments are passed in the normal argc, argv form.

The command table is contained in an array named g_sCmdTable which must be implemented
in the application.

This function is contained in utils/cmdline.c, with utils/cmdline.h containing the API
definition for use by applications.

Returns:
Returns CMDLINE_BAD_CMD if the command is not found, CMDLINE_TOO_MANY_ARGS if
there are more arguments than can be parsed. Otherwise it returns the code that was returned
by the command function.

27.2.2.2 DiagClose

Closes a host file system file.

Prototype:
int
DiagClose(int iHandle)

Parameters:
iHandle is the handle of the file to close.

Description:
This function closes a file previously opened with DiagOpen(); this is similar to the fclose()
function in the C library.

This function is contained in a debugger-specific utils/<debugger>.?, with
utils/diag.h containing the API definition for use by applications.

Returns:
Returns zero on success or non-zero on failure.

27.2.2.3 DiagCommandString

Gets the command line arguments from the debugger.

Prototype:
char *
DiagCommandString(char *pcBuf,

unsigned long ulLen)

Parameters:
pcBuf is a pointer to the buffer to be filled with the command line arguments.

338 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

ulLen is the length of the buffer.

Description:
This function retrieves the command line arguments from the debugger, if it is able to provide
them. The raw command line string is returned; it is the responsibility of the application to
parse it into an argc/argv pair if desired.

This function is contained in a debugger-specific utils/<debugger>.?, with
utils/diag.h containing the API definition for use by applications.

Returns:
Returns a pointer to the returned command line (typically the same as the supplied buffer) on
success and NULL if the command line is not available.

27.2.2.4 DiagExit

Terminates the application.

Prototype:
void
DiagExit(int iRet)

Parameters:
iRet is the return value from the application.

Description:
This function terminates the application; this is similar to the exit() function in the C library.

This function is contained in a debugger-specific utils/<debugger>.?, with
utils/diag.h containing the API definition for use by applications.

Returns:
Does not return.

27.2.2.5 DiagFlen

Gets the length of a host file system file.

Prototype:
long
DiagFlen(int iHandle)

Parameters:
iHandle is the handle of the file to query.

Description:
This function determines the length of a file previously opened with DiagOpen(); this is similar
to seeking to the end of the file with the fseek() function and then doing an ftell(), except
that the file pointer is not moved.

This function is contained in a debugger-specific utils/<debugger>.?, with
utils/diag.h containing the API definition for use by applications.

September 29, 2008 339

Utility Functions

Returns:
Returns the number of bytes in the file.

27.2.2.6 DiagOpen

Opens a host file system file.

Prototype:
int
DiagOpen(const char *pcName,

int iMode)

Parameters:
pcName is the name of the file to be opened.
iMode is the mode used to open the file.

Description:
This function opens a file on the host file system; this is similar to the fopen() function in the
C library.

The iMode parameter must be the logical OR of at least one of the following values (which are
analogous to the mode parameter of the C library fopen() function):

OPEN_R to open the file for reading.
OPEN_W to open the file for writing.
OPEN_A to append to the end of the file.
OPEN_B to access the file in binary mode, which means that no end of line translations
are made.
OPEN_PLUS to open the file for reading and writing.

This function is contained in a debugger-specific utils/<debugger>.?, with
utils/diag.h containing the API definition for use by applications.

Returns:
Returns a positive number on success or -1 on failure.

27.2.2.7 DiagOpenStdio

Opens a handle for stdio functions (both stdin and stdout).

Prototype:
int
DiagOpenStdio(void)

Description:
This function opens a handle for interacting with the user via the debugger (similar to stdin
and stdout). This handle should be passed to DiagRead() to get input from the user and to
DiagWrite() to display messages to the user (such as via DiagPrintf()).

This function is contained in a debugger-specific utils/<debugger>.?, with
utils/diag.h containing the API definition for use by applications.

340 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
Returns a positive number on success or -1 on failure.

27.2.2.8 DiagPrintf

A simple diagnostic printf function supporting %c, %d, %p, %s, %u, %x, and %X.

Prototype:
void
DiagPrintf(int iHandle,

const char *pcString,
...)

Parameters:
iHandle is the handle of the stream to which the string is written.
pcString is the format string.
... are the optional arguments, which depend on the contents of the format string.

Description:
This function is very similar to the C library fprintf() function. All of its output will be sent to
DiagWrite() using the supplied handle. Only the following formatting characters are supported:

%c to print a character
%d to print a decimal value
%s to print a string
%u to print an unsigned decimal value
%x to print a hexadecimal value using lower case letters
%X to print a hexadecimal value using lower case letters (not upper case letters as would
typically be used)
%p to print a pointer as a hexadecimal value
%% to print out a % character

For %s, %d, %u„ %p, %x, and %X, an optional number may reside between the % and the
format character, which specifies the minimum number of characters to use for that value; if
preceeded by a 0 then the extra characters will be filled with zeros instead of spaces. For
example, “%8d” will use eight characters to print the decimal value with spaces added to reach
eight; “%08d” will use eight characters as well but will add zeroes instead of spaces.

The type of the arguments after pcString must match the requirements of the format string.
For example, if an integer was passed where a string was expected, an error of some kind will
most likely occur.

This function is contained in utils/diagprintf.c, with utils/diagprintf.h containing
the API definition for use by applications.

Returns:
None.

27.2.2.9 DiagRead

Reads data from a host file system file.

September 29, 2008 341

Utility Functions

Prototype:
int
DiagRead(int iHandle,

char *pcBuf,
unsigned long ulLen,
int iMode)

Parameters:
iHandle is the handle of the file to read.
pcBuf is a pointer to the buffer to contain the data read.
ulLen is the number of bytes to read from the file.
iMode is the mode used to open the file.

Description:
This function reads data from a file previously opened with DiagOpen(); this is similar to the
fread() function in the C library.

The iMode parameter might be used in some debugger interfaces to adjust how the data is
read from the file. Unexpected results may occur if the same value passed to DiagOpen() is
not passed to DiagRead().

This function is contained in a debugger-specific utils/<debugger>.?, with
utils/diag.h containing the API definition for use by applications.

Returns:
Returns zero on success, a positive number to indicate the number of bytes not read, a number
with the MSB set to indicate the number of bytes not read and that EOF was encountered, or
-1 to indicate an error.

27.2.2.10 DiagWrite

Writes data to a host file system file.

Prototype:
int
DiagWrite(int iHandle,

const char *pcBuf,
unsigned long ulLen,
int iMode)

Parameters:
iHandle is the handle of the file to which to write.
pcBuf is a pointer to the data to be written.
ulLen is the number of bytes to write to the file.
iMode is the mode used to open the file.

Description:
This function writes data to a file previously opened with DiagOpen(); this is similar to the
fwrite() function in the C library.

The iMode parameter might be used in some debugger interfaces to adjust how the data is
written to the file. Unexpected results may occur if the same value passed to DiagOpen() is not
passed to DiagWrite().

342 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

This function is contained in a debugger-specific utils/<debugger>.?, with
utils/diag.h containing the API definition for use by applications.

Returns:
Returns zero on success, a positive number to indicate the number of bytes not written (which
is an error of sorts), or a negative number to indicate an error.

27.2.2.11 FlashPBGet

Gets the address of the most recent parameter block.

Prototype:
unsigned char *
FlashPBGet(void)

Description:
This function returns the address of the most recent parameter block that is stored in flash.

This function is contained in utils/flash_pb.c, with utils/flash_pb.h containing the
API definition for use by applications.

Returns:
Returns the address of the most recent parameter block, or NULL if there are no valid param-
eter blocks in flash.

27.2.2.12 FlashPBInit

Initializes the flash parameter block.

Prototype:
void
FlashPBInit(unsigned long ulStart,

unsigned long ulEnd,
unsigned long ulSize)

Parameters:
ulStart is the address of the flash memory to be used for storing flash parameter blocks; this

must be the start of an erase block in the flash.
ulEnd is the address of the end of flash memory to be used for storing flash parameter blocks;

this must be the start of an erase block in the flash (the first block that is NOT part of the
flash memory to be used), or the address of the first word after the flash array if the last
block of flash is to be used.

ulSize is the size of the parameter block when stored in flash; this must be a power of two less
than or equal to the flash erase block size (typically 1024).

Description:
This function initializes a fault-tolerant, persistent storage mechanism for a parameter block for
an application. The last several erase blocks of flash (as specified by ulStart and ulEnd are
used for the storage; more than one erase block is required in order to be fault-tolerant.

A parameter block is an array of bytes that contain the persistent parameters for the applica-
tion. The only special requirement for the parameter block is that the first byte is a sequence

September 29, 2008 343

Utility Functions

number (explained in FlashPBSave()) and the second byte is a checksum used to validate the
correctness of the data (the checksum byte is the byte such that the sum of all bytes in the
parameter block is zero).

The portion of flash for parameter block storage is split into N equal-sized regions, where each
region is the size of a parameter block (ulSize). Each region is scanned to find the most recent
valid parameter block. The region that has a valid checksum and has the highest sequence
number (with special consideration given to wrapping back to zero) is considered to be the
current parameter block.

In order to make this efficient and effective, two conditions must be met. The first is ulStart and
ulEnd must be specified such that at least two erase blocks of flash are dedicated to parameter
block storage. If not, fault tolerance can not be guaranteed since an erase of a single block will
leave a window where there are no valid parameter blocks in flash. The second condition is
that the size (ulSize) of the parameter block must be an integral divisor of the size of an erase
block of flash. If not, a parameter block will end up spanning between two erase blocks of flash,
making it more difficult to manage.

When the microcontroller is initially programmed, the flash blocks used for parameter block
storage are left in an erased state.

This function must be called before any other flash parameter block functions are called.

This function is contained in utils/flash_pb.c, with utils/flash_pb.h containing the
API definition for use by applications.

Returns:
None.

27.2.2.13 FlashPBSave

Writes a new parameter block to flash.

Prototype:
void
FlashPBSave(unsigned char *pucBuffer)

Parameters:
pucBuffer is the address of the parameter block to be written to flash.

Description:
This function will write a parameter block to flash. Saving the new parameter blocks involves
three steps:

Setting the sequence number such that it is one greater than the sequence number of the
latest parameter block in flash.
Computing the checksum of the parameter block.
Writing the parameter block into the storage immediately following the latest parameter
block in flash; if that storage is at the start of an erase block, that block is erased first.

By this process, there is always a valid parameter block in flash. If power is lost while writing
a new parameter block, the checksum will not match and the partially written parameter block
will be ignored. This is what makes this fault-tolerant.

344 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Another benefit of this scheme is that it provides wear leveling on the flash. Since multiple
parameter blocks fit into each erase block of flash, and multiple erase blocks are used for
parameter block storage, it takes quite a few parameter block saves before flash is re-written.

This function is contained in utils/flash_pb.c, with utils/flash_pb.h containing the
API definition for use by applications.

Returns:
None.

27.2.2.14 lwIPEthernetIntHandler

Handles Ethernet interrupts for the lwIP TCP/IP stack.

Prototype:
void
lwIPEthernetIntHandler(void)

Description:
This function handles Ethernet interrupts for the lwIP TCP/IP stack. At the lowest level, all re-
ceive packets are placed into a packet queue for processing at a higher level. Also, the transmit
packet queue is checked and packets are drained and transmitted through the Ethernet MAC
as needed. If the system is configured without an RTOS, additional processing is performed
at the interrupt level. The packet queues are processed by the lwIP TCP/IP code, and lwIP
periodic timers are serviced (as needed).

Returns:
None.

27.2.2.15 lwIPInit

Initializes the lwIP TCP/IP stack.

Prototype:
void
lwIPInit(const unsigned char *pucMAC,

unsigned long ulIPAddr,
unsigned long ulNetMask,
unsigned long ulGWAddr,
unsigned long ulIPMode)

Parameters:
pucMAC is a pointer to a six byte array containing the MAC address to be used for the inter-

face.
ulIPAddr is the IP address to be used (static).
ulNetMask is the network mask to be used (static).
ulGWAddr is the Gateway address to be used (static).
ulIPMode is the IP Address Mode. 0 will force static IP addressing to be used, 1 will force

DHCP with fallback to Link Local (Auto IP), while 2 will force Link Local only.

September 29, 2008 345

Utility Functions

Description:
This function performs initialization of the lwIP TCP/IP stack for the Stellaris Ethernet MAC,
including DHCP and/or AutoIP, as configured.

Returns:
None.

27.2.2.16 lwIPLocalGWAddrGet

Returns the gateway address for this interface.

Prototype:
unsigned long
lwIPLocalGWAddrGet(void)

Description:
This function will read and return the currently assigned gateway address for the Stellaris Eth-
ernet interface.

Returns:
the assigned gateway address for this interface.

27.2.2.17 lwIPLocalIPAddrGet

Returns the IP address for this interface.

Prototype:
unsigned long
lwIPLocalIPAddrGet(void)

Description:
This function will read and return the currently assigned IP address for the Stellaris Ethernet
interface.

Returns:
Returns the assigned IP address for this interface.

27.2.2.18 lwIPLocalMACGet

Returns the local MAC/HW address for this interface.

Prototype:
void
lwIPLocalMACGet(unsigned char *pucMAC)

Parameters:
pucMAC is a pointer to an array of bytes used to store the MAC address.

Description:
This function will read the currently assigned MAC address into the array pased in pucMAC.

346 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

27.2.2.19 lwIPLocalNetMaskGet

Returns the network mask for this interface.

Prototype:
unsigned long
lwIPLocalNetMaskGet(void)

Description:
This function will read and return the currently assigned network mask for the Stellaris Ethernet
interface.

Returns:
the assigned network mask for this interface.

27.2.2.20 lwIPNetworkConfigChange

Change the configuration of the lwIP network interface.

Prototype:
void
lwIPNetworkConfigChange(unsigned long ulIPAddr,

unsigned long ulNetMask,
unsigned long ulGWAddr,
unsigned long ulIPMode)

Parameters:
ulIPAddr is the new IP address to be used (static).
ulNetMask is the new network mask to be used (static).
ulGWAddr is the new Gateway address to be used (static).
ulIPMode is the IP Address Mode. 0 will force static IP addressing to be used, 1 will force

DHCP with fallback to Link Local (Auto IP), while 2 will force Link Local only.

Description:
This function will evaluate the new configuration data. If necessary, the interface will be brought
down, reconfigured, and then brought back up with the new configuration.

Returns:
None.

27.2.2.21 lwIPTimer

Handles periodic timer events for the lwIP TCP/IP stack.

Prototype:
void
lwIPTimer(unsigned long ulTimeMS)

September 29, 2008 347

Utility Functions

Parameters:
ulTimeMS is the incremental time for this periodic interrupt.

Description:
This function will update the local timer by the value in ulTimeMS. If the system is configured
for use without an RTOS, an Ethernet interrupt will be triggered to allow the lwIP periodic timers
to be serviced in the Ethernet interrupt.

Returns:
None.

27.2.2.22 RingBufAdvanceRead

Remove bytes from the ring buffer by advancing the read index.

Prototype:
void
RingBufAdvanceRead(tRingBufObject *ptRingBuf,

unsigned long ulNumBytes)

Parameters:
ptRingBuf points to the ring buffer from which bytes are to be removed.
ulNumBytes is the number of bytes to be removed from the buffer.

Description:
This function advances the ring buffer read index by a given number of bytes, removing that
number of bytes of data from the buffer. If ulNumBytes is larger than the number of bytes
currently in the buffer, the buffer is emptied.

Returns:
None.

27.2.2.23 RingBufAdvanceWrite

Add bytes to the ring buffer by advancing the write index.

Prototype:
void
RingBufAdvanceWrite(tRingBufObject *ptRingBuf,

unsigned long ulNumBytes)

Parameters:
ptRingBuf points to the ring buffer to which bytes have been added.
ulNumBytes is the number of bytes added to the buffer.

Description:
This function should be used by clients who wish to add data to the buffer directly rather than via
calls to RingBufWrite() or RingBufWriteOne(). It advances the write index by a given number
of bytes. If the ulNumBytes parameter is larger than the amount of free space in the buffer, the
read pointer will be advanced to cater for the addition. Note that this will result in some of the
oldest data in the buffer being discarded.

348 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

27.2.2.24 RingBufContigFree

Returns number of contiguous free bytes available in a ring buffer.

Prototype:
unsigned long
RingBufContigFree(tRingBufObject *ptRingBuf)

Parameters:
ptRingBuf is the ring buffer object to check.

Description:
This function returns the number of contiguous free bytes ahead of the current write pointer in
the ring buffer.

Returns:
Returns the number of contiguous bytes available in the ring buffer.

27.2.2.25 RingBufContigUsed

Returns number of contiguous bytes of data stored in ring buffer ahead of the current read pointer.

Prototype:
unsigned long
RingBufContigUsed(tRingBufObject *ptRingBuf)

Parameters:
ptRingBuf is the ring buffer object to check.

Description:
This function returns the number of contiguous bytes of data available in the ring buffer ahead
of the current read pointer. This represents the largest block of data which does not straddle
the buffer wrap.

Returns:
Returns the number of contiguous bytes available.

27.2.2.26 RingBufEmpty

Determines whether the ring buffer whose pointers and size are provided is empty or not.

Prototype:
tBoolean
RingBufEmpty(tRingBufObject *ptRingBuf)

Parameters:
ptRingBuf is the ring buffer object to empty.

September 29, 2008 349

Utility Functions

Description:
This function is used to determine whether or not a given ring buffer is empty. The structure
is specifically to ensure that we do not see warnings from the compiler related to the order of
volatile accesses being undefined.

Returns:
Returns true if the buffer is empty or false otherwise.

27.2.2.27 RingBufFlush

Empties the ring buffer.

Prototype:
void
RingBufFlush(tRingBufObject *ptRingBuf)

Parameters:
ptRingBuf is the ring buffer object to empty.

Description:
Discards all data from the ring buffer.

Returns:
None.

27.2.2.28 RingBufFree

Returns number of bytes available in a ring buffer.

Prototype:
unsigned long
RingBufFree(tRingBufObject *ptRingBuf)

Parameters:
ptRingBuf is the ring buffer object to check.

Description:
This function returns the number of bytes available in the ring buffer.

Returns:
Returns the number of bytes available in the ring buffer.

27.2.2.29 RingBufFull

Determines whether the ring buffer whose pointers and size are provided is full or not.

Prototype:
tBoolean
RingBufFull(tRingBufObject *ptRingBuf)

350 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
ptRingBuf is the ring buffer object to empty.

Description:
This function is used to determine whether or not a given ring buffer is full. The structure is
specifically to ensure that we do not see warnings from the compiler related to the order of
volatile accesses being undefined.

Returns:
Returns true if the buffer is full or false otherwise.

27.2.2.30 RingBufInit

Initialize a ring buffer object.

Prototype:
void
RingBufInit(tRingBufObject *ptRingBuf,

unsigned char *pucBuf,
unsigned long ulSize)

Parameters:
ptRingBuf points to the ring buffer to be initialized.
pucBuf points to the data buffer to be used for the ring buffer.
ulSize is the size of the buffer in bytes.

Description:
This function initializes a ring buffer object, preparing it to store data.

Returns:
None.

27.2.2.31 RingBufRead

Reads data from a ring buffer.

Prototype:
void
RingBufRead(tRingBufObject *ptRingBuf,

unsigned char *pucData,
unsigned long ulLength)

Parameters:
ptRingBuf points to the ring buffer to be read from.
pucData points to where the data should be stored.
ulLength is the number of bytes to be read.

Description:
This function reads a sequence of bytes from a ring buffer.

Returns:
None.

September 29, 2008 351

Utility Functions

27.2.2.32 RingBufReadOne

Reads a single byte of data from a ring buffer.

Prototype:
unsigned char
RingBufReadOne(tRingBufObject *ptRingBuf)

Parameters:
ptRingBuf points to the ring buffer to be written to.

Description:
This function reads a single byte of data from a ring buffer.

Returns:
The byte read from the ring buffer.

27.2.2.33 RingBufSize

Return size in bytes of a ring buffer.

Prototype:
unsigned long
RingBufSize(tRingBufObject *ptRingBuf)

Parameters:
ptRingBuf is the ring buffer object to check.

Description:
This function returns the size of the ring buffer.

Returns:
Returns the size in bytes of the ring buffer.

27.2.2.34 RingBufUsed

Returns number of bytes stored in ring buffer.

Prototype:
unsigned long
RingBufUsed(tRingBufObject *ptRingBuf)

Parameters:
ptRingBuf is the ring buffer object to check.

Description:
This function returns the number of bytes stored in the ring buffer.

Returns:
Returns the number of bytes stored in the ring buffer.

352 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

27.2.2.35 RingBufWrite

Writes data to a ring buffer.

Prototype:
void
RingBufWrite(tRingBufObject *ptRingBuf,

unsigned char *pucData,
unsigned long ulLength)

Parameters:
ptRingBuf points to the ring buffer to be written to.
pucData points to the data to be written.
ulLength is the number of bytes to be written.

Description:
This function write a sequence of bytes into a ring buffer.

Returns:
None.

27.2.2.36 RingBufWriteOne

Writes a single byte of data to a ring buffer.

Prototype:
void
RingBufWriteOne(tRingBufObject *ptRingBuf,

unsigned char ucData)

Parameters:
ptRingBuf points to the ring buffer to be written to.
ucData is the byte to be written.

Description:
This function writes a single byte of data into a ring buffer.

Returns:
None.

27.2.2.37 SoftwareUpdateBegin

Passes control to the bootloader and initiates a remote software update over Ethernet.

Prototype:
void
SoftwareUpdateBegin(void)

September 29, 2008 353

Utility Functions

Description:
This function passes control to the bootloader and initiates an update of the main application
firmware image via BOOTP across Ethernet. This function may only be used on parts sup-
porting Ethernet and in cases where the Ethernet boot loader is in use alongside the main
application image. It must not be called in interrupt context.

Applications wishing to make use of this function must be built to operate with the bootloader.
If this function is called on a system which does not include the bootloader, the results are
unpredictable.

Note:
It is not safe to call this function from within the callback provided on the initial call to Software-
UpdateInit(). The application must use the callback to signal a pending update (assuming the
update is to be permitted) to some other code running in a non-interrupt context.

Returns:
Never returns.

27.2.2.38 SoftwareUpdateInit

Initializes the remote Ethernet software update notification feature.

Prototype:
void
SoftwareUpdateInit(tSoftwareUpdateRequested pfnCallback)

Parameters:
pfnCallback is a pointer to a function which will be called whenever a remote firmware update

request is received. If the application wishes to allow the update to go ahead, it must call
SoftwareUpdateBegin() from non-interrupt context after the callback is received. Note that
the callback will most likely be made in interrupt context so it is not safe to call Software-
UpdateBegin() from within the callback itself.

Description:
This function may be used on Ethernet-enabled parts to support remotely-signalled firmware
updates over Ethernet. The LM Flash Programmer (LMFlash.exe) application sends a magic
packet to UDP port 9 whenever the user requests an Ethernet-based firmware update. This
packet consists of 6 bytes of 0xAA followed by the target MAC address repeated 4 times. This
function starts listening on UDP port 9 and, if a magic packet matching the MAC address of
this board is received, makes a call to the provided callback function to indicate that an update
has been requested.

The callback function provided here will be typically be called in the context of the lwIP Ethernet
interrupt handler. It is not safe to call SoftwareUpdateBegin() in this context so the application
should use the callback to signal code running in a non-interrupt context to perform the update
if it is to be allowed.

UDP port 9 is chosen for this function since this is the well-known port associated with "discard"
operation. In other words, any other system receiving the magic packet will simply ignore it.
The actual magic packet used is modeled on Wake-On-LAN which uses a similar structure (6
bytes of 0xFF followed by 16 repetitions of the target MAC address). Some Wake-On-LAN
implementations also use UDP port 9 for their signalling.

354 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Note:
Applications using this function must initialize the lwIP stack prior to making this call and
must ensure that the lwIPTimer() function is called periodically. lwIP UDP must be enabled
in lwipopts.h to ensure that the magic packets can be received.

Returns:
None.

27.2.2.39 UARTFlushRx

Flushes the receive buffer.

Prototype:
void
UARTFlushRx(void)

Description:
This function, available only when the module is built to operate in buffered mode using
UART_BUFFERED, may be used to discard any data received from the UART but not yet
read using UARTgets().

This function is contained in utils/uartstdio.c, with utils/uartstdio.h containing
the API definition for use by applications.

Returns:
None.

27.2.2.40 UARTFlushTx

Flushes the transmit buffer.

Prototype:
void
UARTFlushTx(tBoolean bDiscard)

Parameters:
bDiscard indicates whether any remaining data in the buffer should be discarded (true) or

transmitted (false).

Description:
This function, available only when the module is built to operate in buffered mode using
UART_BUFFERED, may be used to flush the transmit buffer, either discarding or transmit-
ting any data received via calls to UARTprintf() that remains untransmitted. On return, the
transmit buffer will be empty.

This function is contained in utils/uartstdio.c, with utils/uartstdio.h containing
the API definition for use by applications.

Returns:
None.

September 29, 2008 355

Utility Functions

27.2.2.41 UARTgets

A simple UART based get string function, with some line processing.

Prototype:
int
UARTgets(char *pcBuf,

unsigned long ulLen)

Parameters:
pcBuf points to a buffer for the incoming string from the UART.
ulLen is the length of the buffer for storage of the string, including the trailing 0.

Description:
This function will receive a string from the UART input and store the characters in the buffer
pointed to by pcBuf . The characters will continue to be stored until a termination character is
received. The termination characters are CR, LF, or ESC. A CRLF pair is treated as a single
termination character. The termination characters are not stored in the string. The string will
be terminated with a 0 and the function will return.

In both buffered and unbuffered modes, this function will block until a termination character is
received. If non-blocking operation is required in buffered mode, a call to UARTPeek() may be
made to determine whether a termination character already exists in the receive buffer prior to
calling UARTgets().

Since the string will be null terminated, the user must ensure that the buffer is sized to allow for
the additional null character.

This function is contained in utils/uartstdio.c, with utils/uartstdio.h containing
the API definition for use by applications.

Returns:
Returns the count of characters that were stored, not including the trailing 0.

27.2.2.42 UARTPeek

Looks ahead in the receive buffer for a particular character.

Prototype:
int
UARTPeek(unsigned char ucChar)

Parameters:
ucChar is the character that is to be searched for.

Description:
This function, available only when the module is built to operate in buffered mode using
UART_BUFFERED, may be used to look ahead in the receive buffer for a particular char-
acter and report its position if found. It is typically used to determine whether a complete line
of user input is available, in which case ucChar should be set to CR (’\r’) which is used as the
line end marker in the receive buffer.

This function is contained in utils/uartstdio.c, with utils/uartstdio.h containing
the API definition for use by applications.

356 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
Returns -1 to indicate that the requested character does not exist in the receive buffer. Returns
a non-negative number if the character was found in which case the value represents the
position of the first instance of ucChar relative to the receive buffer read pointer.

27.2.2.43 UARTprintf

A simple UART based printf function supporting %c, %d, %p, %s, %u, %x, and %X.

Prototype:
void
UARTprintf(const char *pcString,

...)

Parameters:
pcString is the format string.
... are the optional arguments, which depend on the contents of the format string.

Description:
This function is very similar to the C library fprintf() function. All of its output will be sent
to the UART. Only the following formatting characters are supported:

%c to print a character
%d to print a decimal value
%s to print a string
%u to print an unsigned decimal value
%x to print a hexadecimal value using lower case letters
%X to print a hexadecimal value using lower case letters (not upper case letters as would
typically be used)
%p to print a pointer as a hexadecimal value
%% to print out a % character

For %s, %d, %u, %p, %x, and %X, an optional number may reside between the % and the
format character, which specifies the minimum number of characters to use for that value; if
preceeded by a 0 then the extra characters will be filled with zeros instead of spaces. For
example, “%8d” will use eight characters to print the decimal value with spaces added to reach
eight; “%08d” will use eight characters as well but will add zeroes instead of spaces.

The type of the arguments after pcString must match the requirements of the format string.
For example, if an integer was passed where a string was expected, an error of some kind will
most likely occur.

This function is contained in utils/uartstdio.c, with utils/uartstdio.h containing
the API definition for use by applications.

Returns:
None.

27.2.2.44 UARTStdioInit

Initializes the UART console.

September 29, 2008 357

Utility Functions

Prototype:
void
UARTStdioInit(unsigned long ulPortNum)

Parameters:
ulPortNum is the number of UART port to use for the serial console (0-2)

Description:
This function will initialize the specified serial port to be used as a serial console. The serial
parameters will be set to 115200, 8-N-1.

This function must be called prior to using any of the other UART console functions: UART-
printf() or UARTgets(). In order for this function to work correctly, SysCtlClockSet() must be
called prior to calling this function.

It is assumed that the caller has previously configured the relevant UART pins for operation as
a UART rather than as GPIOs.

This function is contained in utils/uartstdio.c, with utils/uartstdio.h containing
the API definition for use by applications.

Returns:
None.

27.2.2.45 ulocaltime

Converts from seconds to calendar date and time.

Prototype:
void
ulocaltime(unsigned long ulTime,

tTime *psTime)

Parameters:
ulTime is the number of seconds.
psTime is a pointer to the time structure that is filled in with the broken down date and time.

Description:
This function converts a number of seconds since midnight GMT on January 1, 1970 (traditional
Unix epoch) into the equivalent month, day, year, hours, minutes, and seconds representation.

Returns:
None.

27.2.2.46 usnprintf

A simple snprintf function supporting %c, %d, %p, %s, %u, %x, and %X.

Prototype:
int
usnprintf(char *pcBuf,

unsigned long ulSize,

358 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

const char *pcString,
...)

Parameters:
pcBuf is the buffer where the converted string is stored.
ulSize is the size of the buffer.
pcString is the format string.
... are the optional arguments, which depend on the contents of the format string.

Description:
This function is very similar to the C library sprintf() function. Only the following formatting
characters are supported:

%c to print a character
%d to print a decimal value
%s to print a string
%u to print an unsigned decimal value
%x to print a hexadecimal value using lower case letters
%X to print a hexadecimal value using lower case letters (not upper case letters as would
typically be used)
%p to print a pointer as a hexadecimal value
%% to print out a % character

For %d, %p, %s, %u, %x, and %X, an optional number may reside between the % and the
format character, which specifies the minimum number of characters to use for that value; if
preceeded by a 0 then the extra characters will be filled with zeros instead of spaces. For
example, “%8d” will use eight characters to print the decimal value with spaces added to reach
eight; “%08d” will use eight characters as well but will add zeros instead of spaces.

The type of the arguments after pcString must match the requirements of the format string.
For example, if an integer was passed where a string was expected, an error of some kind will
most likely occur.

The function will copy at most ulSize - 1 characters into the buffer pcBuf . One space is reserved
in the buffer for the null termination character.

The function will return the number of characters that would be converted as if there were no
limit on the buffer size. Therefore it is possible for the function to return a count that is greater
than the specified buffer size. If this happens, it means that the output was truncated.

Returns:
Returns the number of characters that were to be stored, not including the NULL termination
character, regardless of space in the buffer.

27.2.2.47 usprintf

A simple sprintf function supporting %c, %d, %p, %s, %u, %x, and %X.

Prototype:
int
usprintf(char *pcBuf,

const char *pcString,
...)

September 29, 2008 359

Utility Functions

Parameters:
pcBuf is the buffer where the converted string is stored.
pcString is the format string.
... are the optional arguments, which depend on the contents of the format string.

Description:
This function is very similar to the C library sprintf() function. Only the following formatting
characters are supported:

%c to print a character
%d to print a decimal value
%s to print a string
%u to print an unsigned decimal value
%x to print a hexadecimal value using lower case letters
%X to print a hexadecimal value using lower case letters (not upper case letters as would
typically be used)
%p to print a pointer as a hexadecimal value
%% to print out a % character

For %d, %p, %s, %u, %x, and %X, an optional number may reside between the % and the
format character, which specifies the minimum number of characters to use for that value; if
preceeded by a 0 then the extra characters will be filled with zeros instead of spaces. For
example, “%8d” will use eight characters to print the decimal value with spaces added to reach
eight; “%08d” will use eight characters as well but will add zeros instead of spaces.

The type of the arguments after pcString must match the requirements of the format string.
For example, if an integer was passed where a string was expected, an error of some kind will
most likely occur.

The caller must ensure that the buffer pcBuf is large enough to hold the entire converted string,
including the null termination character.

Returns:
Returns the count of characters that were written to the output buffer, not including the NULL
termination character.

27.2.2.48 ustrstr

Finds a substring within a string.

Prototype:
char *
ustrstr(const char *pcHaystack,

const char *pcNeedle)

Parameters:
pcHaystack is a pointer to the string that will be searched.
pcNeedle is a pointer to the substring that is to be found within pcHaystack .

Description:
This function is very similar to the C library strstr() function. It scans a string for the first
instance of a given substring and returns a pointer to that substring. If the substring cannot be
found, a NULL pointer is returned.

360 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
Returns a pointer to the first occurrence of pcNeedle within pcHaystack or NULL if no match is
found.

27.2.2.49 ustrtoul

Converts a string into its numeric equivalent.

Prototype:
unsigned long
ustrtoul(const char *pcStr,

const char **ppcStrRet,
int iBase)

Parameters:
pcStr is a pointer to the string containing the integer.
ppcStrRet is a pointer that will be set to the first character past the integer in the string.
iBase is the radix to use for the conversion; can be zero to auto-select the radix or between 2

and 16 to explicitly specify the radix.

Description:
This function is very similar to the C library strtoul() function. It scans a string for the first
token (that is, non-whitespace) and converts the value at that location in the string into an
integer value.

Returns:
Returns the result of the conversion.

27.2.2.50 uvsnprintf

A simple vsnprintf function supporting %c, %d, %p, %s, %u, %x, and %X.

Prototype:
int
uvsnprintf(char *pcBuf,

unsigned long ulSize,
const char *pcString,
va_list vaArgP)

Parameters:
pcBuf points to the buffer where the converted string is stored.
ulSize is the size of the buffer.
pcString is the format string.
vaArgP is the list of optional arguments, which depend on the contents of the format string.

Description:
This function is very similar to the C library vsnprintf() function. Only the following format-
ting characters are supported:

%c to print a character

September 29, 2008 361

Utility Functions

%d to print a decimal value
%s to print a string
%u to print an unsigned decimal value
%x to print a hexadecimal value using lower case letters
%X to print a hexadecimal value using lower case letters (not upper case letters as would
typically be used)
%p to print a pointer as a hexadecimal value
%% to print out a % character

For %d, %p, %s, %u, %x, and %X, an optional number may reside between the % and the
format character, which specifies the minimum number of characters to use for that value; if
preceeded by a 0 then the extra characters will be filled with zeros instead of spaces. For
example, “%8d” will use eight characters to print the decimal value with spaces added to reach
eight; “%08d” will use eight characters as well but will add zeroes instead of spaces.

The type of the arguments after pcString must match the requirements of the format string.
For example, if an integer was passed where a string was expected, an error of some kind will
most likely occur.

The ulSize parameter limits the number of characters that will be stored in the buffer pointed to
by pcBuf to prevent the possibility of a buffer overflow. The buffer size should be large enough
to hold the expected converted output string, including the null termination character.

The function will return the number of characters that would be converted as if there were no
limit on the buffer size. Therefore it is possible for the function to return a count that is greater
than the specified buffer size. If this happens, it means that the output was truncated.

Returns:
Returns the number of characters that were to be stored, not including the NULL termination
character, regardless of space in the buffer.

362 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

28 Error Handling
Invalid arguments and error conditions are handled in a non-traditional manner in the peripheral
driver library. Typically, a function would check its arguments to make sure that they are valid (if
required; some may be unconditionally valid such as a 32-bit value used as the load value for a
32-bit timer). If an invalid argument is provided, it would return an error code. The caller then has
to check the return code from each invocation of the function to make sure that it succeeded.

This results in a sizable amount of argument checking code in each function and return code check-
ing code at each call site. For a self-contained application, this extra code becomes an unneeded
burden once the application is debugged. Having a means of removing it allows the final code to
be smaller and therefore run faster.

In the peripheral driver library, most functions do not return errors (FlashProgram(), FlashErase(),
FlashProtectSet(), and FlashProtectSave() are the notable exceptions). Argument checking is done
via a call to the ASSERT macro (provided in src/debug.h). This macro has the usual definition of
an assert macro; it takes an expression that “must” be true. By making this macro be empty, the
argument checking is removed from the code.

There are two definitions of the ASSERT macro provided in src/debug.h; one that is empty (used
for normal situations) and one that evaluates the expression (used when the library is built with
debugging). The debug version will call the __error__ function whenever the expression is not
true, passing the file name and line number of the ASSERT macro invocation. The __error__
function is prototyped in src/debug.h and must be provided by the application since it is the
application’s responsibility to deal with error conditions.

By setting a breakpoint on the __error__ function, the debugger will immediately stop whenever
an error occurs anywhere in the application (something that would be very difficult to do with other
error checking methods). When the debugger stops, the arguments to the __error__ function
and the backtrace of the stack will pinpoint the function that found an error, what it found to be a
problem, and where it was called from. As an example:

void
UARTParityModeSet(unsigned long ulBase, unsigned long ulParity)
{

//
// Check the arguments.
//
ASSERT((ulBase == UART0_BASE) || (ulBase == UART1_BASE) ||

(ulBase == UART2_BASE));
ASSERT((ulParity == UART_CONFIG_PAR_NONE) ||

(ulParity == UART_CONFIG_PAR_EVEN) ||
(ulParity == UART_CONFIG_PAR_ODD) ||
(ulParity == UART_CONFIG_PAR_ONE) ||
(ulParity == UART_CONFIG_PAR_ZERO));

Each argument is individually checked, so the line number of the failing ASSERT will indicate the
argument that is invalid. The debugger will be able to display the values of the arguments (from the
stack backtrace) as well as the caller of the function that had the argument error. This allows the
problem to be quickly identified at the cost of a small amount of code.

September 29, 2008 363

Error Handling

364 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

29 Boot Loader
Introduction .365
Functions . 378

29.1 Introduction

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for applications running on a Stellaris
microcontroller. The boot loader can be built to use either the UART0, SSI0, I2C0, or Ethernet
ports to update the code on the microcontroller. The boot loader is customizable via source code
modifications, or simply deciding at compile time which routines to include. Since full source code
is provided, the boot loader can be completely customized.

Two update protocols are utilized. On UART0, SSI0, and I2C0, a custom protocol is used to com-
municate with the download utility to transfer the firmware image and program it into flash. When
using Ethernet, the standard bootstrap protocol (BOOTP) is used instead.

When configured to use UART0 or Ethernet, the LM Flash Programmer GUI can be used to down-
load an application via the boot loader. The LM Flash Programmer utility is available for download
from www.luminarymicro.com.

Note:
Building the boot loader requires the use of linker scripts, and building applications that run
under its control requires the ability to specify a start address other than the beginning of
flash. Neither of these capabilities are available in the evaluation version of Keil RealView
Microcontroller Development Kit; therefore, the boot loader is not usable unless the full version
is used. Additionally, the linker script specified in the uVision project file for the boot loader
is simply ignored, resulting in a successful link of the boot loader but an image that will not
operate correctly.

29.1.1 Source Files

The following is an overview of the organization of the source code provided with the boot loader.

bl_autobaud.c The code for performing the auto-baud operation on the
UART port. This is separate from the remainder of the UART
code so that the linker can remove it when it is not used.

bl_check.c The code to check if a firmware update is required, or if a
firmware update is being requested by the user.

bl_check.h Prototypes for the update check code.

bl_commands.h The list of commands and return messages supported by
the boot loader.

September 29, 2008 365

http://www.luminarymicro.com

Boot Loader

bl_config.c A dummy source file used to translate the bl_config.h C
header file into a header file that can be included in assem-
bly code. This is needed for the Keil tool chain since it is not
able to pass assembly source code through the C prepro-
cessor.

bl_config.h.tmpl A template for the boot loader configuration file. This con-
tains all of the possible configuration values.

bl_decrypt.c The code to perform an in-place decryption of the down-
loaded firmware image. No decryption is actually performed
in this file; this is simply a stub that can be expanded to per-
form the require decryption.

bl_decrypt.h Prototypes for the in-place decryption routines.

bl_enet.c The functions for performing a firmware update via the Eth-
ernet port.

bl_i2c.c The functions for transferring data via the I2C0 port.

bl_i2c.h Prototypes for the I2C0 transfer functions.

bl_link.ld The linker script used when the codered, gcc, or
sourcerygxx compiler is being used to build the boot
loader.

bl_link.sct The linker script used when the rvmdk compiler is being
used to build the boot loader.

bl_link.xcl The linker script used when the ewarm compiler is being
used to build the boot loader.

bl_main.c The main control loop of the boot loader.

bl_packet.c The functions for handling the packet processing of com-
mands and responses.

bl_packet.h Prototypes for the packet handling functions.

bl_ssi.c The functions for transferring data via the SSI0 port.

bl_ssi.h Prototypes for the SSI0 transfer functions.

bl_startup_codered.S The start-up code used when the codered compiler is being
used to build the boot loader.

bl_startup_ewarm.S The start-up code used when the ewarm compiler is being
used to build the boot loader.

bl_startup_gcc.S The start-up code used when the gcc compiler is being used
to build the boot loader.

366 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

bl_startup_rvmdk.S The start-up code used when the rvmdk compiler is being
used to build the boot loader.

bl_startup_sourcerygxx.S The start-up code used when the sourcerygxx compiler is
being used to build the boot loader.

bl_uart.c The functions for transferring data via the UART0 port.

bl_uart.h Prototypes for the UART0 transfer functions.

29.1.2 Start-up Code

The start-up code contains the minimal set of code required to configure a vector table, initialize
memory, copy the boot loader from flash to SRAM, and execute from SRAM. Because some tool
chain-specific constructs are used to indicate where the code, data, and bss segments reside in
memory, each supported tool chain has its own separate file that implements the start-up code.
The start-up code is contained in the following files:

bl_startup_codered.S (Code Red Technologies tools)

bl_startup_ewarm.S (IAR Embedded Workbench)

bl_startup_gcc.S (GNU GCC)

bl_startup_rvmdk.S (Keil RV-MDK)

bl_startup_sourcerygxx.S (CodeSourcery Sourcery G++)

Accompanying the start-up code for each tool chain are linker scripts that are used to place the vec-
tor table, code segment, data segment initializers, and data segments in the appropriate locations
in memory. The scripts are located in the following files:

bl_link.ld (Code Red Technologies tools, GNU GCC, and CodeSourcery Sourcery G++)

bl_link.sct (Keil RV-MDK)

bl_link.xcl (IAR Embedded Workbench)

The boot loader’s code and its corresponding linker script use a memory layout that exists entirely
in SRAM. This means that the load address of the code and read-only data are not the same as
the execution address. This memory map allows the boot loader to update itself since it is actually
running from SRAM only. The first part of SRAM is used as the copy space for the boot loader while
the rest is reserved for stack and read/write data for the boot loader. Once the boot loader calls the
application, all SRAM becomes usable by the application.

The vector table of the Cortex-M3 microprocessor contains four required entries: the initial stack
pointer, the reset handler address, the NMI handler address, and the hard fault handler address.
Upon reset, the processor loads the initial stack pointer and then starts executing the reset handler.
The initial stack pointer is required since an NMI or hard fault can occur at any time; the stack
is required to take those interrupts since the processor automatically pushes eight items onto the
stack.

The Vectors array contains the boot loader’s vector table which varies in size based on the addi-
tion of the auto-baud feature. The auto-baud feature requires an interrupt and expands the vector

September 29, 2008 367

Boot Loader

table slightly. Since the boot loader executes from SRAM and not from flash, tool chain-specific
constructs are used to provide a hint to the linker that this array is located at 0x2000.0000.

The IntDefaultHandler function contains the default fault handler. This is a simple infinite loop,
effectively halting the application if any unexpected fault occurs. The application state is, therefore,
preserved for examination by a debugger. If desired, a customized boot loader can provide its own
handlers by adding the appropriate handlers to the Vectors array.

After a reset, the start-up copies the boot loader from flash to SRAM, branches to the copy of
the boot loader in SRAM, and checks to see if an application update should be performed by
calling CheckForceUpdate(). If an update is not required, the application is called. Otherwise,
the microcontroller is initialized by calling ConfigureDevice() (for UART0, SSI0, and I2C0) or
ConfigureEnet() (for Ethernet), and then the control loop of the boot loader in Updater() (for
UART0, SSI0, and I2C0) or UpdateBOOTP() is called.

The check for an application update (in CheckForceUpdate()) consists of checking the beginning
of the application area and optionally checking the state of a GPIO pin. The application is assumed
to be valid if the first location is a valid stack pointer (that is, it resides in SRAM, and has a value of
0x2xxx.xxxx), and the second location is a valid reset handler address (that is, it resides in flash,
and has a value of 0x000x.xxxx, where the value is odd). If either of these tests fail, then the
application is assumed to be invalid and an update is forced. The GPIO pin check can be enabled
with ENABLE_UPDATE_CHECK, in which case an update can be forced by changing the state of
a GPIO pin (for example, with a push button). If the application is valid and the GPIO pin is not
requesting an update, the application is called. Otherwise, an update is started by entering the
main loop of the boot loader.

Additionally, the boot loader can be called by the application in order to perform an application-
directed update. In this case, the boot loader assumes that the peripheral in use for the update
has already been configured by the application, and must simply be used by the boot loader to
perform the update. The boot loader therefore copies itself to SRAM, branches to the SRAM copy
of the boot loader, and starts the update by calling Updater() (for UART0, SSI0, and I2C0) or
UpdateBOOTP() (for Ethernet). The SVCall entry of the vector table contains the location of the
application-directed update entry point.

29.1.3 Ethernet Update

When performing an Ethernet update, ConfigureEnet() is used to configure the Ethernet con-
troller, making it ready to be used to update the firmware. Then, UpdateBOOTP() begins the
process of the firmware update.

The bootstrap protocol (BOOTP) is a predecessor to the DHCP protocol and is used to discover the
IP address of the client, the IP address of the server, and the name of the firmware image to use.
BOOTP uses UDP/IP packets to communicate between the client and the server; the boot loader
acts as the client. First, it will send a BOOTP request using a broadcast message. When the server
receives the request, it will reply, thereby informing the client of its IP address, the IP address of the
server, and the name of the firmware image. Once this reply is received, the BOOTP protocol has
completed.

Then, the trivial file transfer protocol (TFTP) is used to transfer the firmware image from the server
to the client. TFTP also uses UDP/IP packets to communicate between the client and the server,
and the boot loader also acts as the client in this protocol. As each data block is received, it is
programmed into flash. Once all data blocks are received and programmed, the device is reset,
causing it to start running the new firmware image.

368 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

The uIP stack (http://www.sics.se/∼adam/uip) is used to implement the UDP/IP connec-
tions. The TCP support is not needed and is therefore disabled, greatly reducing the size of the
stack.

Note:
When using the Ethernet update, the boot loader can not update itself since there is no mech-
anism in BOOTP to distinguish between a firmware image and a boot loader image. Therefore,
the boot loader does not know if a given image is a new boot loader or a new firmware image.
It assumes that all images provided are firmware images.

RFC951 (http://tools.ietf.org/html/rfc951.html) defines the bootstrap protocol.

RFC1350 (http://tools.ietf.org/html/rfc1350.html) defines the trivial file trans-
fer protocol.

29.1.4 Serial Update

When performing an update via a serial port (UART0, SSI0, or I2C0), ConfigureDevice() is
used to configure the selected serial port, making it ready to be used to update the firmware.
Then, Updater() sits in an endless loop accepting commands and updating the firmware when
requested. The commands are explained in detail in the Commands section. All transmissions
from this main routine use the packet handler functions (SendPacket(), ReceivePacket(),
AckPacket(), and NakPacket()). Once the update is complete, the boot loader can be reset by
issuing a reset command to the boot loader.

When a request to update the application comes through and FLASH_CODE_PROTECTION is de-
fined, the boot loader first erases the entire application area before accepting the binary for the new
application. This prevents a partial erase of flash from exposing any of the code before the new bi-
nary is downloaded to the microcontroller. The boot loader itself is left in place so that it will not boot
a partially erased program. Once all of the application flash area has been successfully erased, the
boot loader proceeds with the download of the new binary. When FLASH_CODE_PROTECTION
is not defined, the boot loader only erases enough space to fit the new application that is being
downloaded.

In the event that the boot loader itself needs to be updated, the boot loader must replace it-
self in flash. An update of the boot loader is recognized by performing a download to ad-
dress 0x0000.0000. Once again the boot loader operates differently based on the setting of
FLASH_CODE_PROTECTION. When FLASH_CODE_PROTECTION is defined and the down-
load address indicates an boot loader update, the boot loader protects any application code already
on the microcontroller by erasing the entire application area before erasing and replacing itself. If
the process is interrupted at any point, either the old boot loader remains present in the flash and
does not boot the partial application or the application code will have already been erased. When
FLASH_CODE_PROTECTION is not defined, the boot loader only erases enough space to fit its
own code and leaves the application intact.

29.1.4.1 Packet Handling

The boot loader uses well-defined packets to ensure reliable communications with the update pro-
gram. The packets are always acknowledged or not acknowledged by the communicating devices.
The packets use the same format for receiving and sending packets. This includes the method
used to acknowledge successful or unsuccessful reception of a packet. While the actual signaling

September 29, 2008 369

http://www.sics.se/~adam/uip
http://tools.ietf.org/html/rfc951.html
http://tools.ietf.org/html/rfc1350.html

Boot Loader

on the serial ports is different, the packet format remains independent of the method of transporting
the data.

The boot loader uses the SendPacket() function in order to send a packet of data to another
device. This function encapsulates all of the steps necessary to send a valid packet to another de-
vice including waiting for the acknowledge or not-acknowledge from the other device. The following
steps must be performed to successfully send a packet:

1. Send out the size of the packet that will be sent to the device. The size is always the size of
the data + 2.

2. Send out the checksum of the data buffer to help ensure proper transmission of the command.
The checksum algorithm is implemented in the CheckSum() function provided and is simply
a sum of the data bytes.

3. Send out the actual data bytes.
4. Wait for a single byte acknowledgment from the device that it either properly received the data

or that it detected an error in the transmission.

Received packets use the same format as sent packets. The boot loader uses the
ReceivePacket() function in order to receive or wait for a packet from another device. This
function does not take care of acknowledging or not-acknowledging the packet to the other device.
This allows the contents of the packet to be checked before sending back a response. The following
steps must be performed to successfully receive a packet:

1. Wait for non-zero data to be returned from the device. This is important as the device may
send zero bytes between a sent and received data packet. The first non-zero byte received
will be the size of the packet that is being received.

2. Read the next byte which will be the checksum for the packet.
3. Read the data bytes from the device. There will be packet size - 2 bytes of data sent during

the data phase. For example, if the packet size was 3, then there is only 1 byte of data to be
received.

4. Calculate the checksum of the data bytes and ensure if it matches the checksum received in
the packet.

5. Send an acknowledge or not-acknowledge to the device to indicate the successful or unsuc-
cessful reception of the packet.

The steps necessary to acknowledge reception of a packet are implemented in the AckPacket()
function. Acknowledge bytes are sent out whenever a packet is successfully received and verified
by the boot loader.

A not-acknowledge byte is sent out whenever a sent packet is detected to have an error, usually
as a result of a checksum error or just malformed data in the packet. This allows the sender to
re-transmit the previous packet.

29.1.4.2 Transport Layer

The boot loader supports updating via the I2C0, SSI0, and UART0 ports which are available on
Stellaris microcontrollers. The SSI port has the advantage of supporting higher and more flexible
data rates but it also requires more connections to the microcontroller. The UART has the disad-
vantage of having slightly lower and possibly less flexible rates. However, the UART requires fewer
pins and can be easily implemented with any standard UART connection. The I2C interface also
provides a standard interface, only uses two wires, and can operate at comparable speeds to the
UART and SSI interfaces.

370 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

29.1.4.3 I2C Transport

The I2C handling functions are I2CSend(), I2CReceive(), and I2CFlush() functions. The
connections required to use the I2C port are the following pins: I2CSCL and I2CSDA. The device
communicating with the boot loader must operate as the I2C master and provide the I2CSCL signal.
The I2CSDA pin is open drain and can be driven by either the master or the slave I2C device.

29.1.4.4 SSI Transport

The SSI handling functions are SSISend(), SSIReceive(), and SSIFlush(). The connec-
tions required to use the SSI port are the following four pins: SSITx, SSIRx, SSIClk, and SSIFss.
The device communicating with the boot loader is responsible for driving the SSIRx, SSIClk, and
SSIFss pins, while the Stellaris microcontroller drives the SSITx pin. The format used for SSI com-
munications is the Motorola format with SPH set to 1 and SPO set to 1 (see Stellaris Family data
sheet for more information on this format). The SSI interface has a hardware requirement that limits
the maximum rate of the SSI clock to be at most 1/12 the frequency of the microcontroller running
the boot loader.

29.1.4.5 UART Transport

The UART handling functions are UARTSend(), UARTReceive(), and UARTFlush(). The con-
nections required to use the UART port are the following two pins: U0Tx and U0Rx. The device
communicating with the boot loader is responsible for driving the U0Rx pin on the Stellaris micro-
controller, while the Stellaris microcontroller drives the U0Tx pin.

While the baud rate is flexible, the UART serial format is fixed at 8 data bits, no parity, and one stop
bit. The baud rate used for communication can either be auto-detected by the boot loader, if the
auto-baud feature is enabled, or it can be fixed at a baud rate supported by the device communicat-
ing with the boot loader. The only requirement on baud rate is that the baud rate should be no more
than 1/32 the frequency of the microcontroller that is running the boot loader. This is the hardware
requirement for the maximum baud rate for a UART on any Stellaris microcontroller.

When using a fixed baud rate, the frequency of the crystal connected to the microcontroller must
be specified. Otherwise, the boot loader will not be able to configure the UART to operate at the
requested baud rate.

The boot loader provides a method to automatically detect the baud rate being used to communi-
cate with it. This automatic baud rate detection is implemented in the UARTAutoBaud() function.
The auto-baud function attempts to synchronize with the updater application and indicates if it is
successful in detecting the baud rate or if it failed to properly detect the baud rate. The boot loader
can make multiple calls to UARTAutoBaud() to attempt to retry the synchronization if the first call
fails. In the example boot loader provided, when the auto-baud feature is enabled, the boot loader
will wait forever for a valid synchronization pattern from the host.

29.1.5 Customization

The boot loader allows for customization of its features as well as the interfaces used to update
the microcontroller. This allows the boot loader to include only the features that are needed by the
application. There are two types of features that can be customized. The first type are the features

September 29, 2008 371

Boot Loader

that are conditionally included or excluded at compile time. The second type of customizations are
more involved and include customizing the actual code that is used by the boot loader.

The boot loader can be modified to have any functionality. As an example, the main loop can
be completely replaced to use a different set of commands and still use the packet and transport
functions from the boot loader. The method of detecting a forced update can be modified to suit
the needs of the application when toggling a GPIO to detect an update request may not be the
best solution. If the boot loader’s packet format does not meet the needs of the application, it can
be completely replaced by replacing ReceivePacket(), SendPacket(), AckPacket(), and
NakPacket().

The boot loader also provides a method to add a new transmission interfaces beyond the UART,
SSI, and I2C that are provided by the boot loader. In order for the packet functions to use the new
transport functions, the SendData, ReceiveData, and FlushData defines need to be modified
to use the new functions. For example:

#ifdef FOO_ENABLE_UPDATE
#define SendData FooSend
#define FlushData FooFlush
#define ReceiveData FooReceive
#endif

would use the functions for the hypothetical Foo peripheral.

The combination of these customizable features provides a framework that allows the boot loader
to define whatever protocol it needs, or use any port that it needs to perform updates of the micro-
controller.

29.1.6 Commands

The following commands are used by the custom protocol on the UART0, SSI0, and I2C0 ports:

COMMAND_PING This command is used to receive an acknowledge from the boot
loader indicating that communication has been established. This
command is a single byte.

The format of the command is as follows:

unsigned char ucCommand[1];

ucCommand[0] = COMMAND_PING;

372 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

COMMAND_DOWNLOAD This command is sent to the boot loader to indicate where
to store data and how many bytes will be sent by the
COMMAND_SEND_DATA commands that follow. The command
consists of two 32-bit values that are both transferred MSB first.
The first 32-bit value is the address to start programming data
into, while the second is the 32-bit size of the data that will be
sent. This command also triggers an erasure of the full applica-
tion area in the flash or possibly the entire flash depending on
the address used. This causes the command to take longer to
send the ACK/NAK in response to the command. This command
should be followed by a COMMAND_GET_STATUS to ensure that
the program address and program size were valid for the micro-
controller running the boot loader.

The format of the command is as follows:

unsigned char ucCommand[9];

ucCommand[0] = COMMAND_DOWNLOAD;
ucCommand[1] = Program Address [31:24];
ucCommand[2] = Program Address [23:16];
ucCommand[3] = Program Address [15:8];
ucCommand[4] = Program Address [7:0];
ucCommand[5] = Program Size [31:24];
ucCommand[6] = Program Size [23:16];
ucCommand[7] = Program Size [15:8];
ucCommand[8] = Program Size [7:0];

COMMAND_RUN This command is sent to the boot loader to transfer execution
control to the specified address. The command is followed by a
32-bit value, transferred MSB first, that is the address to which
execution control is transferred.

The format of the command is as follows:

unsigned char ucCommand[5];

ucCommand[0] = COMMAND_RUN;
ucCommand[1] = Run Address [31:24];
ucCommand[2] = Run Address [23:16];
ucCommand[3] = Run Address [15:8];
ucCommand[4] = Run Address [7:0];

September 29, 2008 373

Boot Loader

COMMAND_GET_STATUS This command returns the status of the last command that was
issued. Typically, this command should be received after every
command is sent to ensure that the previous command was suc-
cessful or, if unsuccessful, to properly respond to a failure. The
command requires one byte in the data of the packet and the
boot loader should respond by sending a packet with one byte of
data that contains the current status code.

The format of the command is as follows:

unsigned char ucCommand[1];

ucCommand[0] = COMMAND_GET_STATUS;

The following are the definitions for the possible status
values that can be returned from the boot loader when
COMMAND_GET_STATUS is sent to the the microcontroller.

COMMAND_RET_SUCCESS
COMMAND_RET_UNKNOWN_CMD
COMMAND_RET_INVALID_CMD
COMMAND_RET_INVALID_ADD
COMMAND_RET_FLASH_FAIL

COMMAND_SEND_DATA This command should only follow a COMMAND_DOWNLOAD com-
mand or another COMMAND_SEND_DATA command, if more data
is needed. Consecutive send data commands automatically in-
crement the address and continue programming from the previ-
ous location. The transfer size is limited by the size of the receive
buffer in the boot loader (as configured by the BUFFER_SIZE pa-
rameter). The command terminates programming once the num-
ber of bytes indicated by the COMMAND_DOWNLOAD command
has been received. Each time this function is called, it should
be followed by a COMMAND_GET_STATUS command to ensure
that the data was successfully programmed into the flash. If the
boot loader sends a NAK to this command, the boot loader will
not increment the current address which allows for retransmis-
sion of the previous data.

The format of the command is as follows:

unsigned char ucCommand[9];

ucCommand[0] = COMMAND_SEND_DATA
ucCommand[1] = Data[0];
ucCommand[2] = Data[1];
ucCommand[3] = Data[2];
ucCommand[4] = Data[3];
ucCommand[5] = Data[4];
ucCommand[6] = Data[5];
ucCommand[7] = Data[6];
ucCommand[8] = Data[7];

374 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

COMMAND_RESET This command is used to tell the boot loader to reset. This is
used after downloading a new image to the microcontroller to
cause the new application or the new boot loader to start from
a reset. The normal boot sequence occurs and the image runs
as if from a hardware reset. It can also be used to reset the
boot loader if a critical error occurs and the host device wants to
restart communication with the boot loader.

The boot loader responds with an ACK signal to the host device
before actually executing the software reset on the microcon-
troller running the boot loader. This informs the updater appli-
cation that the command was received successfully and the part
will be reset.

The format of the command is as follows:

unsigned char ucCommand[1];

ucCommand[0] = COMMAND_RESET;

29.1.7 Configuration

There are a number of defines that are used to configure the operation of the boot loader.
These defines are located in the bl_config.h header file, for which there is a template
(bl_config.h.tmpl) provided with the boot loader.

The configuration options are:

CRYSTAL_FREQ This defines the crystal frequency used by the microcontroller
running the boot loader. If this is unknown at the time of pro-
duction, then use the UART_AUTOBAUD feature to properly con-
figure the UART.

This value must be defined if using the UART for the up-
date and not using the auto-baud feature, and when using
Ethernet for the update.

BOOST_LDO_VOLTAGE This enables the boosting of the LDO voltage to 2.75V. For
boot loader configurations that enable the PLL (in other words,
using the Ethernet port) on a part that has the PLL errata, this
should be enabled. This applies to revision A2 of Fury-class
devices.

September 29, 2008 375

Boot Loader

APP_START_ADDRESS The starting address of the application. This must be a multiple
of 1024 bytes (making it aligned to a page boundary). A vector
table is expected at this location, and the perceived validity of
the vector table (stack located in SRAM, reset vector located in
flash) is used as an indication of the validity of the application
image.

This value must be defined. The flash image of the boot
loader must not be larger than this value.

FLASH_RSVD_SPACE The amount of space at the end of flash to reserve. This must
be a multiple of 1024 bytes (making it aligned to a page bound-
ary). This reserved space is not erased when the application
is updated, providing non-volatile storage that can be used for
parameters.

STACK_SIZE The number of words of stack space to reserve for the boot
loader.

This value must be defined.

BUFFER_SIZE The number of words in the data buffer used for receiving pack-
ets. This value must be at least 3. If using auto-baud on the
UART, this must be at least 20. The maximum usable value is
65 (larger values will result in unused space in the buffer). This
value is unused when updating via the Ethernet port.

This value must be defined.

ENABLE_BL_UPDATE Enables updates to the boot loader. Updating the boot loader
is an unsafe operation since it is not fully fault tolerant (losing
power to the device partway through could result in the boot
loader no longer being present in flash). The boot loader can
not be updated via the Ethernet port.

FLASH_CODE_PROTECTION This definition will cause the the boot loader to erase the entire
flash on updates to the boot loader or to erase the entire appli-
cation area when the application is updated. This erases any
unused sections in the flash before the firmware is updated.

ENABLE_DECRYPTION Enables the call to decrypt the downloaded data before writing
it into flash. The decryption routine is empty in the reference
boot loader source, which simply provides a placeholder for
adding an actual decryption algorithm.

ENABLE_UPDATE_CHECK Enables the pin-based forced update check. When enabled,
the boot loader will go into update mode instead of calling the
application if a pin is read at a particular polarity, forcing an
update operation. In either case, the application is still able to
return control to the boot loader in order to start an update.

376 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

FORCED_UPDATE_PERIPH The GPIO module to enable in order to check for a forced
update. This will be one of the SYSCTL_RCGC2_GPIOx
values, where “x” is replaced with the port name (such
as B). The value of “x” should match the value of “x” for
FORCED_UPDATE_PORT.

This value must be defined if ENABLE_UPDATE_CHECK is
defined.

FORCED_UPDATE_PORT The GPIO port to check for a forced update. This will be one
of the GPIO_PORTx_BASE values, where “x” is replaced with
the port name (such as B). The value of “x” should match the
value of “x” for FORCED_UPDATE_PERIPH.

This value must be defined if ENABLE_UPDATE_CHECK is
defined.

FORCED_UPDATE_PIN The pin to check for a forced update. This is a value between
0 and 7.

This value must be defined if ENABLE_UPDATE_CHECK is
defined.

FORCED_UPDATE_POLARITY The polarity of the GPIO pin that results in a forced update.
This value should be 0 if the pin should be low and 1 if the pin
should be high.

This value must be defined if ENABLE_UPDATE_CHECK is
defined.

UART_ENABLE_UPDATE Selects the UART as the port for communicating with the boot
loader.

UART_AUTOBAUD Enables automatic baud rate detection. This can be used if the
crystal frequency is unknown, or if operation at different baud
rates is desired.

UART_FIXED_BAUDRATE Selects the baud rate to be used for the UART.

SSI_ENABLE_UPDATE Selects the SSI port as the port for communicating with the
boot loader.

I2C_ENABLE_UPDATE Selects the I2C port as the port for communicating with the
boot loader.

I2C_SLAVE_ADDR Specifies the I2C address of the boot loader.

This value must be defined if I2C_ENABLE_UPDATE is
defined.

ENET_ENABLE_UPDATE Selects an update via the Ethernet port.

September 29, 2008 377

Boot Loader

ENET_ENABLE_LEDS Enables the use of the Ethernet status LED outputs to indicate
traffic and connection status.

ENET_MAC_ADDR? Specifies the hard coded MAC address for the Ethernet in-
terface. There are six individual values (ENET_MAC_ADDR0
through ENET_MAC_ADDR5) that provide the six bytes
of the MAC address, where ENET_MAC_ADDR0 though
ENET_MAC_ADDR2 provide the organizationally unique identi-
fier (OUI) and ENET_MAC_ADDR3 through ENET_MAC_ADDR5
provide the extension identifier. If these values are not pro-
vided, the MAC address will be extracted from the user regis-
ters.

ENET_BOOTP_SERVER Specifies the name of the BOOTP server from which to request
information. The use of this specifier allows a board-specific
BOOTP server to co-exist on a network with the DHCP server
that may be part of the network infrastructure. The BOOTP
server provided by Luminary Micro requires that this be set to
“stellaris”.

29.2 Functions

Functions
void AckPacket (void)
char BOOTPThread (void)
unsigned long CheckForceUpdate (void)
unsigned long CheckSum (const unsigned char ∗pucData, unsigned long ulSize)
void ConfigureDevice (void)
void ConfigureEnet (void)
void DecryptData (unsigned char ∗pucBuffer, unsigned long ulSize)
void GPIOIntHandler (void)
void I2CFlush (void)
void I2CReceive (unsigned char ∗pucData, unsigned long ulSize)
void I2CSend (const unsigned char ∗pucData, unsigned long ulSize)
void NakPacket (void)
int ReceivePacket (unsigned char ∗pucData, unsigned long ∗pulSize)
int SendPacket (unsigned char ∗pucData, unsigned long ulSize)
void SSIFlush (void)
void SSIReceive (unsigned char ∗pucData, unsigned long ulSize)
void SSISend (const unsigned char ∗pucData, unsigned long ulSize)
void SysTickIntHandler (void)
int UARTAutoBaud (unsigned long ∗pulRatio)
void UARTFlush (void)
void UARTReceive (unsigned char ∗pucData, unsigned long ulSize)

378 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

void UARTSend (const unsigned char ∗pucData, unsigned long ulSize)
void UpdateBOOTP (void)
void Updater (void)

29.2.1 Detailed Description

The following functions make up the boot loader. In order to keep the size of the boot loader to a
minimum, none of the APIs from the peripheral driver library are utilized.

29.2.2 Function Documentation

29.2.2.1 AckPacket

Sends an Acknowledge packet.

Prototype:
void
AckPacket(void)

Description:
This function is called to acknowledge that a packet has been received by the microcontroller.

This function is contained in bl_packet.c.

Returns:
None.

29.2.2.2 BOOTPThread

Handles the BOOTP process.

Prototype:
char
BOOTPThread(void)

Description:
This function contains the proto-thread for handling the BOOTP process. It first communicates
with the BOOTP server to get its boot parameters (IP address, server address, and filename),
then it communicates with the TFTP server on the specified server to read the firmware image
file.

This function is contained in bl_enet.c.

Returns:
None.

September 29, 2008 379

Boot Loader

29.2.2.3 CheckForceUpdate

Checks if an update is needed or is being requested.

Prototype:
unsigned long
CheckForceUpdate(void)

Description:
This function detects if an update is being requested or if there is no valid code presently
located on the microcontroller. This is used to tell whether or not to enter update mode.

This function is contained in bl_check.c.

Returns:
Returns a non-zero value if an update is needed or is being requested and zero otherwise.

29.2.2.4 CheckSum

Calculates an 8-bit checksum

Prototype:
unsigned long
CheckSum(const unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is a pointer to an array of 8-bit data of size ulSize.
ulSize is the size of the array that will run through the checksum algorithm.

Description:
This function simply calculates an 8-bit checksum on the data passed in.

This function is contained in bl_packet.c.

Returns:
Returns the calculated checksum.

29.2.2.5 ConfigureDevice

Configures the microcontroller.

Prototype:
void
ConfigureDevice(void)

Description:
This function configures the peripherals and GPIOs of the microcontroller, preparing it for use
by the boot loader. The interface that has been selected as the update port will be configured,
and auto-baud will be performed if required.

This function is contained in bl_main.c.

380 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

29.2.2.6 ConfigureEnet

Configures the Ethernet controller.

Prototype:
void
ConfigureEnet(void)

Description:
This function configures the Ethernet controller, preparing it for use by the boot loader.

This function is contained in bl_enet.c.

Returns:
None.

29.2.2.7 DecryptData

Performs an in-place decryption of downloaded data.

Prototype:
void
DecryptData(unsigned char *pucBuffer,

unsigned long ulSize)

Parameters:
pucBuffer is the buffer that holds the data to decrypt.
ulSize is the size, in bytes, of the buffer that was passed in via the pucBuffer parameter.

Description:
This function is a stub that could provide in-place decryption of the data that is being down-
loaded to the device.

This function is contained in bl_decrypt.c.

Returns:
None.

29.2.2.8 GPIOIntHandler

Handles the UART Rx GPIO interrupt.

Prototype:
void
GPIOIntHandler(void)

September 29, 2008 381

Boot Loader

Description:
When an edge is detected on the UART Rx pin, this function is called to save the time of the
edge. These times are later used to determine the ratio of the UART baud rate to the processor
clock rate.

This function is contained in bl_autobaud.c.

Returns:
None.

29.2.2.9 I2CFlush

Waits until all data has been transmitted by the I2C port.

Prototype:
void
I2CFlush(void)

Description:
This function waits until all data written to the I2C port has been read by the master.

This function is contained in bl_i2c.c.

Returns:
None.

29.2.2.10 I2CReceive

Receives data over the I2C port.

Prototype:
void
I2CReceive(unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is the buffer to read data into from the I2C port.
ulSize is the number of bytes provided in the pucData buffer that should be written with data

from the I2C port.

Description:
This function reads back ulSize bytes of data from the I2C port, into the buffer that is pointed to
by pucData. This function will not return until ulSize number of bytes have been received. This
function will wait till the I2C Slave port has been properly addressed by the I2C Master before
reading the first byte of data from the I2C port.

This function is contained in bl_i2c.c.

Returns:
None.

382 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

29.2.2.11 I2CSend

Sends data over the I2C port.

Prototype:
void
I2CSend(const unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is the buffer containing the data to write out to the I2C port.
ulSize is the number of bytes provided in pucData buffer that will be written out to the I2C port.

Description:
This function sends ulSize bytes of data from the buffer pointed to by pucData via the I2C port.
The function will wait till the I2C Slave port has been properly addressed by the I2C Master
device before sending the first byte.

This function is contained in bl_i2c.c.

Returns:
None.

29.2.2.12 NakPacket

Sends a no-acknowledge packet.

Prototype:
void
NakPacket(void)

Description:
This function is called when an invalid packet has been received by the microcontroller, indi-
cating that it should be retransmitted.

This function is contained in bl_packet.c.

Returns:
None.

29.2.2.13 ReceivePacket

Receives a data packet.

Prototype:
int
ReceivePacket(unsigned char *pucData,

unsigned long *pulSize)

Parameters:
pucData is the location to store the data that is sent to the boot loader.

September 29, 2008 383

Boot Loader

pulSize is the number of bytes returned in the pucData buffer that was provided.

Description:
This function receives a packet of data from specified transfer function.

This function is contained in bl_packet.c.

Returns:
Returns zero to indicate success while any non-zero value indicates a failure.

29.2.2.14 SendPacket

Sends a data packet.

Prototype:
int
SendPacket(unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is the location of the data to be sent.
ulSize is the number of bytes to send.

Description:
This function sends the data provided in the pucData parameter in the packet format used by
the boot loader. The caller only needs to specify the buffer with the data that needs to be
transferred. This function addresses all other packet formatting issues.

This function is contained in bl_packet.c.

Returns:
Returns zero to indicate success while any non-zero value indicates a failure.

29.2.2.15 SSIFlush

Waits until all data has been transmitted by the SSI port.

Prototype:
void
SSIFlush(void)

Description:
This function waits until all data written to the SSI port has been read by the master.

This function is contained in bl_ssi.c.

Returns:
None.

384 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

29.2.2.16 SSIReceive

Receives data from the SSI port in slave mode.

Prototype:
void
SSIReceive(unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is the location to store the data received from the SSI port.
ulSize is the number of bytes of data to receive.

Description:
This function receives data from the SSI port in slave mode. The function will not return until
ulSize number of bytes have been received.

This function is contained in bl_ssi.c.

Returns:
None.

29.2.2.17 SSISend

Sends data via the SSI port in slave mode.

Prototype:
void
SSISend(const unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is the location of the data to send through the SSI port.
ulSize is the number of bytes of data to send.

Description:
This function sends data through the SSI port in slave mode. This function will not return until
all bytes are sent.

This function is contained in bl_ssi.c.

Returns:
None.

29.2.2.18 SysTickIntHandler

Handles the SysTick interrupt.

Prototype:
void
SysTickIntHandler(void)

September 29, 2008 385

Boot Loader

Description:
This function is called when the SysTick interrupt occurs. It simply keeps a running count of
interrupts, used as a time basis for the BOOTP and TFTP protocols.

This function is contained in bl_enet.c.

Returns:
None.

29.2.2.19 UARTAutoBaud

Performs auto-baud on the UART port.

Prototype:
int
UARTAutoBaud(unsigned long *pulRatio)

Parameters:
pulRatio is the ratio of the processor’s crystal frequency to the baud rate being used by the

UART port for communications.

Description:
This function attempts to synchronize to the updater program that is trying to communicate with
the boot loader. The UART port is monitored for edges using interrupts. Once enough edges
are detected, the boot loader determines the ratio of baud rate and crystal frequency needed
to program the UART.

This function is contained in bl_autobaud.c.

Returns:
Returns a value of 0 to indicate that this call successfully synchronized with the other device
communicating over the UART, and a negative value to indicate that this function did not suc-
cessfully synchronize with the other UART device.

29.2.2.20 UARTFlush

Waits until all data has been transmitted by the UART port.

Prototype:
void
UARTFlush(void)

Description:
This function waits until all data written to the UART port has been transmitted.

This function is contained in bl_uart.c.

Returns:
None.

386 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

29.2.2.21 UARTReceive

Receives data over the UART port.

Prototype:
void
UARTReceive(unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is the buffer to read data into from the UART port.
ulSize is the number of bytes provided in the pucData buffer that should be written with data

from the UART port.

Description:
This function reads back ulSize bytes of data from the UART port, into the buffer that is pointed
to by pucData. This function will not return until ulSize number of bytes have been received.

This function is contained in bl_uart.c.

Returns:
None.

29.2.2.22 UARTSend

Sends data over the UART port.

Prototype:
void
UARTSend(const unsigned char *pucData,

unsigned long ulSize)

Parameters:
pucData is the buffer containing the data to write out to the UART port.
ulSize is the number of bytes provided in pucData buffer that will be written out to the UART

port.

Description:
This function sends ulSize bytes of data from the buffer pointed to by pucData via the UART
port.

This function is contained in bl_uart.c.

Returns:
None.

29.2.2.23 UpdateBOOTP

Starts the update process via BOOTP.

September 29, 2008 387

Boot Loader

Prototype:
void
UpdateBOOTP(void)

Description:
This function starts the Ethernet firmware update process. The BOOTP (as defined by
RFC951 at http://tools.ietf.org/html/rfc951) and TFTP (as defined by RFC1350
at http://tools.ietf.org/html/rfc1350) protocols are used to transfer the firmware
image over Ethernet.

This function is contained in bl_enet.c.

Returns:
Never returns.

29.2.2.24 Updater

This function performs the update on the selected port.

Prototype:
void
Updater(void)

Description:
This function is called directly by the boot loader or it is called as a result of an update request
from the application.

This function is contained in bl_main.c.

Returns:
Never returns.

388 September 29, 2008

http://tools.ietf.org/html/rfc951
http://tools.ietf.org/html/rfc1350

Stellaris Peripheral Driver Library User’s Guide

30 Tool Chain Specifics
Introduction .389
Compilers . 389
Debuggers .397

30.1 Introduction

There are two aspects to the library’s interaction with the supported tool chains; how it is built by the
compilers and how it interacts with the debuggers. By separating it in this way, it is possible to use
one tool chain to build the code and use the debugger from another tool chain to debug the code.
Alternatively, the mechanism for interaction with the debugger can be replaced with something that
uses one of the UARTs, eliminating (for the most part) the need for a debugger (other than for
debugging).

Each of these aspects are discussed individually.

30.2 Compilers

There are four things that need special treatment between the various tool chains:

How the compiler is invoked

Compiler specific constructs

Assembler specific constructs

How code is linked

This discussion only applies to building from the command line; building with a project file utilizes
the normal mechanisms for the GUI in question.

30.2.1 Invoking The Compiler

The makedefs file contains a set of rules for compiling C source files, compiling assembly source
files, creating object libraries, and linking applications. These rules utilize the traditional variables
for invoking the tools, such as CC, CFLAGS, and so on. These variables are given default values
based on the tool chain being used; it is recommended that the variables that contain executable
names be left alone and those that contain flags (such as CFLAGS) only be augmented.

All the rules place the targets into a tool chain-specific directory. For example, building a C source
file with RealView Microcontroller Development Kit places the object file in the rvmdk directory;
the linked application and/or object library would also go into the same directory. By doing this,
the objects from multiple tool chains can exist simultaneously in the source tree without becoming
intermingled.

Automatically generated dependencies are utilized by the rules as well. Most modern compilers
support a -MD or similar option that causes it to write out a dependency file when compiling. In
this manner, the dependencies are automatically generated when the file is first compiled, and

September 29, 2008 389

Tool Chain Specifics

are regenerated whenever the file is recompiled (which would result if any of the dependencies
changed, which might result in new dependencies). The dependencies are therefore always up to
date. Dependency files are placed into the tool chain directory like the object files, and have a .d
file name extension.

The Makefile rules have a set of special variables that control the how the applications is built.
These take into account the tools being used to build the application as well as the target applica-
tions name so that a Makefile can build more than one application and have the same makefile. The
link rules also have a set of variables that allow the linker to be uniquely configured for each appli-
cation. In all of them are the base name of the application; for example, if the target is foobar.axf
then the special variables would be ..._foobar. The variables are:

PART This is the Stellaris microcontroller for which the application is be-
ing built.

ROOT This specifies the relative location of the base directory of the Stel-
laris Peripheral Driver Library installation. This is used to inform
the build process where the rest of the peripheral driver library
build tools are located.

VPATH This variable allows the build process a search path to find source
files that do not exist in this directory.

IPATH This variable allows the build process a search path to find header
files that do not exist in this directory.

ENTRY_target This is the entry point for the application. Typically this is
ResetISR.

ROBASE_target This is the address to use for the base address of the read only
area of the application. If this is undefined, then the value defaults
to 0x0000.0000. If it is specified, this is the location of the first
byte of the application. This is useful for moving the starting ad-
dress of an application to an address other than the beginning of
flash or to move the address to SRAM for applications that need
to be linked to run from SRAM. This value is only used by the
Keil tools as other tool chains support linker scripts that can pro-
vide this functionality. When this value is specified in the Makefile,
SCATTERtools_target should not be specified as this results
in conflicting linker commands and causes the build to fail.

LDFLAGStools_target This contains tool chain specific linker flags that are also specific to
the application. The tools portion is replaced with the tool chain
to which the flags apply; so, for example, to supply additional linker
flags to the RealView linker, use LDFLAGSrvmdk_target.

SCATTERtools_target This is the name of the tool chain specific linker
script used to link the application. Typically this is
../../../${COMPILER}/standalone.ld.

CFLAGStools This specifies any tool chain specific compiler options that need to
be specified to compile the project.

390 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

With these rules, makefiles become a simple list of the targets to be built (either applications,
libraries, or both), the object files that comprise the target, and a set of target-specific variables in
the case of applications.

For the peripheral driver library itself (contained in the src directory), some special flags are passed
to the compiler to place each global symbol (be it a variable or a function) into its own separate
section. This makes it is possible to minimize the impact of using a driver; for example, using
the UART in an output only mode with only the UARTConfigSetExpClk() and UARTCharPut() APIs
being used, all the APIs for reading data, getting the configuration, and so on, do not get linked into
the application (as they would if all of the globals were built into a single section).

30.2.2 Understanding Linker Scripts

This section covers the default linker scripts that are provided as part of the peripheral driver library
release. This will cover the basics of the various settings in each of the linker scripts for all of the
tool chains supported by peripheral driver library in order to help better understand how to use the
linker scripts that are provided. It should be noted that the evaluation version of the Keil tools do not
allow the use of linker scripts. Because of this none of the Keil builds use a linker script. Instead the
build process generates the appropriate linker command line options to modify the address map of
the application.

30.2.2.1 CodeSourcery GCC

The default linker script for this tool chain is located in the file gcc/standalone.ld. This file is
broken down into two sections, the first section describes the memory available on the device and
the second describes where to place the code and data for the application.

Note:
When using the CodeSourcery Sourcery G++ tool chain you also have the option of using
CodeSourcery’s method for installing interrupt handlers and specifying linker scripts. The “Get-
ting Started” documentation provided with the CodeSourcery release describes how to use
their tools to install interrupt handlers as well as how to use the linker scripts that are provide
with their tools.

The rest of this section will cover the linker scripts provided by the peripheral driver library release.

MEMORY
{

FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x00010000
SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x00002000

}

SECTIONS
{

.text :
{

_text = .;
KEEP(*(.isr_vector))

(.text)

(.rodata)
_etext = .;

September 29, 2008 391

Tool Chain Specifics

} > FLASH
.data : AT (ADDR(.text) + SIZEOF(.text))
{

_data = .;

*(vtable)

(.data)
_edata = .;

} > SRAM
.bss :
{

_bss = .;

(.bss)

*(COMMON)
_ebss = .;

} > SRAM}

The MEMORY section describes the amount of flash and SRAM available to the project. Each lines
has an ORIGIN and a LENGTH value that set the amount of flash or SRAM available. In this case
the flash is set to start at address 0x0000.0000 and have 64K bytes available. The SRAM is set to
start at address 0x2000.0000 and have 8K bytes available.

The next part of the file, labeled SECTION, describes in detail where the code and data will be
placed for the application. The default linker script has sections that are put in very specific places
in order for the application to function correctly.

KEEP(∗(.isr_vector)) - This statement places the read only interrupt vectors at the beginning of
this section, which in this case is the beginning of flash due to the FLASH at the end of this section
definition. This section should be at the beginning of flash in order for the application to boot
correctly from the flash. The beginning of the default startup file for gcc, provided by the peripheral
driver library, has the following code snippet to place the fixed interrupt handlers in the appropriate
section.

__attribute__ ((section(".isr_vector")))
void (* const g_pfnVectors[])(void) =
{

...
}

∗(.text∗) - Since .text is the default label applied to all “C” code, this statement places this read only
code into the section following the interrupt vectors.

∗(.rodata∗) - This section holds any constant read only data or the values for any initialized vari-
ables in the code. This section will normally immediately follow the .text read only code. This is
important as any initialized values must be copied from flash to SRAM by the startup code.

_text = .; _etext = .; - These labels are inserted to allow application code to determine the size and
the location of the read only area. These are accessible as global the following global variables:

extern unsigned long _text;
extern unsigned long _etext;

∗(vtable) - If an application uses the IntRegister() or IntUnregister() APIs, this entry places
the vector table at the beginning of SRAM so that it can be modified by the APIs. This
vtable label is attached to the code, or in this case data, by the following sequence in the file
DriverLib/src/interrupt.c:

static __attribute__((section("vtable")))
void (*g_pfnRAMVectors[NUM_INTERRUPTS])(void);

392 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

∗(.data∗) - This section places all of the initialized read/write data after the SRAM based vector
table. The AT (ADDR(.text) + SIZEOF(.text)) actually modifies the load address to be at
the end of the code section. This is where the actual initialization values for the variables are
located. The actual run time address of the variables is located in SRAM. This allows the start up
code to copy the initial data values from flash into the proper place in SRAM before executing the
main application.

_data = .; _edata = .; - These labels are inserted to allow application code to determine the size
and location of the initialized read/write data area. These values are accessible via the following
global variables:

extern unsigned long _data;
extern unsigned long _edata;

∗(.bss∗) - This section contain all of the uninitialized data for the project. This usually includes the
stack and other variables that are not set to any value by default.

_bss = .; _ebss = .; - These labels are inserted to allow application code to determine the size
and location of the uninitialized read/write data area. These values are accessible via the following
global variables:

extern unsigned long _bss;
extern unsigned long _ebss;

∗(COMMON) - Under some circumstances, gcc will place some global variables in this section.
This requires that this section should be included to insure that these variables are correctly located
in SRAM.

30.2.2.2 Keil RV-MDK

The default linker script file is located in the rvmdk/standalone.sct. This file cannot be used
with the evaluation version of the tool chain. Like the previous file format, this file is broken down
into each value in the following example:

LR_IROM 0x00000000 0x00010000
{

;
; Specify the Execution Address of the code and the size.
;
ER_IROM 0x00000000 0x00010000
{

*.o (RESET, +First)

* (+RO)
}

;
; Specify the Execution Address of the data area.
;
RW_IRAM 0x20000000 0x00002000
{

* (+RW)

* (+ZI)
}

}

∗.o (RESET, +First) - This use of RESET allows the fixed vectors to be located at the beginning of
flash. The code example below is taken from the default rvmdk/Startup.s that is used by the
example code provided with the peripheral driver library.

September 29, 2008 393

Tool Chain Specifics

AREA RESET, CODE, READONLY
THUMB

Vectors
DCD StackMem + Stack ; Top of Stack
DCD Reset_Handler ; Reset Handler

...

∗ (+RO) - This section places all of the code and read only data at the beginning of flash. This
section will also hold any constant read only data or the initial values for any variables in the code
that have an initial value and it will immediately follow the RESET code section. This section must
be located in flash since any initialized values must be copied from flash to SRAM by the startup
code.

∗ (+RW) - This section places all the initialized read/write data after the modifiable vector table.
The Keil “C” start up code takes care of copying the constant initializers from flash to this location
in SRAM.

∗ (+ZI) - This section contain all of the uninitialized data for the project. This usually includes the
stack and other variables that are not set to any value by default.

30.2.2.3 IAR EW-ARM

This default linker script file is located in the file ewarm/standalone.xcl. Unlike the other tool
chains this linker script is written so that it is passed as command line options to the linker and
not in a more formal linker script format. However each section label that is used by the peripheral
driver library and the example code is covered in this section.

//
// Set the CPU type to ARM.
//
-carm

//
// Define the size of flash and SRAM.
//
-DROMSTART=00000000
-DROMEND=0000FFFF
-DRAMSTART=20000000
-DRAMEND=20001FFF

//
// Define the sections to place into flash, and the order to place them.
//
-Z(CODE)INTVEC=ROMSTART-ROMEND
-Z(CODE)ICODE,DIFUNCT=ROMSTART-ROMEND
-Z(CODE)CODE=ROMSTART-ROMEND
-Z(CONST)CODE_ID=ROMSTART-ROMEND
-Z(CONST)INITTAB,DATA_ID,DATA_C=ROMSTART-ROMEND
-Z(CONST)CHECKSUM=ROMSTART-ROMEND

INTVEC - This section holds the vector table for the application and should be located at the
beginning of FLASH. The code example below shows how the default start up file, provided by the
peripheral driver library, marks the vector table as belonging to this section.

__root const uVectorEntry g_pfnVectors[] @ "INTVEC" =
{

{ .ulPtr = (unsigned long)pulStack + sizeof(pulStack) },
// The initial stack pointer

394 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

ResetISR, // The reset handler
...

ICODE - This section holds the start up code or any of the handlers for the exceptions.

CODE - This section holds the remainder of the application code that will be used, minus any code
that is has been marked to be run directly from SRAM.

CODE_ID - This section holds any code that was designated to be run directly from SRAM. These
sections are marked by using the __ramfunc in “C” code. This type of section is not used by the
peripheral driver library or any examples provided with the peripheral driver library.

INITTAB,DATA_ID,DATA_C - These sections holds constant or global data that has been copied
from flash.

CHECKSUM - This section is not used by the peripheral driver library or any of the provided
examples.

30.2.2.4 Default Memory Map

The following is the default memory map of a peripheral driver library application, regardless of the
tool chain being used.

0x0000.0000
Code

Read Only Data

Read/Write Data
Initializers

Unused
end of flash

0x2000.0000
Read/Write Data

Zero Init Data

Unused
end of SRAM

30.2.3 Compiler Constructs

Occasionally there is a need to use compiler-specific constructs in C source files. When that need
arises, two options are available:

September 29, 2008 395

Tool Chain Specifics

Provide separate versions of the source file for each tool chain. This has been done with
the boot code; it is basically identical from tool chain to tool chain, the exception being the
construct used to tag the vector table for placement at the beginning of flash and the names
of the symbols created by the linker as it creates the “code”, “data”, and “bss” segments.

Use #ifdef/#endif around the constructs specific to each tool chain.

When providing separate files, the pathname of the file should contain the value of ${COMPILER}
somewhere in it; either as a directory name or as part of the file name. This way, a dependency in
the Makefile can utilize the value of the ${COMPILER} to cause the correct version of the file to be
used. In the examples provided, this can be seen in the boot code; separate versions are provided
for each tool chain supported. The correct version of the boot code is found via the ${COMPILER}
in the Makefile for the boot code file name.

When using #ifdef/#endif, the value of ${COMPILER} again comes into play. Each source file
is built with a -D${COMPILER} passed to the compiler, so the value of the ${COMPILER} variable
can be used in a #ifdef to include compiler specific code. This is not the preferred method since
it is very error prone; if it is used to include a small piece of code within a function (for example), it
would be too easy to forget about that when porting to a different tool chain which would result in
that small piece of code not appearing in the object produced by new tool chain. In the first method,
the file simply would not exist and a build error would occur.

30.2.4 Assembler Constructs

The macros in asmdefs.h hide the differences in syntax and directives between the assemblers of
different tool chains. By utilizing these macros, the assembly files are free of #ifdef toolchain
constructs, making them easier to understand and maintain. The following macros are provided for
use in writing assembler independent source files:

__ALIGN__ This is used to place the next item on a four-byte alignment boundary in
memory.

__BSS__ This is used to indicate that the items that follow should be placed into
the “bss” segment of the executable. These items have storage space
reserved but will not have initializers supplied in the executable, instead
depending upon the boot code to zero fill the storage.

__DATA__ This is used to indicate that the items that follow should be placed into the
“data” segment of the executable. These items have storage space re-
served in SRAM, the initializers placed in flash, and the initializers copied
from SRAM to flash by the boot code.

__END__ This indicates that the end of the assembly source file has been reached.

__EXPORT__ This indicates that a label should be made available to object files outside
the current source file.

__IMPORT__ This indicates that a label from another object file is to be referenced
from this source file.

396 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

__LABEL__ This provides a symbolic name for the current location. A label can
be used as a branch target or to load/store data. Note that labels
are not accessible outside the current source file unless exported with
__EXPORT__.

__STR__ This is used to declare a string of data (that is, a zero terminated se-
quence of bytes).

__TEXT__ This is used to indicate that the items that follow should be placed into
the “text” segment of the executable. This must be used before all code
so that it are located correctly.

__THUMB_LABEL__ This indicates that the next label (which must immediately follow) is a
Thumb label. All labels must be marked as Thumb labels or they will not
work properly as a branch target.

__WORD__ This is used to declare a word (32-bits) of data.

asmdefs.h must included before anything else in the assembly language source file since it in-
cludes some common setup pseudo-ops that are required to put the assembler into the correct
mode; failure to do so may cause the assembler to behave incorrectly.

30.2.5 Linking Applications

When linking applications, each global entity needs to be placed into the appropriate portion of
memory in order for the application to work correctly. Some things must be placed at specific
locations (such as the default vector table, which must reside at 0x0000.0000). Other things must
be placed into the correct portion of memory (all code needs to be placed in flash and all read/write
data in SRAM).

A linker script is used to perform this task. Linker scripts are not portable between
tool chains, so separate versions are supplied for each tool chain; they are in the
<toolchain>/standalone.ld files (standalone.xcl in the case of IAR Embedded Work-
bench). These linker scripts are fairly simple; they place all the code in flash (the “code” segment),
all the read/writes in SRAM (the “data” and “bss” segments), the “data” segment initializers in flash
at the end of the “code” segment, the read-only vector table at the beginning of flash, and the
read/write vector table from the interrupt driver (if it is used) at the beginning of SRAM. The boot
code in <toolchain>/startup.c depends upon this layout of the memory; if the memory layout
is changed then both file may need changes (or replacement).

30.3 Debuggers

Debuggers typically have a method for code running on the target to interact with the debugger: to
read/write host files, print messages on the debugger console, and so on. These mechanisms have
been abstracted into a set of functions that can be called by an application without regard to the
debugger that they are using. These functions are discussed in chapter 27; they are the Diag...
functions.

The debugger interface code resides in a file called utils/${DEBUGGER}.S (or .c if implemented

September 29, 2008 397

Tool Chain Specifics

in C). The rules in the makefile specify a dependency on ${DEBUGGER}.o; therefore, by changing
the value of ${DEBUGGER}, the debugger interface code is changed. This is what allows the
compiler from one tool chain and the debugger from another to be used together (assuming of
course that they support the same executable file format); ${COMPILER} specifies the tools used
to build the code and ${DEBUGGER} specifies the debugger interface to use.

Several interesting things can be done with this interface:

A serial version could be created, where files are not supported but stdio is supported. All
stdio operations would go to a UART.

A serial memory version could be created. The application could then be developed using host
files via the debugger (where the file contents are much easier to examine) and then switched
to use a serial memory version when appropriate.

A stub version could be created where each function is a NOP. This would eliminate all debug-
ger interaction from the application.

A debug version could be created, where it normally acts as a NOP but if turned on via a
special flag would start outputting stdio to a defined place (such as an unused UART). This
would allow tracing capabilities to be left in production code; it would normally do nothing
(giving customers no clues as to what it is doing/how it is doing things) but could be enabled
by field support personnel to help determine why failures are occurring.

398 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

31 DK-LM3S101 Example Applications
Introduction .399
API Functions . 399
Examples .407

31.1 Introduction

The DK-LM3S101 example applications show how to utilize features of the Cortex-M3 micropro-
cessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the peripheral
driver library. These applications are intended for demonstration and as a starting point for new
applications.

There is a board specific driver for the Peripheral Device Controller on the Stellaris Family Devel-
opment Kit board. The PDC is used to access the character LCD, eight user LEDs, eight user DIP
switches, and twenty-four GPIOs.

There is an IAR workspace file (dk-lm3s101.eww) that contains the peripheral driver library
project, along with all of the board example projects, in a single, easy to use workspace for use
with Embedded Workbench version 5.

There is also an equivalent IAR workspace file (dk-lm3s101-ewarm4.eww) for use with Embed-
ded Workbench version 4.42a.

There is a Keil multi-project workspace file (dk-lm3s101.mpw) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

All of these examples reside in the boards/dk-lm3s101 subdirectory of the peripheral driver
library source distribution.

31.2 API Functions

Functions
unsigned char PDCDIPRead (void)
unsigned char PDCGPIODirRead (unsigned char ucIdx)
void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)
unsigned char PDCGPIORead (unsigned char ucIdx)
void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)
void PDCInit (void)
void PDCLCDBacklightOff (void)
void PDCLCDBacklightOn (void)
void PDCLCDClear (void)
void PDCLCDCreateChar (unsigned char ucChar, unsigned char ∗pucData)
void PDCLCDInit (void)
void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)
void PDCLCDWrite (const char ∗pcStr, unsigned long ulCount)

September 29, 2008 399

DK-LM3S101 Example Applications

unsigned char PDCLEDRead (void)
void PDCLEDWrite (unsigned char ucLED)
unsigned char PDCRead (unsigned char ucAddr)
void PDCWrite (unsigned char ucAddr, unsigned char ucData)

31.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

31.2.2 Function Documentation

31.2.2.1 PDCDIPRead

Read the current value of the PDC DIP switches.

Prototype:
unsigned char
PDCDIPRead(void)

Description:
This function will read the current value of the DIP switches attached to the PDC on the Stellaris
development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The current state of the DIP switches.

31.2.2.2 PDCGPIODirRead

Reads a GPIO direction register.

Prototype:
unsigned char
PDCGPIODirRead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO direction registers in the PDC. The direction bit is set for
pins that are outputs and clear for pins that are inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the direction register.

400 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

31.2.2.3 PDCGPIODirWrite

Write a GPIO direction register.

Prototype:
void
PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

Parameters:
ucIdx is the index of the GPIO direction register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO direction register.

Description:
This function writes ones of the GPIO direction registers in the PDC. The direction bit should
be set for pins that are to be outputs and clear for pins that are to be inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

31.2.2.4 PDCGPIORead

Reads a GPIO data register.

Prototype:
unsigned char
PDCGPIORead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO data registers in the PDC. The value returned for a pin is
the value being driven out for outputs or the value being read for inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the data register.

31.2.2.5 PDCGPIOWrite

Write a GPIO data register.

Prototype:
void
PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

September 29, 2008 401

DK-LM3S101 Example Applications

Parameters:
ucIdx is the index of the GPIO data register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO data register.

Description:
This function writes one of the GPIO direction registers in the PDC. The written to a pin is
driven out for output pins and ignored for input pins.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

31.2.2.6 PDCInit

Initializes the connection to the PDC.

Prototype:
void
PDCInit(void)

Description:
This function will enable clocking to the SSI and GPIO A modules, configure the GPIO pins to
be used for an SSI interface, and it will configure the SSI as a 1 Mbps master device, operating
in MOTO mode. It will also enable the SSI module, and will enable the chip select for the PDC
on the Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

31.2.2.7 PDCLCDBacklightOff

Turn off the backlight.

Prototype:
void
PDCLCDBacklightOff(void)

Description:
This function turns off the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

402 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

31.2.2.8 PDCLCDBacklightOn

Turns on the backlight.

Prototype:
void
PDCLCDBacklightOn(void)

Description:
This function turns on the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

31.2.2.9 PDCLCDClear

Clear the screen.

Prototype:
void
PDCLCDClear(void)

Description:
This function clears the contents of the LCD screen. The cursor will be returned to the upper
left corner.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

31.2.2.10 PDCLCDCreateChar

Write a character pattern to the LCD.

Prototype:
void
PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

Parameters:
ucChar is the character index to create. Valid values are zero through seven.
pucData is the data for the character pattern. It contains eight bytes, with the first byte being

the top row of the pattern. In each byte, the LSB is the right pixel of the pattern.

Description:
This function will write a character pattern into the LCD for use as a character to be displayed.
After writing the pattern, it can be used on the LCD by writing the corresponding character
index to the display.

September 29, 2008 403

DK-LM3S101 Example Applications

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

31.2.2.11 PDCLCDInit

Initializes the LCD display.

Prototype:
void
PDCLCDInit(void)

Description:
This function will set up the LCD display for writing. It will set the data bus to 8 bits, set the
number of lines to 2, and the font size to 5x10. It will also turn the display off, clear the display,
turn the display back on, and enable the backlight.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Note:
The PDC must be initialized via the PDCInit() function before this function can be called. Also,
it may be necessary to adjust the contrast potentiometer in order to discern any output on the
LCD display.

Returns:
None.

31.2.2.12 PDCLCDSetPos

Set the position of the cursor.

Prototype:
void
PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

Parameters:
ucX is the horizontal position. Valid values are zero through fifteen.
ucY is the vertical position.. Valid values are zero and one.

Description:
This function will move the cursor to the specified position. All characters written to the LCD
are placed at the current cursor position, which is automatically advanced.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

404 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

31.2.2.13 PDCLCDWrite

Writes a string to the LCD display.

Prototype:
void
PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

Parameters:
pcStr pointer to the string to be displayed.
ulCount is the number of characters to be displayed.

Description:
This function will display a string on the LCD at the current cursor position. It is the caller’s
responsibility to position the cursor to the place where the string should be displayed (either
explicitly via PDCLCDSetPos() or implicitly from where the cursor was left after a previous
call to PDCLCDWrite()), and to properly account for the LCD boundary (line wrapping is not
automatically performed). Null characters are not treated special and are written to the LCD,
which interprets it as a special programmable character glyph (see PDCLCDCreateChar()).

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

31.2.2.14 PDCLEDRead

Read the current status of the PDC LEDs.

Prototype:
unsigned char
PDCLEDRead(void)

Description:
This function will read the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The value currently displayed by the LEDs.

31.2.2.15 PDCLEDWrite

Write to the PDC LEDs.

Prototype:
void
PDCLEDWrite(unsigned char ucLED)

September 29, 2008 405

DK-LM3S101 Example Applications

Parameters:
ucLED value to write to the LEDs.

Description:
This function set the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

31.2.2.16 PDCRead

Read a PDC register.

Prototype:
unsigned char
PDCRead(unsigned char ucAddr)

Parameters:
ucAddr specifies the PDC register to read.

Description:
This function will perform the SSI transfers required to read a register in the PDC on the Stel-
laris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
Returns the value read from the PDC.

31.2.2.17 PDCWrite

Write a PDC register.

Prototype:
void
PDCWrite(unsigned char ucAddr,

unsigned char ucData)

Parameters:
ucAddr specifies the PDC register to write.
ucData specifies the data to write.

Description:
This function will perform the SSI transfers required to write a register in the PDC on the
Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

406 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

31.3 Examples

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

September 29, 2008 407

DK-LM3S101 Example Applications

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

Comparator (comparator)

This example application demonstrates the operation of the analog comparator(s). Comparator
zero (which is present on all devices that have analog comparators) is configured to compare its
negative input to an internally generated 1.65 V reference and toggle the state of the LED on port
B0 based on comparator change interrupts. The LED will be turned on by the interrupt handler
when a rising edge on the comparator output is detected, and will be turned off when a falling edge
is detected.

In order for this example to work properly, the ULED0 (JP22) jumper must be installed on the board.

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the user push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO. Note that because of errata in Rev Bx and Rev C0 of
Sandstorm-class Stellaris microcontrollers, JTAG and SWD will not function if PB7 is configured as
a GPIO. This errata is fixed in Rev C2 of Sandstorm-class Stellaris microcontrollers.

GPIO (gpio_led)

This example application uses LEDs connected to GPIO pins to create a “roving eye” display. Port
B0-B3 are driven in a sequential manner to give the illusion of an eye looking back and forth.

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), ULED2 (JP24),
and ULED3 (JP25) jumpers must be installed on the board, and the PB1 (JP1) jumper on the
daughtercard must be set to pins 2 & 3.

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the LCD and is a starting
point for more complicated applications.

408 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, preemp-
tion will occur; in the other two cases tail-chaining will occur. The currently pending interrupts and
the currently executing interrupt will be displayed on the LCD; individual LEDs connected to port
B0-B2 will be turned on upon interrupt handler entry and off before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), and ULED2 (JP24)
jumpers must be installed on the board, and the PB1 (JP1) jumper on the daughtercard must be
set to pins 2 & 3.

DK-LM3S101 Quickstart Application (qs_dk-lm3s101)

This example uses the photocell on the development board to create a geiger counter for visible
light. In bright light, the click rate (that is, the count) increases; in low light it decreases. The light
reading is also displayed on the LCD, and a log of the readings is output on the UART at 115,200,
8-n-1. The push button can be used to turn off the clicking noise on and off; when off the LCD and
UART still provide the light reading.

In the default jumper configuration of the development board, this example actually samples the
potentiometer and the push button will not work. In order for this example to fully work, the following
jumper wire connections must be made: JP3 pin 1 to JP5 pin 2 (requiring the removal of the jumper
on JP5) and JP19 pin 2 to J6 pin 6.

SSI (ssi_atmel)

This example application uses the SSI master to communicate with the Atmel AT25F1024A EEP-
ROM that is on the development board. The first 256 bytes of the EEPROM are erased and then
programmed with an incrementing sequence. The data is then read back to verify its correctness.
The transfer is managed by an interrupt handler in response to the SSI interrupt; since a 256-byte
read at a 1 MHz SSI bus speed takes around 2 ms, this allows a lot of other processing to occur
during the transfer (though that time is not utilized by this example).

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own GPIO (port B0 and B1) on each interrupt; the attached LED will
indicate the occurrence and rate of interrupts.

September 29, 2008 409

DK-LM3S101 Example Applications

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (the SER0 connector on the
Stellaris Family Development Board) will be configured in 115,200 baud, 8-n-1 mode. All characters
received on the UART are transmitted back to the UART.

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED connected to port B0 is inverted so that it is easy to see that it is being fed, which
occurs once every second.

410 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

32 DK-LM3S102 Example Applications
Introduction .411
API Functions . 411
Examples .419

32.1 Introduction

The DK-LM3S102 example applications show how to utilize features of the Cortex-M3 micropro-
cessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the peripheral
driver library. These applications are intended for demonstration and as a starting point for new
applications.

There is a board specific driver for the Peripheral Device Controller on the Stellaris Family Devel-
opment Kit board. The PDC is used to access the character LCD, eight user LEDs, eight user DIP
switches, and twenty-four GPIOs.

There is an IAR workspace file (dk-lm3s102.eww) that contains the peripheral driver library
project, along with all of the board example projects, in a single, easy to use workspace for use
with Embedded Workbench version 5.

There is also an equivalent IAR workspace file (dk-lm3s102-ewarm4.eww) for use with Embed-
ded Workbench version 4.42a.

There is a Keil multi-project workspace file (dk-lm3s102.mpw) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

All of these examples reside in the boards/dk-lm3s102 subdirectory of the peripheral driver
library source distribution.

32.2 API Functions

Functions
unsigned char PDCDIPRead (void)
unsigned char PDCGPIODirRead (unsigned char ucIdx)
void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)
unsigned char PDCGPIORead (unsigned char ucIdx)
void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)
void PDCInit (void)
void PDCLCDBacklightOff (void)
void PDCLCDBacklightOn (void)
void PDCLCDClear (void)
void PDCLCDCreateChar (unsigned char ucChar, unsigned char ∗pucData)
void PDCLCDInit (void)
void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)
void PDCLCDWrite (const char ∗pcStr, unsigned long ulCount)

September 29, 2008 411

DK-LM3S102 Example Applications

unsigned char PDCLEDRead (void)
void PDCLEDWrite (unsigned char ucLED)
unsigned char PDCRead (unsigned char ucAddr)
void PDCWrite (unsigned char ucAddr, unsigned char ucData)

32.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

32.2.2 Function Documentation

32.2.2.1 PDCDIPRead

Read the current value of the PDC DIP switches.

Prototype:
unsigned char
PDCDIPRead(void)

Description:
This function will read the current value of the DIP switches attached to the PDC on the Stellaris
development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The current state of the DIP switches.

32.2.2.2 PDCGPIODirRead

Reads a GPIO direction register.

Prototype:
unsigned char
PDCGPIODirRead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO direction registers in the PDC. The direction bit is set for
pins that are outputs and clear for pins that are inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the direction register.

412 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

32.2.2.3 PDCGPIODirWrite

Write a GPIO direction register.

Prototype:
void
PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

Parameters:
ucIdx is the index of the GPIO direction register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO direction register.

Description:
This function writes ones of the GPIO direction registers in the PDC. The direction bit should
be set for pins that are to be outputs and clear for pins that are to be inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

32.2.2.4 PDCGPIORead

Reads a GPIO data register.

Prototype:
unsigned char
PDCGPIORead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO data registers in the PDC. The value returned for a pin is
the value being driven out for outputs or the value being read for inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the data register.

32.2.2.5 PDCGPIOWrite

Write a GPIO data register.

Prototype:
void
PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

September 29, 2008 413

DK-LM3S102 Example Applications

Parameters:
ucIdx is the index of the GPIO data register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO data register.

Description:
This function writes one of the GPIO direction registers in the PDC. The written to a pin is
driven out for output pins and ignored for input pins.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

32.2.2.6 PDCInit

Initializes the connection to the PDC.

Prototype:
void
PDCInit(void)

Description:
This function will enable clocking to the SSI and GPIO A modules, configure the GPIO pins to
be used for an SSI interface, and it will configure the SSI as a 1 Mbps master device, operating
in MOTO mode. It will also enable the SSI module, and will enable the chip select for the PDC
on the Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

32.2.2.7 PDCLCDBacklightOff

Turn off the backlight.

Prototype:
void
PDCLCDBacklightOff(void)

Description:
This function turns off the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

414 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

32.2.2.8 PDCLCDBacklightOn

Turns on the backlight.

Prototype:
void
PDCLCDBacklightOn(void)

Description:
This function turns on the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

32.2.2.9 PDCLCDClear

Clear the screen.

Prototype:
void
PDCLCDClear(void)

Description:
This function clears the contents of the LCD screen. The cursor will be returned to the upper
left corner.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

32.2.2.10 PDCLCDCreateChar

Write a character pattern to the LCD.

Prototype:
void
PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

Parameters:
ucChar is the character index to create. Valid values are zero through seven.
pucData is the data for the character pattern. It contains eight bytes, with the first byte being

the top row of the pattern. In each byte, the LSB is the right pixel of the pattern.

Description:
This function will write a character pattern into the LCD for use as a character to be displayed.
After writing the pattern, it can be used on the LCD by writing the corresponding character
index to the display.

September 29, 2008 415

DK-LM3S102 Example Applications

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

32.2.2.11 PDCLCDInit

Initializes the LCD display.

Prototype:
void
PDCLCDInit(void)

Description:
This function will set up the LCD display for writing. It will set the data bus to 8 bits, set the
number of lines to 2, and the font size to 5x10. It will also turn the display off, clear the display,
turn the display back on, and enable the backlight.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Note:
The PDC must be initialized via the PDCInit() function before this function can be called. Also,
it may be necessary to adjust the contrast potentiometer in order to discern any output on the
LCD display.

Returns:
None.

32.2.2.12 PDCLCDSetPos

Set the position of the cursor.

Prototype:
void
PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

Parameters:
ucX is the horizontal position. Valid values are zero through fifteen.
ucY is the vertical position.. Valid values are zero and one.

Description:
This function will move the cursor to the specified position. All characters written to the LCD
are placed at the current cursor position, which is automatically advanced.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

416 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

32.2.2.13 PDCLCDWrite

Writes a string to the LCD display.

Prototype:
void
PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

Parameters:
pcStr pointer to the string to be displayed.
ulCount is the number of characters to be displayed.

Description:
This function will display a string on the LCD at the current cursor position. It is the caller’s
responsibility to position the cursor to the place where the string should be displayed (either
explicitly via PDCLCDSetPos() or implicitly from where the cursor was left after a previous
call to PDCLCDWrite()), and to properly account for the LCD boundary (line wrapping is not
automatically performed). Null characters are not treated special and are written to the LCD,
which interprets it as a special programmable character glyph (see PDCLCDCreateChar()).

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

32.2.2.14 PDCLEDRead

Read the current status of the PDC LEDs.

Prototype:
unsigned char
PDCLEDRead(void)

Description:
This function will read the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The value currently displayed by the LEDs.

32.2.2.15 PDCLEDWrite

Write to the PDC LEDs.

Prototype:
void
PDCLEDWrite(unsigned char ucLED)

September 29, 2008 417

DK-LM3S102 Example Applications

Parameters:
ucLED value to write to the LEDs.

Description:
This function set the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

32.2.2.16 PDCRead

Read a PDC register.

Prototype:
unsigned char
PDCRead(unsigned char ucAddr)

Parameters:
ucAddr specifies the PDC register to read.

Description:
This function will perform the SSI transfers required to read a register in the PDC on the Stel-
laris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
Returns the value read from the PDC.

32.2.2.17 PDCWrite

Write a PDC register.

Prototype:
void
PDCWrite(unsigned char ucAddr,

unsigned char ucData)

Parameters:
ucAddr specifies the PDC register to write.
ucData specifies the data to write.

Description:
This function will perform the SSI transfers required to write a register in the PDC on the
Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

418 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

32.3 Examples

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

September 29, 2008 419

DK-LM3S102 Example Applications

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

Comparator (comparator)

This example application demonstrates the operation of the analog comparator(s). Comparator
zero (which is present on all devices that have analog comparators) is configured to compare its
negative input to an internally generated 1.65 V reference and toggle the state of the LED on port
B0 based on comparator change interrupts. The LED will be turned on by the interrupt handler
when a rising edge on the comparator output is detected, and will be turned off when a falling edge
is detected.

In order for this example to work properly, the ULED0 (JP22) jumper must be installed on the board.

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the user push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO. Note that because of errata in Rev Bx and Rev C0 of
Sandstorm-class Stellaris microcontrollers, JTAG and SWD will not function if PB7 is configured as
a GPIO. This errata is fixed in Rev C2 of Sandstorm-class Stellaris microcontrollers.

GPIO (gpio_led)

This example application uses LEDs connected to GPIO pins to create a “roving eye” display. Port
B0-B3 are driven in a sequential manner to give the illusion of an eye looking back and forth.

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), ULED2 (JP24),
and ULED3 (JP25) jumpers must be installed on the board, and the PB1 (JP1) jumper on the
daughtercard must be set to pins 2 & 3.

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the LCD and is a starting
point for more complicated applications.

420 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

I2C (i2c_atmel)

This example application uses the I2C master to communicate with the Atmel AT24C08A EEPROM
that is on the development board. The first sixteen bytes of the EEPROM are erased and then
programmed with an incrementing sequence. The data is then read back to verify its correctness.
The transfer is managed by an interrupt handler in response to the I2C interrupt; since a sixteen-
byte read at a 100 kHz I2C bus speed takes almost 2 ms, this allows a lot of other processing to
occur during the transfer (though that time is not utilized by this example).

In order for this example to work properly, the I2C_SCL (JP14), I2C_SDA (JP13), and I2CM_A2
(JP11) jumpers must be installed on the board, and the I2CM_WP (JP12) jumper must be removed.

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, preemp-
tion will occur; in the other two cases tail-chaining will occur. The currently pending interrupts and
the currently executing interrupt will be displayed on the LCD; individual LEDs connected to port
B0-B2 will be turned on upon interrupt handler entry and off before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), and ULED2 (JP24)
jumpers must be installed on the board, and the PB1 (JP1) jumper on the daughtercard must be
set to pins 2 & 3.

DK-LM3S102 Quickstart Application (qs_dk-lm3s102)

This example uses the photocell on the development board to create a geiger counter for visible
light. In bright light, the click rate (that is, the count) increases; in low light it decreases. The light
reading is also displayed on the LCD, and a log of the readings is output on the UART at 115,200,
8-n-1. The push button can be used to turn off the clicking noise on and off; when off the LCD and
UART still provide the light reading.

In the default jumper configuration of the development board, this example actually samples the
potentiometer and the push button will not work. In order for this example to fully work, the following
jumper wire connections must be made: JP3 pin 1 to JP5 pin 2 (requiring the removal of the jumper
on JP5) and JP19 pin 2 to J6 pin 6.

SSI (ssi_atmel)

This example application uses the SSI master to communicate with the Atmel AT25F1024A EEP-
ROM that is on the development board. The first 256 bytes of the EEPROM are erased and then
programmed with an incrementing sequence. The data is then read back to verify its correctness.
The transfer is managed by an interrupt handler in response to the SSI interrupt; since a 256-byte
read at a 1 MHz SSI bus speed takes around 2 ms, this allows a lot of other processing to occur
during the transfer (though that time is not utilized by this example).

September 29, 2008 421

DK-LM3S102 Example Applications

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own GPIO (port B0 and B1) on each interrupt; the attached LED will
indicate the occurrence and rate of interrupts.

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (the SER0 connector on the
Stellaris Family Development Board) will be configured in 115,200 baud, 8-n-1 mode. All characters
received on the UART are transmitted back to the UART.

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED connected to port B0 is inverted so that it is easy to see that it is being fed, which
occurs once every second.

422 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

33 DK-LM3S301 Example Applications
Introduction .423
API Functions . 423
Examples .431

33.1 Introduction

The DK-LM3S301 example applications show how to utilize features of the Cortex-M3 micropro-
cessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the peripheral
driver library. These applications are intended for demonstration and as a starting point for new
applications.

There is a board specific driver for the Peripheral Device Controller on the Stellaris Family Devel-
opment Kit board. The PDC is used to access the character LCD, eight user LEDs, eight user DIP
switches, and twenty-four GPIOs.

There is an IAR workspace file (dk-lm3s301.eww) that contains the peripheral driver library
project, along with all of the board example projects, in a single, easy to use workspace for use
with Embedded Workbench version 5.

There is also an equivalent IAR workspace file (dk-lm3s301-ewarm4.eww) for use with Embed-
ded Workbench version 4.42a.

There is a Keil multi-project workspace file (dk-lm3s301.mpw) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

All of these examples reside in the boards/dk-lm3s301 subdirectory of the peripheral driver
library source distribution.

33.2 API Functions

Functions
unsigned char PDCDIPRead (void)
unsigned char PDCGPIODirRead (unsigned char ucIdx)
void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)
unsigned char PDCGPIORead (unsigned char ucIdx)
void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)
void PDCInit (void)
void PDCLCDBacklightOff (void)
void PDCLCDBacklightOn (void)
void PDCLCDClear (void)
void PDCLCDCreateChar (unsigned char ucChar, unsigned char ∗pucData)
void PDCLCDInit (void)
void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)
void PDCLCDWrite (const char ∗pcStr, unsigned long ulCount)

September 29, 2008 423

DK-LM3S301 Example Applications

unsigned char PDCLEDRead (void)
void PDCLEDWrite (unsigned char ucLED)
unsigned char PDCRead (unsigned char ucAddr)
void PDCWrite (unsigned char ucAddr, unsigned char ucData)

33.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

33.2.2 Function Documentation

33.2.2.1 PDCDIPRead

Read the current value of the PDC DIP switches.

Prototype:
unsigned char
PDCDIPRead(void)

Description:
This function will read the current value of the DIP switches attached to the PDC on the Stellaris
development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The current state of the DIP switches.

33.2.2.2 PDCGPIODirRead

Reads a GPIO direction register.

Prototype:
unsigned char
PDCGPIODirRead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO direction registers in the PDC. The direction bit is set for
pins that are outputs and clear for pins that are inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the direction register.

424 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

33.2.2.3 PDCGPIODirWrite

Write a GPIO direction register.

Prototype:
void
PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

Parameters:
ucIdx is the index of the GPIO direction register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO direction register.

Description:
This function writes ones of the GPIO direction registers in the PDC. The direction bit should
be set for pins that are to be outputs and clear for pins that are to be inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

33.2.2.4 PDCGPIORead

Reads a GPIO data register.

Prototype:
unsigned char
PDCGPIORead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO data registers in the PDC. The value returned for a pin is
the value being driven out for outputs or the value being read for inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the data register.

33.2.2.5 PDCGPIOWrite

Write a GPIO data register.

Prototype:
void
PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

September 29, 2008 425

DK-LM3S301 Example Applications

Parameters:
ucIdx is the index of the GPIO data register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO data register.

Description:
This function writes one of the GPIO direction registers in the PDC. The written to a pin is
driven out for output pins and ignored for input pins.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

33.2.2.6 PDCInit

Initializes the connection to the PDC.

Prototype:
void
PDCInit(void)

Description:
This function will enable clocking to the SSI and GPIO A modules, configure the GPIO pins to
be used for an SSI interface, and it will configure the SSI as a 1 Mbps master device, operating
in MOTO mode. It will also enable the SSI module, and will enable the chip select for the PDC
on the Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

33.2.2.7 PDCLCDBacklightOff

Turn off the backlight.

Prototype:
void
PDCLCDBacklightOff(void)

Description:
This function turns off the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

426 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

33.2.2.8 PDCLCDBacklightOn

Turns on the backlight.

Prototype:
void
PDCLCDBacklightOn(void)

Description:
This function turns on the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

33.2.2.9 PDCLCDClear

Clear the screen.

Prototype:
void
PDCLCDClear(void)

Description:
This function clears the contents of the LCD screen. The cursor will be returned to the upper
left corner.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

33.2.2.10 PDCLCDCreateChar

Write a character pattern to the LCD.

Prototype:
void
PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

Parameters:
ucChar is the character index to create. Valid values are zero through seven.
pucData is the data for the character pattern. It contains eight bytes, with the first byte being

the top row of the pattern. In each byte, the LSB is the right pixel of the pattern.

Description:
This function will write a character pattern into the LCD for use as a character to be displayed.
After writing the pattern, it can be used on the LCD by writing the corresponding character
index to the display.

September 29, 2008 427

DK-LM3S301 Example Applications

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

33.2.2.11 PDCLCDInit

Initializes the LCD display.

Prototype:
void
PDCLCDInit(void)

Description:
This function will set up the LCD display for writing. It will set the data bus to 8 bits, set the
number of lines to 2, and the font size to 5x10. It will also turn the display off, clear the display,
turn the display back on, and enable the backlight.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Note:
The PDC must be initialized via the PDCInit() function before this function can be called. Also,
it may be necessary to adjust the contrast potentiometer in order to discern any output on the
LCD display.

Returns:
None.

33.2.2.12 PDCLCDSetPos

Set the position of the cursor.

Prototype:
void
PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

Parameters:
ucX is the horizontal position. Valid values are zero through fifteen.
ucY is the vertical position.. Valid values are zero and one.

Description:
This function will move the cursor to the specified position. All characters written to the LCD
are placed at the current cursor position, which is automatically advanced.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

428 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

33.2.2.13 PDCLCDWrite

Writes a string to the LCD display.

Prototype:
void
PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

Parameters:
pcStr pointer to the string to be displayed.
ulCount is the number of characters to be displayed.

Description:
This function will display a string on the LCD at the current cursor position. It is the caller’s
responsibility to position the cursor to the place where the string should be displayed (either
explicitly via PDCLCDSetPos() or implicitly from where the cursor was left after a previous
call to PDCLCDWrite()), and to properly account for the LCD boundary (line wrapping is not
automatically performed). Null characters are not treated special and are written to the LCD,
which interprets it as a special programmable character glyph (see PDCLCDCreateChar()).

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

33.2.2.14 PDCLEDRead

Read the current status of the PDC LEDs.

Prototype:
unsigned char
PDCLEDRead(void)

Description:
This function will read the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The value currently displayed by the LEDs.

33.2.2.15 PDCLEDWrite

Write to the PDC LEDs.

Prototype:
void
PDCLEDWrite(unsigned char ucLED)

September 29, 2008 429

DK-LM3S301 Example Applications

Parameters:
ucLED value to write to the LEDs.

Description:
This function set the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

33.2.2.16 PDCRead

Read a PDC register.

Prototype:
unsigned char
PDCRead(unsigned char ucAddr)

Parameters:
ucAddr specifies the PDC register to read.

Description:
This function will perform the SSI transfers required to read a register in the PDC on the Stel-
laris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
Returns the value read from the PDC.

33.2.2.17 PDCWrite

Write a PDC register.

Prototype:
void
PDCWrite(unsigned char ucAddr,

unsigned char ucData)

Parameters:
ucAddr specifies the PDC register to write.
ucData specifies the data to write.

Description:
This function will perform the SSI transfers required to write a register in the PDC on the
Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

430 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

33.3 Examples

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

September 29, 2008 431

DK-LM3S301 Example Applications

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

Comparator (comparator)

This example application demonstrates the operation of the analog comparator(s). Comparator
zero (which is present on all devices that have analog comparators) is configured to compare its
negative input to an internally generated 1.65 V reference and toggle the state of the LED on port
B0 based on comparator change interrupts. The LED will be turned on by the interrupt handler
when a rising edge on the comparator output is detected, and will be turned off when a falling edge
is detected.

In order for this example to work properly, the ULED0 (JP22) jumper must be installed on the board.

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the user push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO. Note that because of errata in Rev Bx and Rev C0 of
Sandstorm-class Stellaris microcontrollers, JTAG and SWD will not function if PB7 is configured as
a GPIO. This errata is fixed in Rev C2 of Sandstorm-class Stellaris microcontrollers.

GPIO (gpio_led)

This example application uses LEDs connected to GPIO pins to create a “roving eye” display. Port
B0-B3 are driven in a sequential manner to give the illusion of an eye looking back and forth.

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), ULED2 (JP24),
and ULED3 (JP25) jumpers must be installed on the board, and the PB1 (JP1) jumper on the
daughtercard must be set to pins 2 & 3.

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the LCD and is a starting
point for more complicated applications.

432 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, preemp-
tion will occur; in the other two cases tail-chaining will occur. The currently pending interrupts and
the currently executing interrupt will be displayed on the LCD; individual LEDs connected to port
B0-B2 will be turned on upon interrupt handler entry and off before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), and ULED2 (JP24)
jumpers must be installed on the board, and the PB1 (JP1) jumper on the daughtercard must be
set to pins 2 & 3.

MPU (mpu_fault)

This example application demonstrates the use of the MPU to protect a region of memory from
access, and to generate a memory management fault when there is an access violation.

PWM (pwmgen)

This example application utilizes the PWM peripheral to output a 25% duty cycle PWM signal and
a 75% duty cycle PWM signal, both at 50 kHz. Once configured, the application enters an infinite
loop, doing nothing while the PWM peripheral continues to output its signals.

DK-LM3S301 Quickstart Application (qs_dk-lm3s301)

This example uses the photocell on the development board to create a geiger counter for visible
light. In bright light, the click rate (that is, the count) increases; in low light it decreases. The light
reading is also displayed on the LCD, and a log of the readings is output on the UART at 115,200,
8-n-1. The push button can be used to turn off the clicking noise on and off; when off the LCD and
UART still provide the light reading.

In the default jumper configuration of the development board, this example actually samples the
potentiometer and the push button will not work. In order for this example to fully work, the following
jumper wire connections must be made: JP3 pin 1 to JP5 pin 2 (requiring the removal of the jumper
on JP5) and JP19 pin 2 to J6 pin 6.

SSI (ssi_atmel)

This example application uses the SSI master to communicate with the Atmel AT25F1024A EEP-
ROM that is on the development board. The first 256 bytes of the EEPROM are erased and then
programmed with an incrementing sequence. The data is then read back to verify its correctness.
The transfer is managed by an interrupt handler in response to the SSI interrupt; since a 256-byte
read at a 1 MHz SSI bus speed takes around 2 ms, this allows a lot of other processing to occur
during the transfer (though that time is not utilized by this example).

September 29, 2008 433

DK-LM3S301 Example Applications

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own GPIO (port B0 and B1) on each interrupt; the attached LED will
indicate the occurrence and rate of interrupts.

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (the SER0 connector on the
Stellaris Family Development Board) will be configured in 115,200 baud, 8-n-1 mode. All characters
received on the UART are transmitted back to the UART.

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED connected to port B0 is inverted so that it is easy to see that it is being fed, which
occurs once every second.

434 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

34 DK-LM3S801 Example Applications
Introduction .435
API Functions . 435
Examples .443

34.1 Introduction

The DK-LM3S801 example applications show how to utilize features of the Cortex-M3 micropro-
cessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the peripheral
driver library. These applications are intended for demonstration and as a starting point for new
applications.

There is a board specific driver for the Peripheral Device Controller on the Stellaris Family Devel-
opment Kit board. The PDC is used to access the character LCD, eight user LEDs, eight user DIP
switches, and twenty-four GPIOs.

There is an IAR workspace file (dk-lm3s801.eww) that contains the peripheral driver library
project, along with all of the board example projects, in a single, easy to use workspace for use
with Embedded Workbench version 5.

There is also an equivalent IAR workspace file (dk-lm3s801-ewarm4.eww) for use with Embed-
ded Workbench version 4.42a.

There is a Keil multi-project workspace file (dk-lm3s801.mpw) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

All of these examples reside in the boards/dk-lm3s801 subdirectory of the peripheral driver
library source distribution.

34.2 API Functions

Functions
unsigned char PDCDIPRead (void)
unsigned char PDCGPIODirRead (unsigned char ucIdx)
void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)
unsigned char PDCGPIORead (unsigned char ucIdx)
void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)
void PDCInit (void)
void PDCLCDBacklightOff (void)
void PDCLCDBacklightOn (void)
void PDCLCDClear (void)
void PDCLCDCreateChar (unsigned char ucChar, unsigned char ∗pucData)
void PDCLCDInit (void)
void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)
void PDCLCDWrite (const char ∗pcStr, unsigned long ulCount)

September 29, 2008 435

DK-LM3S801 Example Applications

unsigned char PDCLEDRead (void)
void PDCLEDWrite (unsigned char ucLED)
unsigned char PDCRead (unsigned char ucAddr)
void PDCWrite (unsigned char ucAddr, unsigned char ucData)

34.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

34.2.2 Function Documentation

34.2.2.1 PDCDIPRead

Read the current value of the PDC DIP switches.

Prototype:
unsigned char
PDCDIPRead(void)

Description:
This function will read the current value of the DIP switches attached to the PDC on the Stellaris
development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The current state of the DIP switches.

34.2.2.2 PDCGPIODirRead

Reads a GPIO direction register.

Prototype:
unsigned char
PDCGPIODirRead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO direction registers in the PDC. The direction bit is set for
pins that are outputs and clear for pins that are inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the direction register.

436 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

34.2.2.3 PDCGPIODirWrite

Write a GPIO direction register.

Prototype:
void
PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

Parameters:
ucIdx is the index of the GPIO direction register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO direction register.

Description:
This function writes ones of the GPIO direction registers in the PDC. The direction bit should
be set for pins that are to be outputs and clear for pins that are to be inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

34.2.2.4 PDCGPIORead

Reads a GPIO data register.

Prototype:
unsigned char
PDCGPIORead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO data registers in the PDC. The value returned for a pin is
the value being driven out for outputs or the value being read for inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the data register.

34.2.2.5 PDCGPIOWrite

Write a GPIO data register.

Prototype:
void
PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

September 29, 2008 437

DK-LM3S801 Example Applications

Parameters:
ucIdx is the index of the GPIO data register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO data register.

Description:
This function writes one of the GPIO direction registers in the PDC. The written to a pin is
driven out for output pins and ignored for input pins.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

34.2.2.6 PDCInit

Initializes the connection to the PDC.

Prototype:
void
PDCInit(void)

Description:
This function will enable clocking to the SSI and GPIO A modules, configure the GPIO pins to
be used for an SSI interface, and it will configure the SSI as a 1 Mbps master device, operating
in MOTO mode. It will also enable the SSI module, and will enable the chip select for the PDC
on the Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

34.2.2.7 PDCLCDBacklightOff

Turn off the backlight.

Prototype:
void
PDCLCDBacklightOff(void)

Description:
This function turns off the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

438 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

34.2.2.8 PDCLCDBacklightOn

Turns on the backlight.

Prototype:
void
PDCLCDBacklightOn(void)

Description:
This function turns on the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

34.2.2.9 PDCLCDClear

Clear the screen.

Prototype:
void
PDCLCDClear(void)

Description:
This function clears the contents of the LCD screen. The cursor will be returned to the upper
left corner.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

34.2.2.10 PDCLCDCreateChar

Write a character pattern to the LCD.

Prototype:
void
PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

Parameters:
ucChar is the character index to create. Valid values are zero through seven.
pucData is the data for the character pattern. It contains eight bytes, with the first byte being

the top row of the pattern. In each byte, the LSB is the right pixel of the pattern.

Description:
This function will write a character pattern into the LCD for use as a character to be displayed.
After writing the pattern, it can be used on the LCD by writing the corresponding character
index to the display.

September 29, 2008 439

DK-LM3S801 Example Applications

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

34.2.2.11 PDCLCDInit

Initializes the LCD display.

Prototype:
void
PDCLCDInit(void)

Description:
This function will set up the LCD display for writing. It will set the data bus to 8 bits, set the
number of lines to 2, and the font size to 5x10. It will also turn the display off, clear the display,
turn the display back on, and enable the backlight.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Note:
The PDC must be initialized via the PDCInit() function before this function can be called. Also,
it may be necessary to adjust the contrast potentiometer in order to discern any output on the
LCD display.

Returns:
None.

34.2.2.12 PDCLCDSetPos

Set the position of the cursor.

Prototype:
void
PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

Parameters:
ucX is the horizontal position. Valid values are zero through fifteen.
ucY is the vertical position.. Valid values are zero and one.

Description:
This function will move the cursor to the specified position. All characters written to the LCD
are placed at the current cursor position, which is automatically advanced.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

440 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

34.2.2.13 PDCLCDWrite

Writes a string to the LCD display.

Prototype:
void
PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

Parameters:
pcStr pointer to the string to be displayed.
ulCount is the number of characters to be displayed.

Description:
This function will display a string on the LCD at the current cursor position. It is the caller’s
responsibility to position the cursor to the place where the string should be displayed (either
explicitly via PDCLCDSetPos() or implicitly from where the cursor was left after a previous
call to PDCLCDWrite()), and to properly account for the LCD boundary (line wrapping is not
automatically performed). Null characters are not treated special and are written to the LCD,
which interprets it as a special programmable character glyph (see PDCLCDCreateChar()).

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

34.2.2.14 PDCLEDRead

Read the current status of the PDC LEDs.

Prototype:
unsigned char
PDCLEDRead(void)

Description:
This function will read the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The value currently displayed by the LEDs.

34.2.2.15 PDCLEDWrite

Write to the PDC LEDs.

Prototype:
void
PDCLEDWrite(unsigned char ucLED)

September 29, 2008 441

DK-LM3S801 Example Applications

Parameters:
ucLED value to write to the LEDs.

Description:
This function set the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

34.2.2.16 PDCRead

Read a PDC register.

Prototype:
unsigned char
PDCRead(unsigned char ucAddr)

Parameters:
ucAddr specifies the PDC register to read.

Description:
This function will perform the SSI transfers required to read a register in the PDC on the Stel-
laris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
Returns the value read from the PDC.

34.2.2.17 PDCWrite

Write a PDC register.

Prototype:
void
PDCWrite(unsigned char ucAddr,

unsigned char ucData)

Parameters:
ucAddr specifies the PDC register to write.
ucData specifies the data to write.

Description:
This function will perform the SSI transfers required to write a register in the PDC on the
Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

442 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

34.3 Examples

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

September 29, 2008 443

DK-LM3S801 Example Applications

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

Comparator (comparator)

This example application demonstrates the operation of the analog comparator(s). Comparator
zero (which is present on all devices that have analog comparators) is configured to compare its
negative input to an internally generated 1.65 V reference and toggle the state of the LED on port
B0 based on comparator change interrupts. The LED will be turned on by the interrupt handler
when a rising edge on the comparator output is detected, and will be turned off when a falling edge
is detected.

In order for this example to work properly, the ULED0 (JP22) jumper must be installed on the board.

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the user push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO. Note that because of errata in Rev Bx and Rev C0 of
Sandstorm-class Stellaris microcontrollers, JTAG and SWD will not function if PB7 is configured as
a GPIO. This errata is fixed in Rev C2 of Sandstorm-class Stellaris microcontrollers.

GPIO (gpio_led)

This example application uses LEDs connected to GPIO pins to create a “roving eye” display. Port
B0-B3 are driven in a sequential manner to give the illusion of an eye looking back and forth.

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), ULED2 (JP24),
and ULED3 (JP25) jumpers must be installed on the board, and the PB1 (JP1) jumper on the
daughtercard must be set to pins 2 & 3.

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the LCD and is a starting
point for more complicated applications.

444 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

I2C (i2c_atmel)

This example application uses the I2C master to communicate with the Atmel AT24C08A EEPROM
that is on the development board. The first sixteen bytes of the EEPROM are erased and then
programmed with an incrementing sequence. The data is then read back to verify its correctness.
The transfer is managed by an interrupt handler in response to the I2C interrupt; since a sixteen-
byte read at a 100 kHz I2C bus speed takes almost 2 ms, this allows a lot of other processing to
occur during the transfer (though that time is not utilized by this example).

In order for this example to work properly, the I2C_SCL (JP14), I2C_SDA (JP13), and I2CM_A2
(JP11) jumpers must be installed on the board, and the I2CM_WP (JP12) jumper must be removed.

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, preemp-
tion will occur; in the other two cases tail-chaining will occur. The currently pending interrupts and
the currently executing interrupt will be displayed on the LCD; individual LEDs connected to port
B0-B2 will be turned on upon interrupt handler entry and off before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), and ULED2 (JP24)
jumpers must be installed on the board, and the PB1 (JP1) jumper on the daughtercard must be
set to pins 2 & 3.

MPU (mpu_fault)

This example application demonstrates the use of the MPU to protect a region of memory from
access, and to generate a memory management fault when there is an access violation.

PWM (pwmgen)

This example application utilizes the PWM peripheral to output a 25% duty cycle PWM signal and
a 75% duty cycle PWM signal, both at 50 kHz. Once configured, the application enters an infinite
loop, doing nothing while the PWM peripheral continues to output its signals.

DK-LM3S801 Quickstart Application (qs_dk-lm3s801)

This example uses the potentiometer on the development board to vary the rate and frequency
of a repetitive beep from the piezo buzzer. Turning the knob in one direction will result in slower
beeps at lower frequency, while turning it the other direction will result in faster beeps at a higher
frequency. The potentiometer setting along with the tone “note” is displayed on the LCD, and a log
of the readings is output on the UART at 115,200, 8-n-1. The push button can be used to turn the
beeping noise on and off; when off the LCD and UART still show the setting.

September 29, 2008 445

DK-LM3S801 Example Applications

SSI (ssi_atmel)

This example application uses the SSI master to communicate with the Atmel AT25F1024A EEP-
ROM that is on the development board. The first 256 bytes of the EEPROM are erased and then
programmed with an incrementing sequence. The data is then read back to verify its correctness.
The transfer is managed by an interrupt handler in response to the SSI interrupt; since a 256-byte
read at a 1 MHz SSI bus speed takes around 2 ms, this allows a lot of other processing to occur
during the transfer (though that time is not utilized by this example).

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own GPIO (port B0 and B1) on each interrupt; the attached LED will
indicate the occurrence and rate of interrupts.

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (the SER0 connector on the
Stellaris Family Development Board) will be configured in 115,200 baud, 8-n-1 mode. All characters
received on the UART are transmitted back to the UART.

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED connected to port B0 is inverted so that it is easy to see that it is being fed, which
occurs once every second.

446 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

35 DK-LM3S811 Example Applications
Introduction .447
API Functions . 447
Examples .455

35.1 Introduction

The DK-LM3S811 example applications show how to utilize features of the Cortex-M3 micropro-
cessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the peripheral
driver library. These applications are intended for demonstration and as a starting point for new
applications.

There is a board specific driver for the Peripheral Device Controller on the Stellaris Family Devel-
opment Kit board. The PDC is used to access the character LCD, eight user LEDs, eight user DIP
switches, and twenty-four GPIOs.

There is an IAR workspace file (dk-lm3s811.eww) that contains the peripheral driver library
project, along with all of the board example projects, in a single, easy to use workspace for use
with Embedded Workbench version 5.

There is also an equivalent IAR workspace file (dk-lm3s811-ewarm4.eww) for use with Embed-
ded Workbench version 4.42a.

There is a Keil multi-project workspace file (dk-lm3s811.mpw) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

All of these examples reside in the boards/dk-lm3s811 subdirectory of the peripheral driver
library source distribution.

35.2 API Functions

Functions
unsigned char PDCDIPRead (void)
unsigned char PDCGPIODirRead (unsigned char ucIdx)
void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)
unsigned char PDCGPIORead (unsigned char ucIdx)
void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)
void PDCInit (void)
void PDCLCDBacklightOff (void)
void PDCLCDBacklightOn (void)
void PDCLCDClear (void)
void PDCLCDCreateChar (unsigned char ucChar, unsigned char ∗pucData)
void PDCLCDInit (void)
void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)
void PDCLCDWrite (const char ∗pcStr, unsigned long ulCount)

September 29, 2008 447

DK-LM3S811 Example Applications

unsigned char PDCLEDRead (void)
void PDCLEDWrite (unsigned char ucLED)
unsigned char PDCRead (unsigned char ucAddr)
void PDCWrite (unsigned char ucAddr, unsigned char ucData)

35.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

35.2.2 Function Documentation

35.2.2.1 PDCDIPRead

Read the current value of the PDC DIP switches.

Prototype:
unsigned char
PDCDIPRead(void)

Description:
This function will read the current value of the DIP switches attached to the PDC on the Stellaris
development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The current state of the DIP switches.

35.2.2.2 PDCGPIODirRead

Reads a GPIO direction register.

Prototype:
unsigned char
PDCGPIODirRead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO direction registers in the PDC. The direction bit is set for
pins that are outputs and clear for pins that are inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the direction register.

448 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

35.2.2.3 PDCGPIODirWrite

Write a GPIO direction register.

Prototype:
void
PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

Parameters:
ucIdx is the index of the GPIO direction register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO direction register.

Description:
This function writes ones of the GPIO direction registers in the PDC. The direction bit should
be set for pins that are to be outputs and clear for pins that are to be inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

35.2.2.4 PDCGPIORead

Reads a GPIO data register.

Prototype:
unsigned char
PDCGPIORead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO data registers in the PDC. The value returned for a pin is
the value being driven out for outputs or the value being read for inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the data register.

35.2.2.5 PDCGPIOWrite

Write a GPIO data register.

Prototype:
void
PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

September 29, 2008 449

DK-LM3S811 Example Applications

Parameters:
ucIdx is the index of the GPIO data register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO data register.

Description:
This function writes one of the GPIO direction registers in the PDC. The written to a pin is
driven out for output pins and ignored for input pins.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

35.2.2.6 PDCInit

Initializes the connection to the PDC.

Prototype:
void
PDCInit(void)

Description:
This function will enable clocking to the SSI and GPIO A modules, configure the GPIO pins to
be used for an SSI interface, and it will configure the SSI as a 1 Mbps master device, operating
in MOTO mode. It will also enable the SSI module, and will enable the chip select for the PDC
on the Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

35.2.2.7 PDCLCDBacklightOff

Turn off the backlight.

Prototype:
void
PDCLCDBacklightOff(void)

Description:
This function turns off the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

450 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

35.2.2.8 PDCLCDBacklightOn

Turns on the backlight.

Prototype:
void
PDCLCDBacklightOn(void)

Description:
This function turns on the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

35.2.2.9 PDCLCDClear

Clear the screen.

Prototype:
void
PDCLCDClear(void)

Description:
This function clears the contents of the LCD screen. The cursor will be returned to the upper
left corner.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

35.2.2.10 PDCLCDCreateChar

Write a character pattern to the LCD.

Prototype:
void
PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

Parameters:
ucChar is the character index to create. Valid values are zero through seven.
pucData is the data for the character pattern. It contains eight bytes, with the first byte being

the top row of the pattern. In each byte, the LSB is the right pixel of the pattern.

Description:
This function will write a character pattern into the LCD for use as a character to be displayed.
After writing the pattern, it can be used on the LCD by writing the corresponding character
index to the display.

September 29, 2008 451

DK-LM3S811 Example Applications

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

35.2.2.11 PDCLCDInit

Initializes the LCD display.

Prototype:
void
PDCLCDInit(void)

Description:
This function will set up the LCD display for writing. It will set the data bus to 8 bits, set the
number of lines to 2, and the font size to 5x10. It will also turn the display off, clear the display,
turn the display back on, and enable the backlight.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Note:
The PDC must be initialized via the PDCInit() function before this function can be called. Also,
it may be necessary to adjust the contrast potentiometer in order to discern any output on the
LCD display.

Returns:
None.

35.2.2.12 PDCLCDSetPos

Set the position of the cursor.

Prototype:
void
PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

Parameters:
ucX is the horizontal position. Valid values are zero through fifteen.
ucY is the vertical position.. Valid values are zero and one.

Description:
This function will move the cursor to the specified position. All characters written to the LCD
are placed at the current cursor position, which is automatically advanced.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

452 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

35.2.2.13 PDCLCDWrite

Writes a string to the LCD display.

Prototype:
void
PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

Parameters:
pcStr pointer to the string to be displayed.
ulCount is the number of characters to be displayed.

Description:
This function will display a string on the LCD at the current cursor position. It is the caller’s
responsibility to position the cursor to the place where the string should be displayed (either
explicitly via PDCLCDSetPos() or implicitly from where the cursor was left after a previous
call to PDCLCDWrite()), and to properly account for the LCD boundary (line wrapping is not
automatically performed). Null characters are not treated special and are written to the LCD,
which interprets it as a special programmable character glyph (see PDCLCDCreateChar()).

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

35.2.2.14 PDCLEDRead

Read the current status of the PDC LEDs.

Prototype:
unsigned char
PDCLEDRead(void)

Description:
This function will read the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The value currently displayed by the LEDs.

35.2.2.15 PDCLEDWrite

Write to the PDC LEDs.

Prototype:
void
PDCLEDWrite(unsigned char ucLED)

September 29, 2008 453

DK-LM3S811 Example Applications

Parameters:
ucLED value to write to the LEDs.

Description:
This function set the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

35.2.2.16 PDCRead

Read a PDC register.

Prototype:
unsigned char
PDCRead(unsigned char ucAddr)

Parameters:
ucAddr specifies the PDC register to read.

Description:
This function will perform the SSI transfers required to read a register in the PDC on the Stel-
laris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
Returns the value read from the PDC.

35.2.2.17 PDCWrite

Write a PDC register.

Prototype:
void
PDCWrite(unsigned char ucAddr,

unsigned char ucData)

Parameters:
ucAddr specifies the PDC register to write.
ucData specifies the data to write.

Description:
This function will perform the SSI transfers required to write a register in the PDC on the
Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

454 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

35.3 Examples

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

September 29, 2008 455

DK-LM3S811 Example Applications

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

Comparator (comparator)

This example application demonstrates the operation of the analog comparator(s). Comparator
zero (which is present on all devices that have analog comparators) is configured to compare its
negative input to an internally generated 1.65 V reference and toggle the state of the LED on port
B0 based on comparator change interrupts. The LED will be turned on by the interrupt handler
when a rising edge on the comparator output is detected, and will be turned off when a falling edge
is detected.

In order for this example to work properly, the ULED0 (JP22) jumper must be installed on the board.

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the user push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO. Note that because of errata in Rev Bx and Rev C0 of
Sandstorm-class Stellaris microcontrollers, JTAG and SWD will not function if PB7 is configured as
a GPIO. This errata is fixed in Rev C2 of Sandstorm-class Stellaris microcontrollers.

GPIO (gpio_led)

This example application uses LEDs connected to GPIO pins to create a “roving eye” display. Port
B0-B3 are driven in a sequential manner to give the illusion of an eye looking back and forth.

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), ULED2 (JP24),
and ULED3 (JP25) jumpers must be installed on the board, and the PB1 (JP1) jumper on the
daughtercard must be set to pins 2 & 3.

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the LCD and is a starting
point for more complicated applications.

456 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

I2C (i2c_atmel)

This example application uses the I2C master to communicate with the Atmel AT24C08A EEPROM
that is on the development board. The first sixteen bytes of the EEPROM are erased and then
programmed with an incrementing sequence. The data is then read back to verify its correctness.
The transfer is managed by an interrupt handler in response to the I2C interrupt; since a sixteen-
byte read at a 100 kHz I2C bus speed takes almost 2 ms, this allows a lot of other processing to
occur during the transfer (though that time is not utilized by this example).

In order for this example to work properly, the I2C_SCL (JP14), I2C_SDA (JP13), and I2CM_A2
(JP11) jumpers must be installed on the board, and the I2CM_WP (JP12) jumper must be removed.

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, preemp-
tion will occur; in the other two cases tail-chaining will occur. The currently pending interrupts and
the currently executing interrupt will be displayed on the LCD; individual LEDs connected to port
B0-B2 will be turned on upon interrupt handler entry and off before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), and ULED2 (JP24)
jumpers must be installed on the board, and the PB1 (JP1) jumper on the daughtercard must be
set to pins 2 & 3.

MPU (mpu_fault)

This example application demonstrates the use of the MPU to protect a region of memory from
access, and to generate a memory management fault when there is an access violation.

PWM (pwmgen)

This example application utilizes the PWM peripheral to output a 25% duty cycle PWM signal and
a 75% duty cycle PWM signal, both at 50 kHz. Once configured, the application enters an infinite
loop, doing nothing while the PWM peripheral continues to output its signals.

DK-LM3S811 Quickstart Application (qs_dk-lm3s811)

This example uses the potentiometer on the development board to vary the rate of a repetitive beep
from the piezo buzzer, while the light sensor will vary the frequency of the beep. Turning the knob
in one direction will result in slower beeps while turning it in the other direction will result in faster
beeps. The amount of light falling on the light sensor affects the frequency of the beep. The more
light falling on the sensor the higher the pitch of the beep. The potentiometer setting along with
the “note” representing the pitch of the beep is displayed on the LCD, and a log of the readings is

September 29, 2008 457

DK-LM3S811 Example Applications

output on the UART at 115,200, 8-n-1. The push button can be used to turn the beeping noise on
and off; when off the LCD and UART still provide the settings.

In the default jumper configuration of the development board, the push button will not actually mute
the beep. In order for this example to fully work, the following jumper wire connections must be
made: JP19 pin 2 to J6 pin 6.

SSI (ssi_atmel)

This example application uses the SSI master to communicate with the Atmel AT25F1024A EEP-
ROM that is on the development board. The first 256 bytes of the EEPROM are erased and then
programmed with an incrementing sequence. The data is then read back to verify its correctness.
The transfer is managed by an interrupt handler in response to the SSI interrupt; since a 256-byte
read at a 1 MHz SSI bus speed takes around 2 ms, this allows a lot of other processing to occur
during the transfer (though that time is not utilized by this example).

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own GPIO (port B0 and B1) on each interrupt; the attached LED will
indicate the occurrence and rate of interrupts.

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (the SER0 connector on the
Stellaris Family Development Board) will be configured in 115,200 baud, 8-n-1 mode. All characters
received on the UART are transmitted back to the UART.

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED connected to port B0 is inverted so that it is easy to see that it is being fed, which
occurs once every second.

458 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

36 DK-LM3S815 Example Applications
Introduction .459
API Functions . 459
Examples .467

36.1 Introduction

The DK-LM3S815 example applications show how to utilize features of the Cortex-M3 micropro-
cessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the peripheral
driver library. These applications are intended for demonstration and as a starting point for new
applications.

There is a board specific driver for the Peripheral Device Controller on the Stellaris Family Devel-
opment Kit board. The PDC is used to access the character LCD, eight user LEDs, eight user DIP
switches, and twenty-four GPIOs.

There is an IAR workspace file (dk-lm3s815.eww) that contains the peripheral driver library
project, along with all of the board example projects, in a single, easy to use workspace for use
with Embedded Workbench version 5.

There is also an equivalent IAR workspace file (dk-lm3s815-ewarm4.eww) for use with Embed-
ded Workbench version 4.42a.

There is a Keil multi-project workspace file (dk-lm3s815.mpw) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

All of these examples reside in the boards/dk-lm3s815 subdirectory of the peripheral driver
library source distribution.

36.2 API Functions

Functions
unsigned char PDCDIPRead (void)
unsigned char PDCGPIODirRead (unsigned char ucIdx)
void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)
unsigned char PDCGPIORead (unsigned char ucIdx)
void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)
void PDCInit (void)
void PDCLCDBacklightOff (void)
void PDCLCDBacklightOn (void)
void PDCLCDClear (void)
void PDCLCDCreateChar (unsigned char ucChar, unsigned char ∗pucData)
void PDCLCDInit (void)
void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)
void PDCLCDWrite (const char ∗pcStr, unsigned long ulCount)

September 29, 2008 459

DK-LM3S815 Example Applications

unsigned char PDCLEDRead (void)
void PDCLEDWrite (unsigned char ucLED)
unsigned char PDCRead (unsigned char ucAddr)
void PDCWrite (unsigned char ucAddr, unsigned char ucData)

36.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

36.2.2 Function Documentation

36.2.2.1 PDCDIPRead

Read the current value of the PDC DIP switches.

Prototype:
unsigned char
PDCDIPRead(void)

Description:
This function will read the current value of the DIP switches attached to the PDC on the Stellaris
development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The current state of the DIP switches.

36.2.2.2 PDCGPIODirRead

Reads a GPIO direction register.

Prototype:
unsigned char
PDCGPIODirRead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO direction registers in the PDC. The direction bit is set for
pins that are outputs and clear for pins that are inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the direction register.

460 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

36.2.2.3 PDCGPIODirWrite

Write a GPIO direction register.

Prototype:
void
PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

Parameters:
ucIdx is the index of the GPIO direction register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO direction register.

Description:
This function writes ones of the GPIO direction registers in the PDC. The direction bit should
be set for pins that are to be outputs and clear for pins that are to be inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

36.2.2.4 PDCGPIORead

Reads a GPIO data register.

Prototype:
unsigned char
PDCGPIORead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO data registers in the PDC. The value returned for a pin is
the value being driven out for outputs or the value being read for inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the data register.

36.2.2.5 PDCGPIOWrite

Write a GPIO data register.

Prototype:
void
PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

September 29, 2008 461

DK-LM3S815 Example Applications

Parameters:
ucIdx is the index of the GPIO data register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO data register.

Description:
This function writes one of the GPIO direction registers in the PDC. The written to a pin is
driven out for output pins and ignored for input pins.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

36.2.2.6 PDCInit

Initializes the connection to the PDC.

Prototype:
void
PDCInit(void)

Description:
This function will enable clocking to the SSI and GPIO A modules, configure the GPIO pins to
be used for an SSI interface, and it will configure the SSI as a 1 Mbps master device, operating
in MOTO mode. It will also enable the SSI module, and will enable the chip select for the PDC
on the Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

36.2.2.7 PDCLCDBacklightOff

Turn off the backlight.

Prototype:
void
PDCLCDBacklightOff(void)

Description:
This function turns off the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

462 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

36.2.2.8 PDCLCDBacklightOn

Turns on the backlight.

Prototype:
void
PDCLCDBacklightOn(void)

Description:
This function turns on the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

36.2.2.9 PDCLCDClear

Clear the screen.

Prototype:
void
PDCLCDClear(void)

Description:
This function clears the contents of the LCD screen. The cursor will be returned to the upper
left corner.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

36.2.2.10 PDCLCDCreateChar

Write a character pattern to the LCD.

Prototype:
void
PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

Parameters:
ucChar is the character index to create. Valid values are zero through seven.
pucData is the data for the character pattern. It contains eight bytes, with the first byte being

the top row of the pattern. In each byte, the LSB is the right pixel of the pattern.

Description:
This function will write a character pattern into the LCD for use as a character to be displayed.
After writing the pattern, it can be used on the LCD by writing the corresponding character
index to the display.

September 29, 2008 463

DK-LM3S815 Example Applications

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

36.2.2.11 PDCLCDInit

Initializes the LCD display.

Prototype:
void
PDCLCDInit(void)

Description:
This function will set up the LCD display for writing. It will set the data bus to 8 bits, set the
number of lines to 2, and the font size to 5x10. It will also turn the display off, clear the display,
turn the display back on, and enable the backlight.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Note:
The PDC must be initialized via the PDCInit() function before this function can be called. Also,
it may be necessary to adjust the contrast potentiometer in order to discern any output on the
LCD display.

Returns:
None.

36.2.2.12 PDCLCDSetPos

Set the position of the cursor.

Prototype:
void
PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

Parameters:
ucX is the horizontal position. Valid values are zero through fifteen.
ucY is the vertical position.. Valid values are zero and one.

Description:
This function will move the cursor to the specified position. All characters written to the LCD
are placed at the current cursor position, which is automatically advanced.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

464 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

36.2.2.13 PDCLCDWrite

Writes a string to the LCD display.

Prototype:
void
PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

Parameters:
pcStr pointer to the string to be displayed.
ulCount is the number of characters to be displayed.

Description:
This function will display a string on the LCD at the current cursor position. It is the caller’s
responsibility to position the cursor to the place where the string should be displayed (either
explicitly via PDCLCDSetPos() or implicitly from where the cursor was left after a previous
call to PDCLCDWrite()), and to properly account for the LCD boundary (line wrapping is not
automatically performed). Null characters are not treated special and are written to the LCD,
which interprets it as a special programmable character glyph (see PDCLCDCreateChar()).

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

36.2.2.14 PDCLEDRead

Read the current status of the PDC LEDs.

Prototype:
unsigned char
PDCLEDRead(void)

Description:
This function will read the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The value currently displayed by the LEDs.

36.2.2.15 PDCLEDWrite

Write to the PDC LEDs.

Prototype:
void
PDCLEDWrite(unsigned char ucLED)

September 29, 2008 465

DK-LM3S815 Example Applications

Parameters:
ucLED value to write to the LEDs.

Description:
This function set the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

36.2.2.16 PDCRead

Read a PDC register.

Prototype:
unsigned char
PDCRead(unsigned char ucAddr)

Parameters:
ucAddr specifies the PDC register to read.

Description:
This function will perform the SSI transfers required to read a register in the PDC on the Stel-
laris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
Returns the value read from the PDC.

36.2.2.17 PDCWrite

Write a PDC register.

Prototype:
void
PDCWrite(unsigned char ucAddr,

unsigned char ucData)

Parameters:
ucAddr specifies the PDC register to write.
ucData specifies the data to write.

Description:
This function will perform the SSI transfers required to write a register in the PDC on the
Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

466 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

36.3 Examples

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

September 29, 2008 467

DK-LM3S815 Example Applications

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

Comparator (comparator)

This example application demonstrates the operation of the analog comparator(s). Comparator
zero (which is present on all devices that have analog comparators) is configured to compare its
negative input to an internally generated 1.65 V reference and toggle the state of the LED on port
B0 based on comparator change interrupts. The LED will be turned on by the interrupt handler
when a rising edge on the comparator output is detected, and will be turned off when a falling edge
is detected.

In order for this example to work properly, the ULED0 (JP22) jumper must be installed on the board.

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the user push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO. Note that because of errata in Rev Bx and Rev C0 of
Sandstorm-class Stellaris microcontrollers, JTAG and SWD will not function if PB7 is configured as
a GPIO. This errata is fixed in Rev C2 of Sandstorm-class Stellaris microcontrollers.

GPIO (gpio_led)

This example application uses LEDs connected to GPIO pins to create a “roving eye” display. Port
B0-B3 are driven in a sequential manner to give the illusion of an eye looking back and forth.

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), ULED2 (JP24),
and ULED3 (JP25) jumpers must be installed on the board, and the PB1 (JP1) jumper on the
daughtercard must be set to pins 2 & 3.

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the LCD and is a starting
point for more complicated applications.

468 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

I2C (i2c_atmel)

This example application uses the I2C master to communicate with the Atmel AT24C08A EEPROM
that is on the development board. The first sixteen bytes of the EEPROM are erased and then
programmed with an incrementing sequence. The data is then read back to verify its correctness.
The transfer is managed by an interrupt handler in response to the I2C interrupt; since a sixteen-
byte read at a 100 kHz I2C bus speed takes almost 2 ms, this allows a lot of other processing to
occur during the transfer (though that time is not utilized by this example).

In order for this example to work properly, the I2C_SCL (JP14), I2C_SDA (JP13), and I2CM_A2
(JP11) jumpers must be installed on the board, and the I2CM_WP (JP12) jumper must be removed.

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, preemp-
tion will occur; in the other two cases tail-chaining will occur. The currently pending interrupts and
the currently executing interrupt will be displayed on the LCD; individual LEDs connected to port
B0-B2 will be turned on upon interrupt handler entry and off before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), and ULED2 (JP24)
jumpers must be installed on the board, and the PB1 (JP1) jumper on the daughtercard must be
set to pins 2 & 3.

MPU (mpu_fault)

This example application demonstrates the use of the MPU to protect a region of memory from
access, and to generate a memory management fault when there is an access violation.

PWM (pwmgen)

This example application utilizes the PWM peripheral to output a 25% duty cycle PWM signal and
a 75% duty cycle PWM signal, both at 50 kHz. Once configured, the application enters an infinite
loop, doing nothing while the PWM peripheral continues to output its signals.

DK-LM3S815 Quickstart Application (qs_dk-lm3s815)

This example uses the potentiometer on the development board to vary the rate of a repetitive beep
from the piezo buzzer, while the light sensor will vary the frequency of the beep. Turning the knob
in one direction will result in slower beeps while turning it in the other direction will result in faster
beeps. The amount of light falling on the light sensor affects the frequency of the beep. The more
light falling on the sensor the higher the pitch of the beep. The potentiometer setting along with
the “note” representing the pitch of the beep is displayed on the LCD, and a log of the readings is

September 29, 2008 469

DK-LM3S815 Example Applications

output on the UART at 115,200, 8-n-1. The push button can be used to turn the beeping noise on
and off; when off the LCD and UART still provide the settings.

In the default jumper configuration of the development board, the push button will not actually mute
the beep. In order for this example to fully work, the following jumper wire connections must be
made: JP19 pin 2 to J6 pin 6.

SSI (ssi_atmel)

This example application uses the SSI master to communicate with the Atmel AT25F1024A EEP-
ROM that is on the development board. The first 256 bytes of the EEPROM are erased and then
programmed with an incrementing sequence. The data is then read back to verify its correctness.
The transfer is managed by an interrupt handler in response to the SSI interrupt; since a 256-byte
read at a 1 MHz SSI bus speed takes around 2 ms, this allows a lot of other processing to occur
during the transfer (though that time is not utilized by this example).

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own GPIO (port B0 and B1) on each interrupt; the attached LED will
indicate the occurrence and rate of interrupts.

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (the SER0 connector on the
Stellaris Family Development Board) will be configured in 115,200 baud, 8-n-1 mode. All characters
received on the UART are transmitted back to the UART.

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED connected to port B0 is inverted so that it is easy to see that it is being fed, which
occurs once every second.

470 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

37 DK-LM3S817 Example Applications
Introduction .471
API Functions . 471
Examples .479

37.1 Introduction

The DK-LM3S817 example applications show how to utilize features of the Cortex-M3 micropro-
cessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the peripheral
driver library. These applications are intended for demonstration and as a starting point for new
applications.

There is a board specific driver for the Peripheral Device Controller on the Stellaris Family Devel-
opment Kit board. The PDC is used to access the character LCD, eight user LEDs, eight user DIP
switches, and twenty-four GPIOs.

There is an IAR workspace file (dk-lm3s817.eww) that contains the peripheral driver library
project, along with all of the board example projects, in a single, easy to use workspace for use
with Embedded Workbench version 5.

There is also an equivalent IAR workspace file (dk-lm3s817-ewarm4.eww) for use with Embed-
ded Workbench version 4.42a.

There is a Keil multi-project workspace file (dk-lm3s817.mpw) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

All of these examples reside in the boards/dk-lm3s817 subdirectory of the peripheral driver
library source distribution.

37.2 API Functions

Functions
unsigned char PDCDIPRead (void)
unsigned char PDCGPIODirRead (unsigned char ucIdx)
void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)
unsigned char PDCGPIORead (unsigned char ucIdx)
void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)
void PDCInit (void)
void PDCLCDBacklightOff (void)
void PDCLCDBacklightOn (void)
void PDCLCDClear (void)
void PDCLCDCreateChar (unsigned char ucChar, unsigned char ∗pucData)
void PDCLCDInit (void)
void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)
void PDCLCDWrite (const char ∗pcStr, unsigned long ulCount)

September 29, 2008 471

DK-LM3S817 Example Applications

unsigned char PDCLEDRead (void)
void PDCLEDWrite (unsigned char ucLED)
unsigned char PDCRead (unsigned char ucAddr)
void PDCWrite (unsigned char ucAddr, unsigned char ucData)

37.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

37.2.2 Function Documentation

37.2.2.1 PDCDIPRead

Read the current value of the PDC DIP switches.

Prototype:
unsigned char
PDCDIPRead(void)

Description:
This function will read the current value of the DIP switches attached to the PDC on the Stellaris
development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The current state of the DIP switches.

37.2.2.2 PDCGPIODirRead

Reads a GPIO direction register.

Prototype:
unsigned char
PDCGPIODirRead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO direction registers in the PDC. The direction bit is set for
pins that are outputs and clear for pins that are inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the direction register.

472 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

37.2.2.3 PDCGPIODirWrite

Write a GPIO direction register.

Prototype:
void
PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

Parameters:
ucIdx is the index of the GPIO direction register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO direction register.

Description:
This function writes ones of the GPIO direction registers in the PDC. The direction bit should
be set for pins that are to be outputs and clear for pins that are to be inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

37.2.2.4 PDCGPIORead

Reads a GPIO data register.

Prototype:
unsigned char
PDCGPIORead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO data registers in the PDC. The value returned for a pin is
the value being driven out for outputs or the value being read for inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the data register.

37.2.2.5 PDCGPIOWrite

Write a GPIO data register.

Prototype:
void
PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

September 29, 2008 473

DK-LM3S817 Example Applications

Parameters:
ucIdx is the index of the GPIO data register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO data register.

Description:
This function writes one of the GPIO direction registers in the PDC. The written to a pin is
driven out for output pins and ignored for input pins.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

37.2.2.6 PDCInit

Initializes the connection to the PDC.

Prototype:
void
PDCInit(void)

Description:
This function will enable clocking to the SSI and GPIO A modules, configure the GPIO pins to
be used for an SSI interface, and it will configure the SSI as a 1 Mbps master device, operating
in MOTO mode. It will also enable the SSI module, and will enable the chip select for the PDC
on the Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

37.2.2.7 PDCLCDBacklightOff

Turn off the backlight.

Prototype:
void
PDCLCDBacklightOff(void)

Description:
This function turns off the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

474 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

37.2.2.8 PDCLCDBacklightOn

Turns on the backlight.

Prototype:
void
PDCLCDBacklightOn(void)

Description:
This function turns on the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

37.2.2.9 PDCLCDClear

Clear the screen.

Prototype:
void
PDCLCDClear(void)

Description:
This function clears the contents of the LCD screen. The cursor will be returned to the upper
left corner.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

37.2.2.10 PDCLCDCreateChar

Write a character pattern to the LCD.

Prototype:
void
PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

Parameters:
ucChar is the character index to create. Valid values are zero through seven.
pucData is the data for the character pattern. It contains eight bytes, with the first byte being

the top row of the pattern. In each byte, the LSB is the right pixel of the pattern.

Description:
This function will write a character pattern into the LCD for use as a character to be displayed.
After writing the pattern, it can be used on the LCD by writing the corresponding character
index to the display.

September 29, 2008 475

DK-LM3S817 Example Applications

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

37.2.2.11 PDCLCDInit

Initializes the LCD display.

Prototype:
void
PDCLCDInit(void)

Description:
This function will set up the LCD display for writing. It will set the data bus to 8 bits, set the
number of lines to 2, and the font size to 5x10. It will also turn the display off, clear the display,
turn the display back on, and enable the backlight.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Note:
The PDC must be initialized via the PDCInit() function before this function can be called. Also,
it may be necessary to adjust the contrast potentiometer in order to discern any output on the
LCD display.

Returns:
None.

37.2.2.12 PDCLCDSetPos

Set the position of the cursor.

Prototype:
void
PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

Parameters:
ucX is the horizontal position. Valid values are zero through fifteen.
ucY is the vertical position.. Valid values are zero and one.

Description:
This function will move the cursor to the specified position. All characters written to the LCD
are placed at the current cursor position, which is automatically advanced.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

476 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

37.2.2.13 PDCLCDWrite

Writes a string to the LCD display.

Prototype:
void
PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

Parameters:
pcStr pointer to the string to be displayed.
ulCount is the number of characters to be displayed.

Description:
This function will display a string on the LCD at the current cursor position. It is the caller’s
responsibility to position the cursor to the place where the string should be displayed (either
explicitly via PDCLCDSetPos() or implicitly from where the cursor was left after a previous
call to PDCLCDWrite()), and to properly account for the LCD boundary (line wrapping is not
automatically performed). Null characters are not treated special and are written to the LCD,
which interprets it as a special programmable character glyph (see PDCLCDCreateChar()).

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

37.2.2.14 PDCLEDRead

Read the current status of the PDC LEDs.

Prototype:
unsigned char
PDCLEDRead(void)

Description:
This function will read the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The value currently displayed by the LEDs.

37.2.2.15 PDCLEDWrite

Write to the PDC LEDs.

Prototype:
void
PDCLEDWrite(unsigned char ucLED)

September 29, 2008 477

DK-LM3S817 Example Applications

Parameters:
ucLED value to write to the LEDs.

Description:
This function set the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

37.2.2.16 PDCRead

Read a PDC register.

Prototype:
unsigned char
PDCRead(unsigned char ucAddr)

Parameters:
ucAddr specifies the PDC register to read.

Description:
This function will perform the SSI transfers required to read a register in the PDC on the Stel-
laris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
Returns the value read from the PDC.

37.2.2.17 PDCWrite

Write a PDC register.

Prototype:
void
PDCWrite(unsigned char ucAddr,

unsigned char ucData)

Parameters:
ucAddr specifies the PDC register to write.
ucData specifies the data to write.

Description:
This function will perform the SSI transfers required to write a register in the PDC on the
Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

478 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

37.3 Examples

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

September 29, 2008 479

DK-LM3S817 Example Applications

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

Comparator (comparator)

This example application demonstrates the operation of the analog comparator(s). Comparator
zero (which is present on all devices that have analog comparators) is configured to compare its
negative input to an internally generated 1.65 V reference and toggle the state of the LED on port
B0 based on comparator change interrupts. The LED will be turned on by the interrupt handler
when a rising edge on the comparator output is detected, and will be turned off when a falling edge
is detected.

In order for this example to work properly, the ULED0 (JP22) jumper must be installed on the board.

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the user push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO. Note that because of errata in Rev Bx and Rev C0 of
Sandstorm-class Stellaris microcontrollers, JTAG and SWD will not function if PB7 is configured as
a GPIO. This errata is fixed in Rev C2 of Sandstorm-class Stellaris microcontrollers.

GPIO (gpio_led)

This example application uses LEDs connected to GPIO pins to create a “roving eye” display. Port
B0-B3 are driven in a sequential manner to give the illusion of an eye looking back and forth.

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), ULED2 (JP24),
and ULED3 (JP25) jumpers must be installed on the board, and the PB1 (JP1) jumper on the
daughtercard must be set to pins 2 & 3.

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the LCD and is a starting
point for more complicated applications.

480 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, preemp-
tion will occur; in the other two cases tail-chaining will occur. The currently pending interrupts and
the currently executing interrupt will be displayed on the LCD; individual LEDs connected to port
B0-B2 will be turned on upon interrupt handler entry and off before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), and ULED2 (JP24)
jumpers must be installed on the board, and the PB1 (JP1) jumper on the daughtercard must be
set to pins 2 & 3.

MPU (mpu_fault)

This example application demonstrates the use of the MPU to protect a region of memory from
access, and to generate a memory management fault when there is an access violation.

PWM (pwmgen)

This example application utilizes the PWM peripheral to output a 25% duty cycle PWM signal and
a 75% duty cycle PWM signal, both at 50 kHz. Once configured, the application enters an infinite
loop, doing nothing while the PWM peripheral continues to output its signals.

DK-LM3S817 Quickstart Application (qs_dk-lm3s817)

This example uses the potentiometer on the development board to vary the rate of a repetitive beep
from the piezo buzzer, while the light sensor will vary the frequency of the beep. Turning the knob
in one direction will result in slower beeps while turning it in the other direction will result in faster
beeps. The amount of light falling on the light sensor affects the frequency of the beep. The more
light falling on the sensor the higher the pitch of the beep. The potentiometer setting along with
the “note” representing the pitch of the beep is displayed on the LCD, and a log of the readings is
output on the UART at 115,200, 8-n-1. The push button can be used to turn the beeping noise on
and off; when off the LCD and UART still provide the settings.

In the default jumper configuration of the development board, the push button will not actually mute
the beep. In order for this example to fully work, the following jumper wire connections must be
made: JP19 pin 2 to J6 pin 6.

SSI (ssi_atmel)

This example application uses the SSI master to communicate with the Atmel AT25F1024A EEP-
ROM that is on the development board. The first 256 bytes of the EEPROM are erased and then
programmed with an incrementing sequence. The data is then read back to verify its correctness.
The transfer is managed by an interrupt handler in response to the SSI interrupt; since a 256-byte

September 29, 2008 481

DK-LM3S817 Example Applications

read at a 1 MHz SSI bus speed takes around 2 ms, this allows a lot of other processing to occur
during the transfer (though that time is not utilized by this example).

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own GPIO (port B0 and B1) on each interrupt; the attached LED will
indicate the occurrence and rate of interrupts.

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (the SER0 connector on the
Stellaris Family Development Board) will be configured in 115,200 baud, 8-n-1 mode. All characters
received on the UART are transmitted back to the UART.

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED connected to port B0 is inverted so that it is easy to see that it is being fed, which
occurs once every second.

482 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

38 DK-LM3S818 Example Applications
Introduction .483
API Functions . 483
Examples .491

38.1 Introduction

The DK-LM3S818 example applications show how to utilize features of the Cortex-M3 micropro-
cessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the peripheral
driver library. These applications are intended for demonstration and as a starting point for new
applications.

There is a board specific driver for the Peripheral Device Controller on the Stellaris Family Devel-
opment Kit board. The PDC is used to access the character LCD, eight user LEDs, eight user DIP
switches, and twenty-four GPIOs.

There is an IAR workspace file (dk-lm3s818.eww) that contains the peripheral driver library
project, along with all of the board example projects, in a single, easy to use workspace for use
with Embedded Workbench version 5.

There is also an equivalent IAR workspace file (dk-lm3s818-ewarm4.eww) for use with Embed-
ded Workbench version 4.42a.

There is a Keil multi-project workspace file (dk-lm3s818.mpw) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

All of these examples reside in the boards/dk-lm3s818 subdirectory of the peripheral driver
library source distribution.

38.2 API Functions

Functions
unsigned char PDCDIPRead (void)
unsigned char PDCGPIODirRead (unsigned char ucIdx)
void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)
unsigned char PDCGPIORead (unsigned char ucIdx)
void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)
void PDCInit (void)
void PDCLCDBacklightOff (void)
void PDCLCDBacklightOn (void)
void PDCLCDClear (void)
void PDCLCDCreateChar (unsigned char ucChar, unsigned char ∗pucData)
void PDCLCDInit (void)
void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)
void PDCLCDWrite (const char ∗pcStr, unsigned long ulCount)

September 29, 2008 483

DK-LM3S818 Example Applications

unsigned char PDCLEDRead (void)
void PDCLEDWrite (unsigned char ucLED)
unsigned char PDCRead (unsigned char ucAddr)
void PDCWrite (unsigned char ucAddr, unsigned char ucData)

38.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

38.2.2 Function Documentation

38.2.2.1 PDCDIPRead

Read the current value of the PDC DIP switches.

Prototype:
unsigned char
PDCDIPRead(void)

Description:
This function will read the current value of the DIP switches attached to the PDC on the Stellaris
development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The current state of the DIP switches.

38.2.2.2 PDCGPIODirRead

Reads a GPIO direction register.

Prototype:
unsigned char
PDCGPIODirRead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO direction registers in the PDC. The direction bit is set for
pins that are outputs and clear for pins that are inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the direction register.

484 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

38.2.2.3 PDCGPIODirWrite

Write a GPIO direction register.

Prototype:
void
PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

Parameters:
ucIdx is the index of the GPIO direction register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO direction register.

Description:
This function writes ones of the GPIO direction registers in the PDC. The direction bit should
be set for pins that are to be outputs and clear for pins that are to be inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

38.2.2.4 PDCGPIORead

Reads a GPIO data register.

Prototype:
unsigned char
PDCGPIORead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO data registers in the PDC. The value returned for a pin is
the value being driven out for outputs or the value being read for inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the data register.

38.2.2.5 PDCGPIOWrite

Write a GPIO data register.

Prototype:
void
PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

September 29, 2008 485

DK-LM3S818 Example Applications

Parameters:
ucIdx is the index of the GPIO data register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO data register.

Description:
This function writes one of the GPIO direction registers in the PDC. The written to a pin is
driven out for output pins and ignored for input pins.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

38.2.2.6 PDCInit

Initializes the connection to the PDC.

Prototype:
void
PDCInit(void)

Description:
This function will enable clocking to the SSI and GPIO A modules, configure the GPIO pins to
be used for an SSI interface, and it will configure the SSI as a 1 Mbps master device, operating
in MOTO mode. It will also enable the SSI module, and will enable the chip select for the PDC
on the Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

38.2.2.7 PDCLCDBacklightOff

Turn off the backlight.

Prototype:
void
PDCLCDBacklightOff(void)

Description:
This function turns off the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

486 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

38.2.2.8 PDCLCDBacklightOn

Turns on the backlight.

Prototype:
void
PDCLCDBacklightOn(void)

Description:
This function turns on the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

38.2.2.9 PDCLCDClear

Clear the screen.

Prototype:
void
PDCLCDClear(void)

Description:
This function clears the contents of the LCD screen. The cursor will be returned to the upper
left corner.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

38.2.2.10 PDCLCDCreateChar

Write a character pattern to the LCD.

Prototype:
void
PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

Parameters:
ucChar is the character index to create. Valid values are zero through seven.
pucData is the data for the character pattern. It contains eight bytes, with the first byte being

the top row of the pattern. In each byte, the LSB is the right pixel of the pattern.

Description:
This function will write a character pattern into the LCD for use as a character to be displayed.
After writing the pattern, it can be used on the LCD by writing the corresponding character
index to the display.

September 29, 2008 487

DK-LM3S818 Example Applications

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

38.2.2.11 PDCLCDInit

Initializes the LCD display.

Prototype:
void
PDCLCDInit(void)

Description:
This function will set up the LCD display for writing. It will set the data bus to 8 bits, set the
number of lines to 2, and the font size to 5x10. It will also turn the display off, clear the display,
turn the display back on, and enable the backlight.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Note:
The PDC must be initialized via the PDCInit() function before this function can be called. Also,
it may be necessary to adjust the contrast potentiometer in order to discern any output on the
LCD display.

Returns:
None.

38.2.2.12 PDCLCDSetPos

Set the position of the cursor.

Prototype:
void
PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

Parameters:
ucX is the horizontal position. Valid values are zero through fifteen.
ucY is the vertical position.. Valid values are zero and one.

Description:
This function will move the cursor to the specified position. All characters written to the LCD
are placed at the current cursor position, which is automatically advanced.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

488 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

38.2.2.13 PDCLCDWrite

Writes a string to the LCD display.

Prototype:
void
PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

Parameters:
pcStr pointer to the string to be displayed.
ulCount is the number of characters to be displayed.

Description:
This function will display a string on the LCD at the current cursor position. It is the caller’s
responsibility to position the cursor to the place where the string should be displayed (either
explicitly via PDCLCDSetPos() or implicitly from where the cursor was left after a previous
call to PDCLCDWrite()), and to properly account for the LCD boundary (line wrapping is not
automatically performed). Null characters are not treated special and are written to the LCD,
which interprets it as a special programmable character glyph (see PDCLCDCreateChar()).

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

38.2.2.14 PDCLEDRead

Read the current status of the PDC LEDs.

Prototype:
unsigned char
PDCLEDRead(void)

Description:
This function will read the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The value currently displayed by the LEDs.

38.2.2.15 PDCLEDWrite

Write to the PDC LEDs.

Prototype:
void
PDCLEDWrite(unsigned char ucLED)

September 29, 2008 489

DK-LM3S818 Example Applications

Parameters:
ucLED value to write to the LEDs.

Description:
This function set the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

38.2.2.16 PDCRead

Read a PDC register.

Prototype:
unsigned char
PDCRead(unsigned char ucAddr)

Parameters:
ucAddr specifies the PDC register to read.

Description:
This function will perform the SSI transfers required to read a register in the PDC on the Stel-
laris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
Returns the value read from the PDC.

38.2.2.17 PDCWrite

Write a PDC register.

Prototype:
void
PDCWrite(unsigned char ucAddr,

unsigned char ucData)

Parameters:
ucAddr specifies the PDC register to write.
ucData specifies the data to write.

Description:
This function will perform the SSI transfers required to write a register in the PDC on the
Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

490 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

38.3 Examples

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

September 29, 2008 491

DK-LM3S818 Example Applications

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

Comparator (comparator)

This example application demonstrates the operation of the analog comparator(s). Comparator
zero (which is present on all devices that have analog comparators) is configured to compare its
negative input to an internally generated 1.65 V reference and toggle the state of the LED on port
B0 based on comparator change interrupts. The LED will be turned on by the interrupt handler
when a rising edge on the comparator output is detected, and will be turned off when a falling edge
is detected.

In order for this example to work properly, the ULED0 (JP22) jumper must be installed on the board.

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the user push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO. Note that because of errata in Rev Bx and Rev C0 of
Sandstorm-class Stellaris microcontrollers, JTAG and SWD will not function if PB7 is configured as
a GPIO. This errata is fixed in Rev C2 of Sandstorm-class Stellaris microcontrollers.

GPIO (gpio_led)

This example application uses LEDs connected to GPIO pins to create a “roving eye” display. Port
B0-B3 are driven in a sequential manner to give the illusion of an eye looking back and forth.

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), ULED2 (JP24),
and ULED3 (JP25) jumpers must be installed on the board, and the PB1 (JP1) jumper on the
daughtercard must be set to pins 2 & 3.

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the LCD and is a starting
point for more complicated applications.

492 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, preemp-
tion will occur; in the other two cases tail-chaining will occur. The currently pending interrupts and
the currently executing interrupt will be displayed on the LCD; individual LEDs connected to port
B0-B2 will be turned on upon interrupt handler entry and off before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), and ULED2 (JP24)
jumpers must be installed on the board, and the PB1 (JP1) jumper on the daughtercard must be
set to pins 2 & 3.

MPU (mpu_fault)

This example application demonstrates the use of the MPU to protect a region of memory from
access, and to generate a memory management fault when there is an access violation.

PWM (pwmgen)

This example application utilizes the PWM peripheral to output a 25% duty cycle PWM signal and
a 75% duty cycle PWM signal, both at 50 kHz. Once configured, the application enters an infinite
loop, doing nothing while the PWM peripheral continues to output its signals.

DK-LM3S818 Quickstart Application (qs_dk-lm3s818)

This example uses the potentiometer on the development board to vary the rate of a repetitive beep
from the piezo buzzer, while the light sensor will vary the frequency of the beep. Turning the knob
in one direction will result in slower beeps while turning it in the other direction will result in faster
beeps. The amount of light falling on the light sensor affects the frequency of the beep. The more
light falling on the sensor the higher the pitch of the beep. The potentiometer setting along with
the “note” representing the pitch of the beep is displayed on the LCD, and a log of the readings is
output on the UART at 115,200, 8-n-1. The push button can be used to turn the beeping noise on
and off; when off the LCD and UART still provide the settings.

In the default jumper configuration of the development board, the push button will not actually mute
the beep. In order for this example to fully work, the following jumper wire connections must be
made: JP19 pin 2 to J6 pin 6.

SSI (ssi_atmel)

This example application uses the SSI master to communicate with the Atmel AT25F1024A EEP-
ROM that is on the development board. The first 256 bytes of the EEPROM are erased and then
programmed with an incrementing sequence. The data is then read back to verify its correctness.
The transfer is managed by an interrupt handler in response to the SSI interrupt; since a 256-byte

September 29, 2008 493

DK-LM3S818 Example Applications

read at a 1 MHz SSI bus speed takes around 2 ms, this allows a lot of other processing to occur
during the transfer (though that time is not utilized by this example).

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own GPIO (port B0 and B1) on each interrupt; the attached LED will
indicate the occurrence and rate of interrupts.

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (the SER0 connector on the
Stellaris Family Development Board) will be configured in 115,200 baud, 8-n-1 mode. All characters
received on the UART are transmitted back to the UART.

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED connected to port B0 is inverted so that it is easy to see that it is being fed, which
occurs once every second.

494 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

39 DK-LM3S828 Example Applications
Introduction .495
API Functions . 495
Examples .503

39.1 Introduction

The DK-LM3S828 example applications show how to utilize features of the Cortex-M3 micropro-
cessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the peripheral
driver library. These applications are intended for demonstration and as a starting point for new
applications.

There is a board specific driver for the Peripheral Device Controller on the Stellaris Family Devel-
opment Kit board. The PDC is used to access the character LCD, eight user LEDs, eight user DIP
switches, and twenty-four GPIOs.

There is an IAR workspace file (dk-lm3s828.eww) that contains the peripheral driver library
project, along with all of the board example projects, in a single, easy to use workspace for use
with Embedded Workbench version 5.

There is also an equivalent IAR workspace file (dk-lm3s828-ewarm4.eww) for use with Embed-
ded Workbench version 4.42a.

There is a Keil multi-project workspace file (dk-lm3s828.mpw) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

All of these examples reside in the boards/dk-lm3s828 subdirectory of the peripheral driver
library source distribution.

39.2 API Functions

Functions
unsigned char PDCDIPRead (void)
unsigned char PDCGPIODirRead (unsigned char ucIdx)
void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)
unsigned char PDCGPIORead (unsigned char ucIdx)
void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)
void PDCInit (void)
void PDCLCDBacklightOff (void)
void PDCLCDBacklightOn (void)
void PDCLCDClear (void)
void PDCLCDCreateChar (unsigned char ucChar, unsigned char ∗pucData)
void PDCLCDInit (void)
void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)
void PDCLCDWrite (const char ∗pcStr, unsigned long ulCount)

September 29, 2008 495

DK-LM3S828 Example Applications

unsigned char PDCLEDRead (void)
void PDCLEDWrite (unsigned char ucLED)
unsigned char PDCRead (unsigned char ucAddr)
void PDCWrite (unsigned char ucAddr, unsigned char ucData)

39.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

39.2.2 Function Documentation

39.2.2.1 PDCDIPRead

Read the current value of the PDC DIP switches.

Prototype:
unsigned char
PDCDIPRead(void)

Description:
This function will read the current value of the DIP switches attached to the PDC on the Stellaris
development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The current state of the DIP switches.

39.2.2.2 PDCGPIODirRead

Reads a GPIO direction register.

Prototype:
unsigned char
PDCGPIODirRead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO direction registers in the PDC. The direction bit is set for
pins that are outputs and clear for pins that are inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the direction register.

496 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

39.2.2.3 PDCGPIODirWrite

Write a GPIO direction register.

Prototype:
void
PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

Parameters:
ucIdx is the index of the GPIO direction register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO direction register.

Description:
This function writes ones of the GPIO direction registers in the PDC. The direction bit should
be set for pins that are to be outputs and clear for pins that are to be inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

39.2.2.4 PDCGPIORead

Reads a GPIO data register.

Prototype:
unsigned char
PDCGPIORead(unsigned char ucIdx)

Parameters:
ucIdx is the index of the GPIO direction register to read; valid values are 0, 1, and 2.

Description:
This function reads one of the GPIO data registers in the PDC. The value returned for a pin is
the value being driven out for outputs or the value being read for inputs.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The contents of the data register.

39.2.2.5 PDCGPIOWrite

Write a GPIO data register.

Prototype:
void
PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

September 29, 2008 497

DK-LM3S828 Example Applications

Parameters:
ucIdx is the index of the GPIO data register to write; valid values are 0, 1, and 2.
ucValue is the value to write to the GPIO data register.

Description:
This function writes one of the GPIO direction registers in the PDC. The written to a pin is
driven out for output pins and ignored for input pins.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

39.2.2.6 PDCInit

Initializes the connection to the PDC.

Prototype:
void
PDCInit(void)

Description:
This function will enable clocking to the SSI and GPIO A modules, configure the GPIO pins to
be used for an SSI interface, and it will configure the SSI as a 1 Mbps master device, operating
in MOTO mode. It will also enable the SSI module, and will enable the chip select for the PDC
on the Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

39.2.2.7 PDCLCDBacklightOff

Turn off the backlight.

Prototype:
void
PDCLCDBacklightOff(void)

Description:
This function turns off the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

498 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

39.2.2.8 PDCLCDBacklightOn

Turns on the backlight.

Prototype:
void
PDCLCDBacklightOn(void)

Description:
This function turns on the backlight on the LCD.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

39.2.2.9 PDCLCDClear

Clear the screen.

Prototype:
void
PDCLCDClear(void)

Description:
This function clears the contents of the LCD screen. The cursor will be returned to the upper
left corner.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

39.2.2.10 PDCLCDCreateChar

Write a character pattern to the LCD.

Prototype:
void
PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

Parameters:
ucChar is the character index to create. Valid values are zero through seven.
pucData is the data for the character pattern. It contains eight bytes, with the first byte being

the top row of the pattern. In each byte, the LSB is the right pixel of the pattern.

Description:
This function will write a character pattern into the LCD for use as a character to be displayed.
After writing the pattern, it can be used on the LCD by writing the corresponding character
index to the display.

September 29, 2008 499

DK-LM3S828 Example Applications

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

39.2.2.11 PDCLCDInit

Initializes the LCD display.

Prototype:
void
PDCLCDInit(void)

Description:
This function will set up the LCD display for writing. It will set the data bus to 8 bits, set the
number of lines to 2, and the font size to 5x10. It will also turn the display off, clear the display,
turn the display back on, and enable the backlight.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Note:
The PDC must be initialized via the PDCInit() function before this function can be called. Also,
it may be necessary to adjust the contrast potentiometer in order to discern any output on the
LCD display.

Returns:
None.

39.2.2.12 PDCLCDSetPos

Set the position of the cursor.

Prototype:
void
PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

Parameters:
ucX is the horizontal position. Valid values are zero through fifteen.
ucY is the vertical position.. Valid values are zero and one.

Description:
This function will move the cursor to the specified position. All characters written to the LCD
are placed at the current cursor position, which is automatically advanced.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

500 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

39.2.2.13 PDCLCDWrite

Writes a string to the LCD display.

Prototype:
void
PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

Parameters:
pcStr pointer to the string to be displayed.
ulCount is the number of characters to be displayed.

Description:
This function will display a string on the LCD at the current cursor position. It is the caller’s
responsibility to position the cursor to the place where the string should be displayed (either
explicitly via PDCLCDSetPos() or implicitly from where the cursor was left after a previous
call to PDCLCDWrite()), and to properly account for the LCD boundary (line wrapping is not
automatically performed). Null characters are not treated special and are written to the LCD,
which interprets it as a special programmable character glyph (see PDCLCDCreateChar()).

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

39.2.2.14 PDCLEDRead

Read the current status of the PDC LEDs.

Prototype:
unsigned char
PDCLEDRead(void)

Description:
This function will read the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
The value currently displayed by the LEDs.

39.2.2.15 PDCLEDWrite

Write to the PDC LEDs.

Prototype:
void
PDCLEDWrite(unsigned char ucLED)

September 29, 2008 501

DK-LM3S828 Example Applications

Parameters:
ucLED value to write to the LEDs.

Description:
This function set the state of the LEDs connected to the PDC on the Stellaris development
board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
None.

39.2.2.16 PDCRead

Read a PDC register.

Prototype:
unsigned char
PDCRead(unsigned char ucAddr)

Parameters:
ucAddr specifies the PDC register to read.

Description:
This function will perform the SSI transfers required to read a register in the PDC on the Stel-
laris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

Returns:
Returns the value read from the PDC.

39.2.2.17 PDCWrite

Write a PDC register.

Prototype:
void
PDCWrite(unsigned char ucAddr,

unsigned char ucData)

Parameters:
ucAddr specifies the PDC register to write.
ucData specifies the data to write.

Description:
This function will perform the SSI transfers required to write a register in the PDC on the
Stellaris development board.

This function is contained in pdc.c, with pdc.h containing the API definition for use by appli-
cations.

502 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

39.3 Examples

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

September 29, 2008 503

DK-LM3S828 Example Applications

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the user push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO. Note that because of errata in Rev Bx and Rev C0 of
Sandstorm-class Stellaris microcontrollers, JTAG and SWD will not function if PB7 is configured as
a GPIO. This errata is fixed in Rev C2 of Sandstorm-class Stellaris microcontrollers.

GPIO (gpio_led)

This example application uses LEDs connected to GPIO pins to create a “roving eye” display. Port
B0-B3 are driven in a sequential manner to give the illusion of an eye looking back and forth.

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), ULED2 (JP24),
and ULED3 (JP25) jumpers must be installed on the board, and the PB1 (JP1) jumper on the
daughtercard must be set to pins 2 & 3.

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the LCD and is a starting
point for more complicated applications.

I2C (i2c_atmel)

This example application uses the I2C master to communicate with the Atmel AT24C08A EEPROM
that is on the development board. The first sixteen bytes of the EEPROM are erased and then
programmed with an incrementing sequence. The data is then read back to verify its correctness.
The transfer is managed by an interrupt handler in response to the I2C interrupt; since a sixteen-
byte read at a 100 kHz I2C bus speed takes almost 2 ms, this allows a lot of other processing to
occur during the transfer (though that time is not utilized by this example).

In order for this example to work properly, the I2C_SCL (JP14), I2C_SDA (JP13), and I2CM_A2
(JP11) jumpers must be installed on the board, and the I2CM_WP (JP12) jumper must be removed.

504 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, preemp-
tion will occur; in the other two cases tail-chaining will occur. The currently pending interrupts and
the currently executing interrupt will be displayed on the LCD; individual LEDs connected to port
B0-B2 will be turned on upon interrupt handler entry and off before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

In order for this example to work properly, the ULED0 (JP22), ULED1 (JP23), and ULED2 (JP24)
jumpers must be installed on the board, and the PB1 (JP1) jumper on the daughtercard must be
set to pins 2 & 3.

MPU (mpu_fault)

This example application demonstrates the use of the MPU to protect a region of memory from
access, and to generate a memory management fault when there is an access violation.

DK-LM3S828 Quickstart Application (qs_dk-lm3s828)

This example uses the potentiometer on the development board to vary the rate of a click sound
from the piezo buzzer. Turning the knob in one direction will result in slower clicks while turning it
in the other direction will result in faster clicks. The potentiometer setting is displayed on the LCD,
and a log of the readings is output on the UART at 115,200, 8-n-1. The push button can be used to
turn the clicking noise on and off; when off the LCD and UART still provide the settings.

SSI (ssi_atmel)

This example application uses the SSI master to communicate with the Atmel AT25F1024A EEP-
ROM that is on the development board. The first 256 bytes of the EEPROM are erased and then
programmed with an incrementing sequence. The data is then read back to verify its correctness.
The transfer is managed by an interrupt handler in response to the SSI interrupt; since a 256-byte
read at a 1 MHz SSI bus speed takes around 2 ms, this allows a lot of other processing to occur
during the transfer (though that time is not utilized by this example).

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own GPIO (port B0 and B1) on each interrupt; the attached LED will
indicate the occurrence and rate of interrupts.

September 29, 2008 505

DK-LM3S828 Example Applications

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (the SER0 connector on the
Stellaris Family Development Board) will be configured in 115,200 baud, 8-n-1 mode. All characters
received on the UART are transmitted back to the UART.

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED connected to port B0 is inverted so that it is easy to see that it is being fed, which
occurs once every second.

506 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

40 EK-LM3S1968 Example Applications
Introduction .507
API Functions . 508
Examples .516

40.1 Introduction

The EK-LM3S1968 example applications show how to utilize features of the Cortex-M3 micropro-
cessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the peripheral
driver library. These applications are intended for demonstration and as a starting point for new
applications.

There is a board specific driver for the RiTdisplay 128x96 4-bit gray-scale OLED graphical display
on the Stellaris LM3S1968 Evaluation Kit board.

There is also a board specific driver for the Class-D audio amplifier and speaker on the board. In
order to use this driver, the system clock should be as high as possible and must be at least 256
KHz; increasing the system clock rate result in higher quality audio. This driver will play both 8-bit
PCM data and 4-bit ADPCM data; the converter application (converter.c is the source code,
and converter.exe is a pre-built binary) will take raw 16-bit signed PCM data and convert it into
a C array that can be included in an application for playback purposes. For example, to encode
voice.pcm with ADPCM and produce a C array called g_pucVoice:

converter -a -n g_pucVoice -o voice.h voice.pcm

To do the same, but encode to 8-bit PCM:

converter -p -n g_pucVoice -o voice.h voice.pcm

Since the Class-D audio driver will only play 8 KHz mono streams, and the converter application
will only handle raw PCM input, an application such as sox will be needed to convert arbitrary wave
files to the required format. To convert voice.wav to the required format for converter:

sox voice.wav -t raw -r 8000 -c 1 -s -w voice.pcm polyphase

The polyphase at the end selects a higher quality sample rate conversion algorithm. It may be
helpful (and/or necessary) to also include vol {factor} before polyphase in order to increase
the volume of the waveform. If sox complains of clipping, the volume needs to be reduced.

sox can be found at http://sox.sourceforge.net. There are numerous other audio applica-
tions (both open source and commercial) that can be used instead of sox.

There is an IAR workspace file (ek-lm3s1968.eww) that contains the peripheral driver library
project, along with all of the board example projects, in a single, easy to use workspace for use with
Embedded Workbench version 5.

There is also an equivalent IAR workspace file (ek-lm3s1968-ewarm4.eww) for use with Embed-
ded Workbench version 4.42a.

There is a Keil multi-project workspace file (ek-lm3s1968.mpw) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

September 29, 2008 507

http://sox.sourceforge.net

EK-LM3S1968 Example Applications

All of these examples reside in the boards/ek-lm3s1968 subdirectory of the peripheral driver
library source distribution.

40.2 API Functions

Functions
tBoolean ClassDBusy (void)
void ClassDInit (unsigned long ulPWMClock)
void ClassDPlayADPCM (const unsigned char ∗pucBuffer, unsigned long ulLength)
void ClassDPlayPCM (const unsigned char ∗pucBuffer, unsigned long ulLength)
void ClassDPWMHandler (void)
void ClassDStop (void)
void ClassDVolumeDown (unsigned long ulVolume)
void ClassDVolumeSet (unsigned long ulVolume)
void ClassDVolumeUp (unsigned long ulVolume)
void RIT128x96x4Clear (void)
void RIT128x96x4Disable (void)
void RIT128x96x4DisplayOff (void)
void RIT128x96x4DisplayOn (void)
void RIT128x96x4Enable (unsigned long ulFrequency)
void RIT128x96x4ImageDraw (const unsigned char ∗pucImage, unsigned long ulX, unsigned
long ulY, unsigned long ulWidth, unsigned long ulHeight)
void RIT128x96x4Init (unsigned long ulFrequency)
void RIT128x96x4StringDraw (const char ∗pcStr, unsigned long ulX, unsigned long ulY, un-
signed char ucLevel)

40.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

40.2.2 Function Documentation

40.2.2.1 ClassDBusy

Determines if the Class-D audio driver is busy.

Prototype:
tBoolean
ClassDBusy(void)

Description:
This function determines if the Class-D audio driver is busy, either performing the startup or
shutdown ramp for the speaker or playing an audio stream.

508 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Returns:
Returns true if the Class-D audio driver is busy and false otherwise.

40.2.2.2 ClassDInit

Initializes the Class-D audio driver.

Prototype:
void
ClassDInit(unsigned long ulPWMClock)

Parameters:
ulPWMClock is the rate of the clock supplied to the PWM module.

Description:
This function initializes the Class-D audio driver, preparing it to output audio data to the
speaker.

The PWM module clock should be as high as possible; lower clock rates reduces the quality
of the produced audio. For the best quality audio, the PWM module should be clocked at 50
MHz.

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Note:
In order for the Class-D audio driver to function properly, the Class-D audio driver interrupt
handler (ClassDPWMHandler()) must be installed into the vector table for the PWM1 interrupt.

Returns:
None.

40.2.2.3 ClassDPlayADPCM

Plays a buffer of 8 KHz IMA ADPCM data.

Prototype:
void
ClassDPlayADPCM(const unsigned char *pucBuffer,

unsigned long ulLength)

Parameters:
pucBuffer is a pointer to the buffer containing the IMA ADPCM encoded data.
ulLength is the number of bytes in the buffer.

Description:
This function starts playback of a stream of IMA ADPCM encoded data. The data is decoded as
needed and therefore does not require a large buffer in SRAM. This provides a 2:1 compression
ratio relative to raw 8-bit PCM with little to no loss in audio quality.

September 29, 2008 509

EK-LM3S1968 Example Applications

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Returns:
None.

40.2.2.4 ClassDPlayPCM

Plays a buffer of 8 KHz, 8-bit, unsigned PCM data.

Prototype:
void
ClassDPlayPCM(const unsigned char *pucBuffer,

unsigned long ulLength)

Parameters:
pucBuffer is a pointer to the buffer containing 8-bit, unsigned PCM data.
ulLength is the number of bytes in the buffer.

Description:
This function starts playback of a stream of 8-bit, unsigned PCM data. Since the data is
unsigned, a value of 128 represents the mid-point of the speaker’s travel (that is, corresponds
to no DC offset).

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Returns:
None.

40.2.2.5 ClassDPWMHandler

Handles the PWM1 interrupt.

Prototype:
void
ClassDPWMHandler(void)

Description:
This function responds to the PWM1 interrupt, updating the duty cycle of the output waveform
in order to produce sound. It is the application’s responsibility to ensure that this function is
called in response to the PWM1 interrupt, typically by installing it in the vector table as the
handler for the PWM1 interrupt.

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Returns:
None.

510 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

40.2.2.6 ClassDStop

Stops playback of the current audio stream.

Prototype:
void
ClassDStop(void)

Description:
This function immediately stops playback of the current audio stream. As a result, the output
is changed directly to the mid-point, possibly resulting in a pop or click. It is then ramped down
to no output, eliminating the current draw through the Class-D amplifier and speaker.

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Returns:
None.

40.2.2.7 ClassDVolumeDown

Decreases the volume of the audio playback.

Prototype:
void
ClassDVolumeDown(unsigned long ulVolume)

Parameters:
ulVolume is the amount by which to decrease the volume of the audio playback, specified as

a value between 0 (for no adjustment) and 256 maximum adjustment).

Description:
This function decreases the volume of the audio playback relative to the current volume.

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Returns:
None.

40.2.2.8 ClassDVolumeSet

Sets the volume of the audio playback.

Prototype:
void
ClassDVolumeSet(unsigned long ulVolume)

Parameters:
ulVolume is the volume of the audio playback, specified as a value between 0 (for silence)

and 256 (for full volume).

September 29, 2008 511

EK-LM3S1968 Example Applications

Description:
This function sets the volume of the audio playback. Setting the volume to 0 will mute the out-
put, while setting the volume to 256 will play the audio stream without any volume adjustment
(that is, full volume).

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Returns:
None.

40.2.2.9 ClassDVolumeUp

Increases the volume of the audio playback.

Prototype:
void
ClassDVolumeUp(unsigned long ulVolume)

Parameters:
ulVolume is the amount by which to increase the volume of the audio playback, specified as

a value between 0 (for no adjustment) and 256 maximum adjustment).

Description:
This function increases the volume of the audio playback relative to the current volume.

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Returns:
None.

40.2.2.10 RIT128x96x4Clear

Clears the OLED display.

Prototype:
void
RIT128x96x4Clear(void)

Description:
This function will clear the display RAM. All pixels in the display will be turned off.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

512 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

40.2.2.11 RIT128x96x4Disable

Enable the SSI component of the OLED display driver.

Prototype:
void
RIT128x96x4Disable(void)

Description:
This function initializes the SSI interface to the OLED display.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

40.2.2.12 RIT128x96x4DisplayOff

Turns off the OLED display.

Prototype:
void
RIT128x96x4DisplayOff(void)

Description:
This function will turn off the OLED display. This will stop the scanning of the panel and turn
off the on-chip DC-DC converter, preventing damage to the panel due to burn-in (it has similar
characters to a CRT in this respect).

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

40.2.2.13 RIT128x96x4DisplayOn

Turns on the OLED display.

Prototype:
void
RIT128x96x4DisplayOn(void)

Description:
This function will turn on the OLED display, causing it to display the contents of its internal
frame buffer.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

September 29, 2008 513

EK-LM3S1968 Example Applications

40.2.2.14 RIT128x96x4Enable

Enable the SSI component of the OLED display driver.

Prototype:
void
RIT128x96x4Enable(unsigned long ulFrequency)

Parameters:
ulFrequency specifies the SSI Clock Frequency to be used.

Description:
This function initializes the SSI interface to the OLED display.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

40.2.2.15 RIT128x96x4ImageDraw

Displays an image on the OLED display.

Prototype:
void
RIT128x96x4ImageDraw(const unsigned char *pucImage,

unsigned long ulX,
unsigned long ulY,
unsigned long ulWidth,
unsigned long ulHeight)

Parameters:
pucImage is a pointer to the image data.
ulX is the horizontal position to display this image, specified in columns from the left edge of

the display.
ulY is the vertical position to display this image, specified in rows from the top of the display.
ulWidth is the width of the image, specified in columns.
ulHeight is the height of the image, specified in rows.

Description:
This function will display a bitmap graphic on the display. Because of the format of the dis-
play RAM, the starting column (ulX) and the number of columns (ulWidth) must be an integer
multiple of two.

The image data is organized with the first row of image data appearing left to right, followed
immediately by the second row of image data. Each byte contains the data for two columns in
the current row, with the leftmost column being contained in bits 7:4 and the rightmost column
being contained in bits 3:0.

For example, an image six columns wide and seven scan lines tall would be arranged as follows
(showing how the twenty one bytes of the image would appear on the display):

514 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

+-------------------+-------------------+-------------------+
| Byte 0 | Byte 1 | Byte 2 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 3 | Byte 4 | Byte 5 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 6 | Byte 7 | Byte 8 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 9 | Byte 10 | Byte 11 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 12 | Byte 13 | Byte 14 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 15 | Byte 16 | Byte 17 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 18 | Byte 19 | Byte 20 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

40.2.2.16 RIT128x96x4Init

Initialize the OLED display.

Prototype:
void
RIT128x96x4Init(unsigned long ulFrequency)

Parameters:
ulFrequency specifies the SSI Clock Frequency to be used.

Description:
This function initializes the SSI interface to the OLED display and configures the SSD1329
controller on the panel.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

September 29, 2008 515

EK-LM3S1968 Example Applications

40.2.2.17 RIT128x96x4StringDraw

Displays a string on the OLED display.

Prototype:
void
RIT128x96x4StringDraw(const char *pcStr,

unsigned long ulX,
unsigned long ulY,
unsigned char ucLevel)

Parameters:
pcStr is a pointer to the string to display.
ulX is the horizontal position to display the string, specified in columns from the left edge of

the display.
ulY is the vertical position to display the string, specified in rows from the top edge of the

display.
ucLevel is the 4-bit gray scale value to be used for displayed text.

Description:
This function will draw a string on the display. Only the ASCII characters between 32 (space)
and 126 (tilde) are supported; other characters will result in random data being draw on the
display (based on whatever appears before/after the font in memory). The font is mono-spaced,
so characters such as “i” and “l” have more white space around them than characters such as
“m” or “w”.

If the drawing of the string reaches the right edge of the display, no more characters will be
drawn. Therefore, special care is not required to avoid supplying a string that is “too long” to
display.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Note:
Because the OLED display packs 2 pixels of data in a single byte, the parameter ulX must be
an even column number (for example, 0, 2, 4, and so on).

Returns:
None.

40.3 Examples

Audio Playback (audio)

This example application plays audio via the Class-D amplifier and speaker. The same source
audio clip is provided in both PCM and ADPCM format so that the audio quality can be compared.

516 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

September 29, 2008 517

EK-LM3S1968 Example Applications

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the select push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO.

Graphics Example (graphics)

A simple application that displays scrolling text on the top line of the OLED display, along with a
4-bit gray scale image.

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the OLED and is a starting
point for more complicated applications.

Hibernate Example (hibernate)

An example to demonstrate the use of the Hibernation module. The user can put the microcontroller
in hibernation by pressing the select button. The microcontroller will then wake on its own after 5
seconds, or immediately if the user presses the select button again. The program keeps a count
of the number of times it has entered hibernation. The value of the counter is stored in the battery
backed memory of the Hibernation module so that it can be retrieved when the microcontroller
wakes.

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, pre-
emption will occur; in the other two cases tail-chaining will occur. The currently pending interrupts
and the currently executing interrupt will be displayed on the OLED; GPIO pins B0, B1 and B2 will
be asserted upon interrupt handler entry and de-asserted before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

MPU (mpu_fault)

This example application demonstrates the use of the MPU to protect a region of memory from
access, and to generate a memory management fault when there is an access violation.

518 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

PWM (pwmgen)

This example application utilizes the PWM peripheral to output a 25% duty cycle PWM signal and
a 75% duty cycle PWM signal, both at 440 Hz. Once configured, the application enters an infinite
loop, doing nothing while the PWM peripheral continues to output its signals.

EK-LM3S1968 Quickstart Application (qs_ek-lm3s1968)

A game in which a blob-like character tries to find its way out of a maze. The character starts in the
middle of the maze and must find the exit, which will always be located at one of the four corners
of the maze. Once the exit to the maze is located, the character is placed into the middle of a new
maze and must find the exit to that maze; this repeats endlessly.

The game is started by pressing the select push button on the right side of the board. During game
play, the select push button will fire a bullet in the direction the character is currently facing, and
the navigation push buttons on the left side of the board will cause the character to walk in the
corresponding direction.

Populating the maze are a hundred spinning stars that mindlessly attack the character. Contact
with one of these stars results in the game ending, but the stars go away when shot.

Score is accumulated for shooting the stars and for finding the exit to the maze. The game lasts for
only one character, and the score is displayed on the virtual UART at 115,200, 8-N-1 during game
play and will be displayed on the screen at the end of the game.

Since the OLED display on the evaluation board has burn-in characteristics similar to a CRT, the
application also contains a screen saver. The screen saver will only become active if two minutes
have passed without the user push button being pressed while waiting to start the game (that is,
it will never come on during game play). Qix-style bouncing lines are drawn on the display by the
screen saver.

After two minutes of running the screen saver, the processor will enter hibernation mode, and the
red LED will turn on. Hibernation mode will be exited by pressing the select push button. The select
push button will then need to be pressed again to start the game.

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own indicator on the display.

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (connected to the FTDI
virtual serial port on the evaluation board) will be configured in 115,200 baud, 8-n-1 mode. All
characters received on the UART are transmitted back to the UART.

September 29, 2008 519

EK-LM3S1968 Example Applications

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED is inverted so that it is easy to see that it is being fed, which occurs once every
second.

520 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

41 EK-LM3S2965 Example Applications
Introduction .521
API Functions . 521
Examples .526

41.1 Introduction

The EK-LM3S2965 example applications show how to utilize features of the Cortex-M3 micropro-
cessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the peripheral
driver library. These applications are intended for demonstration and as a starting point for new
applications.

There is a board specific driver for the OSRAM 128x64 4-bit gray-scale OLED graphical display on
the Stellaris LM3S2965 Evaluation Kit boards.

These examples and display driver are for the EK-LM3S2965 Rev A boards, which utilize the
128x64 OSRAM display. The Rev A boards can be identified by looking on the back of the cir-
cuit board opposite the JTAG header. The board part number is located there and will end with an
“A”. If the board part number ends with a “C”, then refer instead to the examples chapter for the
EK-LM3S2965 Rev C Example Applications.

There is an IAR workspace file (ek-lm3s2965.eww) that contains the peripheral driver library
project, along with all of the board example projects, in a single, easy to use workspace for use with
Embedded Workbench version 5.

There is also an equivalent IAR workspace file (ek-lm3s2965-ewarm4.eww) for use with Embed-
ded Workbench version 4.42a.

There is a Keil multi-project workspace file (ek-lm3s2965.mpw) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

All of these examples reside in the boards/ek-lm3s2965 subdirectory of the peripheral driver
library source distribution.

41.2 API Functions

Functions
void OSRAM128x64x4Clear (void)
void OSRAM128x64x4Disable (void)
void OSRAM128x64x4DisplayOff (void)
void OSRAM128x64x4DisplayOn (void)
void OSRAM128x64x4Enable (unsigned long ulFrequency)
void OSRAM128x64x4ImageDraw (const unsigned char ∗pucImage, unsigned long ulX, un-
signed long ulY, unsigned long ulWidth, unsigned long ulHeight)
void OSRAM128x64x4Init (unsigned long ulFrequency)

September 29, 2008 521

EK-LM3S2965 Example Applications

void OSRAM128x64x4StringDraw (const char ∗pcStr, unsigned long ulX, unsigned long ulY,
unsigned char ucLevel)

41.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

41.2.2 Function Documentation

41.2.2.1 OSRAM128x64x4Clear

Clears the OLED display.

Prototype:
void
OSRAM128x64x4Clear(void)

Description:
This function will clear the display RAM. All pixels in the display will be turned off.

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Returns:
None.

41.2.2.2 OSRAM128x64x4Disable

Enable the SSI component of the OLED display driver.

Prototype:
void
OSRAM128x64x4Disable(void)

Description:
This function initializes the SSI interface to the OLED display.

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Returns:
None.

41.2.2.3 OSRAM128x64x4DisplayOff

Turns off the OLED display.

522 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
OSRAM128x64x4DisplayOff(void)

Description:
This function will turn off the OLED display. This will stop the scanning of the panel and turn
off the on-chip DC-DC converter, preventing damage to the panel due to burn-in (it has similar
characters to a CRT in this respect).

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Returns:
None.

41.2.2.4 OSRAM128x64x4DisplayOn

Turns on the OLED display.

Prototype:
void
OSRAM128x64x4DisplayOn(void)

Description:
This function will turn on the OLED display, causing it to display the contents of its internal
frame buffer.

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Returns:
None.

41.2.2.5 OSRAM128x64x4Enable

Enable the SSI component of the OLED display driver.

Prototype:
void
OSRAM128x64x4Enable(unsigned long ulFrequency)

Parameters:
ulFrequency specifies the SSI Clock Frequency to be used.

Description:
This function initializes the SSI interface to the OLED display.

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Returns:
None.

September 29, 2008 523

EK-LM3S2965 Example Applications

41.2.2.6 OSRAM128x64x4ImageDraw

Displays an image on the OLED display.

Prototype:
void
OSRAM128x64x4ImageDraw(const unsigned char *pucImage,

unsigned long ulX,
unsigned long ulY,
unsigned long ulWidth,
unsigned long ulHeight)

Parameters:
pucImage is a pointer to the image data.
ulX is the horizontal position to display this image, specified in columns from the left edge of

the display.
ulY is the vertical position to display this image, specified in rows from the top of the display.
ulWidth is the width of the image, specified in columns.
ulHeight is the height of the image, specified in rows.

Description:
This function will display a bitmap graphic on the display. Because of the format of the dis-
play RAM, the starting column (ulX) and the number of columns (ulWidth) must be an integer
multiple of two.

The image data is organized with the first row of image data appearing left to right, followed
immediately by the second row of image data. Each byte contains the data for two columns in
the current row, with the leftmost column being contained in bits 7:4 and the rightmost column
being contained in bits 3:0.

For example, an image six columns wide and seven scan lines tall would be arranged as follows
(showing how the twenty one bytes of the image would appear on the display):

+-------------------+-------------------+-------------------+
| Byte 0 | Byte 1 | Byte 2 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 3 | Byte 4 | Byte 5 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 6 | Byte 7 | Byte 8 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 9 | Byte 10 | Byte 11 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 12 | Byte 13 | Byte 14 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 15 | Byte 16 | Byte 17 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 18 | Byte 19 | Byte 20 |

524 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Returns:
None.

41.2.2.7 OSRAM128x64x4Init

Initialize the OLED display.

Prototype:
void
OSRAM128x64x4Init(unsigned long ulFrequency)

Parameters:
ulFrequency specifies the SSI Clock Frequency to be used.

Description:
This function initializes the SSI interface to the OLED display and configures the SSD0323
controller on the panel.

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Returns:
None.

41.2.2.8 OSRAM128x64x4StringDraw

Displays a string on the OLED display.

Prototype:
void
OSRAM128x64x4StringDraw(const char *pcStr,

unsigned long ulX,
unsigned long ulY,
unsigned char ucLevel)

Parameters:
pcStr is a pointer to the string to display.
ulX is the horizontal position to display the string, specified in columns from the left edge of

the display.
ulY is the vertical position to display the string, specified in rows from the top edge of the

display.
ucLevel is the 4-bit gray scale value to be used for displayed text.

September 29, 2008 525

EK-LM3S2965 Example Applications

Description:
This function will draw a string on the display. Only the ASCII characters between 32 (space)
and 126 (tilde) are supported; other characters will result in random data being draw on the
display (based on whatever appears before/after the font in memory). The font is mono-spaced,
so characters such as “i” and “l” have more white space around them than characters such as
“m” or “w”.

If the drawing of the string reaches the right edge of the display, no more characters will be
drawn. Therefore, special care is not required to avoid supplying a string that is “too long” to
display.

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Note:
Because the OLED display packs 2 pixels of data in a single byte, the parameter ulX must be
an even column number (for example, 0, 2, 4, and so on).

Returns:
None.

41.3 Examples

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

526 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

CAN Device Board LED Application (can_device_led)

This simple application uses the two buttons on the board as a light switch. When the “up” button
is pressed the status LED will turn on. When the “down” button is pressed, the status LED will turn
off.

CAN Device Board Quickstart Application (can_device_qs)

This application uses the CAN controller to communicate with the evaluation board that is running
the example game. It receives messages over CAN to turn on, turn off, or to pulse the LED on the
device board. It also sends CAN messages when either of the up and down buttons are pressed or
released.

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the select push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO.

September 29, 2008 527

EK-LM3S2965 Example Applications

Graphics Example (graphics)

A simple application that displays scrolling text on the top line of the OLED display, along with a
4-bit gray scale image.

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the OLED and is a starting
point for more complicated applications.

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, pre-
emption will occur; in the other two cases tail-chaining will occur. The currently pending interrupts
and the currently executing interrupt will be displayed on the OLED; GPIO pins B0, B1 and B2 will
be asserted upon interrupt handler entry and de-asserted before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

MPU (mpu_fault)

This example application demonstrates the use of the MPU to protect a region of memory from
access, and to generate a memory management fault when there is an access violation.

PWM (pwmgen)

This example application utilizes the PWM peripheral to output a 25% duty cycle PWM signal and
a 75% duty cycle PWM signal, both at 440 Hz. Once configured, the application enters an infinite
loop, doing nothing while the PWM peripheral continues to output its signals.

EK-LM3S2965 Quickstart Application (qs_ek-lm3s2965)

A game in which a blob-like character tries to find its way out of a maze. The character starts in the
middle of the maze and must find the exit, which will always be located at one of the four corners
of the maze. Once the exit to the maze is located, the character is placed into the middle of a new
maze and must find the exit to that maze; this repeats endlessly.

The game is started by pressing the select push button on the right side of the board. During game
play, the select push button will fire a bullet in the direction the character is currently facing, and
the navigation push buttons on the left side of the board will cause the character to walk in the
corresponding direction.

Populating the maze are a hundred spinning stars that mindlessly attack the character. Contact
with one of these stars results in the game ending, but the stars go away when shot.

528 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Score is accumulated for shooting the stars and for finding the exit to the maze. The game lasts for
only one character, and the score is displayed on the virtual UART at 115,200, 8-N-1 during game
play and will be displayed on the screen at the end of the game.

If the CAN device board is attached and is running the can_device_qs application, the volume of
the music and sound effects can be adjusted over CAN with the two push buttons on the target
board. The LED on the CAN device board will track the state of the LED on the main board via
CAN messages. The operation of the game will not be affected by the absence of the CAN device
board.

Since the OLED display on the evaluation board has burn-in characteristics similar to a CRT, the
application also contains a screen saver. The screen saver will only become active if two minutes
have passed without the user push button being pressed while waiting to start the game (that is,
it will never come on during game play). Qix-style bouncing lines are drawn on the display by the
screen saver.

After two minutes of running the screen saver, the display will be turned off and the user LED will
blink. Either mode of screen saver (bouncing lines or blank display) will be exited by pressing the
select push button. The select push button will then need to be pressed again to start the game.

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own indicator on the display.

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (connected to the FTDI
virtual serial port on the evaluation board) will be configured in 115,200 baud, 8-n-1 mode. All
characters received on the UART are transmitted back to the UART.

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED is inverted so that it is easy to see that it is being fed, which occurs once every
second.

September 29, 2008 529

EK-LM3S2965 Example Applications

530 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

42 EK-LM3S2965 Rev C Example Applications
Introduction .531
API Functions . 531
Examples .536

42.1 Introduction

The EK-LM3S2965 Rev C example applications show how to utilize features of the Cortex-M3
microprocessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the
peripheral driver library. These applications are intended for demonstration and as a starting point
for new applications.

There is a board specific driver for the RiTdisplay 128x96 4-bit gray-scale OLED graphical display
on the Stellaris LM3S2965 Rev C Evaluation Kit boards.

These examples and display driver are for the EK-LM3S2965 Rev C boards, which utilize the
128x96 RiTdisplay display. The Rev C boards can be identified by looking on the back of the
circuit board opposite the JTAG header. The board part number is located there and will end with
an “C”. If the board part number ends with a “A”, then refer instead to the examples chapter for the
EK-LM3S2965 Example Applications.

There is an IAR workspace file (ek-lm3s2965_revc.eww) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with Embedded Workbench version 5.

There is also an equivalent IAR workspace file (ek-lm3s2965_revc-ewarm4.eww) for use with
Embedded Workbench version 4.42a.

There is a Keil multi-project workspace file (ek-lm3s2965_revc.mpw) that contains the peripheral
driver library project, along with all of the board example projects, in a single, easy to use workspace
for use with uVision.

All of these examples reside in the boards/ek-lm3s2965_revc subdirectory of the peripheral
driver library source distribution.

42.2 API Functions

Functions
void RIT128x96x4Clear (void)
void RIT128x96x4Disable (void)
void RIT128x96x4DisplayOff (void)
void RIT128x96x4DisplayOn (void)
void RIT128x96x4Enable (unsigned long ulFrequency)
void RIT128x96x4ImageDraw (const unsigned char ∗pucImage, unsigned long ulX, unsigned
long ulY, unsigned long ulWidth, unsigned long ulHeight)
void RIT128x96x4Init (unsigned long ulFrequency)

September 29, 2008 531

EK-LM3S2965 Rev C Example Applications

void RIT128x96x4StringDraw (const char ∗pcStr, unsigned long ulX, unsigned long ulY, un-
signed char ucLevel)

42.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

42.2.2 Function Documentation

42.2.2.1 RIT128x96x4Clear

Clears the OLED display.

Prototype:
void
RIT128x96x4Clear(void)

Description:
This function will clear the display RAM. All pixels in the display will be turned off.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

42.2.2.2 RIT128x96x4Disable

Enable the SSI component of the OLED display driver.

Prototype:
void
RIT128x96x4Disable(void)

Description:
This function initializes the SSI interface to the OLED display.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

42.2.2.3 RIT128x96x4DisplayOff

Turns off the OLED display.

532 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
RIT128x96x4DisplayOff(void)

Description:
This function will turn off the OLED display. This will stop the scanning of the panel and turn
off the on-chip DC-DC converter, preventing damage to the panel due to burn-in (it has similar
characters to a CRT in this respect).

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

42.2.2.4 RIT128x96x4DisplayOn

Turns on the OLED display.

Prototype:
void
RIT128x96x4DisplayOn(void)

Description:
This function will turn on the OLED display, causing it to display the contents of its internal
frame buffer.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

42.2.2.5 RIT128x96x4Enable

Enable the SSI component of the OLED display driver.

Prototype:
void
RIT128x96x4Enable(unsigned long ulFrequency)

Parameters:
ulFrequency specifies the SSI Clock Frequency to be used.

Description:
This function initializes the SSI interface to the OLED display.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

September 29, 2008 533

EK-LM3S2965 Rev C Example Applications

42.2.2.6 RIT128x96x4ImageDraw

Displays an image on the OLED display.

Prototype:
void
RIT128x96x4ImageDraw(const unsigned char *pucImage,

unsigned long ulX,
unsigned long ulY,
unsigned long ulWidth,
unsigned long ulHeight)

Parameters:
pucImage is a pointer to the image data.
ulX is the horizontal position to display this image, specified in columns from the left edge of

the display.
ulY is the vertical position to display this image, specified in rows from the top of the display.
ulWidth is the width of the image, specified in columns.
ulHeight is the height of the image, specified in rows.

Description:
This function will display a bitmap graphic on the display. Because of the format of the dis-
play RAM, the starting column (ulX) and the number of columns (ulWidth) must be an integer
multiple of two.

The image data is organized with the first row of image data appearing left to right, followed
immediately by the second row of image data. Each byte contains the data for two columns in
the current row, with the leftmost column being contained in bits 7:4 and the rightmost column
being contained in bits 3:0.

For example, an image six columns wide and seven scan lines tall would be arranged as follows
(showing how the twenty one bytes of the image would appear on the display):

+-------------------+-------------------+-------------------+
| Byte 0 | Byte 1 | Byte 2 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 3 | Byte 4 | Byte 5 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 6 | Byte 7 | Byte 8 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 9 | Byte 10 | Byte 11 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 12 | Byte 13 | Byte 14 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 15 | Byte 16 | Byte 17 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 18 | Byte 19 | Byte 20 |

534 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

42.2.2.7 RIT128x96x4Init

Initialize the OLED display.

Prototype:
void
RIT128x96x4Init(unsigned long ulFrequency)

Parameters:
ulFrequency specifies the SSI Clock Frequency to be used.

Description:
This function initializes the SSI interface to the OLED display and configures the SSD1329
controller on the panel.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

42.2.2.8 RIT128x96x4StringDraw

Displays a string on the OLED display.

Prototype:
void
RIT128x96x4StringDraw(const char *pcStr,

unsigned long ulX,
unsigned long ulY,
unsigned char ucLevel)

Parameters:
pcStr is a pointer to the string to display.
ulX is the horizontal position to display the string, specified in columns from the left edge of

the display.
ulY is the vertical position to display the string, specified in rows from the top edge of the

display.
ucLevel is the 4-bit gray scale value to be used for displayed text.

September 29, 2008 535

EK-LM3S2965 Rev C Example Applications

Description:
This function will draw a string on the display. Only the ASCII characters between 32 (space)
and 126 (tilde) are supported; other characters will result in random data being draw on the
display (based on whatever appears before/after the font in memory). The font is mono-spaced,
so characters such as “i” and “l” have more white space around them than characters such as
“m” or “w”.

If the drawing of the string reaches the right edge of the display, no more characters will be
drawn. Therefore, special care is not required to avoid supplying a string that is “too long” to
display.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Note:
Because the OLED display packs 2 pixels of data in a single byte, the parameter ulX must be
an even column number (for example, 0, 2, 4, and so on).

Returns:
None.

42.3 Examples

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

536 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

CAN Device Board LED Application (can_device_led)

This simple application uses the two buttons on the board as a light switch. When the “up” button
is pressed the status LED will turn on. When the “down” button is pressed, the status LED will turn
off.

CAN Device Board Quickstart Application (can_device_qs)

This application uses the CAN controller to communicate with the evaluation board that is running
the example game. It receives messages over CAN to turn on, turn off, or to pulse the LED on the
device board. It also sends CAN messages when either of the up and down buttons are pressed or
released.

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the select push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO.

September 29, 2008 537

EK-LM3S2965 Rev C Example Applications

Graphics Example (graphics)

A simple application that displays scrolling text on the top line of the OLED display, along with a
4-bit gray scale image.

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the OLED and is a starting
point for more complicated applications.

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, pre-
emption will occur; in the other two cases tail-chaining will occur. The currently pending interrupts
and the currently executing interrupt will be displayed on the OLED; GPIO pins B0, B1 and B2 will
be asserted upon interrupt handler entry and de-asserted before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

MPU (mpu_fault)

This example application demonstrates the use of the MPU to protect a region of memory from
access, and to generate a memory management fault when there is an access violation.

PWM (pwmgen)

This example application utilizes the PWM peripheral to output a 25% duty cycle PWM signal and
a 75% duty cycle PWM signal, both at 440 Hz. Once configured, the application enters an infinite
loop, doing nothing while the PWM peripheral continues to output its signals.

EK-LM3S2965 Rev C Quickstart Application (qs_ek-lm3s2965_revc)

A game in which a blob-like character tries to find its way out of a maze. The character starts in the
middle of the maze and must find the exit, which will always be located at one of the four corners
of the maze. Once the exit to the maze is located, the character is placed into the middle of a new
maze and must find the exit to that maze; this repeats endlessly.

The game is started by pressing the select push button on the right side of the board. During game
play, the select push button will fire a bullet in the direction the character is currently facing, and
the navigation push buttons on the left side of the board will cause the character to walk in the
corresponding direction.

Populating the maze are a hundred spinning stars that mindlessly attack the character. Contact
with one of these stars results in the game ending, but the stars go away when shot.

538 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Score is accumulated for shooting the stars and for finding the exit to the maze. The game lasts for
only one character, and the score is displayed on the virtual UART at 115,200, 8-N-1 during game
play and will be displayed on the screen at the end of the game.

If the CAN device board is attached and is running the can_device_qs application, the volume of
the music and sound effects can be adjusted over CAN with the two push buttons on the target
board. The LED on the CAN device board will track the state of the LED on the main board via
CAN messages. The operation of the game will not be affected by the absence of the CAN device
board.

Since the OLED display on the evaluation board has burn-in characteristics similar to a CRT, the
application also contains a screen saver. The screen saver will only become active if two minutes
have passed without the user push button being pressed while waiting to start the game (that is,
it will never come on during game play). Qix-style bouncing lines are drawn on the display by the
screen saver.

After two minutes of running the screen saver, the display will be turned off and the user LED will
blink. Either mode of screen saver (bouncing lines or blank display) will be exited by pressing the
select push button. The select push button will then need to be pressed again to start the game.

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own indicator on the display.

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (connected to the FTDI
virtual serial port on the evaluation board) will be configured in 115,200 baud, 8-n-1 mode. All
characters received on the UART are transmitted back to the UART.

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED is inverted so that it is easy to see that it is being fed, which occurs once every
second.

September 29, 2008 539

EK-LM3S2965 Rev C Example Applications

540 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

43 EK-LM3S3748 Example Applications
Introduction .541
API Functions . 541
Examples .549

43.1 Introduction

The EK-LM3S3748 example applications show how to utilize features of the Cortex-M3 micropro-
cessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the peripheral
driver library. These applications are intended for demonstration and as a starting point for new
applications.

There are board specific drivers for the Formike Electronic 128x128 color CSTN graphical display
and Class-D audio amplifier and speaker on the Stellaris EK-LM3S3748 Evaluation Kit boards.

There is an IAR workspace file (ek-lm3s3748.eww) that contains the peripheral driver library
project, along with all of the board example projects, in a single, easy to use workspace for use with
Embedded Workbench version 5.

There is also an equivalent IAR workspace file (ek-lm3s3748-ewarm4.eww) for use with Embed-
ded Workbench version 4.42a.

There is a Keil multi-project workspace file (ek-lm3s3748.mpw) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

All of these examples reside in the boards/ek-lm3s3748 subdirectory of the peripheral driver
library source distribution.

43.2 API Functions

Functions
void ButtonsInit (void)
unsigned char ButtonsPoll (unsigned char ∗pucDelta, unsigned char ∗pucRepeat)
void ButtonsSetAutoRepeat (unsigned char ucButtonIDs, unsigned char ucInitialTicks, un-
signed char ucRepeatTicks)
tBoolean ClassDBusy (void)
void ClassDInit (unsigned long ulPWMClock)
void ClassDPlayADPCM (const unsigned char ∗pucBuffer, unsigned long ulLength)
void ClassDPlayPCM (const unsigned char ∗pucBuffer, unsigned long ulLength)
void ClassDPWMHandler (void)
void ClassDStop (void)
void ClassDVolumeDown (unsigned long ulVolume)
void ClassDVolumeSet (unsigned long ulVolume)
void ClassDVolumeUp (unsigned long ulVolume)
void Formike128x128x16BacklightOff (void)

September 29, 2008 541

EK-LM3S3748 Example Applications

void Formike128x128x16BacklightOn (void)
void Formike128x128x16Init (void)

Variables
const tDisplay g_sFormike128x128x16

43.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

43.2.2 Function Documentation

43.2.2.1 ButtonsInit

Initializes the GPIO pins used by the board pushbuttons.

Prototype:
void
ButtonsInit(void)

Description:
This function must be called during application initialization to configure the GPIO pins to which
the pushbuttons are attached. It enables the port used by the buttons and configures each
button GPIO as an input with a weak pull-up.

This function is contained in buttons.c, with buttons.h containing the API definition for
use by applications.

Returns:
None.

43.2.2.2 ButtonsPoll

Polls the current state of the buttons and determines which have changed.

Prototype:
unsigned char
ButtonsPoll(unsigned char *pucDelta,

unsigned char *pucRepeat)

Parameters:
pucDelta points to a character that will be written to indicate which button states changed

since the last time this function was called. This value is derived from the debounced state
of the buttons.

pucRepeat points to a character that will be written to indicate which buttons are signalling an
autorepeat as a result of this call.

542 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function should be called periodically by the application to poll the pushbuttons. It deter-
mines both which buttons have changed state since the last call and also signals autorepeats
based on the button state and the number of ButtonsPoll() calls made since the button was last
pressed.

Autorepeats are signalled at an application-specified rate if a key has been held down for longer
than an initial delay period. To ensure that autorepeats are generated at the desired rate, the
application should ensure that this function is called at a regular period since all autorepeat
timing is calculated in terms of calls to ButtonsPoll().

This function is contained in buttons.c, with buttons.h containing the API definition for
use by applications.

Returns:
Returns the current debounced state of the buttons where a 1 in the button ID’s position indi-
cates that the button is released and a 0 indicates that it is pressed.

43.2.2.3 ButtonsSetAutoRepeat

Sets the autorepeat parameters for one or more buttons.

Prototype:
void
ButtonsSetAutoRepeat(unsigned char ucButtonIDs,

unsigned char ucInitialTicks,
unsigned char ucRepeatTicks)

Parameters:
ucButtonIDs is a bitmask containing the ORed IDs of the buttons whose autorepeat parame-

ters are to be set.
ucInitialTicks is the number of ticks (calls to ButtonsPoll()) before the first autorepeat is re-

ported for the key if it is pressed for an extended period.
ucRepeatTicks is the number of ticks that must elapse after the initial period (ucInitialTicks)

has expired between each subsequent autorepeat is reported for the key.

Description:
This function may be called to change the autorepeat delay and repeat period for one or more
keys. Autorepeat allows an application to be signalled periodically if any key is held down for
an extended period of time. After an initial delay following the original button press, a repeat
signal flag is generated at a period determined by ucRepeatTicks and the interval between
calls to ButtonsPoll().

For example, to configure a button such that it starts autorepeating 500mS after it is initially
pressed and signals an autorepeat every 100mS until it is released, and assuming that Button-
sPoll() is called every 50mS, the following parameters would be used:

ucInitialTicks = 10

ucRepeatTicks = 2

This function is contained in buttons.c, with buttons.h containing the API definition for
use by applications.

September 29, 2008 543

EK-LM3S3748 Example Applications

Returns:
None.

43.2.2.4 ClassDBusy

Determines if the Class-D audio driver is busy.

Prototype:
tBoolean
ClassDBusy(void)

Description:
This function determines if the Class-D audio driver is busy, either performing the startup or
shutdown ramp for the speaker or playing an audio stream.

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Returns:
Returns true if the Class-D audio driver is busy and false otherwise.

43.2.2.5 ClassDInit

Initializes the Class-D audio driver.

Prototype:
void
ClassDInit(unsigned long ulPWMClock)

Parameters:
ulPWMClock is the rate of the clock supplied to the PWM module.

Description:
This function initializes the Class-D audio driver, preparing it to output audio data to the
speaker.

The PWM module clock should be as high as possible; lower clock rates reduces the quality
of the produced audio. For the best quality audio, the PWM module should be clocked at 50
MHz.

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Note:
In order for the Class-D audio driver to function properly, the Class-D audio driver interrupt
handler (ClassDPWMHandler()) must be installed into the vector table for the PWM1 interrupt.

Returns:
None.

544 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

43.2.2.6 ClassDPlayADPCM

Plays a buffer of 8 KHz IMA ADPCM data.

Prototype:
void
ClassDPlayADPCM(const unsigned char *pucBuffer,

unsigned long ulLength)

Parameters:
pucBuffer is a pointer to the buffer containing the IMA ADPCM encoded data.
ulLength is the number of bytes in the buffer.

Description:
This function starts playback of a stream of IMA ADPCM encoded data. The data is decoded as
needed and therefore does not require a large buffer in SRAM. This provides a 2:1 compression
ratio relative to raw 8-bit PCM with little to no loss in audio quality.

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Returns:
None.

43.2.2.7 ClassDPlayPCM

Plays a buffer of 8 KHz, 8-bit, unsigned PCM data.

Prototype:
void
ClassDPlayPCM(const unsigned char *pucBuffer,

unsigned long ulLength)

Parameters:
pucBuffer is a pointer to the buffer containing 8-bit, unsigned PCM data.
ulLength is the number of bytes in the buffer.

Description:
This function starts playback of a stream of 8-bit, unsigned PCM data. Since the data is
unsigned, a value of 128 represents the mid-point of the speaker’s travel (that is, corresponds
to no DC offset).

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Returns:
None.

43.2.2.8 ClassDPWMHandler

Handles the PWM1 interrupt.

September 29, 2008 545

EK-LM3S3748 Example Applications

Prototype:
void
ClassDPWMHandler(void)

Description:
This function responds to the PWM1 interrupt, updating the duty cycle of the output waveform
in order to produce sound. It is the application’s responsibility to ensure that this function is
called in response to the PWM1 interrupt, typically by installing it in the vector table as the
handler for the PWM1 interrupt.

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Returns:
None.

43.2.2.9 ClassDStop

Stops playback of the current audio stream.

Prototype:
void
ClassDStop(void)

Description:
This function immediately stops playback of the current audio stream. As a result, the output
is changed directly to the mid-point, possibly resulting in a pop or click. It is then ramped down
to no output, eliminating the current draw through the Class-D amplifier and speaker.

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Returns:
None.

43.2.2.10 ClassDVolumeDown

Decreases the volume of the audio playback.

Prototype:
void
ClassDVolumeDown(unsigned long ulVolume)

Parameters:
ulVolume is the amount by which to decrease the volume of the audio playback, specified as

a value between 0 (for no adjustment) and 256 maximum adjustment).

Description:
This function decreases the volume of the audio playback relative to the current volume.

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

546 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

43.2.2.11 ClassDVolumeSet

Sets the volume of the audio playback.

Prototype:
void
ClassDVolumeSet(unsigned long ulVolume)

Parameters:
ulVolume is the volume of the audio playback, specified as a value between 0 (for silence)

and 256 (for full volume).

Description:
This function sets the volume of the audio playback. Setting the volume to 0 will mute the out-
put, while setting the volume to 256 will play the audio stream without any volume adjustment
(that is, full volume).

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Returns:
None.

43.2.2.12 ClassDVolumeUp

Increases the volume of the audio playback.

Prototype:
void
ClassDVolumeUp(unsigned long ulVolume)

Parameters:
ulVolume is the amount by which to increase the volume of the audio playback, specified as

a value between 0 (for no adjustment) and 256 maximum adjustment).

Description:
This function increases the volume of the audio playback relative to the current volume.

This function is contained in class-d.c, with class-d.h containing the API definition for
use by applications.

Returns:
None.

43.2.2.13 Formike128x128x16BacklightOff

Turns off the backlight.

September 29, 2008 547

EK-LM3S3748 Example Applications

Prototype:
void
Formike128x128x16BacklightOff(void)

Description:
This function turns off the backlight on the display.

Returns:
None.

43.2.2.14 Formike128x128x16BacklightOn

Turns on the backlight.

Prototype:
void
Formike128x128x16BacklightOn(void)

Description:
This function turns on the backlight on the display.

Returns:
None.

43.2.2.15 Formike128x128x16Init

Initializes the display driver.

Prototype:
void
Formike128x128x16Init(void)

Description:
This function initializes the ST7637 display controller on the panel, preparing it to display data.

Returns:
None.

43.2.3 Variable Documentation

43.2.3.1 g_sFormike128x128x16

Definition:
const tDisplay g_sFormike128x128x16

Description:
The display structure that describes the driver for the Formike Electronic KWH015C04-F01
CSTN panel with an ST7637 controller.

548 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

43.3 Examples

Audio Playback (audio)

This example application plays audio via the Class-D amplifier and speaker. The same source
audio clip is provided in both PCM and ADPCM format so that the audio quality can be compared.

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the ROM-based boot loader. At startup, the application will
configure the UART and branch to the boot loader to await the start of an update. The UART will
always be configured at 115,200 baud and does not require the use of auto-bauding.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the ROM-based boot loader. At startup, the application will
configure the UART, wait for the select button to be pressed, and then branch to the boot loader to
await the start of an update. The UART will always be configured at 115,200 baud and does not
require the use of auto-bauding.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the select push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the

September 29, 2008 549

EK-LM3S3748 Example Applications

push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, four pins (PC0, PC1, PC2, and PC3) are switched.

Graphics Library Demonstration (grlib_demo)

This application provides a demonstration of the capabilities of the Stellaris Graphics Library. The
display will be configured to demonstrate the available drawing primitives: lines, circles, rectangles,
strings, and images.

Hello World (hello)

A very simple “hello world” example. It simply displays “Hello World!” on the display and is a starting
point for more complicated applications.

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, pre-
emption will occur; in the other two cases tail-chaining will occur. The currently pending interrupts
and the currently executing interrupt will be displayed on the display; GPIO pins D0, D1 and D2 will
be asserted upon interrupt handler entry and de-asserted before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

MPU (mpu_fault)

This example application demonstrates the use of the MPU to protect a region of memory from
access, and to generate a memory management fault when there is an access violation.

PWM (pwmgen)

This example application utilizes the PWM peripheral to output a 20% duty cycle PWM signal and
a 80% duty cycle PWM signal, both at 8000 Hz. Once configured, the application enters an infinite
loop, doing nothing while the PWM peripheral continues to output its signals.

Quickstart Oscilloscope (qs-scope)

A two channel oscilloscope implemented using the Stellaris microcontroller’s analog-to-digital con-
verter (ADC). The oscilloscope supports sample rates of up to 1M sample per second and will
show the captured waveforms on the CSTN display. On-screen menus provide user control over
timebase, channel voltage scale and position, trigger type, trigger level and trigger position. Other

550 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

features include the ability to save captured data as comma-separated-value files suitable for use
with spreadsheet applications or bitmap images on either an installed microSD card or a USB flash
drive. The board may also be connected to a WindowsXP or Vista host system and controlled
remotely using a Windows application.

Oscilloscope User Interface

All oscilloscope controls and settings are accessed using the navigation control on the board. This
control offers up, down, left, right and select functions in a single unit. Rocking the control in the
desired direction sends “up”, “down”, “left” or “right” messages to the application and pressing on
the center sends a “select” message.

Controls and settings are arranged into groups by function such as display settings, trigger settings,
file operations and setup choices. These groups are accessed by pressing “select” to display the
main menu. With the menu displayed, use “up” and “down” to select between the available groups.
When the desired group is highlighted, press “select” once again to dismiss the menu.

Controls from the currently selected group are shown in the bottom portion of the application display.
Use “up” and “down” to cycle through the controls in the group and “left” and “right” to change the
value of, or select the action associated with the control which is currently displayed.

The control groups and the individual controls offered by each are outlined below:

Group Control Setting
----- ------- -------

Display
Channel 2 ON or OFF.
Timebase Select values from 2uS to 50mS per division.
Ch1 Scale Select values from 100mV to 10V per division.
Ch2 Scale Select values from 100mV to 10V per division.
Ch1 Offset Press and hold "left" or "right" to move the

waveform up or down in 100mV increments.
Ch2 Offset Press and hold "left" or "right" to move the

waveform up or down in 100mV increments.
Trigger

Trigger The trigger type - Always, Rising, Falling or
Level.

Trig Channel 1 or 2 to select the channel used for triggering.
Trig Level Press and hold "left" or "right" to change the

trigger level in 100mV increments.
Trig Pos Press and hold "left" or "right" to move the

trigger position on the display.
Mode Running or Stopped.
One Shot If the current mode is "Stopped", pressing

"left" or "right" initiates capture and display
of a single waveform.

Setup
Captions Select ON to show the timebase and scale

captions or OFF to remove them from the display.
Voltages Select ON to show the measured voltages for each

channel or OFF to remove them from the display.
Grid Select ON to show the graticule lines or OFF to

remove them from the display.
Ground Select ON to show dotted lines corresponding

to the ground levels for each channel or OFF
to remove them from the display.

Trig Level Select ON to show a solid horizontal line
corresponding to the trigger level for the
trigger channel or OFF to remove this line from
the display.

Trig Pos Select ON to show a solid vertical line at the
trigger position or OFF to remove this line from

September 29, 2008 551

EK-LM3S3748 Example Applications

the display.
Clicks Select ON to enable sounds on button presses or

OFF to disable them.
USB Mode Select Host to operate in USB host mode and

allow use of flash memory sticks, or Device to
operate as a USB device and allow connection to
a host PC system.

File
CSV on SD Save the current waveform data as a text file

on an installed microSD card.
CSV on USB Save the current waveform data as a text file

on an installed USB flash stick (if in USB host
mode - see the Setup group above).

BMP on SD Save the current waveform display as a bitmap
on an installed microSD card.

BMP on USB Save the current waveform display as a bitmap
on an installed USB flash stick (if in USB host
mode - see the Setup group above).

Help
Help Pressing "left" or "right" will show or hide the

screen showing oscilloscope connection help.
Channel 1 Pressing "left" or "right" will cause the scale

and position for the channel 1 waveform to be set
such that the waveform is visible on the display.

Channel 2 Pressing "left" or "right" will cause the scale
and position for the channel 2 waveform to be set
such that the waveform is visible on the display.

Oscilloscope Connections

The 8 pins immediately above the CSTN display panel offer connections for both channels of the
oscilloscope and also two test signals that can be used to provide input in the absence of any other
suitable signals. Each channel input must lie in the range -16.5V to +16.5V relative to the board
ground allowing differences of up to 33V to be measured.

The connections are as follow where pin 1 is the leftmost pin, nearest the microSD card socket:

1 Test 1 A test signal connected to one side of the speaker on
the board.

2 Channel 1+ This is the positive connection for channel 1 of the
oscilloscope.

3 Channel 1- This is the negative connection for channel 1 of the
oscilloscope.

4 Ground This is connected to board ground.
5 Test 2 A test signal connected to the board Status LED which

is driven from PWM0. This signal is configured to
provide a 1KHz square wave.

6 Channel 2+ This is the positive connection for channel 2 of the
oscilloscope.

7 Channel 2- This is the negative connection for channel 2 of the
oscilloscope.

8 Ground This is connected to board ground.

Triggering and Sample Rate Notes

The oscilloscope can sample at a maximum combined rate of 1M samples per second. When
both channels are enabled, therefore, the maximum sample rate on each channel is 500K samples
per second. For maximum resolution at the lowest timebases (maximum samples rates), disable
channel 2 if it is not required. These sample rates give usable waveform capture for signals up to
around 100KHz.

Trigger detection is performed in software during ADC interrupt handling. At the highest sampling
rates, this interrupt service routine consumes almost all the available CPU cycles when searching

552 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

for trigger conditions. At these sample rates, if a trigger level is set which does not correspond to
a voltage that is ever seen in the trigger channel signal, the user interface response can become
sluggish. To combat this, the oscilloscope will abort any pending waveform capture operation if a
key is pressed before the capture cycle as completed. This prevents the user interface from being
locked out and allows the trigger level or type to be changed to values more appropriate for the
signal being measured.

File Operations

Comma-separated-value or bitmap files representing the last waveform captured may be saved to
either a microSD card or a USB flash drive. In each case, the files are written to the root directory
of the microSD card or flash drive with filenames of the form “scopeXXX.csv” or “scopeXXX.bmp”
where “XXX” represents the lowest, three digit, decimal number which offers a filename which does
not already exist on the device.

Companion Application

A companion application, LMScope, which runs on WindowsXP and Vista PCs and the required
device driver installer are available on the software CD and via download from the Luminary Micro
web site at http://www.luminarymicro.com/products/software_updates.html. This
application offers full control of the oscilloscope from the PC and allows waveform display and save
to local hard disk.

SD card using FAT file system (sd_card)

This example application demonstrates reading a file system from an SD card. It makes use of
FatFs, a FAT file system driver. It provides a simple command console via a serial port for issuing
commands to view and navigate the file system on the SD card.

The first UART, which is connected to the FTDI virtual serial port on the Stellaris LM3S3748 Eval-
uation Board, is configured for 115,200 bits per second, and 8-n-1 mode. When the program is
started a message will be printed to the terminal. Type “help” for command help.

For additional details about FatFs, see the following site:
http://elm-chan.org/fsw/ff/00index_e.html

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own indicator on the display.

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (connected to the FTDI
virtual serial port on the evaluation board) will be configured in 115,200 baud, 8-n-1 mode. All
characters received on the UART are transmitted back to the UART.

September 29, 2008 553

http://www.luminarymicro.com/products/software_updates.html.
http://elm-chan.org/fsw/ff/00index_e.html

EK-LM3S3748 Example Applications

uDMA (udma_demo)

This example application demonstrates the use of the uDMA controller to transfer data between
memory buffers, and to transfer data to and from a UART.

USB Generic Bulk Device (usb_dev_bulk)

This example provides a generic USB device offering simple bulk data transfer to and from the host.
The device uses a vendor-specific class ID and supports a single bulk IN endpoint and a single bulk
OUT endpoint. Data received from the host is assumed to be ASCII text and it is echoed back with
the case of all alphabetic characters swapped.

A Windows INF file for the device is provided on the installation CD. This INF contains infor-
mation required to install the WinUSB subsystem on WindowsXP and Vista PCs. WinUSB is
a Windows subsystem allowing user mode applications to access the USB device without the
need for a vendor-specific kernel mode driver. A sample Windows command-line application,
usb_bulk_example, illustrating how to connect to and communicate with the bulk device is also
provided as part of the Windows examples package on the installation CD or via download from
http://www.luminarymicro.com/products/software_updates.html. Project files are
included to allow the examples to be build using Microsoft VisualStudio 2005.

USB HID Keyboard Device (usb_dev_keyboard)

This example application turns the evaluation board into a USB keyboard supporting the Human
Interface Device class. The CSTN display shows a virtual keyboard which can be navigated using
the direction control button on the board. Pressing down on the button presses the highlighted key,
sending its usage code and, if necessary, a shift modifier, to the USB host. The board status LED
is used to indicate the current Caps Lock state and is updated in response to pressing the “Caps”
key on the virtual keyboard or any other keyboard attached to the same USB host system.

The device implemented by this application also supports USB remote wakeup allowing it to request
the host to reactivate a suspended bus. If the bus is suspended (as indicated on the application dis-
play), pressing the Select key will request a remote wakeup assuming the host has not specifically
disabled such requests.

USB HID Mouse Device (usb_dev_mouse)

This example application turns the evaluation board into a USB mouse supporting the Human
Interface Device class. Presses on the navigation control on the evaluation board are translated
into mouse movement and button press messages in HID reports sent to the USB host allowing the
evaluation board to control the mouse pointer on the host system.

USB Serial Device (usb_dev_serial)

This example application turns the evaluation kit into a virtual serial port when connected to the
USB host system. The application supports the USB Communication Device Class, Abstract Con-
trol Model to redirect UART0 traffic to and from the USB host system. File usb_dev_serial_win2k.inf

554 September 29, 2008

http://www.luminarymicro.com/products/software_updates.html.

Stellaris Peripheral Driver Library User’s Guide

may be used to install the example as a virtual COM port on a Windows2000 system. For Win-
dowsXP or Vista, usb_dev_serial.inf should be used.

USB HID Keyboard Host (usb_host_keyboard)

This example application demonstrates how to support a USB keyboard attached to the evaluation
kit board. The display will show if a keyboard is currently connected and the current state of the
Caps Lock key on the keyboard that is connected on the bottom status area of the screen. Pressing
any keys on the keyboard will cause them to be printed on the screen and to be sent out the UART
at 115200 baud with no parity, 8 bits and 1 stop bit. Any keyboard that supports the USB HID bios
protocol should work with this demo application.

USB HID Mouse Host (usb_host_mouse)

This example application demonstrates how to support a USB mouse attached to the evaluation kit
board. The display will show if a mouse is currently connected and the current state of the buttons
on the on the bottom status area of the screen. The main drawing area will show a mouse cursor
that can be moved around in the main area of the screen. If the left mouse button is held while
moving the mouse, the cursor will draw on the screen. A side effect of the application not being
able to read the current state of the screen is that the cursor will erase anything it moves over while
the left mouse button is not pressed.

USB Mass Storage Class Host (usb_host_msc)

This example application demonstrates how to connect a USB mass storage class device to the
evaluation kit. When a device is detected, the application displays the contents of the file system
and allows browsing using the buttons.

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED is inverted so that it is easy to see that it is being fed, which occurs once every
second.

September 29, 2008 555

EK-LM3S3748 Example Applications

556 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

44 EK-LM3S6965 Example Applications
Introduction .557
API Functions . 557
Building Web Server File System Images . 562
Examples .563

44.1 Introduction

The EK-LM3S6965 example applications show how to utilize features of the Cortex-M3 micropro-
cessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the peripheral
driver library. These applications are intended for demonstration and as a starting point for new
applications.

There is a board specific driver for the OSRAM 128x64 4-bit gray-scale OLED graphical display on
the Stellaris LM3S6965 Evaluation Kit boards.

These examples and display driver are for the EK-LM3S6965 Rev A boards, which utilize the
128x64 OSRAM display. The Rev A boards can be identified by looking on the back of the cir-
cuit board opposite the JTAG header. The board part number is located there and will end with an
“A”. If the board part number ends with a “C”, then refer instead to the examples chapter for the
EK-LM3S6965 Rev C Example Applications.

There is an IAR workspace file (ek-lm3s6965.eww) that contains the peripheral driver library
project, along with all of the board example projects, in a single, easy to use workspace for use with
Embedded Workbench version 5.

There is also an equivalent IAR workspace file (ek-lm3s6965-ewarm4.eww) for use with Embed-
ded Workbench version 4.42a.

There is a Keil multi-project workspace file (ek-lm3s6965.mpw) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

All of these examples reside in the boards/ek-lm3s6965 subdirectory of the peripheral driver
library source distribution.

44.2 API Functions

Functions
void OSRAM128x64x4Clear (void)
void OSRAM128x64x4Disable (void)
void OSRAM128x64x4DisplayOff (void)
void OSRAM128x64x4DisplayOn (void)
void OSRAM128x64x4Enable (unsigned long ulFrequency)
void OSRAM128x64x4ImageDraw (const unsigned char ∗pucImage, unsigned long ulX, un-
signed long ulY, unsigned long ulWidth, unsigned long ulHeight)
void OSRAM128x64x4Init (unsigned long ulFrequency)

September 29, 2008 557

EK-LM3S6965 Example Applications

void OSRAM128x64x4StringDraw (const char ∗pcStr, unsigned long ulX, unsigned long ulY,
unsigned char ucLevel)

44.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

44.2.2 Function Documentation

44.2.2.1 OSRAM128x64x4Clear

Clears the OLED display.

Prototype:
void
OSRAM128x64x4Clear(void)

Description:
This function will clear the display RAM. All pixels in the display will be turned off.

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Returns:
None.

44.2.2.2 OSRAM128x64x4Disable

Enable the SSI component of the OLED display driver.

Prototype:
void
OSRAM128x64x4Disable(void)

Description:
This function initializes the SSI interface to the OLED display.

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Returns:
None.

44.2.2.3 OSRAM128x64x4DisplayOff

Turns off the OLED display.

558 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
OSRAM128x64x4DisplayOff(void)

Description:
This function will turn off the OLED display. This will stop the scanning of the panel and turn
off the on-chip DC-DC converter, preventing damage to the panel due to burn-in (it has similar
characters to a CRT in this respect).

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Returns:
None.

44.2.2.4 OSRAM128x64x4DisplayOn

Turns on the OLED display.

Prototype:
void
OSRAM128x64x4DisplayOn(void)

Description:
This function will turn on the OLED display, causing it to display the contents of its internal
frame buffer.

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Returns:
None.

44.2.2.5 OSRAM128x64x4Enable

Enable the SSI component of the OLED display driver.

Prototype:
void
OSRAM128x64x4Enable(unsigned long ulFrequency)

Parameters:
ulFrequency specifies the SSI Clock Frequency to be used.

Description:
This function initializes the SSI interface to the OLED display.

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Returns:
None.

September 29, 2008 559

EK-LM3S6965 Example Applications

44.2.2.6 OSRAM128x64x4ImageDraw

Displays an image on the OLED display.

Prototype:
void
OSRAM128x64x4ImageDraw(const unsigned char *pucImage,

unsigned long ulX,
unsigned long ulY,
unsigned long ulWidth,
unsigned long ulHeight)

Parameters:
pucImage is a pointer to the image data.
ulX is the horizontal position to display this image, specified in columns from the left edge of

the display.
ulY is the vertical position to display this image, specified in rows from the top of the display.
ulWidth is the width of the image, specified in columns.
ulHeight is the height of the image, specified in rows.

Description:
This function will display a bitmap graphic on the display. Because of the format of the dis-
play RAM, the starting column (ulX) and the number of columns (ulWidth) must be an integer
multiple of two.

The image data is organized with the first row of image data appearing left to right, followed
immediately by the second row of image data. Each byte contains the data for two columns in
the current row, with the leftmost column being contained in bits 7:4 and the rightmost column
being contained in bits 3:0.

For example, an image six columns wide and seven scan lines tall would be arranged as follows
(showing how the twenty one bytes of the image would appear on the display):

+-------------------+-------------------+-------------------+
| Byte 0 | Byte 1 | Byte 2 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 3 | Byte 4 | Byte 5 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 6 | Byte 7 | Byte 8 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 9 | Byte 10 | Byte 11 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 12 | Byte 13 | Byte 14 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 15 | Byte 16 | Byte 17 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 18 | Byte 19 | Byte 20 |

560 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Returns:
None.

44.2.2.7 OSRAM128x64x4Init

Initialize the OLED display.

Prototype:
void
OSRAM128x64x4Init(unsigned long ulFrequency)

Parameters:
ulFrequency specifies the SSI Clock Frequency to be used.

Description:
This function initializes the SSI interface to the OLED display and configures the SSD0323
controller on the panel.

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Returns:
None.

44.2.2.8 OSRAM128x64x4StringDraw

Displays a string on the OLED display.

Prototype:
void
OSRAM128x64x4StringDraw(const char *pcStr,

unsigned long ulX,
unsigned long ulY,
unsigned char ucLevel)

Parameters:
pcStr is a pointer to the string to display.
ulX is the horizontal position to display the string, specified in columns from the left edge of

the display.
ulY is the vertical position to display the string, specified in rows from the top edge of the

display.
ucLevel is the 4-bit gray scale value to be used for displayed text.

September 29, 2008 561

EK-LM3S6965 Example Applications

Description:
This function will draw a string on the display. Only the ASCII characters between 32 (space)
and 126 (tilde) are supported; other characters will result in random data being draw on the
display (based on whatever appears before/after the font in memory). The font is mono-spaced,
so characters such as “i” and “l” have more white space around them than characters such as
“m” or “w”.

If the drawing of the string reaches the right edge of the display, no more characters will be
drawn. Therefore, special care is not required to avoid supplying a string that is “too long” to
display.

This function is contained in osram128x64x4.c, with osram128x64x4.h containing the API
definition for use by applications.

Note:
Because the OLED display packs 2 pixels of data in a single byte, the parameter ulX must be
an even column number (for example, 0, 2, 4, and so on).

Returns:
None.

44.3 Building Web Server File System Images

Control and configuration of applications running on an EL-LM3S6965 can be very conveniently
implemented using an embedded HTTP server. This is illustrated in the enet_lwip example appli-
cation.

The data sent to the client by the web server is generated using standard web develop-
ment tools and stored into a normal directory on your development system (for example
C:\DriverLib\boards\ek-lm3s6965\enet_lwip\fs). An application including the relevant file system
drivers may chose to store its configuration web site on an SD card and serve it from there, in
which case all that is required is to copy the required directory structure to the card and ensure that
it is installed in the IDM module microSD slot. This approach frees an application from the limits
imposed by the size of the microcontroller flash but makes the application dependent upon data
that is outside its direct control. Assuming the site size is small enough to fit within the available
flash, another, often better, method is to generate an image of the file system which is embedded
within the application binary and accessed via internal file system calls. Both these approaches are
supported by the enet_lwip example application.

To generate the internal file system image, two tools are provided. Each writes a C output file that
contains an image of all the files contained within a subtree of the development system’s directory
structure.

The first, makefsdata, is a Perl script which can be found in directory third_party/lwip-
1.3.0/apps/httpserver_raw. This script takes 2 parameters - the name of the directory whose con-
tents are to be included within the file system image, and the name of the C file that is to be
written. Running this script from within the enet_lwip example application directory to create the file
lmi-fsdata.c, the syntax would be:

perl ../../../third_party/lwip-1.3.0/apps/httpserver_raw/makefsdata fs
lmi-fsdata.c

If your development system does not have Perl installed, a Windows command line executable
is also provided. This tool, makefsfile.exe, produces output files which are compatible with those

562 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

generated by makefsdata and offers a few additional features that may prove helpful in some cir-
cumstances. To generate the same output file as in the previous example, the syntax for running
makefsfile would be:

..\makefsfile -i fs -o lmi-fsdata.c

By default, the file system image embeds the HTTP headers associated with each file in the file
system image data itself. This is the default assumption of the lwIP web server implementation
and is sensible if using an internal file system image containing a small number of files. If also
serving files from a file system which does not embed the headers (for example the FAT file system
on a microSD card as supported by the enet_lwip application) dynamic header generation must
be used and internal file system images should be built using the -h option to makefsfile. In these
cases, ensure that you also define DYNAMIC_HTTP_HEADERS in the lwipopts.h file to correctly
configure the web server.

The -x option allows an "exclude file" to be specified. This exclude file contains the names of files
and directories within the input directory tree that are to be skipped in the conversion process. If
this option is not present, a default set of file excludes is used. This list contains typical source code
control metadata directory names (".svn" and "CVS") and system files such as "thumbs.db". To see
the default exclude list, run the tool with the -v option and look in the output.

Each file or directory name in the exclude file must be on a separate line within the file and each
must be followed by a standard Windows ("\r\n") or Unix ("\n") line delimiter. The exclude list
must contain individual file or directory names and my not include partial paths. For example
images_old or .svn would be acceptable but images_old/.svn would not.

For a full list of command line options, run makefsfile with the "-?" option.

44.4 Examples

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

September 29, 2008 563

EK-LM3S6965 Example Applications

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

Ethernet with lwIP (enet_lwip)

This example application demonstrates the operation of the Stellaris Ethernet controller using the
lwIP TCP/IP Stack. DHCP is used to obtain an Ethernet address. If DHCP times out without
obtaining an address, AUTOIP will be used to obtain a link-local address. The address that is
selected will be shown on the OLED display.

The file system code will first check to see if an SD card has been plugged into the microSD slot. If
so, all file requests from the web server will be directed to the SD card. Otherwise, a default set of
pages served up by an internal file system will be used.

For additional details on lwIP, refer to the lwIP web page at:
http://www.sics.se/∼adam/lwip/

Ethernet with lwIP (enet_lwip)

This example application demonstrates the operation of the Stellaris Ethernet controller using the
lwIP TCP/IP Stack. DHCP is used to obtain an Ethernet address. If DHCP times out without
obtaining an address, AUTOIP will be used to obtain a link-local address. The address that is
selected will be shown on the OLED display.

564 September 29, 2008

http://www.sics.se/~adam/lwip/

Stellaris Peripheral Driver Library User’s Guide

A default set of pages will be served up by an internal file system and the httpd server.

The IEEE 1588 (PTP) software has been enabled in this code to synchronize the internal clock to
a network master clock source.

Two methods of receive packet timestamping are implemented. The default mode uses the Stellaris
hardware timestamp mechanism to capture Ethernet packet reception time using timer 3B. On parts
which do not support hardware timestamping or if the application is started up with the Evaluation
Kit "Select" button pressed, software time stamping is used.

By default, the system runs without any additional loading over and above that imposed by basic
operation. To simulate a heavier load, the application includes a badly behaved timer interrupt
handler which will merely steal CPU cycles each time it is invoked. To enable this loading, start the
application while pressing the Evaluation Kit "Up" button. The amount of loading imposed by this
interrupt handler can be tailored using labels defined in enet_ptpd.c

For additional details on lwIP, refer to the lwIP web page at:
http://www.sics.se/∼adam/lwip/

For additional details on the PTPd software, refer to the PTPd web page at:
http://ptpd.sourceforge.net

Ethernet with uIP (enet_uip)

This example application demonstrates the operation of the Stellaris Ethernet controller using the
uIP TCP/IP Stack. A basic web site is served over the Ethernet port, located at link local address
169.254.19.63. If a node on the network has already chosen this link local address, nothing is done
by the application to choose another address and a conflict will occur. The web site displays a few
lines of text, and a counter that increments each time the page is sent.

For additional details on uIP, refer to the uIP web page at: http://www.sics.se/∼adam/uip/

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the select push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO.

Graphics Example (graphics)

A simple application that displays scrolling text on the top line of the OLED display, along with a
4-bit gray scale image.

September 29, 2008 565

http://www.sics.se/~adam/lwip/
http://ptpd.sourceforge.net
http://www.sics.se/~adam/uip/

EK-LM3S6965 Example Applications

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the OLED and is a starting
point for more complicated applications.

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, pre-
emption will occur; in the other two cases tail-chaining will occur. The currently pending interrupts
and the currently executing interrupt will be displayed on the OLED; GPIO pins B0, B1 and B2 will
be asserted upon interrupt handler entry and de-asserted before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

MPU (mpu_fault)

This example application demonstrates the use of the MPU to protect a region of memory from
access, and to generate a memory management fault when there is an access violation.

PWM (pwmgen)

This example application utilizes the PWM peripheral to output a 25% duty cycle PWM signal and
a 75% duty cycle PWM signal, both at 440 Hz. Once configured, the application enters an infinite
loop, doing nothing while the PWM peripheral continues to output its signals.

EK-LM3S6965 Quickstart Application (qs_ek-lm3s6965)

A game in which a blob-like character tries to find its way out of a maze. The character starts in the
middle of the maze and must find the exit, which will always be located at one of the four corners
of the maze. Once the exit to the maze is located, the character is placed into the middle of a new
maze and must find the exit to that maze; this repeats endlessly.

The game is started by pressing the select push button on the right side of the board. During game
play, the select push button will fire a bullet in the direction the character is currently facing, and
the navigation push buttons on the left side of the board will cause the character to walk in the
corresponding direction.

Populating the maze are a hundred spinning stars that mindlessly attack the character. Contact
with one of these stars results in the game ending, but the stars go away when shot.

Score is accumulated for shooting the stars and for finding the exit to the maze. The game lasts for
only one character, and the score is displayed on the virtual UART at 115,200, 8-N-1 during game
play and will be displayed on the screen at the end of the game.

A small web site is provided by the game over the Ethernet port. DHCP is used to obtain an
Ethernet address. If DHCP times out without obtaining an address, a static IP address will be used.

566 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

The DHCP timeout and the default static IP are easily configurable using macros. The address that
is selected will be shown on the OLED display before the game starts. The web pages allow the
entire game maze to be viewed, along with the character and stars; the display is generated by a
Java applet that is downloaded from the game (therefore requiring that Java be installed in the web
browser). The volume of the game music and sound effects can also be adjusted.

Since the OLED display on the evaluation board has burn-in characteristics similar to a CRT, the
application also contains a screen saver. The screen saver will only become active if two minutes
have passed without the user push button being pressed while waiting to start the game (that is,
it will never come on during game play). Qix-style bouncing lines are drawn on the display by the
screen saver.

After two minutes of running the screen saver, the display will be turned off and the user LED will
blink. Either mode of screen saver (bouncing lines or blank display) will be exited by pressing the
select push button. The select push button will then need to be pressed again to start the game.

SD card using FAT file system (sd_card)

This example application demonstrates reading a file system from an SD card. It makes use of
FatFs, a FAT file system driver. It provides a simple command console via a serial port for issuing
commands to view and navigate the file system on the SD card.

The first UART, which is connected to the FTDI virtual serial port on the Stellaris LM3S6965 Eval-
uation Board, is configured for 115,200 bits per second, and 8-n-1 mode. When the program is
started a message will be printed to the terminal. Type “help” for command help.

For additional details about FatFs, see the following site:
http://elm-chan.org/fsw/ff/00index_e.html

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own indicator on the display.

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (connected to the FTDI
virtual serial port on the evaluation board) will be configured in 115,200 baud, 8-n-1 mode. All
characters received on the UART are transmitted back to the UART.

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED is inverted so that it is easy to see that it is being fed, which occurs once every
second.

September 29, 2008 567

http://elm-chan.org/fsw/ff/00index_e.html

EK-LM3S6965 Example Applications

568 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

45 EK-LM3S6965 Rev C Example Applications
Introduction .569
API Functions . 569
Building Web Server File System Images . 574
Examples .575

45.1 Introduction

The EK-LM3S6965 Rev C example applications show how to utilize features of the Cortex-M3
microprocessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the
peripheral driver library. These applications are intended for demonstration and as a starting point
for new applications.

There is a board specific driver for the RiTdisplay 128x96 4-bit gray-scale OLED graphical display
on the Stellaris LM3S6965 Rev C Evaluation Kit boards.

These examples and display driver are for the EK-LM3S6965 Rev C boards, which utilize the
128x96 RiTdisplay display. The Rev C boards can be identified by looking on the back of the
circuit board opposite the JTAG header. The board part number is located there and will end with
an “C”. If the board part number ends with a “A”, then refer instead to the examples chapter for the
EK-LM3S6965 Example Applications.

There is an IAR workspace file (ek-lm3s6965_revc.eww) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with Embedded Workbench version 5.

There is also an equivalent IAR workspace file (ek-lm3s6965_revc-ewarm4.eww) for use with
Embedded Workbench version 4.42a.

There is a Keil multi-project workspace file (ek-lm3s6965_revc.mpw) that contains the peripheral
driver library project, along with all of the board example projects, in a single, easy to use workspace
for use with uVision.

All of these examples reside in the boards/ek-lm3s6965_revc subdirectory of the peripheral
driver library source distribution.

45.2 API Functions

Functions
void RIT128x96x4Clear (void)
void RIT128x96x4Disable (void)
void RIT128x96x4DisplayOff (void)
void RIT128x96x4DisplayOn (void)
void RIT128x96x4Enable (unsigned long ulFrequency)
void RIT128x96x4ImageDraw (const unsigned char ∗pucImage, unsigned long ulX, unsigned
long ulY, unsigned long ulWidth, unsigned long ulHeight)
void RIT128x96x4Init (unsigned long ulFrequency)

September 29, 2008 569

EK-LM3S6965 Rev C Example Applications

void RIT128x96x4StringDraw (const char ∗pcStr, unsigned long ulX, unsigned long ulY, un-
signed char ucLevel)

45.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

45.2.2 Function Documentation

45.2.2.1 RIT128x96x4Clear

Clears the OLED display.

Prototype:
void
RIT128x96x4Clear(void)

Description:
This function will clear the display RAM. All pixels in the display will be turned off.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

45.2.2.2 RIT128x96x4Disable

Enable the SSI component of the OLED display driver.

Prototype:
void
RIT128x96x4Disable(void)

Description:
This function initializes the SSI interface to the OLED display.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

45.2.2.3 RIT128x96x4DisplayOff

Turns off the OLED display.

570 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
RIT128x96x4DisplayOff(void)

Description:
This function will turn off the OLED display. This will stop the scanning of the panel and turn
off the on-chip DC-DC converter, preventing damage to the panel due to burn-in (it has similar
characters to a CRT in this respect).

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

45.2.2.4 RIT128x96x4DisplayOn

Turns on the OLED display.

Prototype:
void
RIT128x96x4DisplayOn(void)

Description:
This function will turn on the OLED display, causing it to display the contents of its internal
frame buffer.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

45.2.2.5 RIT128x96x4Enable

Enable the SSI component of the OLED display driver.

Prototype:
void
RIT128x96x4Enable(unsigned long ulFrequency)

Parameters:
ulFrequency specifies the SSI Clock Frequency to be used.

Description:
This function initializes the SSI interface to the OLED display.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

September 29, 2008 571

EK-LM3S6965 Rev C Example Applications

45.2.2.6 RIT128x96x4ImageDraw

Displays an image on the OLED display.

Prototype:
void
RIT128x96x4ImageDraw(const unsigned char *pucImage,

unsigned long ulX,
unsigned long ulY,
unsigned long ulWidth,
unsigned long ulHeight)

Parameters:
pucImage is a pointer to the image data.
ulX is the horizontal position to display this image, specified in columns from the left edge of

the display.
ulY is the vertical position to display this image, specified in rows from the top of the display.
ulWidth is the width of the image, specified in columns.
ulHeight is the height of the image, specified in rows.

Description:
This function will display a bitmap graphic on the display. Because of the format of the dis-
play RAM, the starting column (ulX) and the number of columns (ulWidth) must be an integer
multiple of two.

The image data is organized with the first row of image data appearing left to right, followed
immediately by the second row of image data. Each byte contains the data for two columns in
the current row, with the leftmost column being contained in bits 7:4 and the rightmost column
being contained in bits 3:0.

For example, an image six columns wide and seven scan lines tall would be arranged as follows
(showing how the twenty one bytes of the image would appear on the display):

+-------------------+-------------------+-------------------+
| Byte 0 | Byte 1 | Byte 2 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 3 | Byte 4 | Byte 5 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 6 | Byte 7 | Byte 8 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 9 | Byte 10 | Byte 11 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 12 | Byte 13 | Byte 14 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 15 | Byte 16 | Byte 17 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 18 | Byte 19 | Byte 20 |

572 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

45.2.2.7 RIT128x96x4Init

Initialize the OLED display.

Prototype:
void
RIT128x96x4Init(unsigned long ulFrequency)

Parameters:
ulFrequency specifies the SSI Clock Frequency to be used.

Description:
This function initializes the SSI interface to the OLED display and configures the SSD1329
controller on the panel.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

45.2.2.8 RIT128x96x4StringDraw

Displays a string on the OLED display.

Prototype:
void
RIT128x96x4StringDraw(const char *pcStr,

unsigned long ulX,
unsigned long ulY,
unsigned char ucLevel)

Parameters:
pcStr is a pointer to the string to display.
ulX is the horizontal position to display the string, specified in columns from the left edge of

the display.
ulY is the vertical position to display the string, specified in rows from the top edge of the

display.
ucLevel is the 4-bit gray scale value to be used for displayed text.

September 29, 2008 573

EK-LM3S6965 Rev C Example Applications

Description:
This function will draw a string on the display. Only the ASCII characters between 32 (space)
and 126 (tilde) are supported; other characters will result in random data being draw on the
display (based on whatever appears before/after the font in memory). The font is mono-spaced,
so characters such as “i” and “l” have more white space around them than characters such as
“m” or “w”.

If the drawing of the string reaches the right edge of the display, no more characters will be
drawn. Therefore, special care is not required to avoid supplying a string that is “too long” to
display.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Note:
Because the OLED display packs 2 pixels of data in a single byte, the parameter ulX must be
an even column number (for example, 0, 2, 4, and so on).

Returns:
None.

45.3 Building Web Server File System Images

Control and configuration of applications running on an EL-LM3S6965 can be very conveniently
implemented using an embedded HTTP server. This is illustrated in the enet_lwip example appli-
cation.

The data sent to the client by the web server is generated using standard web develop-
ment tools and stored into a normal directory on your development system (for example
C:\DriverLib\boards\ek-lm3s6965_revc\enet_lwip\fs). An application including the relevant file
system drivers may chose to store its configuration web site on an SD card and serve it from there,
in which case all that is required is to copy the required directory structure to the card and ensure
that it is installed in the IDM module microSD slot. This approach frees an application from the lim-
its imposed by the size of the microcontroller flash but makes the application dependent upon data
that is outside its direct control. Assuming the site size is small enough to fit within the available
flash, another, often better, method is to generate an image of the file system which is embedded
within the application binary and accessed via internal file system calls. Both these approaches are
supported by the enet_lwip example application.

To generate the internal file system image, two tools are provided. Each writes a C output file that
contains an image of all the files contained within a subtree of the development system’s directory
structure.

The first, makefsdata, is a Perl script which can be found in directory third_party/lwip-
1.3.0/apps/httpserver_raw. This script takes 2 parameters - the name of the directory whose con-
tents are to be included within the file system image, and the name of the C file that is to be
written. Running this script from within the enet_lwip example application directory to create the file
lmi-fsdata.c, the syntax would be:

perl ../../../third_party/lwip-1.3.0/apps/httpserver_raw/makefsdata fs
lmi-fsdata.c

If your development system does not have Perl installed, a Windows command line executable
is also provided. This tool, makefsfile.exe, produces output files which are compatible with those

574 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

generated by makefsdata and offers a few additional features that may prove helpful in some cir-
cumstances. To generate the same output file as in the previous example, the syntax for running
makefsfile would be:

..\makefsfile -i fs -o lmi-fsdata.c

By default, the file system image embeds the HTTP headers associated with each file in the file
system image data itself. This is the default assumption of the lwIP web server implementation
and is sensible if using an internal file system image containing a small number of files. If also
serving files from a file system which does not embed the headers (for example the FAT file system
on a microSD card as supported by the enet_lwip application) dynamic header generation must
be used and internal file system images should be built using the -h option to makefsfile. In these
cases, ensure that you also define DYNAMIC_HTTP_HEADERS in the lwipopts.h file to correctly
configure the web server.

The -x option allows an "exclude file" to be specified. This exclude file contains the names of files
and directories within the input directory tree that are to be skipped in the conversion process. If
this option is not present, a default set of file excludes is used. This list contains typical source code
control metadata directory names (".svn" and "CVS") and system files such as "thumbs.db". To see
the default exclude list, run the tool with the -v option and look in the output.

Each file or directory name in the exclude file must be on a separate line within the file and each
must be followed by a standard Windows ("\r\n") or Unix ("\n") line delimiter. The exclude list
must contain individual file or directory names and my not include partial paths. For example
images_old or .svn would be acceptable but images_old/.svn would not.

For a full list of command line options, run makefsfile with the "-?" option.

45.4 Examples

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

September 29, 2008 575

EK-LM3S6965 Rev C Example Applications

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

Ethernet with lwIP (enet_lwip)

This example application demonstrates the operation of the Stellaris Ethernet controller using the
lwIP TCP/IP Stack. DHCP is used to obtain an Ethernet address. If DHCP times out without
obtaining an address, AUTOIP will be used to obtain a link-local address. The address that is
selected will be shown on the OLED display.

The file system code will first check to see if an SD card has been plugged into the microSD slot. If
so, all file requests from the web server will be directed to the SD card. Otherwise, a default set of
pages served up by an internal file system will be used.

For additional details on lwIP, refer to the lwIP web page at:
http://www.sics.se/∼adam/lwip/

Ethernet with lwIP (enet_lwip)

This example application demonstrates the operation of the Stellaris Ethernet controller using the
lwIP TCP/IP Stack. DHCP is used to obtain an Ethernet address. If DHCP times out without
obtaining an address, AUTOIP will be used to obtain a link-local address. The address that is
selected will be shown on the OLED display.

576 September 29, 2008

http://www.sics.se/~adam/lwip/

Stellaris Peripheral Driver Library User’s Guide

A default set of pages will be served up by an internal file system and the httpd server.

The IEEE 1588 (PTP) software has been enabled in this code to synchronize the internal clock to
a network master clock source.

Two methods of receive packet timestamping are implemented. The default mode uses the Stellaris
hardware timestamp mechanism to capture Ethernet packet reception time using timer 3B. On parts
which do not support hardware timestamping or if the application is started up with the Evaluation
Kit "Select" button pressed, software time stamping is used.

By default, the system runs without any additional loading over and above that imposed by basic
operation. To simulate a heavier load, the application includes a badly behaved timer interrupt
handler which will merely steal CPU cycles each time it is invoked. To enable this loading, start the
application while pressing the Evaluation Kit "Up" button. The amount of loading imposed by this
interrupt handler can be tailored using labels defined in enet_ptpd.c

For additional details on lwIP, refer to the lwIP web page at:
http://www.sics.se/∼adam/lwip/

For additional details on the PTPd software, refer to the PTPd web page at:
http://ptpd.sourceforge.net

Ethernet with uIP (enet_uip)

This example application demonstrates the operation of the Stellaris Ethernet controller using the
uIP TCP/IP Stack. A basic web site is served over the Ethernet port, located at link local address
169.254.19.63. If a node on the network has already chosen this link local address, nothing is done
by the application to choose another address and a conflict will occur. The web site displays a few
lines of text, and a counter that increments each time the page is sent.

For additional details on uIP, refer to the uIP web page at: http://www.sics.se/∼adam/uip/

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the select push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO.

Graphics Example (graphics)

A simple application that displays scrolling text on the top line of the OLED display, along with a
4-bit gray scale image.

September 29, 2008 577

http://www.sics.se/~adam/lwip/
http://ptpd.sourceforge.net
http://www.sics.se/~adam/uip/

EK-LM3S6965 Rev C Example Applications

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the OLED and is a starting
point for more complicated applications.

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, pre-
emption will occur; in the other two cases tail-chaining will occur. The currently pending interrupts
and the currently executing interrupt will be displayed on the OLED; GPIO pins B0, B1 and B2 will
be asserted upon interrupt handler entry and de-asserted before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

MPU (mpu_fault)

This example application demonstrates the use of the MPU to protect a region of memory from
access, and to generate a memory management fault when there is an access violation.

PWM (pwmgen)

This example application utilizes the PWM peripheral to output a 25% duty cycle PWM signal and
a 75% duty cycle PWM signal, both at 440 Hz. Once configured, the application enters an infinite
loop, doing nothing while the PWM peripheral continues to output its signals.

EK-LM3S6965 Rev C Quickstart Application (qs_ek-lm3s6965_revc)

A game in which a blob-like character tries to find its way out of a maze. The character starts in the
middle of the maze and must find the exit, which will always be located at one of the four corners
of the maze. Once the exit to the maze is located, the character is placed into the middle of a new
maze and must find the exit to that maze; this repeats endlessly.

The game is started by pressing the select push button on the right side of the board. During game
play, the select push button will fire a bullet in the direction the character is currently facing, and
the navigation push buttons on the left side of the board will cause the character to walk in the
corresponding direction.

Populating the maze are a hundred spinning stars that mindlessly attack the character. Contact
with one of these stars results in the game ending, but the stars go away when shot.

Score is accumulated for shooting the stars and for finding the exit to the maze. The game lasts for
only one character, and the score is displayed on the virtual UART at 115,200, 8-N-1 during game
play and will be displayed on the screen at the end of the game.

A small web site is provided by the game over the Ethernet port. DHCP is used to obtain an
Ethernet address. If DHCP times out without obtaining an address, a static IP address will be used.

578 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

The DHCP timeout and the default static IP are easily configurable using macros. The address that
is selected will be shown on the OLED display before the game starts. The web pages allow the
entire game maze to be viewed, along with the character and stars; the display is generated by a
Java applet that is downloaded from the game (therefore requiring that Java be installed in the web
browser). The volume of the game music and sound effects can also be adjusted.

Since the OLED display on the evaluation board has burn-in characteristics similar to a CRT, the
application also contains a screen saver. The screen saver will only become active if two minutes
have passed without the user push button being pressed while waiting to start the game (that is,
it will never come on during game play). Qix-style bouncing lines are drawn on the display by the
screen saver.

After two minutes of running the screen saver, the display will be turned off and the user LED will
blink. Either mode of screen saver (bouncing lines or blank display) will be exited by pressing the
select push button. The select push button will then need to be pressed again to start the game.

SD card using FAT file system (sd_card)

This example application demonstrates reading a file system from an SD card. It makes use of
FatFs, a FAT file system driver. It provides a simple command console via a serial port for issuing
commands to view and navigate the file system on the SD card.

The first UART, which is connected to the FTDI virtual serial port on the Stellaris LM3S6965 Eval-
uation Board, is configured for 115,200 bits per second, and 8-n-1 mode. When the program is
started a message will be printed to the terminal. Type “help” for command help.

For additional details about FatFs, see the following site:
http://elm-chan.org/fsw/ff/00index_e.html

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own indicator on the display.

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (connected to the FTDI
virtual serial port on the evaluation board) will be configured in 115,200 baud, 8-n-1 mode. All
characters received on the UART are transmitted back to the UART.

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED is inverted so that it is easy to see that it is being fed, which occurs once every
second.

September 29, 2008 579

http://elm-chan.org/fsw/ff/00index_e.html

EK-LM3S6965 Rev C Example Applications

580 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

46 EK-LM3S811 Example Applications
Introduction .581
API Functions . 581
Examples .585

46.1 Introduction

The EK-LM3S811 example applications show how to utilize features of the Cortex-M3 micropro-
cessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the peripheral
driver library. These applications are intended for demonstration and as a starting point for new
applications.

There is a board specific driver for the OSRAM 96x16 OLED graphical display on the Stellaris
LM3S811 Evaluation Kit board.

There is an IAR workspace file (ek-lm3s811.eww) that contains the peripheral driver library
project, along with all of the board example projects, in a single, easy to use workspace for use
with Embedded Workbench version 5.

There is also an equivalent IAR workspace file (ek-lm3s811-ewarm4.eww) for use with Embed-
ded Workbench version 4.42a.

There is a Keil multi-project workspace file (ek-lm3s811.mpw) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

All of these examples reside in the boards/ek-lm3s811 subdirectory of the peripheral driver
library source distribution.

46.2 API Functions

Functions
void OSRAM96x16x1Clear (void)
void OSRAM96x16x1DisplayOff (void)
void OSRAM96x16x1DisplayOn (void)
void OSRAM96x16x1ImageDraw (const unsigned char ∗pucImage, unsigned long ulX, un-
signed long ulY, unsigned long ulWidth, unsigned long ulHeight)
void OSRAM96x16x1Init (tBoolean bFast)
void OSRAM96x16x1StringDraw (const char ∗pcStr, unsigned long ulX, unsigned long ulY)

46.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

September 29, 2008 581

EK-LM3S811 Example Applications

There are macros to map the old function names for the OSRAM driver to the new function names
(such as OSRAMInit to OSRAM96x16x1Init). The new names are more descriptive of the panel
type in use; the macros for the old names are provided for backward compatibility.

46.2.2 Function Documentation

46.2.2.1 OSRAM96x16x1Clear

Clears the OLED display.

Prototype:
void
OSRAM96x16x1Clear(void)

Description:
This function will clear the display. All pixels in the display will be turned off.

This function is contained in osram96x16x1.c, with osram96x16x1.h containing the API
definition for use by applications.

Returns:
None.

46.2.2.2 OSRAM96x16x1DisplayOff

Turns off the OLED display.

Prototype:
void
OSRAM96x16x1DisplayOff(void)

Description:
This function will turn off the OLED display. This will stop the scanning of the panel and turn
off the on-chip DC-DC converter, preventing damage to the panel due to burn-in (it has similar
characters to a CRT in this respect).

This function is contained in osram96x16x1.c, with osram96x16x1.h containing the API
definition for use by applications.

Returns:
None.

46.2.2.3 OSRAM96x16x1DisplayOn

Turns on the OLED display.

Prototype:
void
OSRAM96x16x1DisplayOn(void)

582 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function will turn on the OLED display, causing it to display the contents of its internal
frame buffer.

This function is contained in osram96x16x1.c, with osram96x16x1.h containing the API
definition for use by applications.

Returns:
None.

46.2.2.4 OSRAM96x16x1ImageDraw

Displays an image on the OLED display.

Prototype:
void
OSRAM96x16x1ImageDraw(const unsigned char *pucImage,

unsigned long ulX,
unsigned long ulY,
unsigned long ulWidth,
unsigned long ulHeight)

Parameters:
pucImage is a pointer to the image data.
ulX is the horizontal position to display this image, specified in columns from the left edge of

the display.
ulY is the vertical position to display this image, specified in eight scan line blocks from the top

of the display (that is, only 0 and 1 are valid).
ulWidth is the width of the image, specified in columns.
ulHeight is the height of the image, specified in eight row blocks (that is, only 1 and 2 are

valid).

Description:
This function will display a bitmap graphic on the display. The image to be displayed must be
a multiple of eight scan lines high (that is, one row) and will be drawn at a vertical position that
is a multiple of eight scan lines (that is, scan line zero or scan line eight, corresponding to row
zero or row one).

The image data is organized with the first row of image data appearing left to right, followed
immediately by the second row of image data. Each byte contains the data for the eight scan
lines of the column, with the top scan line being in the least significant bit of the byte and the
bottom scan line being in the most significant bit of the byte.

For example, an image four columns wide and sixteen scan lines tall would be arranged as
follows (showing how the eight bytes of the image would appear on the display):

+-------+ +-------+ +-------+ +-------+
	0			0			0			0
B	1		B	1		B	1		B	1
y	2		y	2		y	2		y	2
t	3		t	3		t	3		t	3
e	4		e	4		e	4		e	4
	5			5			5			5
0	6		1	6		2	6		3	6
	7			7			7			7

September 29, 2008 583

EK-LM3S811 Example Applications

+-------+ +-------+ +-------+ +-------+

+-------+ +-------+ +-------+ +-------+
	0			0			0			0
B	1		B	1		B	1		B	1
y	2		y	2		y	2		y	2
t	3		t	3		t	3		t	3
e	4		e	4		e	4		e	4
	5			5			5			5
4	6		5	6		6	6		7	6
	7			7			7			7
+-------+ +-------+ +-------+ +-------+

This function is contained in osram96x16x1.c, with osram96x16x1.h containing the API
definition for use by applications.

Returns:
None.

46.2.2.5 OSRAM96x16x1Init

Initialize the OLED display.

Prototype:
void
OSRAM96x16x1Init(tBoolean bFast)

Parameters:
bFast is a boolean that is true if the I2C interface should be run at 400 kbps and false if it

should be run at 100 kbps.

Description:
This function initializes the I2C interface to the OLED display and configures the SSD0303
controller on the panel.

This function is contained in osram96x16x1.c, with osram96x16x1.h containing the API
definition for use by applications.

Returns:
None.

46.2.2.6 OSRAM96x16x1StringDraw

Displays a string on the OLED display.

Prototype:
void
OSRAM96x16x1StringDraw(const char *pcStr,

unsigned long ulX,
unsigned long ulY)

Parameters:
pcStr is a pointer to the string to display.

584 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

ulX is the horizontal position to display the string, specified in columns from the left edge of
the display.

ulY is the vertical position to display the string, specified in eight scan line blocks from the top
of the display (that is, only 0 and 1 are valid).

Description:
This function will draw a string on the display. Only the ASCII characters between 32 (space)
and 126 (tilde) are supported; other characters will result in random data being draw on the
display (based on whatever appears before/after the font in memory). The font is mono-spaced,
so characters such as “i” and “l” have more white space around them than characters such as
“m” or “w”.

If the drawing of the string reaches the right edge of the display, no more characters will be
drawn. Therefore, special care is not required to avoid supplying a string that is “too long” to
display.

This function is contained in osram96x16x1.c, with osram96x16x1.h containing the API
definition for use by applications.

Returns:
None.

46.3 Examples

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

September 29, 2008 585

EK-LM3S811 Example Applications

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the user push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO. Note that because of errata in Rev Bx and Rev C0 of
Sandstorm-class Stellaris microcontrollers, JTAG and SWD will not function if PB7 is configured as
a GPIO. This errata is fixed in Rev C2 of Sandstorm-class Stellaris microcontrollers.

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the LCD and is a starting
point for more complicated applications.

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, pre-
emption will occur; in the other two cases tail-chaining will occur. The currently pending interrupts
and the currently executing interrupt will be displayed on the LCD; GPIO pins D0 through D2 will
be asserted upon interrupt handler entry and de-asserted before interrupt handler exit so that the

586 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

MPU (mpu_fault)

This example application demonstrates the use of the MPU to protect a region of memory from
access, and to generate a memory management fault when there is an access violation.

PWM (pwmgen)

This example application utilizes the PWM peripheral to output a 25% duty cycle PWM signal and
a 75% duty cycle PWM signal, both at 50 kHz. Once configured, the application enters an infinite
loop, doing nothing while the PWM peripheral continues to output its signals.

EK-LM3S811 Quickstart Application (qs_ek-lm3s811)

A game in which a ship is navigated through an endless tunnel. The potentiometer is used to move
the ship up and down, and the user push button is used to fire a missile to destroy obstacles in the
tunnel. Score accumulates for survival and for destroying obstacles. The game lasts for only one
ship; the score is displayed on the virtual UART at 115,200, 8-N-1 during game play and will be
displayed on the screen at the end of the game.

Since the OLED display on the evaluation board has burn-in characteristics similar to a CRT, the
application also contains a screen saver. The screen saver will only become active if two minutes
have passed without the user push button being pressed while waiting to start the game (that is, it
will never come on during game play). An implementation of the Game of Life is run with a field of
random data as the seed value.

After two minutes of running the screen saver, the display will be turned off and the user LED will
blink. Either mode of screen saver (Game of Life or blank display) will be exited by pressing the
user push button. The button will then need to be pressed again to start the game.

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own indicator on the display.

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (connected to the FTDI
virtual serial port on the Stellaris LM3S811 Evaluation Board) will be configured in 115,200 baud,
8-n-1 mode. All characters received on the UART are transmitted back to the UART.

September 29, 2008 587

EK-LM3S811 Example Applications

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED connected to port C5 is inverted so that it is easy to see that it is being fed, which
occurs once every second.

588 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

47 EK-LM3S8962 Example Applications
Introduction .589
API Functions . 589
Building Web Server File System Images . 594
Examples .595

47.1 Introduction

The EK-LM3S8962 example applications show how to utilize features of the Cortex-M3 micropro-
cessor, the peripherals on the Stellaris microcontroller, and the drivers provided by the peripheral
driver library. These applications are intended for demonstration and as a starting point for new
applications.

There is a board specific driver for the RiTdisplay 128x96 4-bit gray-scale OLED graphical display
on the Stellaris LM3S8962 Evaluation Kit board.

There is an IAR workspace file (ek-lm3s8962.eww) that contains the peripheral driver library
project, along with all of the board example projects, in a single, easy to use workspace for use with
Embedded Workbench version 5.

There is also an equivalent IAR workspace file (ek-lm3s8962-ewarm4.eww) for use with Embed-
ded Workbench version 4.42a.

There is a Keil multi-project workspace file (ek-lm3s8962.mpw) that contains the peripheral driver
library project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

All of these examples reside in the boards/ek-lm3s8962 subdirectory of the peripheral driver
library source distribution.

47.2 API Functions

Functions
void RIT128x96x4Clear (void)
void RIT128x96x4Disable (void)
void RIT128x96x4DisplayOff (void)
void RIT128x96x4DisplayOn (void)
void RIT128x96x4Enable (unsigned long ulFrequency)
void RIT128x96x4ImageDraw (const unsigned char ∗pucImage, unsigned long ulX, unsigned
long ulY, unsigned long ulWidth, unsigned long ulHeight)
void RIT128x96x4Init (unsigned long ulFrequency)
void RIT128x96x4StringDraw (const char ∗pcStr, unsigned long ulX, unsigned long ulY, un-
signed char ucLevel)

September 29, 2008 589

EK-LM3S8962 Example Applications

47.2.1 Detailed Description

Each API specifies the source file that contains it and the header file that provides the prototype for
application use.

47.2.2 Function Documentation

47.2.2.1 RIT128x96x4Clear

Clears the OLED display.

Prototype:
void
RIT128x96x4Clear(void)

Description:
This function will clear the display RAM. All pixels in the display will be turned off.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

47.2.2.2 RIT128x96x4Disable

Enable the SSI component of the OLED display driver.

Prototype:
void
RIT128x96x4Disable(void)

Description:
This function initializes the SSI interface to the OLED display.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

47.2.2.3 RIT128x96x4DisplayOff

Turns off the OLED display.

Prototype:
void
RIT128x96x4DisplayOff(void)

590 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function will turn off the OLED display. This will stop the scanning of the panel and turn
off the on-chip DC-DC converter, preventing damage to the panel due to burn-in (it has similar
characters to a CRT in this respect).

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

47.2.2.4 RIT128x96x4DisplayOn

Turns on the OLED display.

Prototype:
void
RIT128x96x4DisplayOn(void)

Description:
This function will turn on the OLED display, causing it to display the contents of its internal
frame buffer.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

47.2.2.5 RIT128x96x4Enable

Enable the SSI component of the OLED display driver.

Prototype:
void
RIT128x96x4Enable(unsigned long ulFrequency)

Parameters:
ulFrequency specifies the SSI Clock Frequency to be used.

Description:
This function initializes the SSI interface to the OLED display.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

September 29, 2008 591

EK-LM3S8962 Example Applications

47.2.2.6 RIT128x96x4ImageDraw

Displays an image on the OLED display.

Prototype:
void
RIT128x96x4ImageDraw(const unsigned char *pucImage,

unsigned long ulX,
unsigned long ulY,
unsigned long ulWidth,
unsigned long ulHeight)

Parameters:
pucImage is a pointer to the image data.
ulX is the horizontal position to display this image, specified in columns from the left edge of

the display.
ulY is the vertical position to display this image, specified in rows from the top of the display.
ulWidth is the width of the image, specified in columns.
ulHeight is the height of the image, specified in rows.

Description:
This function will display a bitmap graphic on the display. Because of the format of the dis-
play RAM, the starting column (ulX) and the number of columns (ulWidth) must be an integer
multiple of two.

The image data is organized with the first row of image data appearing left to right, followed
immediately by the second row of image data. Each byte contains the data for two columns in
the current row, with the leftmost column being contained in bits 7:4 and the rightmost column
being contained in bits 3:0.

For example, an image six columns wide and seven scan lines tall would be arranged as follows
(showing how the twenty one bytes of the image would appear on the display):

+-------------------+-------------------+-------------------+
| Byte 0 | Byte 1 | Byte 2 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 3 | Byte 4 | Byte 5 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 6 | Byte 7 | Byte 8 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 9 | Byte 10 | Byte 11 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 12 | Byte 13 | Byte 14 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 15 | Byte 16 | Byte 17 |
+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+
| Byte 18 | Byte 19 | Byte 20 |

592 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

+---------+---------+---------+---------+---------+---------+
| 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
+---------+---------+---------+---------+---------+---------+

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

47.2.2.7 RIT128x96x4Init

Initialize the OLED display.

Prototype:
void
RIT128x96x4Init(unsigned long ulFrequency)

Parameters:
ulFrequency specifies the SSI Clock Frequency to be used.

Description:
This function initializes the SSI interface to the OLED display and configures the SSD1329
controller on the panel.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Returns:
None.

47.2.2.8 RIT128x96x4StringDraw

Displays a string on the OLED display.

Prototype:
void
RIT128x96x4StringDraw(const char *pcStr,

unsigned long ulX,
unsigned long ulY,
unsigned char ucLevel)

Parameters:
pcStr is a pointer to the string to display.
ulX is the horizontal position to display the string, specified in columns from the left edge of

the display.
ulY is the vertical position to display the string, specified in rows from the top edge of the

display.
ucLevel is the 4-bit gray scale value to be used for displayed text.

September 29, 2008 593

EK-LM3S8962 Example Applications

Description:
This function will draw a string on the display. Only the ASCII characters between 32 (space)
and 126 (tilde) are supported; other characters will result in random data being draw on the
display (based on whatever appears before/after the font in memory). The font is mono-spaced,
so characters such as “i” and “l” have more white space around them than characters such as
“m” or “w”.

If the drawing of the string reaches the right edge of the display, no more characters will be
drawn. Therefore, special care is not required to avoid supplying a string that is “too long” to
display.

This function is contained in rit128x96x4.c, with rit128x96x4.h containing the API defi-
nition for use by applications.

Note:
Because the OLED display packs 2 pixels of data in a single byte, the parameter ulX must be
an even column number (for example, 0, 2, 4, and so on).

Returns:
None.

47.3 Building Web Server File System Images

Control and configuration of applications running on an EL-LM3S8962 can be very conveniently
implemented using an embedded HTTP server. This is illustrated in the enet_lwip example appli-
cation.

The data sent to the client by the web server is generated using standard web develop-
ment tools and stored into a normal directory on your development system (for example
C:\DriverLib\boards\ek-lm3s8962\enet_lwip\fs). An application including the relevant file system
drivers may chose to store its configuration web site on an SD card and serve it from there, in
which case all that is required is to copy the required directory structure to the card and ensure that
it is installed in the IDM module microSD slot. This approach frees an application from the limits
imposed by the size of the microcontroller flash but makes the application dependent upon data
that is outside its direct control. Assuming the site size is small enough to fit within the available
flash, another, often better, method is to generate an image of the file system which is embedded
within the application binary and accessed via internal file system calls. Both these approaches are
supported by the enet_lwip example application.

To generate the internal file system image, two tools are provided. Each writes a C output file that
contains an image of all the files contained within a subtree of the development system’s directory
structure.

The first, makefsdata, is a Perl script which can be found in directory third_party/lwip-
1.3.0/apps/httpserver_raw. This script takes 2 parameters - the name of the directory whose con-
tents are to be included within the file system image, and the name of the C file that is to be
written. Running this script from within the enet_lwip example application directory to create the file
lmi-fsdata.c, the syntax would be:

perl ../../../third_party/lwip-1.3.0/apps/httpserver_raw/makefsdata fs
lmi-fsdata.c

If your development system does not have Perl installed, a Windows command line executable
is also provided. This tool, makefsfile.exe, produces output files which are compatible with those

594 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

generated by makefsdata and offers a few additional features that may prove helpful in some cir-
cumstances. To generate the same output file as in the previous example, the syntax for running
makefsfile would be:

..\makefsfile -i fs -o lmi-fsdata.c

By default, the file system image embeds the HTTP headers associated with each file in the file
system image data itself. This is the default assumption of the lwIP web server implementation
and is sensible if using an internal file system image containing a small number of files. If also
serving files from a file system which does not embed the headers (for example the FAT file system
on a microSD card as supported by the enet_lwip application) dynamic header generation must
be used and internal file system images should be built using the -h option to makefsfile. In these
cases, ensure that you also define DYNAMIC_HTTP_HEADERS in the lwipopts.h file to correctly
configure the web server.

The -x option allows an "exclude file" to be specified. This exclude file contains the names of files
and directories within the input directory tree that are to be skipped in the conversion process. If
this option is not present, a default set of file excludes is used. This list contains typical source code
control metadata directory names (".svn" and "CVS") and system files such as "thumbs.db". To see
the default exclude list, run the tool with the -v option and look in the output.

Each file or directory name in the exclude file must be on a separate line within the file and each
must be followed by a standard Windows ("\r\n") or Unix ("\n") line delimiter. The exclude list
must contain individual file or directory names and my not include partial paths. For example
images_old or .svn would be acceptable but images_old/.svn would not.

For a full list of command line options, run makefsfile with the "-?" option.

47.4 Examples

Bit-Banding (bitband)

This example application demonstrates the use of the bit-banding capabilities of the Cortex-M3
microprocessor. All of SRAM and all of the peripherals reside within bit-band regions, meaning that
bit-banding operations can be applied to any of them. In this example, a variable in SRAM is set to
a particular value one bit at a time using bit-banding operations (it would be more efficient to do a
single non-bit-banded write; this simply demonstrates the operation of bit-banding).

Blinky (blinky)

A very simple example that blinks the on-board LED.

Boot Loader Demo 1 (boot_demo1)

An example to demonstrate the use of the boot loader. After being started by the boot loader,
the application will configure the UART and branch back to the boot loader to await the start of
an update. The UART will always be configured at 115,200 baud and does not require the use of
auto-bauding.

September 29, 2008 595

EK-LM3S8962 Example Applications

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo2 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader Demo 2 (boot_demo2)

An example to demonstrate the use of the boot loader. After being started by the boot loader, the
application will configure the UART, wait for select button to be pressed, and then branch back to
the boot loader to await the start of an update. The UART will always be configured at 115,200
baud and does not require the use of auto-bauding.

Both the boot loader and the application must be placed into flash. Once the boot loader is in flash,
it can be used to program the application into flash as well. Then, the boot loader can be used to
replace the application with another.

The boot_demo1 application can be used along with this application to easily demonstrate that the
boot loader is actually updating the on-chip flash.

Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

CAN Device Board LED Application (can_device_led)

This simple application uses the two buttons on the board as a light switch. When the “up” button
is pressed the status LED will turn on. When the “down” button is pressed, the status LED will turn
off.

CAN Device Board Quickstart Application (can_device_qs)

This application uses the CAN controller to communicate with the evaluation board that is running
the example game. It receives messages over CAN to turn on, turn off, or to pulse the LED on the
device board. It also sends CAN messages when either of the up and down buttons are pressed or
released.

Ethernet with lwIP (enet_lwip)

This example application demonstrates the operation of the Stellaris Ethernet controller using the
lwIP TCP/IP Stack. DHCP is used to obtain an Ethernet address. If DHCP times out without

596 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

obtaining an address, AUTOIP will be used to obtain a link-local address. The address that is
selected will be shown on the OLED display.

The file system code will first check to see if an SD card has been plugged into the microSD slot. If
so, all file requests from the web server will be directed to the SD card. Otherwise, a default set of
pages served up by an internal file system will be used.

For additional details on lwIP, refer to the lwIP web page at:
http://www.sics.se/∼adam/lwip/

Ethernet with lwIP (enet_lwip)

This example application demonstrates the operation of the Stellaris Ethernet controller using the
lwIP TCP/IP Stack. DHCP is used to obtain an Ethernet address. If DHCP times out without
obtaining an address, AUTOIP will be used to obtain a link-local address. The address that is
selected will be shown on the OLED display.

A default set of pages will be served up by an internal file system and the httpd server.

The IEEE 1588 (PTP) software has been enabled in this code to synchronize the internal clock to
a network master clock source.

Two methods of receive packet timestamping are implemented. The default mode uses the Stellaris
hardware timestamp mechanism to capture Ethernet packet reception time using timer 3B. On parts
which do not support hardware timestamping or if the application is started up with the Evaluation
Kit "Select" button pressed, software time stamping is used.

By default, the system runs without any additional loading over and above that imposed by basic
operation. To simulate a heavier load, the application includes a badly behaved timer interrupt
handler which will merely steal CPU cycles each time it is invoked. To enable this loading, start the
application while pressing the Evaluation Kit "Up" button. The amount of loading imposed by this
interrupt handler can be tailored using labels defined in enet_ptpd.c

For additional details on lwIP, refer to the lwIP web page at:
http://www.sics.se/∼adam/lwip/

For additional details on the PTPd software, refer to the PTPd web page at:
http://ptpd.sourceforge.net

Ethernet with uIP (enet_uip)

This example application demonstrates the operation of the Stellaris Ethernet controller using the
uIP TCP/IP Stack. A basic web site is served over the Ethernet port, located at link local address
169.254.19.63. If a node on the network has already chosen this link local address, nothing is done
by the application to choose another address and a conflict will occur. The web site displays a few
lines of text, and a counter that increments each time the page is sent.

For additional details on uIP, refer to the uIP web page at: http://www.sics.se/∼adam/uip/

September 29, 2008 597

http://www.sics.se/~adam/lwip/
http://www.sics.se/~adam/lwip/
http://ptpd.sourceforge.net
http://www.sics.se/~adam/uip/

EK-LM3S8962 Example Applications

GPIO JTAG Recovery (gpio_jtag)

This example demonstrates changing the JTAG pins into GPIOs, along with a mechanism to revert
them to JTAG pins. When first run, the pins remain in JTAG mode. Pressing the select push button
will toggle the pins between JTAG mode and GPIO mode. Because there is no debouncing of the
push button (either in hardware or software), a button press will occasionally result in more than
one mode change.

In this example, all five pins (PB7, PC0, PC1, PC2, and PC3) are switched, though the more typical
use would be to change PB7 into a GPIO.

Graphics Example (graphics)

A simple application that displays scrolling text on the top line of the OLED display, along with a
4-bit gray scale image.

Hello World (hello)

A very simple “hello world” example. It simply displays “hello world” on the OLED and is a starting
point for more complicated applications.

Interrupts (interrupts)

This example application demonstrates the interrupt preemption and tail-chaining capabilities of
Cortex-M3 microprocessor and NVIC. Nested interrupts are synthesized when the interrupts have
the same priority, increasing priorities, and decreasing priorities. With increasing priorities, pre-
emption will occur; in the other two cases tail-chaining will occur. The currently pending interrupts
and the currently executing interrupt will be displayed on the OLED; GPIO pins B0, B1 and B2 will
be asserted upon interrupt handler entry and de-asserted before interrupt handler exit so that the
off-to-on time can be observed with a scope or logic analyzer to see the speed of tail-chaining (for
the two cases where tail-chaining is occurring).

MPU (mpu_fault)

This example application demonstrates the use of the MPU to protect a region of memory from
access, and to generate a memory management fault when there is an access violation.

PWM (pwmgen)

This example application utilizes the PWM peripheral to output a 25% duty cycle PWM signal and
a 75% duty cycle PWM signal, both at 440 Hz. Once configured, the application enters an infinite
loop, doing nothing while the PWM peripheral continues to output its signals.

598 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

EK-LM3S8962 Quickstart Application (qs_ek-lm3s8962)

A game in which a blob-like character tries to find its way out of a maze. The character starts in the
middle of the maze and must find the exit, which will always be located at one of the four corners
of the maze. Once the exit to the maze is located, the character is placed into the middle of a new
maze and must find the exit to that maze; this repeats endlessly.

The game is started by pressing the select push button on the right side of the board. During game
play, the select push button will fire a bullet in the direction the character is currently facing, and
the navigation push buttons on the left side of the board will cause the character to walk in the
corresponding direction.

Populating the maze are a hundred spinning stars that mindlessly attack the character. Contact
with one of these stars results in the game ending, but the stars go away when shot.

Score is accumulated for shooting the stars and for finding the exit to the maze. The game lasts for
only one character, and the score is displayed on the virtual UART at 115,200, 8-N-1 during game
play and will be displayed on the screen at the end of the game.

A small web site is provided by the game over the Ethernet port. DHCP is used to obtain an
Ethernet address. If DHCP times out without obtaining an address, a static IP address will be used.
The DHCP timeout and the default static IP are easily configurable using macros. The address that
is selected will be shown on the OLED display before the game starts. The web pages allow the
entire game maze to be viewed, along with the character and stars; the display is generated by a
Java applet that is downloaded from the game (therefore requiring that Java be installed in the web
browser). The volume of the game music and sound effects can also be adjusted.

If the CAN device board is attached and is running the can_device_qs application, the volume of
the music and sound effects can be adjusted over CAN with the two push buttons on the target
board. The LED on the CAN device board will track the state of the LED on the main board via
CAN messages. The operation of the game will not be affected by the absence of the CAN device
board.

Since the OLED display on the evaluation board has burn-in characteristics similar to a CRT, the
application also contains a screen saver. The screen saver will only become active if two minutes
have passed without the user push button being pressed while waiting to start the game (that is,
it will never come on during game play). Qix-style bouncing lines are drawn on the display by the
screen saver.

After two minutes of running the screen saver, the display will be turned off and the user LED will
blink. Either mode of screen saver (bouncing lines or blank display) will be exited by pressing the
select push button. The select push button will then need to be pressed again to start the game.

SD card using FAT file system (sd_card)

This example application demonstrates reading a file system from an SD card. It makes use of
FatFs, a FAT file system driver. It provides a simple command console via a serial port for issuing
commands to view and navigate the file system on the SD card.

The first UART, which is connected to the FTDI virtual serial port on the Stellaris LM3S6965 Eval-
uation Board, is configured for 115,200 bits per second, and 8-n-1 mode. When the program is
started a message will be printed to the terminal. Type “help” for command help.

For additional details about FatFs, see the following site:
http://elm-chan.org/fsw/ff/00index_e.html

September 29, 2008 599

http://elm-chan.org/fsw/ff/00index_e.html

EK-LM3S8962 Example Applications

Timer (timers)

This example application demonstrates the use of the timers to generate periodic interrupts. One
timer is set up to interrupt once per second and the other to interrupt twice per second; each
interrupt handler will toggle its own indicator on the display.

UART (uart_echo)

This example application utilizes the UART to echo text. The first UART (connected to the FTDI
virtual serial port on the evaluation board) will be configured in 115,200 baud, 8-n-1 mode. All
characters received on the UART are transmitted back to the UART.

Watchdog (watchdog)

This example application demonstrates the use of the watchdog as a simple heartbeat for the
system. If the watchdog is not periodically fed, it will reset the system. Each time the watchdog
is fed, the LED is inverted so that it is easy to see that it is being fed, which occurs once every
second.

600 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

48 RDK-IDM Example Applications
Introduction .601
Analog Input API Functions . 603
Display Driver API Functions . 607
Relay Output API Functions .609
Sound Output API Functions . 610
Touch Screen API Functions . 614
Boot Loader and Firmware Update .616
Building Web Server File System Images . 616
Examples .617

48.1 Introduction

The RDK-IDM example applications show the capabilities of the Intelligent Display Module, the
peripheral driver library, and the graphics library. These applications are intended for demonstration
and as a starting point for new applications.

In addition to the graphics library display driver for the TFT display, there are board specific drivers
for the analog input channels, relay output, sound output, and touch screen. A wrapper is also
provided to simplify the initialization and operation of the lwIP TCP/IP stack.

The Intelligent Display Module comes in two variants: the MDL-IDM which supports Power over
Ethernet (PoE) and the MDL-IDM28 which does not support PoE. The two modules are otherwise
identical, and the software described in this chapter works the same on both modules.

There is an IAR workspace file (rdk-idm.eww) that contains the peripheral driver library and
graphics library projects, along with all of the board example projects, in a single, easy to use
workspace for use with Embedded Workbench version 5.

There is also an equivalent IAR workspace file (rdk-idm-ewarm4.eww) for use with Embedded
Workbench version 4.42a.

There is a Keil multi-project workspace file (rdk-idm.mpw) that contains the peripheral driver li-
brary and graphics library projects, along with all of the board example projects, in a single, easy to
use workspace for use with uVision.

48.1.1 Analog Input Driver

There are four analog input channels which can sense from 0 to 3 Volts in 1024 individual, evenly
spaced steps. The analog input driver will sample these channels every millisecond and will call
application-supplied callback functions when the value is above or below a set value, and when it
crosses a set value (subject to hystersis) in either direction. Each channel can be independently
configured, and can have individual callbacks for each event.

The analog input driver utilizes sample sequence 2 of the ADC and timer 0 subtimer A (shared with
the touch screen driver).

September 29, 2008 601

RDK-IDM Example Applications

48.1.2 Display Driver

In addition to providing the tDisplay structure required by the graphics library, the display driver also
provides APIs for initializing the display, turning on the backlight, and turning off the backlight.

The display driver can be configured for four different orientations:

Portrait, which is the default orientation of the display driver, the preferred orientation of the
display, and the orientation used by all of the example applications. Portrait mode provides
a 240x320 display and is selected by defining PORTRAIT, or by not defining an orientation,
when building the display driver.

Landscape, which is the screen rotated 90 degrees counter-clockwise (where the flex connec-
tor is on the right side of the display). Landscape mode provides a 320x240 display and is
selected by defining LANDSCAPE when building the display driver.

Portrait flip, which is the screen rotated 180 degrees (where the flex connector is on the top
of the display). Portrait flip mode provides a 240x320 display and is selected by defining
PORTRAIT_FLIP when building the display driver.

Landscape flip, which is the screen rotated 90 degrees clockwise (where the flex connector
is on the left side of the display). Landscape flip mode provides a 320x240 display and is
selected by defining LANDSCAPE_FLIP when building the display driver.

The orientation used depends on the requirements of the application and the desired viewing angle
of the display. The panel itself has a 6 o’clock viewing angle, so when used in portrait flip mode it
has a 12 o’clock viewing angle. Similarly, it has a 3 o’clock viewing angle in landscape mode and
a 9 o’clock viewing angle in landscape flip mode. Viewing the display from an angle other than the
viewing angle will result in distortion of the displayed colors.

48.1.3 Relay Output Driver

The relay output has three pins; a common contact, a normally closed contact, and a normally
opened contact. By enabling the relay output, the normally closed contact is opened and the
normally opened contact is closed. When the relay output is disabled, it reverts back to its normal
state.

The relay output driver provides a means of enabling and disabling the relay. The application is
responsible for any sequencing, such as enabling the relay, delaying for one second, and then
disabling the relay.

48.1.4 Sound Output Driver

The sound output provides a means of producing simple tones using a square wave drive. The
sound output driver allows the output frequency to be changed, along with the volume of the sound.
There is also a method for creating simple songs or sound effects by specifying a sequence of
frequencies and the times at which they should be output.

When the PWM output goes high, the speaker will start to travel from its resting position to its fully
deflected position. Since this takes time (on the order of 50 uS), it is possible to turn off the PWM
output before it has reached the extent of its travel. Doing so will result in less air being displaced by
the moving speaker cone, which results in a reduced volume. This technique is utilizes to provide
a simple volume control.

602 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Since a timer PWM output is used to drive the speaker, the maximum divide that is available is
65535. When running the processor (and therefore the timer) at 50 MHz, this equates to a minimum
audio frequency of approximately 762.95 Hz. Lower audio frequencies are possible if the processor
clock rate is lowered, though this will degrade the performance of the entire system (this will be most
noticable in the update rate on the display).

The sound output driver utilizes timer 2 (both subtimer A and subtimer B).

48.1.5 Touch Screen Driver

The touch screen is a pair of resistive layers on the surface of the display. One layer has connection
points at the top and bottom of the screen, and the other layer has connection points at the left and
right of the screen. When the screen is touched, the two layers make contact and electricity can
flow between them.

The horizontal position of a touch can be found by applying positive voltage to the right side of the
horizontal layer and negative voltage to to the left side. When not driving the top and bottom of
the vertical layer, the voltage potential on that layer will be proportional to the horizontal distance
across the screen of the press, which can be measured with an ADC channel. By reversing these
connections, the vertical position can also be measured. When the screen is not being touched,
there will be no voltage on the non-powered layer.

By monitoring the voltage on each layer when the other layer is appropriately driven, touches and
releases on the screen, as well as movements of the touch, can be detected and reported.

In order to read the current voltage on the two layers and also drive the appropriate voltages onto
the layers, each side of each layer is connected to both a GPIO and an ADC channel. The GPIO
is used to drive the node to a particular voltage, and when the GPIO is configured as an input, the
corresponding ADC channel can be used to read the layer’s voltage.

The touch screen is sampled every millisecond, with four samples required to properly read both
the X and Y position. Therefore, 250 X/Y sample pairs are captured every second.

Like the display driver, the touch screen driver operates in the same four orientations (selected in
the same manner). Default calibrations are provided for using the touch screen in each orientation;
the calibrate application can be used to determine new calibration values if necessary.

The touch screen driver utilizes sample sequence 3 of the ADC and timer 0 subtimer A (shared
with the analog input driver).

The touch screen driver makes use of calibration parameters determined using the “cali-
brate” example application. The theory behind these parameters is explained by Carlos E.
Videles in the June 2002 issue of Embedded Systems Design. It can be found online at
http://www.embedded.com/story/OEG20020529S0046.

48.2 Analog Input API Functions

Functions
void AnalogCallbackSetAbove (unsigned long ulChannel, tAnalogCallback ∗pfnOnAbove)
void AnalogCallbackSetBelow (unsigned long ulChannel, tAnalogCallback ∗pfnOnBelow)

September 29, 2008 603

http://www.embedded.com/story/OEG20020529S0046

RDK-IDM Example Applications

void AnalogCallbackSetFallingEdge (unsigned long ulChannel, tAnalogCallback
∗pfnOnFallingEdge)
void AnalogCallbackSetRisingEdge (unsigned long ulChannel, tAnalogCallback
∗pfnOnRisingEdge)
void AnalogInit (void)
void AnalogIntHandler (void)
void AnalogLevelSet (unsigned long ulChannel, unsigned short usLevel, char cHysteresis)

48.2.1 Detailed Description

These functions are contained in analog.c, with analog.h containing the API definitions for use
by applications.

48.2.2 Function Documentation

48.2.2.1 AnalogCallbackSetAbove

Sets the function to be called when the analog input is above the trigger level.

Prototype:
void
AnalogCallbackSetAbove(unsigned long ulChannel,

tAnalogCallback *pfnOnAbove)

Parameters:
ulChannel is the channel to modify.
pfnOnAbove is a pointer to the function to be called whenever the analog input is above the

trigger level.

Description:
This function sets the function that should be called whenever the analog input is above the
trigger level (in other words, while the analog input is above the trigger level, the callback will
be called every millisecond). Specifying a function address of 0 will cancel a previous callback
function (meaning that no function will be called when the analog input is above the trigger
level).

Returns:
None.

48.2.2.2 AnalogCallbackSetBelow

Sets the function to be called when the analog input is below the trigger level.

Prototype:
void
AnalogCallbackSetBelow(unsigned long ulChannel,

tAnalogCallback *pfnOnBelow)

604 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
ulChannel is the channel to modify.
pfnOnBelow is a pointer to the function to be called whenever the analog input is below the

trigger level.

Description:
This function sets the function that should be called whenever the analog input is below the
trigger level (in other words, while the analog input is below the trigger level, the callback will
be called every millisecond). Specifying a function address of 0 will cancel a previous callback
function (meaning that no function will be called when the analog input is below the trigger
level).

Returns:
None.

48.2.2.3 AnalogCallbackSetFallingEdge

Sets the function to be called when the analog input transitions from above to below the trigger
level.

Prototype:
void
AnalogCallbackSetFallingEdge(unsigned long ulChannel,

tAnalogCallback *pfnOnFallingEdge)

Parameters:
ulChannel is the channel to modify.
pfnOnFallingEdge is a pointer to the function to be called when the analog input transitions

from above to below the trigger level.

Description:
This function sets the function that should be called whenever the analog input transitions from
above to below the trigger level. Specifying a function address of 0 will cancel a previous
callback function (meaning that no function will be called when the analog input transitions
from above to below the trigger level).

Returns:
None.

48.2.2.4 AnalogCallbackSetRisingEdge

Sets the function to be called when the analog input transitions from below to above the trigger
level.

Prototype:
void
AnalogCallbackSetRisingEdge(unsigned long ulChannel,

tAnalogCallback *pfnOnRisingEdge)

Parameters:
ulChannel is the channel to modify.

September 29, 2008 605

RDK-IDM Example Applications

pfnOnRisingEdge is a pointer to the function to be called when the analog input transitions
from below to above the trigger level.

Description:
This function sets the function that should be called whenever the analog input transitions from
below to above the trigger level. Specifying a function address of 0 will cancel a previous
callback function (meaning that no function will be called when the analog input transitions
from below to above the trigger level).

Returns:
None.

48.2.2.5 AnalogInit

Initializes the analog input driver.

Prototype:
void
AnalogInit(void)

Description:
This function initializes the analog input driver, starting the sampling process and disabling
all channel callbacks. Once called, the ADC2 interrupt will be asserted periodically; the
AnalogIntHandler() function should be called in response to this interrupt. It is the applica-
tion’s responsibility to install AnalogIntHandler() in the application’s vector table.

Returns:
None.

48.2.2.6 AnalogIntHandler

Handles the ADC sample sequence two interrupt.

Prototype:
void
AnalogIntHandler(void)

Description:
This function is called when the ADC sample sequence two generates an interrupt. It will read
the new ADC readings, perform debouncing on the analog inputs, and call the appropriate
callbacks based on the new readings.

Returns:
None.

48.2.2.7 AnalogLevelSet

Sets the trigger level for an analog channel.

606 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
void
AnalogLevelSet(unsigned long ulChannel,

unsigned short usLevel,
char cHysteresis)

Parameters:
ulChannel is the channel to modify.
usLevel is the trigger level for this channel.
cHysteresis is the hysteresis to apply to the trigger level for this channel.

Description:
This function sets the trigger level and hysteresis for an analog input channel. The hysteresis
allows for filtering of noise on the analog input. The actual level to transition from “below” the
trigger level to “above” the trigger level is the trigger level plus the hysteresis. Similarly, the
actual level to transition from “above” the trigger level to “below” the trigger level is the trigger
level minus the hysteresis.

Returns:
None.

48.3 Display Driver API Functions

Functions
void Formike240x320x16_ILI9320BacklightOff (void)
void Formike240x320x16_ILI9320BacklightOn (void)
unsigned short Formike240x320x16_ILI9320ControllerIdGet (void)
void Formike240x320x16_ILI9320Init (void)

Variables
const tDisplay g_sFormike240x320x16_ILI9320

48.3.1 Detailed Description

These functions are contained in formike240x320x16_ili9320.c, with
formike240x320x16_ili9320.h containing the API definitions for use by applications.

48.3.2 Function Documentation

48.3.2.1 Formike240x320x16_ILI9320BacklightOff

Turns off the backlight.

September 29, 2008 607

RDK-IDM Example Applications

Prototype:
void
Formike240x320x16_ILI9320BacklightOff(void)

Description:
This function turns off the backlight on the display.

Returns:
None.

48.3.2.2 Formike240x320x16_ILI9320BacklightOn

Turns on the backlight.

Prototype:
void
Formike240x320x16_ILI9320BacklightOn(void)

Description:
This function turns on the backlight on the display.

Returns:
None.

48.3.2.3 Formike240x320x16_ILI9320ControllerIdGet

Determines whether an ILI9320 or ILI9325 controller is present.

Prototype:
unsigned short
Formike240x320x16_ILI9320ControllerIdGet(void)

Description:
This function queries the ID of the display controller in use and returns it to the caller. This
driver supports both ILI9320 and ILI9325. These are very similar but the sense of the long
display axis is reversed in the Formike KWH028Q02-F05 using an ILI9325 controller and this
information is needed by the touchscreen driver to provide correct touch coordinate information.

Returns:
Returns 0x9320 if an ILI9320 controller is in use or 0x9325 if an ILI9325 is present.

48.3.2.4 Formike240x320x16_ILI9320Init

Initializes the display driver.

Prototype:
void
Formike240x320x16_ILI9320Init(void)

608 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function initializes the ILI9320 or ILI9325 display controller on the panel, preparing it to
display data.

Returns:
None.

48.3.3 Variable Documentation

48.3.3.1 g_sFormike240x320x16_ILI9320

Definition:
const tDisplay g_sFormike240x320x16_ILI9320

Description:
The display structure that describes the driver for the Formike Electronic KWH028Q02-F03
TFT panel with an ILI9320 controller.

48.4 Relay Output API Functions

Functions
void RelayDisable (void)
void RelayEnable (void)
void RelayInit (void)

48.4.1 Detailed Description

These functions are contained in relay.c, with relay.h containing the API definitions for use by
applications.

48.4.2 Function Documentation

48.4.2.1 RelayDisable

Disable the relay output.

Prototype:
void
RelayDisable(void)

Description:
This function disables the relay output. This causes the relay to become de-energized, putting
it into its default state (in other words, the normally open connect is opened and the normally
closed contact is closed).

September 29, 2008 609

RDK-IDM Example Applications

Returns:
None.

48.4.2.2 RelayEnable

Enables the relay output.

Prototype:
void
RelayEnable(void)

Description:
This function enables the relay output. This causes the relay to become energized, putting it
into the non-default state (in other words, the normally open contact is closed and the normally
closed contact is opened).

Returns:
None.

48.4.2.3 RelayInit

Initializes the relay output.

Prototype:
void
RelayInit(void)

Description:
This function initializes the relay output, preparing it to control the relay. The relay is started in
the disabled state (in other words, de-energized).

Returns:
None.

48.5 Sound Output API Functions

Functions
void SoundDisable (void)
void SoundEnable (void)
void SoundFrequencySet (unsigned long ulFrequency)
void SoundInit (void)
void SoundIntHandler (void)
void SoundPlay (const unsigned short ∗pusSong, unsigned long ulLength)
void SoundVolumeDown (unsigned long ulPercent)
unsigned char SoundVolumeGet (void)
void SoundVolumeSet (unsigned long ulPercent)
void SoundVolumeUp (unsigned long ulPercent)

610 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

48.5.1 Detailed Description

These functions are contained in sound.c, with sound.h containing the API definitions for use by
applications.

48.5.2 Function Documentation

48.5.2.1 SoundDisable

Disables the sound output.

Prototype:
void
SoundDisable(void)

Description:
This function disables the sound output, muting the speaker and cancelling any playback that
may be in progress.

Returns:
None.

48.5.2.2 SoundEnable

Enables the sound output.

Prototype:
void
SoundEnable(void)

Description:
This function enables the sound output, preparing it to play music or sound effects.

Returns:
None.

48.5.2.3 SoundFrequencySet

Sets the sound output frequency.

Prototype:
void
SoundFrequencySet(unsigned long ulFrequency)

Parameters:
ulFrequency is the desired sound output frequency.

September 29, 2008 611

RDK-IDM Example Applications

Description:
This function sets the frequency of the output sound. This change will take effect immedi-
ately and will remain in effect until changed (either explicitly by another call or implicitly by the
playback of a sound).

Returns:
None.

48.5.2.4 SoundInit

Initializes the sound output.

Prototype:
void
SoundInit(void)

Description:
This function prepares the sound driver to play songs or sound effects. It must be called before
any other sound functions. The sound driver uses timer 2 subtimer A to produce the PWM
output, and timer 2 subtimer B to be the time base for the playback of sound effects. It is
the responsility of the application to ensure that SoundIntHandler() is called when the timer
2 subtimer B interrupt occurs (typically by placing a pointer to this function in the appropriate
location in the processor’s vector table).

Returns:
None.

48.5.2.5 SoundIntHandler

Handles the sound timer interrupt.

Prototype:
void
SoundIntHandler(void)

Description:
This function provides periodic updates to the PWM output in order to produce a sound effect.
It is called when the timer 2 subtimer B interrupt occurs.

Returns:
None.

48.5.2.6 SoundPlay

Starts playback of a song.

Prototype:
void
SoundPlay(const unsigned short *pusSong,

unsigned long ulLength)

612 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Parameters:
pusSong is a pointer to the song data structure.
ulLength is the length of the song data structure in bytes.

Description:
This function starts the playback of a song or sound effect. If a song or sound effect is already
being played, its playback is cancelled and the new song is started.

Returns:
None.

48.5.2.7 SoundVolumeDown

Decreases the volume.

Prototype:
void
SoundVolumeDown(unsigned long ulPercent)

Parameters:
ulPercent is the amount to decrease the volume, specified as a percentage between 0% (si-

lence) and 100% (full volume), inclusive.

Description:
This function adjusts the audio output down by the specified percentage. The adjusted volume
will not go below 0% (silence).

Returns:
None.

48.5.2.8 SoundVolumeGet

Returns the current volume level.

Prototype:
unsigned char
SoundVolumeGet(void)

Description:
This function returns the current volume, specified as a percentage between 0% (silence) and
100% (full volume), inclusive.

Returns:
Returns the current volume.

48.5.2.9 SoundVolumeSet

Sets the volume of the music/sound effect playback.

September 29, 2008 613

RDK-IDM Example Applications

Prototype:
void
SoundVolumeSet(unsigned long ulPercent)

Parameters:
ulPercent is the volume percentage, which must be between 0% (silence) and 100% (full

volume), inclusive.

Description:
This function sets the volume of the sound output to a value between silence (0%) and full
volume (100%).

Returns:
None.

48.5.2.10 SoundVolumeUp

Increases the volume.

Prototype:
void
SoundVolumeUp(unsigned long ulPercent)

Parameters:
ulPercent is the amount to increase the volume, specified as a percentage between 0% (si-

lence) and 100% (full volume), inclusive.

Description:
This function adjusts the audio output up by the specified percentage. The adjusted volume
will not go above 100% (full volume).

Returns:
None.

48.6 Touch Screen API Functions

Functions
void TouchScreenCallbackSet (long (∗pfnCallback)(unsigned long ulMessage, long lX, long
lY))
void TouchScreenInit (void)
void TouchScreenIntHandler (void)

48.6.1 Detailed Description

These functions are contained in touch.c, with touch.h containing the API definitions for use by
applications.

614 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

48.6.2 Function Documentation

48.6.2.1 TouchScreenCallbackSet

Sets the callback function for touch screen events.

Prototype:
void
TouchScreenCallbackSet(long (*long)(unsigned ulMessage, long lX, long
lY) pfnCallback)

Parameters:
pfnCallback is a pointer to the function to be called when touch screen events occur.

Description:
This function sets the address of the function to be called when touch screen events occur.
The events that are recognized are the screen being touched (“pen down”), the touch position
moving while the screen is touched (“pen move”), and the screen no longer being touched
(“pen up”).

Returns:
None.

48.6.2.2 TouchScreenInit

Initializes the touch screen driver.

Prototype:
void
TouchScreenInit(void)

Description:
This function initializes the touch screen driver, beginning the process of reading from the touch
screen. This driver uses the following hardware resources:

ADC sample sequence 3
Timer 0 subtimer A

Returns:
None.

48.6.2.3 TouchScreenIntHandler

Handles the ADC interrupt for the touch screen.

Prototype:
void
TouchScreenIntHandler(void)

September 29, 2008 615

RDK-IDM Example Applications

Description:
This function is called when the ADC sequence that samples the touch screen has completed
its acquisition. The touch screen state machine is advanced and the acquired ADC sample is
processed appropriately.

It is the responsibility of the application using the touch screen driver to ensure that this function
is installed in the interrupt vector table for the ADC3 interrupt.

Returns:
None.

48.7 Boot Loader and Firmware Update

Each of the RDK-IDM example applications is configured to operate alongside the boot loader to
facilitate firmware update operations over Ethernet. The LM Flash Programmer, available for down-
load from http://www.luminarymicro.com/products/software_updates.html, may
be used to replace the main application image in each case. Software is included within each
application to listen for "magic packets" from LM Flash Programmer indicating that a user is re-
questing a firmware update and, if such a packet is received, to pass control back to the bootloader
to initiate the BOOTP/TFTP firmware update process. Note that the "magic packet" functionality
is available in versions of LM Flash Programmer with build numbers greater than 560 (the build
number can be found in the tool’s "About..." box or on the overview page of the application help
file). Older versions of LM Flash Programmer supporting Ethernet operation may be used to up-
date applications which offer a manual method of initiating the firmware update but not those which
rely solely upon the "magic packet" trigger.

The Ethernet-enabled boot loader image is built from the boot_eth directory under the main
boards/rdk-idm directory. Typically, it will not be necessary to flash this image unless you have
made changes to the boot loader source code. Replacing the boot loader image requires the use
of a hardware JTAG/SWD debugger or a Luminary Evaluation Kit board configured as a JTAG/SWD
pass-through adapter.

48.8 Building Web Server File System Images

Control and configuration of applications running on an RDK-IDM can be very conveniently imple-
mented using an embedded HTTP server. This is illustrated in the qs-keypad example application
which uses a web server to change the door lock access code.

The data sent to the client by the web server is generated using standard web develop-
ment tools and stored into a normal directory on your development system (for example
C:\DriverLib\boards\rdk-idm\qs-keypad\html). An application including the relevant file system
drivers may chose to store its configuration web site on an SD card and serve it from there, in
which case all that is required is to copy the required directory structure to the card and ensure that
it is installed in the IDM module microSD slot. This approach frees an application from the limits
imposed by the size of the microcontroller flash but makes the application dependent upon data that
is outside its direct control. Assuming the site size is small enough to fit within the available flash,
another, often better, method is to generate an image of the file system which is embedded within
the application binary and accessed via internal file system calls. This is the approach adopted by
the qs-keypad example application.

616 September 29, 2008

http://www.luminarymicro.com/products/software_updates.html

Stellaris Peripheral Driver Library User’s Guide

To generate the internal file system image, two tools are provided. Each writes a C output file that
contains an image of all the files contained within a subtree of the development system’s directory
structure.

The first, makefsdata, is a Perl script which can be found in directory third_party/lwip-
1.3.0/apps/httpserver_raw. This script takes 2 parameters - the name of the directory whose con-
tents are to be included within the file system image, and the name of the C file that is to be
written. Running this script from within the qs-keypad example application directory to create the
file fsdata-qs.c, the syntax would be:

perl ../../../third_party/lwip-1.3.0/apps/httpserver_raw/makefsdata html
fsdata-qs.c

If your development system does not have Perl installed, a Windows command line executable
is also provided. This tool, makefsfile.exe, produces output files which are compatible with those
generated by makefsdata and offers a few additional features that may prove helpful in some cir-
cumstances. To generate the same output file as in the previous example, the syntax for running
makefsfile would be:

..\makefsfile -i html -o fsdata-qs.c

By default, the file system image embeds the HTTP headers associated with each file in the file
system image data itself. This is the default assumption of the lwIP web server implementation
and is sensible if using an internal file system image containing a small number of files. If also
serving files from a file system which does not embed the headers (for example the FAT file system
on a microSD card) dynamic header generation must be used and internal file system images
should be built using the -h option to makefsfile. In these cases, ensure that you also define
DYNAMIC_HTTP_HEADERS in the lwipopts.h file to correctly configure the web server.

The -x option allows an "exclude file" to be specified. This exclude file contains the names of files
and directories within the input directory tree that are to be skipped in the conversion process. If
this option is not present, a default set of file excludes is used. This list contains typical source code
control metadata directory names (".svn" and "CVS") and system files such as "thumbs.db". To see
the default exclude list, run the tool with the -v option and look in the output.

Each file or directory name in the exclude file must be on a separate line within the file and each
must be followed by a standard Windows ("\r\n") or Unix ("\n") line delimiter. The exclude list
must contain individual file or directory names and my not include partial paths. For example
images_old or .svn would be acceptable but images_old/.svn would not.

For a full list of command line options, run makefsfile with the "-?" option.

48.9 Examples

All of these examples reside in the boards/rdk-idm subdirectory of the peripheral driver library
source distribution.

BLDC RDK Control (bldc_ctrl)

This application provides a simple GUI for controlling a BLDC RDK board. The motor can be started
and stopped, the target speed can be adjusted, and the current speed can be monitored.

The target speed up and down buttons utilize the auto-repeat capability of the push button widget.

September 29, 2008 617

RDK-IDM Example Applications

For example, pressing the up button will increase the target speed by 100 rpm. Holding it for more
than 0.5 seconds will commence the auto-repeat, at which point the target speed will increase by
100 rpm every 1/10th of a second. The same behavior occurs on the down button.

Upon startup, the application will attempt to contact a DHCP server to get an IP address. If a DHCP
server can not be contacted, it will instead use the IP address 169.254.19.70 without performing
any ARP checks to see if it is already in use. Once the IP address is determined, it will initiate a
connection to a BLDC RDK board at IP address 169.254.89.71. While attempting to contact the
DHCP server and the BLDC RDK board, the target speed will display as a set of bouncing dots.

The push buttons will not operate until a connection to a BLDC RDK board has been established.

This application supports remote software update over Ethernet using the LM Flash Programmer
application. A firmware update is initiated using the remote update request “magic packet” from
LM Flash Programmer. This feature is available in versions of LM Flash Programmer with build
numbers greater than 560.

Boot Loader (boot_eth)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses Ethernet to
load an application.

Calibration for the Touch Screen (calibrate)

The raw sample interface of the touch screen driver is used to compute the calibration matrix
required to convert raw samples into screen X/Y positions. The produced calibration matrix can be
inserted into the touch screen driver to map the raw samples into screen coordinates.

The touch screen calibration is performed according to the algorithm described by Carlos E.
Videles in the June 2002 issue of Embedded Systems Design. It can be found online at
http://www.embedded.com/story/OEG20020529S0046.

This application supports remote software update over Ethernet using the LM Flash Programmer
application. A firmware update is initiated using the remote update request “magic packet” from
LM Flash Programmer. This feature is available in versions of LM Flash Programmer with build
numbers greater than 560.

Graphics Library Demonstration (grlib_demo)

This application provides a demonstration of the capabilities of the Stellaris Graphics Library. A
series of panels show different features of the library. For each panel, the bottom provides a forward
and back button (when appropriate), along with a brief description of the contents of the panel.

The first panel provides some introductory text and basic instructions for operation of the applica-
tion.

The second panel shows the available drawing primitives: lines, circles, rectangles, strings, and
images.

618 September 29, 2008

http://www.embedded.com/story/OEG20020529S0046

Stellaris Peripheral Driver Library User’s Guide

The third panel shows the canvas widget, which provides a general drawing surface within the
widget heirarchy. A text, image, and application-drawn canvas are displayed.

The fourth panel shows the check box widget, which provides a means of toggling the state of an
item. Four check boxes are provided, with each having a red “LED” to the right. The state of the
LED tracks the state of the check box via an application callback.

The fifth panel shows the container widget, which provides a grouping construct typically used for
radio buttons. Containers with a title, a centered title, and no title are displayed.

The sixth panel shows the push button widget. Two columns of push buttons are provided; the
appearance of each column is the same but the left column does not utilize auto-repeat while the
right column does. Each push button has a red “LED” to its left, which is toggled via an application
callback each time the push button is pressed.

The seventh panel shows the radio button widget. Two groups of radio buttons are displayed, the
first using text and the second using images for the selection value. Each radio button has a red
“LED” to its right, which tracks the selection state of the radio buttons via an application callback.
Only one radio button from each group can be selected at a time, though the radio buttons in each
group operate independently.

The eighth panel shows the slider widget. Six sliders constructed using the various supported style
options are shown. The slider value callback is used to update two widgets to reflect the values
reported by sliders. A canvas widget in the top right of the display tracks the value of the red and
green image-based slider to its left and the text of the grey slider on the left side of the panel is
update to show its own value. The rightmost slider is configured as an indicator which tracks the
state of the upper slider and ignores user input.

The final panel provides instructions and information necessary to update the board firmware via
ethernet using the LM Flash Programmer application. When using a version of LM Flash Program-
mer with a build number greater than 560, software updates will occur automatically without user
intervention being required in the application. If using an earlier version of LM Flash Programmer
which does not send the “magic packet” signalling an update request, the “Update” button on the
final screen may be pressed to transfer control to the boot loader in preparation for a firmware
download.

Hello World (hello)

A very simple “hello world” example. It simply displays “Hello World!” on the display and is a starting
point for more complicated applications.

This application supports remote software update over Ethernet using the LM Flash Programmer
application. A firmware update is initiated using the remote update request “magic packet” from
LM Flash Programmer. This feature is available in versions of LM Flash Programmer with build
numbers greater than 560.

Quickstart Security Keypad (qs-keypad)

This application provides a security keypad to allow access to a door. The relay output is mo-
mentarily toggled upon entry of the access code to activate an electric door strike, unlocking the
door.

The screen is divided into three parts; the Luminary Micro banner across the top, a hint across the

September 29, 2008 619

RDK-IDM Example Applications

bottom, and the main application area in the middle (which is the only portion that should appear
if this application is used for a real door access system). The hints provide an on-screen guide to
what the application is expecting at any given time.

Upon startup, the screen is blank and the hint says to touch the screen. Pressing the screen will
bring up the keypad, which is randomized as an added security measure (so that an observer can
not “steal” the access code by simply looking at the relative positions of the button presses). The
current access code is provide in the hint at the bottom of the screen (which is clearly not secure).

If an incorrect access code is entered (“#” ends the code entry), then the screen will go blank and
wait for another access attempt. If the correct access code is entered, the relay will be toggled for a
few seconds (as indicated by the hint at the bottom stating that the door is open) and the screen will
go blank. Once the door is closed again, the screen can be touched again to repeat the process.

The UART is used to output a log of events. Each event in the log is time stamped, with the arbitrary
date of February 26, 2008 at 14:00 UT (universal time) being the starting time when the application
is run. The following events are logged:

The start of the application

The access code being changed

Access being granted (correct access code being entered)

Access being denied (incorrect access code being entered)

The door being relocked after access has been granted

A simple web server is provided to allow the access code to be changed. The Ethernet interface
will attempt to contact a DHCP server, and if it is unable to acquire a DHCP address it will instead
use the IP address 169.254.19.70 without performing any ARP checks to see if it is already in use.
The web page shows the current access code and provides a form for updating the access code.

If a micro-SD card is present, the access code will be stored in a file called “key.txt” in the root
directory. This file is written whenever the access code is changed, and is read at startup to
initialize the access code. If a micro-SD card is not present, or the “key.txt” file does not exist, the
access code defaults to 6918.

If “∗∗” is entered on the numeric keypad, the application provides a demonstration of the Stellaris
Graphics Library with various panels showing the available widget types and graphics primitives.
Navigate between the panels using buttons marked “+” and “-” at the bottom of the screen and
return to keypad mode by pressing the “X” buttons which appear when you are on either the first or
last demonstration panel.

This application supports remote software update over Ethernet using the LM Flash Programmer
application. A firmware update is initiated via the remote update request “magic packet” from LM
Flash Programmer. If using

Note that remote firmware update signalling is only supported in versions of LM Flash Programmer
with build numbers greater than 560. If using an earlier version of LM Flash Programmer which
does not send the “magic packet” signalling an update request, an update may be initiated by
entering “∗0” on the application’s numeric keypad.

Scribble Pad (scribble)

The scribble pad provides a drawing area on the screen. Touching the screen will draw onto the
drawing area using a selection of fundamental colors (in other words, the seven colors produced by

620 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

the three color channels being either fully on or fully off). Each time the screen is touched to start
a new drawing, the drawing area is erased and the next color is selected.

This application supports remote software update over Ethernet using the LM Flash Programmer
application. A firmware update is initiated using the remote update request “magic packet” from
LM Flash Programmer. This feature is available in versions of LM Flash Programmer with build
numbers greater than 560.

SD card using FAT file system (sd_card)

This example application demonstrates reading a file system from an SD card. It makes use of
FatFs, a FAT file system driver. It provides a simple widget-based console on the display and also
a UART-based command line for viewing and navigating the file system on the SD card.

For additional details about FatFs, see the following site:
http://elm-chan.org/fsw/ff/00index_e.html

UART1, which is connected to the 3 pin header on the underside of the IDM RDK board (J2), is
configured for 115,200 bits per second, and 8-n-1 mode. When the program is started a message
will be printed to the terminal. Type “help” for command help.

To connect the IDM RDK board’s UART to a 9 pin PC serial port, use a standard male to female
DB9 serial cable and connect TXD (J2 pin 1, nearest the SD card socket) to pin 2 of the male serial
cable connector, RXD (J2 pin 2, the center pin) to pin 3 of the serial connector and GND (J2 pin 3)
to pin 5 of the serial connector.

This application supports remote software update over Ethernet using the LM Flash Programmer
application. A firmware update is initiated using the remote update request “magic packet” from
LM Flash Programmer. This feature is available in versions of LM Flash Programmer with build
numbers greater than 560.

September 29, 2008 621

http://elm-chan.org/fsw/ff/00index_e.html

RDK-IDM Example Applications

622 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

49 RDK-S2E Example Applications
Introduction .623
Configuration API Functions . 623
File System API Functions . 629
Ring Buffer API Functions . 631
Serial Port API Functions . 631
Telnet Port API Functions . 641
Universal Plug and Play API Functions . 648
Examples .650

49.1 Introduction

The RDK-S2E example applications show the capabilities of the Serial to Ethernet Module and the
peripheral driver library. These applications are intended for demonstration and as a starting point
for new applications.

There is an IAR workspace file (rdk-s2e.eww) that contains the peripheral driver library project,
along with all of the board example projects, in a single, easy to use workspace for use with Em-
bedded Workbench version 5.

There is also an equivalent IAR workspace file (rdk-s2e-ewarm4.eww) for use with Embedded
Workbench version 4.42a.

There is a Keil multi-project workspace file (rdk-s2e.mpw) that contains the peripheral driver li-
brary project, along with all of the board example projects, in a single, easy to use workspace for
use with uVision.

The file ser2ent.c contains the main application entry point. The various modules are initialized,
including the serial port driver, the telnet driver, the Universal Plug and Play driver, along with the
configuration web server.

To provide periodic processing that is required by lwIP, the system tick timer is programmed and
the interrupt service routine for this timer is contained here.

The lwIP Abstraction Library also provides for a host callback routine that can be configured as a
periodic callback run in the lwIP context, avoiding reentrancy issues that exist with lwIP. The host
callback routine defined here provides support for the telnet and upnp modules.

49.2 Configuration API Functions

Data Structures
tStringMap

Defines
DEFAULT_CGI_RESPONSE

September 29, 2008 623

RDK-S2E Example Applications

FIRMWARE_UPDATE_RESPONSE
IP_UPDATE_RESPONSE
MAX_VARIABLE_NAME_LEN
MISC_PAGE_URI
NUM_CONFIG_CGI_URIS
NUM_CONFIG_SSI_TAGS
PARAM_ERROR_RESPONSE

Functions
void ConfigInit (void)
void ConfigLoad (void)
void ConfigLoadFactory (void)
void ConfigSave (void)
void ConfigWebInit (void)

Variables
tBoolean g_bChangeIPAddress
tBoolean g_bStartBootloader
const tConfigParameters ∗ g_psDefaultParameters
const tConfigParameters ∗const g_psFactoryParameters
tConfigParameters g_sParameters
const unsigned short g_usFirmwareVersion

49.2.1 Detailed Description

The configuration module defines and manages the global configuration parameter block, as well
providing an abstraction layer for the non-volatile storage of this parameter block.

These functions are contained in config.c, with config.h containing the API definitions for use
by applications.

49.2.2 Data Structure Documentation

49.2.2.1 tStringMap

Definition:
typedef struct
{

const char *pcString;
unsigned char ucId;

}
tStringMap

624 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Members:
pcString A human readable string related to the identifier found in the ucId field.
ucId An identifier value associated with the string held in the pcString field.

Description:
Structure used in mapping numeric IDs to human-readable strings.

49.2.3 Define Documentation

49.2.3.1 DEFAULT_CGI_RESPONSE

Definition:
#define DEFAULT_CGI_RESPONSE

Description:
The file sent back to the browser by default following completion of any of our CGI handlers.

49.2.3.2 FIRMWARE_UPDATE_RESPONSE

Definition:
#define FIRMWARE_UPDATE_RESPONSE

Description:
The file sent back to the browser to signal that the bootloader is being entered to perform a
software update.

49.2.3.3 IP_UPDATE_RESPONSE

Definition:
#define IP_UPDATE_RESPONSE

Description:
The file sent back to the browser to signal that the IP address of the device is about to change
and that the web server is no longer operating.

49.2.3.4 MAX_VARIABLE_NAME_LEN

Definition:
#define MAX_VARIABLE_NAME_LEN

Description:
The maximum length of any HTML form variable name used in this application.

September 29, 2008 625

RDK-S2E Example Applications

49.2.3.5 MISC_PAGE_URI

Definition:
#define MISC_PAGE_URI

Description:
The URI of the “Miscellaneous Settings” page offered by the web server.

49.2.3.6 NUM_CONFIG_CGI_URIS

Definition:
#define NUM_CONFIG_CGI_URIS

Description:
The number of individual CGI URIs that are used by our configuration web pages.

49.2.3.7 NUM_CONFIG_SSI_TAGS

Definition:
#define NUM_CONFIG_SSI_TAGS

Description:
The number of individual SSI tags that the HTTPD server can expect to find in our configuration
pages.

49.2.3.8 PARAM_ERROR_RESPONSE

Definition:
#define PARAM_ERROR_RESPONSE

Description:
The file sent back to the browser in cases where a parameter error is detected by one of the
CGI handlers. This should only happen if someone tries to access the CGI directly via the
broswer command line and doesn’t enter all the required parameters alongside the URI.

49.2.4 Function Documentation

49.2.4.1 ConfigInit

Initializes the configuration parameter block.

Prototype:
void
ConfigInit(void)

626 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function initializes the configuration parameter block. If the version number of the param-
eter block stored in flash is older than the current revision, new paramters will be set to default
values as needed.

Returns:
None.

49.2.4.2 ConfigLoad

Loads the S2E parameter block from flash.

Prototype:
void
ConfigLoad(void)

Description:
This function is called to load the most recently saved parameter block from flash.

Returns:
None.

49.2.4.3 ConfigLoadFactory

Loads the S2E parameter block from factory-default table.

Prototype:
void
ConfigLoadFactory(void)

Description:
This function is called to load the factory default parameter block.

Returns:
None.

49.2.4.4 ConfigSave

Saves the S2E parameter block to flash.

Prototype:
void
ConfigSave(void)

Description:
This function is called to save the current S2E configuration parameter block to flash memory.

Returns:
None.

September 29, 2008 627

RDK-S2E Example Applications

49.2.4.5 ConfigWebInit

Configures HTTPD server SSI and CGI capabilities for our configuration forms.

Prototype:
void
ConfigWebInit(void)

Description:
This function informs the HTTPD server of the server-side-include tags that we will be process-
ing and the special URLs that are used for CGI processing for the web-based configuration
forms.

Returns:
None.

49.2.5 Variable Documentation

49.2.5.1 g_bChangeIPAddress

Definition:
tBoolean g_bChangeIPAddress

Description:
A flag to the main loop indicating that it should update the IP address after a short delay (to
allow us to send a suitable page back to the web browser telling it the address has changed).

49.2.5.2 g_bStartBootloader

Definition:
tBoolean g_bStartBootloader

Description:
A flag to the main loop indicating that it should enter the bootloader and perform a firmware
update.

49.2.5.3 g_psDefaultParameters

Definition:
const tConfigParameters *g_psDefaultParameters

Description:
This structure instance points to the most recently saved parameter block in flash. It can be
considered the default set of parameters.

628 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

49.2.5.4 g_psFactoryParameters

Definition:
const tConfigParameters *const g_psFactoryParameters

Description:
This structure instance points to the factory default set of parameters in flash memory.

49.2.5.5 g_sParameters

Definition:
tConfigParameters g_sParameters

Description:
This structure instance contains the run-time set of configuration parameters for S2E module.
This is the active parameter set and may contain changes that are not to be committed to flash.

49.2.5.6 g_usFirmwareVersion

Definition:
const unsigned short g_usFirmwareVersion

Description:
The version of the firmware. Changing this value will make it much more difficult for Luminary
Micro support personnel to determine the firmware in use when trying to provide assistance; it
should only be changed after careful consideration.

49.3 File System API Functions

Functions
void fs_close (struct fs_file ∗file)
fs_file ∗ fs_open (char ∗name)
int fs_read (struct fs_file ∗file, char ∗buffer, int count)

49.3.1 Detailed Description

This set of functions provides an interface to the built-in flash file system used by the lwIP-based
web server. In addition to providing handles to the normal flash-based files, “special” files can be
handled in such a way to provide dynamic content to the web client.

The original data for the web server file system can be found in the fs directory. These files
are converted into a single C file, fsdata-s2e.c which is then included in fs_s2e.c. The file
system data file fsdata-s2e.c can be generated in one of two ways depending upon the tools
you have installed. If cygwin and Perl are available, the script makefsdata.pl, found in the
third_party/lwip-1.3.0/apps/httpserver_raw directory below the DriverLib installation directory can

September 29, 2008 629

RDK-S2E Example Applications

be run. Alternatively, if Perl is not installed, the Windows command line utility, makefsfile.exe
found in the boards/rdk-s2e directory can be run.

Starting in the boards/rdk-s2e/ser2enet directory, the syntax of these two commands is as follow:

perl ../../../third_party/lwip-1.3.0/apps/httpserver_raw/makefsdata fs
fsdata-s2e.c

or

../makefsfile -i fs -o fsdata-s2e.c

The file system API functions are contained in fs_s2e.c, with fs_s2e.h containing the API
definitions for use by applications.

49.3.2 Function Documentation

49.3.2.1 fs_close

Close an opened file designated by the handle.

Prototype:
void
fs_close(struct fs_file *file)

Parameters:
file is the pointer to the file handle to be closed.

Description:
This function will free the memory associated with the file handle, and perform any additional
actions that are required for closing this handle.

Returns:
None.

49.3.2.2 fs_open

Open a file and return a handle to the file.

Prototype:
struct fs_file *
fs_open(char *name)

Parameters:
name is the pointer to the string that contains the file name.

Description:
This function will check the file name against a list of files that require “special” handling. If
the file name matches this list, then the file extensions will be enabled for dynamic file content
generation. Otherwise, the file name will be compared against the list of names in in the built-in
flash file system. If the file is not found, a NULL handle will be returned.

Returns:
the pointer to the file handle if found, otherwise NULL.

630 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

49.3.2.3 fs_read

Read data from the opened file.

Prototype:
int
fs_read(struct fs_file *file,

char *buffer,
int count)

Parameters:
file is the pointer to the file handle to be read from.
buffer is the pointer to data buffer to be filled.
count is the maximum number of data bytes to be read.

Description:
This function will fill in the buffer with up to “count” bytes of data. If there is “special” processing
required for dynamic content, this function will also handle that processing as needed.

Returns:
the number of data bytes read, or -1 if the end of the file has been reached.

49.4 Ring Buffer API Functions

The ring buffer module provides ring buffer management functions to support the data flow between
the serial and telnet ports.

These functions are contained in ringbuf.c, with ringbuf.h containing the API definitions for
use by applications.

49.5 Serial Port API Functions

Functions
unsigned long SerialGetBaudRate (unsigned long ulPort)
unsigned char SerialGetDataSize (unsigned long ulPort)
unsigned char SerialGetFlowControl (unsigned long ulPort)
unsigned char SerialGetFlowOut (unsigned long ulPort)
unsigned char SerialGetParity (unsigned long ulPort)
unsigned char SerialGetStopBits (unsigned long ulPort)
void SerialGPIOAIntHandler (void)
void SerialGPIOBIntHandler (void)
void SerialInit (void)
void SerialPurgeData (unsigned long ulPort, unsigned char ucPurgeCommand)
long SerialReceive (unsigned long ulPort)
unsigned long SerialReceiveAvailable (unsigned long ulPort)
void SerialSend (unsigned long ulPort, unsigned char ucChar)

September 29, 2008 631

RDK-S2E Example Applications

tBoolean SerialSendFull (unsigned long ulPort)
void SerialSetBaudRate (unsigned long ulPort, unsigned long ulBaudRate)
void SerialSetCurrent (unsigned long ulPort)
void SerialSetDataSize (unsigned long ulPort, unsigned char ucDataSize)
void SerialSetDefault (unsigned long ulPort)
void SerialSetFactory (unsigned long ulPort)
void SerialSetFlowControl (unsigned long ulPort, unsigned char ucFlowControl)
void SerialSetFlowOut (unsigned long ulPort, unsigned char ucFlowValue)
void SerialSetParity (unsigned long ulPort, unsigned char ucParity)
void SerialSetStopBits (unsigned long ulPort, unsigned char ucStopBits)
void SerialUART0IntHandler (void)
void SerialUART1IntHandler (void)

49.5.1 Detailed Description

The serial driver provides a ring buffer structure as the interface between the UART hardware and
the UART client (for example, telnet session). A simple API requiring only the UART port number
(for example, 0, 1) is all that is provide at this time.

These functions are contained in serial.c, with serial.h containing the API definitions for use
by applications.

49.5.2 Function Documentation

49.5.2.1 SerialGetBaudRate

Queries the serial port baud rate.

Prototype:
unsigned long
SerialGetBaudRate(unsigned long ulPort)

Parameters:
ulPort is the serial port number to be accessed.

Description:
This function will read the uart configuration and return the currently configured baud rate for
the selected port.

Returns:
The current baud rate of the serial port.

49.5.2.2 SerialGetDataSize

Queries the serial port data size.

632 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Prototype:
unsigned char
SerialGetDataSize(unsigned long ulPort)

Parameters:
ulPort is the serial port number to be accessed.

Description:
This function will read the uart configuration and return the currently configured data size for
the selected port.

Returns:
None.

49.5.2.3 SerialGetFlowControl

Queries the serial port flow control.

Prototype:
unsigned char
SerialGetFlowControl(unsigned long ulPort)

Parameters:
ulPort is the serial port number to be accessed.

Description:
This function will return the currently configured flow control for the selected port.

Returns:
None.

49.5.2.4 SerialGetFlowOut

Gets the serial port flow control output signal.

Prototype:
unsigned char
SerialGetFlowOut(unsigned long ulPort)

Parameters:
ulPort is the UART port number to be accessed.

Description:
This function will set the flow control output pin to a specified value.

Returns:
Returns SERIAL_FLOW_OUT_SET or SERIAL_FLOW_OUT_CLEAR.

September 29, 2008 633

RDK-S2E Example Applications

49.5.2.5 SerialGetParity

Queries the serial port parity.

Prototype:
unsigned char
SerialGetParity(unsigned long ulPort)

Parameters:
ulPort is the serial port number to be accessed.

Description:
This function will read the uart configuration and return the currently configured parity for the
selected port.

Returns:
Returns the current parity setting for the port. This will be one of /b SERIAL_PARITY_NONE,
/b SERIAL_PARITY_ODD, /b SERIAL_PARITY_EVEN, /b SERIAL_PARITY_MARK, or /b SE-
RIAL_PARITY_SPACE.

49.5.2.6 SerialGetStopBits

Queries the serial port stop bits.

Prototype:
unsigned char
SerialGetStopBits(unsigned long ulPort)

Parameters:
ulPort is the serial port number to be accessed.

Description:
This function will read the uart configuration and return the currently configured stop bits for
the selected port.

Returns:
None.

49.5.2.7 SerialGPIOAIntHandler

Handles the GPIO A interrupt for flow control (port 1).

Prototype:
void
SerialGPIOAIntHandler(void)

Description:
This function is called when the GPIO port A generates an interrupt. An interrupt will be gen-
erated when the InBound flow control signal changes levels (rising/falling edge). A notification
function will be called to inform the corresponding telnet session that the flow control signal
has changed.

634 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Returns:
None.

49.5.2.8 SerialGPIOBIntHandler

Handles the GPIO B interrupt for flow control (port 0).

Prototype:
void
SerialGPIOBIntHandler(void)

Description:
This function is called when the GPIO port B generates an interrupt. An interrupt will be gen-
erated when the InBound flow control signal changes levels (rising/falling edge). A notification
function will be called to inform the corresponding telnet session that the flow control signal
has changed.

Returns:
None.

49.5.2.9 SerialInit

Initializes the serial port driver.

Prototype:
void
SerialInit(void)

Description:
This function initializes and configures the serial port driver.

Returns:
None.

49.5.2.10 SerialPurgeData

Purges the serial port data queue(s).

Prototype:
void
SerialPurgeData(unsigned long ulPort,

unsigned char ucPurgeCommand)

Parameters:
ulPort is the serial port number to be accessed.
ucPurgeCommand is the command indicating which queue’s to purge.

Description:
This function will purge data from the tx, rx, or both serial port queues.

September 29, 2008 635

RDK-S2E Example Applications

Returns:
None.

49.5.2.11 SerialReceive

Receives a character from the UART.

Prototype:
long
SerialReceive(unsigned long ulPort)

Parameters:
ulPort is the UART port number to be accessed.

Description:
This function sends a character to the UART. The character will either be directly written into
the UART FIFO or into the UART transmit buffer, as appropriate.

Returns:
None.

49.5.2.12 SerialReceiveAvailable

Returns number of characters available in the serial ring buffer.

Prototype:
unsigned long
SerialReceiveAvailable(unsigned long ulPort)

Parameters:
ulPort is the UART port number to be accessed.

Description:
This function will return the number of characters available in the serial ring buffer.

Returns:
The number of characters available in the ring buffer..

49.5.2.13 SerialSend

Sends a character to the UART.

Prototype:
void
SerialSend(unsigned long ulPort,

unsigned char ucChar)

Parameters:
ulPort is the UART port number to be accessed.
ucChar is the character to be sent.

636 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

Description:
This function sends a character to the UART. The character will either be directly written into
the UART FIFO or into the UART transmit buffer, as appropriate.

Returns:
None.

49.5.2.14 SerialSendFull

Checks the availablity of the serial port output buffer.

Prototype:
tBoolean
SerialSendFull(unsigned long ulPort)

Parameters:
ulPort is the UART port number to be accessed.

Description:
This function checks to see if there is room on the UART transmit buffer for additional data.

Returns:
the number of bytes available in the serial transmit ring buffer.

49.5.2.15 SerialSetBaudRate

Configures the serial port baud rate.

Prototype:
void
SerialSetBaudRate(unsigned long ulPort,

unsigned long ulBaudRate)

Parameters:
ulPort is the serial port number to be accessed.
ulBaudRate is the new baud rate for the serial port.

Description:
This function configures the serial port’s baud rate. The current configuration for the serial port
will be read. The baud rate will be modified, and the port will be reconfigured.

Returns:
None.

49.5.2.16 SerialSetCurrent

Configures the serial port according to the current working parameter values.

September 29, 2008 637

RDK-S2E Example Applications

Prototype:
void
SerialSetCurrent(unsigned long ulPort)

Parameters:
ulPort is the UART port number to be accessed. Valid values are 0 and 1.

Description:
This function configures the serial port according to the current working parameters in
g_sParameters.sPort for the specified port. The actual parameter set is then read back and
g_sParameters.sPort updated to ensure that the structure is correctly synchronized with the
hardware.

Returns:
None.

49.5.2.17 SerialSetDataSize

Configures the serial port data size.

Prototype:
void
SerialSetDataSize(unsigned long ulPort,

unsigned char ucDataSize)

Parameters:
ulPort is the serial port number to be accessed.
ucDataSize is the new data size for the serial port.

Description:
This function configures the serial port’s data size. The current configuration for the serial port
will be read. The data size will be modified, and the port will be reconfigured.

Returns:
None.

49.5.2.18 SerialSetDefault

Configures the serial port to a default setup.

Prototype:
void
SerialSetDefault(unsigned long ulPort)

Parameters:
ulPort is the UART port number to be accessed.

Description:
This function resets the serial port to a default configuration.

Returns:
None.

638 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

49.5.2.19 SerialSetFactory

Configures the serial port to the factory default setup.

Prototype:
void
SerialSetFactory(unsigned long ulPort)

Parameters:
ulPort is the UART port number to be accessed.

Description:
This function resets the serial port to a default configuration.

Returns:
None.

49.5.2.20 SerialSetFlowControl

Configures the serial port flow control option.

Prototype:
void
SerialSetFlowControl(unsigned long ulPort,

unsigned char ucFlowControl)

Parameters:
ulPort is the UART port number to be accessed.
ucFlowControl is the new flow control setting for the serial port.

Description:
This function configures the serial port’s flow control. This function will enable/disable the flow
control interrupt and the uart transmitter based on the value of the flow control setting and/or
the flow control input signal.

Returns:
None.

49.5.2.21 SerialSetFlowOut

Sets the serial port flow control output signal.

Prototype:
void
SerialSetFlowOut(unsigned long ulPort,

unsigned char ucFlowValue)

Parameters:
ulPort is the UART port number to be accessed.
ucFlowValue is the value to program to the flow control pin. Valid values are /b SE-

RIAL_FLOW_OUT_SET and /b SERIAL_FLOW_OUT_CLEAR.

September 29, 2008 639

RDK-S2E Example Applications

Description:
This function will set the flow control output pin to a specified value.

Returns:
None.

49.5.2.22 SerialSetParity

Configures the serial port parity.

Prototype:
void
SerialSetParity(unsigned long ulPort,

unsigned char ucParity)

Parameters:
ulPort is the serial port number to be accessed.
ucParity is the new parity for the serial port.

Description:
This function configures the serial port’s parity. The current configuration for the serial port will
be read. The parity will be modified, and the port will be reconfigured.

Returns:
None.

49.5.2.23 SerialSetStopBits

Configures the serial port stop bits.

Prototype:
void
SerialSetStopBits(unsigned long ulPort,

unsigned char ucStopBits)

Parameters:
ulPort is the serial port number to be accessed.
ucStopBits is the new stop bits for the serial port.

Description:
This function configures the serial port’s stop bits. The current configuration for the serial port
will be read. The stop bits will be modified, and the port will be reconfigured.

Returns:
None.

640 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

49.5.2.24 SerialUART0IntHandler

Handles the UART0 interrupt.

Prototype:
void
SerialUART0IntHandler(void)

Description:
This function is called when the UART generates an interrupt. An interrupt will be generated
when data is received and when the transmit FIFO becomes half empty. The transmit and
receive FIFOs are processed as appropriate.

Returns:
None.

49.5.2.25 SerialUART1IntHandler

Handles the UART1 interrupt.

Prototype:
void
SerialUART1IntHandler(void)

Description:
This function is called when the UART generates an interrupt. An interrupt will be generated
when data is received and when the transmit FIFO becomes half empty. The transmit and
receive FIFOs are processed as appropriate.

Returns:
None.

49.6 Telnet Port API Functions

Data Structures
tTelnetSessionData

Defines
OPT_FLAG_DO_SUPPRESS_GA
OPT_FLAG_SERVER
OPT_FLAG_WILL_SUPPRESS_GA

September 29, 2008 641

RDK-S2E Example Applications

Enumerations
tRFC2217State
tTCPState
tTelnetState

Functions
void TelnetClose (unsigned long ulSerialPort)
unsigned short TelnetGetLocalPort (unsigned long ulSerialPort)
unsigned short TelnetGetRemotePort (unsigned long ulSerialPort)
void TelnetHandler (void)
void TelnetInit (void)
void TelnetListen (unsigned short usTelnetPort, unsigned long ulSerialPort)
void TelnetNotifyModemState (unsigned long ulPort, unsigned char ucModemState)
void TelnetOpen (unsigned long ulIPAddr, unsigned short usTelnetRemotePort, unsigned short
usTelnetLocalPort, unsigned long ulSerialPort)

49.6.1 Detailed Description

The telnet protocol (as defined by RFC854) is used to make the connection across the network. In
its simplest form, a telnet client is simply a TCP connect to the appropriate port. Telnet interprets
0xff as a command indicator (known as the Interpret As Command, or IAC, byte). Consecutive
IAC bytes are used to transfer an actual 0xff byte; thus, the only special processing required is to
translate 0xff to 0xff 0xff when sending, and to translate 0xff 0xff to 0xff when receiving.

The WILL, WONT, DO, DONT option negotiation protocol is also imlpemented. This is a simple
means of determining if capabilities are present, and for enabling or disabling features that do not
require configuration. Through the use of this negotiation protocol, telnet clients and servers are
able to easily match capabilities and avoid trying to configure features that are not shared by both
ends of the connection (which would therefore result in the negotiation sequence being sent as
actual data instead of being absorbed by the client or server).

In this implementation, only the SUPPRESS_GA and RFC 2217 options are supported; all other
options are negatively responded to in order to prevent the client from trying to use them.

These functions are contained in telnet.c, with telnet.h containing the API definitions for use
by applications.

49.6.2 Data Structure Documentation

49.6.2.1 tTelnetSessionData

Definition:
typedef struct
{

tcp_pcb *pConnectPCB;
tcp_pcb *pListenPCB;

642 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

tTCPState eTCPState;
tTelnetState eTelnetState;
unsigned short usTelnetLocalPort;
unsigned short usTelnetRemotePort;
unsigned long ulTelnetRemoteIP;
unsigned char ucFlags;
unsigned long ulConnectionTimeout;
unsigned long ulMaxTimeout;
unsigned long ulSerialPort;
pbuf *pBufQ[PBUF_POOL_SIZE];
int iBufQRead;
int iBufQWrite;
pbuf *pBufHead;
pbuf *pBufCurrent;
unsigned long ulBufIndex;
unsigned long ulLastTCPSendTime;

}
tTelnetSessionData

Members:
pConnectPCB This value holds the pointer to the TCP PCB associated with this connected

telnet session.
pListenPCB This value holds the pointer to the TCP PCB associated with this listenting telnet

session.
eTCPState The current state of the TCP session.
eTelnetState The current state of the telnet option parser.
usTelnetLocalPort The listen port for the telnet server or the local port for the telnet client.
usTelnetRemotePort The remote port that the telnet client connects to.
ulTelnetRemoteIP The remote address that the telnet client connects to.
ucFlags Flags for various options associated with the telnet session.
ulConnectionTimeout A counter for the TCP connection timeout.
ulMaxTimeout The max time for TCP connection timeout counter.
ulSerialPort This value holds the UART Port Number for this telnet session.
pBufQ This value holds an array of pbufs.
iBufQRead This value holds the read index for the pbuf queue.
iBufQWrite This value holds the write index for the pbuf queue.
pBufHead This value holds the head of the pbuf that is currently being processed (that has

been popped from the queue).
pBufCurrent This value holds the actual pbuf that is being processed within the pbuf chain

pointed to by the pbuf head.
ulBufIndex This value holds the offset into the payload section of the current pbuf.
ulLastTCPSendTime The amount of time passed since rx byte count has changed.

Description:
This structure is used holding the state of a given telnet session.

September 29, 2008 643

RDK-S2E Example Applications

49.6.3 Define Documentation

49.6.3.1 OPT_FLAG_DO_SUPPRESS_GA

Definition:
#define OPT_FLAG_DO_SUPPRESS_GA

Description:
The bit in the flag that is set when the remote client has sent a DO request for SUPRESS_GA
and the server has accepted it.

49.6.3.2 OPT_FLAG_SERVER

Definition:
#define OPT_FLAG_SERVER

Description:
The bit in the flag that is set when a connection is operating as a telnet server. If clear, this
implies that this connection is a telnet client.

49.6.3.3 OPT_FLAG_WILL_SUPPRESS_GA

Definition:
#define OPT_FLAG_WILL_SUPPRESS_GA

Description:
The bit in the flag that is set when the remote client has sent a WILL request for SUPRESS_GA
and the server has accepted it.

49.6.4 Enumeration Documentation

49.6.4.1 tRFC2217State

Description:
The possible states of the telnet COM-PORT option parser.

Enumerators:
STATE_2217_GET_COMMAND The telnet COM-PORT option parser is ready to process

the first byte of data, which is the sub-option to be processed.
STATE_2217_GET_DATA The telnet COM-PORT option parser is processing data bytes for

the specified command/sub-option.
STATE_2217_GET_DATA_IAC The telnet COM-PORT option parser has received an IAC in

the data stream.

644 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

49.6.4.2 tTCPState

Description:
The possible states of the TCP session.

Enumerators:
STATE_TCP_IDLE The TCP session is idle. No connection has been attempted, nor has it

been configured to listen on any port.
STATE_TCP_LISTEN The TCP session is listening (server mode).
STATE_TCP_CONNECTING The TCP session is connecting (client mode).
STATE_TCP_CONNECTED The TCP session is connected.

49.6.4.3 tTelnetState

Description:
The possible states of the telnet option parser.

Enumerators:
STATE_NORMAL The telnet option parser is in its normal mode. Characters are passed as

is until an IAC byte is received.
STATE_IAC The previous character received by the telnet option parser was an IAC byte.
STATE_WILL The previous character sequence received by the telnet option parser was IAC

WILL.
STATE_WONT The previous character sequence received by the telnet option parser was

IAC WONT.
STATE_DO The previous character sequence received by the telnet option parser was IAC

DO.
STATE_DONT The previous character sequence received by the telnet option parser was

IAC DONT.
STATE_SB The previous character sequence received by the telnet option parser was IAC

SB.
STATE_SB_IGNORE The previous character sequence received by the telnet option parser

was IAC SB n, where n is an unsupported option.
STATE_SB_IGNORE_IAC The previous character sequence received by the telnet option

parser was IAC SB n, where n is an unsupported option.
STATE_SB_RFC2217 The previous character sequence received by the telnet option parser

was IAC SB COM-PORT-OPTION (in other words, RFC 2217).

49.6.5 Function Documentation

49.6.5.1 TelnetClose

Closes an existing Ethernet connection.

Prototype:
void
TelnetClose(unsigned long ulSerialPort)

September 29, 2008 645

RDK-S2E Example Applications

Parameters:
ulSerialPort is the serial port associated with this telnet session.

Description:
This function is called when the the Telnet/TCP session associated with the specified serial
port is to be closed.

Returns:
None.

49.6.5.2 TelnetGetLocalPort

Gets the current local port for a connection’s telnet session.

Prototype:
unsigned short
TelnetGetLocalPort(unsigned long ulSerialPort)

Parameters:
ulSerialPort is the serial port associated with this telnet session.

Description:
This function returns the local port in use by the telnet session associated with the given se-
rial port. If operating as a telnet server, this port is the port that is listening for an incoming
connection. If operating as a telnet client, this is the local port used to connect to the remote
server.

Returns:
None.

49.6.5.3 TelnetGetRemotePort

Gets the current remote port for a connection’s telnet session.

Prototype:
unsigned short
TelnetGetRemotePort(unsigned long ulSerialPort)

Parameters:
ulSerialPort is the serial port associated with this telnet session.

Description:
This function returns the remote port in use by the telnet session associated with the given
serial port. If operating as a telnet server, this function will return 0. If operating as a telnet
client, this is the server port that the connection is using.

Returns:
None.

646 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

49.6.5.4 TelnetHandler

Handles periodic task for telnet sessions.

Prototype:
void
TelnetHandler(void)

Description:
This function is called periodically from the lwIP timer thread context. This function will handle
transferring data between the UART and the the telnet sockets. The time period for this should
be tuned to the UART ring buffer sizes to maintain optimal throughput.

Returns:
None.

49.6.5.5 TelnetInit

Intializes the telnet session(s) for the Serial to Ethernet Module.

Prototype:
void
TelnetInit(void)

Description:
This function initializes the telnet session data parameter block.

Returns:
None.

49.6.5.6 TelnetListen

Opens a telnet server session (listen).

Prototype:
void
TelnetListen(unsigned short usTelnetPort,

unsigned long ulSerialPort)

Parameters:
usTelnetPort is the telnet port number to listen on.
ulSerialPort is the serial port associated with this telnet session.

Description:
This function establishes a TCP session in listen mode as a telnet server.

Returns:
None.

September 29, 2008 647

RDK-S2E Example Applications

49.6.5.7 TelnetNotifyModemState

Handles RFC2217 modem state notification.

Prototype:
void
TelnetNotifyModemState(unsigned long ulPort,

unsigned char ucModemState)

Parameters:
ulPort is the serial port for which the modem state changed.
ucModemState is the new modem state.

Description:
This function should be called by the serial port code when the modem state changes. If
RFC2217 is enabled, a notification message will be sent.

Returns:
None.

49.6.5.8 TelnetOpen

Opens a telnet server session (client).

Prototype:
void
TelnetOpen(unsigned long ulIPAddr,

unsigned short usTelnetRemotePort,
unsigned short usTelnetLocalPort,
unsigned long ulSerialPort)

Parameters:
ulIPAddr is the IP address of the telnet server.
usTelnetRemotePort is port number of the telnet server.
usTelnetLocalPort is local port number to connect from.
ulSerialPort is the serial port associated with this telnet session.

Description:
This function establishes a TCP session by attempting a connection to a telnet server.

Returns:
None.

49.7 Universal Plug and Play API Functions

Functions
void UPnPHandler (unsigned long ulTimeMS)
void UPnPInit (void)

648 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

void UPnPStart (void)
void UPnPStop (void)

49.7.1 Detailed Description

The UPnP Module provides the functions necessary to support UPnP on the network interface.

These functions are contained in upnp.c, with upnp.h containing the API definitions for use by
applications.

49.7.2 Function Documentation

49.7.2.1 UPnPHandler

Handles Ethernet interrupt for UPnP sessions.

Prototype:
void
UPnPHandler(unsigned long ulTimeMS)

Parameters:
ulTimeMS is the absolute time (as maintained by the lwip handler) in ms.

Description:
This function should be called on a regular periodic basis to handle the various timers and
process any buffers for the UPnP sessions.

Returns:
None.

49.7.2.2 UPnPInit

Intializes the UPnP session for the Serial to Ethernet Module.

Prototype:
void
UPnPInit(void)

Description:
This function initializes and configures the UPnP session for the module.

Returns:
None.

49.7.2.3 UPnPStart

Starts listening for UPnP requests.

September 29, 2008 649

RDK-S2E Example Applications

Prototype:
void
UPnPStart(void)

Description:
This function sets up the two ports which listen for UPnP location and discovery requests.

Returns:
None.

49.7.2.4 UPnPStop

Broadcasts a byebye message and stop UPnP discovery.

Prototype:
void
UPnPStop(void)

Description:
This function broadcasts an SSDP byebye message indicating that the UPnP device is no
longer available then frees resources associated with UPnP discovery and location.

Returns:
None.

49.8 Examples

All of these examples reside in the boards/rdk-s2e subdirectory of the peripheral driver library
source distribution.

Boot Loader (boot_eth)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses Ethernet to
load an application.

Serial To Ethernet Module (ser2enet)

The Serial to Ethernet Converter provides a means of accessing the UART on a Stellaris device
via a network connection. The UART can be connected to the UART on a non-networked device,
providing the ability to access the device via a network. This can be useful to overcome the cable
length limitations of a UART connection (in fact, the cable can become thousands of miles long)
and to provide networking capability to existing devices without modifing the device’s operation.

650 September 29, 2008

Stellaris Peripheral Driver Library User’s Guide

The converter can be configured to use a static IP configuration or to use DHCP to obtain its IP
configuration. Since the converter is providing a telnet server, the effective use of DHCP requires
a reservation in the DHCP server so that the converter gets the same IP address each time it is
connected to the network.

September 29, 2008 651

Company Information
Founded in 2004, Luminary Micro, Inc. designs, markets, and sells ARM Cortex-M3-based mi-
crocontrollers (MCUs). Austin, Texas-based Luminary Micro is the lead partner for the Cortex-M3
processor, delivering the world’s first silicon implementation of the Cortex-M3 processor. Luminary
Micro’s introduction of the Stellaris family of products provides 32-bit performance for the same
price as current 8- and 16-bit microcontroller designs. With entry-level pricing at $1.00 for an ARM
technology-based MCU, Luminary Micro’s Stellaris product line allows for standardization that elim-
inates future architectural upgrades or software tool changes.

Luminary Micro, Inc.
108 Wild Basin, Suite 350
Austin, TX 78746
Main: +1-512-279-8800
Fax: +1-512-279-8879
http://www.luminarymicro.com
sales@luminarymicro.com

Support Information
For support on Luminary Micro products, contact:

support@luminarymicro.com
+1-512-279-8800, ext 3

652 September 29, 2008

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	Legal Disclaimers and Trademark Information
	Revision Information
	1 Introduction
	2 Building The Code
	2.1 Required Software
	2.2 Building With Keil uVision
	2.3 Building with IAR Embedded Workbench
	2.4 Building with CodeSourcery Sourcery G++
	2.5 Building with Code Red Technologies Tools
	2.6 Building From The Command Line

	3 Boot Code
	4 Programming Model
	4.1 Introduction
	4.2 Direct Register Access Model
	4.3 Software Driver Model
	4.4 Combining The Models

	5 Analog Comparator
	5.1 Introduction
	5.2 API Functions
	5.3 Programming Example

	6 Analog to Digital Converter (ADC)
	6.1 Introduction
	6.2 API Functions
	6.3 Programming Example

	7 Controller Area Network (CAN)
	7.1 Introduction
	7.2 API Functions
	7.3 Programming Example

	8 Ethernet Controller
	8.1 Introduction
	8.2 API Functions
	8.3 Programming Example

	9 Flash
	9.1 Introduction
	9.2 API Functions
	9.3 Programming Example

	10 GPIO
	10.1 Introduction
	10.2 API Functions
	10.3 Programming Example

	11 Hibernation Module
	11.1 Introduction
	11.2 API Functions
	11.3 Programming Example

	12 Inter-Integrated Circuit (I2C)
	12.1 Introduction
	12.2 API Functions
	12.3 Programming Example

	13 Interrupt Controller (NVIC)
	13.1 Introduction
	13.2 API Functions
	13.3 Programming Example

	14 Memory Protection Unit (MPU)
	14.1 Introduction
	14.2 API Functions
	14.3 Programming Example

	15 Peripheral Pin Mapping
	15.1 Introduction
	15.2 API Functions
	15.3 Programming Example

	16 Pulse Width Modulator (PWM)
	16.1 Introduction
	16.2 API Functions
	16.3 Programming Example

	17 Quadrature Encoder (QEI)
	17.1 Introduction
	17.2 API Functions
	17.3 Programming Example

	18 Synchronous Serial Interface (SSI)
	18.1 Introduction
	18.2 API Functions
	18.3 Programming Example

	19 System Control
	19.1 Introduction
	19.2 API Functions
	19.3 Programming Example

	20 System Tick (SysTick)
	20.1 Introduction
	20.2 API Functions
	20.3 Programming Example

	21 Timer
	21.1 Introduction
	21.2 API Functions
	21.3 Programming Example

	22 UART
	22.1 Introduction
	22.2 API Functions
	22.3 Programming Example

	23 uDMA Controller
	23.1 Introduction
	23.2 API Functions
	23.3 Programming Example

	24 USB Controller
	24.1 Introduction
	24.2 Using USB with the uDMA Controller
	24.3 API Functions
	24.4 Programming Example

	25 Watchdog Timer
	25.1 Introduction
	25.2 API Functions
	25.3 Programming Example

	26 Using the ROM
	26.1 Introduction
	26.2 Direct ROM Calls
	26.3 Mapped ROM Calls
	26.4 Firmware Update

	27 Utility Functions
	27.1 Introduction
	27.2 API Functions

	28 Error Handling
	29 Boot Loader
	29.1 Introduction
	29.2 Functions

	30 Tool Chain Specifics
	30.1 Introduction
	30.2 Compilers
	30.3 Debuggers

	31 DK-LM3S101 Example Applications
	31.1 Introduction
	31.2 API Functions
	31.3 Examples

	32 DK-LM3S102 Example Applications
	32.1 Introduction
	32.2 API Functions
	32.3 Examples

	33 DK-LM3S301 Example Applications
	33.1 Introduction
	33.2 API Functions
	33.3 Examples

	34 DK-LM3S801 Example Applications
	34.1 Introduction
	34.2 API Functions
	34.3 Examples

	35 DK-LM3S811 Example Applications
	35.1 Introduction
	35.2 API Functions
	35.3 Examples

	36 DK-LM3S815 Example Applications
	36.1 Introduction
	36.2 API Functions
	36.3 Examples

	37 DK-LM3S817 Example Applications
	37.1 Introduction
	37.2 API Functions
	37.3 Examples

	38 DK-LM3S818 Example Applications
	38.1 Introduction
	38.2 API Functions
	38.3 Examples

	39 DK-LM3S828 Example Applications
	39.1 Introduction
	39.2 API Functions
	39.3 Examples

	40 EK-LM3S1968 Example Applications
	40.1 Introduction
	40.2 API Functions
	40.3 Examples

	41 EK-LM3S2965 Example Applications
	41.1 Introduction
	41.2 API Functions
	41.3 Examples

	42 EK-LM3S2965 Rev C Example Applications
	42.1 Introduction
	42.2 API Functions
	42.3 Examples

	43 EK-LM3S3748 Example Applications
	43.1 Introduction
	43.2 API Functions
	43.3 Examples

	44 EK-LM3S6965 Example Applications
	44.1 Introduction
	44.2 API Functions
	44.3 Building Web Server File System Images
	44.4 Examples

	45 EK-LM3S6965 Rev C Example Applications
	45.1 Introduction
	45.2 API Functions
	45.3 Building Web Server File System Images
	45.4 Examples

	46 EK-LM3S811 Example Applications
	46.1 Introduction
	46.2 API Functions
	46.3 Examples

	47 EK-LM3S8962 Example Applications
	47.1 Introduction
	47.2 API Functions
	47.3 Building Web Server File System Images
	47.4 Examples

	48 RDK-IDM Example Applications
	48.1 Introduction
	48.2 Analog Input API Functions
	48.3 Display Driver API Functions
	48.4 Relay Output API Functions
	48.5 Sound Output API Functions
	48.6 Touch Screen API Functions
	48.7 Boot Loader and Firmware Update
	48.8 Building Web Server File System Images
	48.9 Examples

	49 RDK-S2E Example Applications
	49.1 Introduction
	49.2 Configuration API Functions
	49.3 File System API Functions
	49.4 Ring Buffer API Functions
	49.5 Serial Port API Functions
	49.6 Telnet Port API Functions
	49.7 Universal Plug and Play API Functions
	49.8 Examples

	Company Information
	Support Information

