

TMS320 DSP
DESIGNER’S NOTEBOOK

A Novel Way of Using
TMS320C40 Cache
APPLICATION BRIEF: SPRA222

 Keith Larson
 Digital Signal Processing Products
 Semiconductor Group

 Texas Instruments
 March 1993

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract... 7
Design Problem.. 8
Solution... 8

Examples
Example 1. Code Listing ... 9

A Novel Way of Using TMS320C40 Cache 7

A Novel Way of Using TMS320C40
Cache

Abstract

This document discusses how to place any value into the
TMS320C40 cache. A code example is included.

8 SPRA222

Design Problem

How can I place any value into the TMS320C40 cache?

Solution

A usual approach to loading the cache is to unfreeze the cache and
let it always be filled, hoping for a looped block of code. By freezing
the cache at the end of time-sensitive routines, a little more
performance can be expected since the cache does not always have
to be filled from external memory on the first pass through. However,
the cache may not always fill completely due to code dependencies
or conditional branching. In this case, it would be desirable to load
the contents of any address into the cache.

The routine shown in Figure 1 will poke opcodes from an arbitrary
address into the cache using a feature of the interrupt processor. In
this case, when the RETI opcode is executed, writing PGIE to GIE,
one opcode following the RETI is protected from interrupts and is
always fetched (and executed). By properly controlling the value of
TOS, it is possible to load any external address pointed to by TOS
into the cache! In this case, an interrupt vector is used to loop the
cache loader back to itself each time an opcode is loaded into the
cache.

Caution: Since any opcode can be executed in any order, it is
important to control the potential action of all opcodes fetched in this
manner. For example, if an opcode is supposed to write data to a
location pointed to by an auxiliary register, it would make sense to
make sure that all the auxiliary registers point to a safe “dummy”
location. Likewise, adequate controls should be placed on the loader
to ensure that the correct status is always loaded back into the CPU
after each cache load.

Also note that DATA values can be poked into the cache. Since all
opcodes going into the cache are executed, unpredictable results
may occur when loading such a value. If a DATA value is loaded
into the cache, that value is NOT accessible as data from the cache
since the DDATA bus cannot be connected to the cache for a
transfer. IE-only program fetching is allowed from the cache.

 NOTE:
The routine shown in Example 1 does not include a full
save and restore, nor does it control the values of the data
pointers (DP and ARs). It is the programmer’s
responsibility to add the code necessary to provide the
context save routines and other error checking.

A Novel Way of Using TMS320C40 Cache 9

Since the ’C40 cache is filled on 32 words boundary, sometimes the
program address alignment is needed in order to put the maximum
length of the program into the cache.

Example 1. Code Listing

;——;
; void lcache(*ptr, len); ;
; ;
; loads the program pointed to by ptr into ;
; the cache from external memory ;
;——;

.global start,test,FLAG_0,_lcache

.global dec,inc,more,RST,NMI,TINT_0

.text
RST .word $;set up temporary IVTP in

; need to align at 512 word boundary
NMI .word $+1 ;external RAM
TINT_0 .word _lcache

;———————————-;
start: ldp RST ;set up a new vector table

ldi @RST,R0
ldpe R0,IVTP
ldi @stack,SP ;set up a runtime stack
ldi @a_test,R0 ;subroutine to load is

; “test”
sti R0,@APC
ldi 16,R0 ;load 16 cache locations
sti R0,@CNT
sti IIF,@FLAG ;keep original IIF
and 0E3FFh,ST ;clear, thaw and enable

; cache
or 5800h,ST
call $+1 ;a way to push PC on stack
pop R0 ;takes care of first dummy pop
addi 4,R0
push R0
call _lcache ;call the cache loader
or 00C00h,ST ;freeze and enable cache
ldi @FLAG,IIF ;restore IIF

;———————————-;
test ldi 15,R0 ;Test code to cram into the

;cache
dec subi 1,R0 ;with conditional branches

bnn dec
ldi -15,R0

inc addi 1,R0
bn inc
bud test
nop
nop
nop ;

;———————————-;

10 SPRA222

_lcache ldp APC
ldi @CNT,R1
subi 1,R1
bnz more
pop R0 ;pop junk address
rets ;return to original caller

;————————————
more sti R1,@CNT

pop R1 ;pop junk address
ldi @APC,R1 ;create “new” return address
addi 1,R1
sti R1,@APC
push R1
ldi @TINT0,IIF ;turn on TINT0
ldi 1,IIE ;enable TINT0
reti ;after return, fetch 1 opcode

;———————————-;
.global FLAG,APC,CNT
.global a_test,stack

FLAG .word 0 ;Original IIF register
APC .word 0 ;Auxiliary Program Counter
CNT .word 0 ;length to load
TINT0 .word 01000000h
a_test .word test-1
stack .word $;reserve stack locations

.end

