
Application Report
SPRAAW2A–June 2009

Using the TMS320C6452 Bootloader
Karen Baldwin .................................................................................................................................

ABSTRACT
This document describes the functionality of the TMS320C6452 ROM bootloader
software. The ROM bootloader resides in the ROM of the device beginning at ROM
address 0×00100000. The ROM boot loader (RBL) implements methods for booting in
the listed modes. It reads the contents of the BOOTCFG register to determine boot
mode and performs appropriate commands to effect boot of device. If an improper boot
mode is chosen or if for some reason an error is detected during boot from a slave
device, the RBL communicates this through the universal asynchronous
receiver/transmitter (UART) as a default boot device. Note that the ROM bootloader
requires use of an Application Image Script (AIS) as the primary data format for loading
code/data. AIS is a Texas Instruments, Inc. proprietary data format. AIS is explained in
detail in Section 2 of this document.
• Emulation Boot
• HPI
• PCI (DMP as slave)
• EMIFA CS2 ROM Direct Boot
• EMIFA CS2 ROM Fast Boot with AIS
• I2C (DMP as master) (supported with ROM version 3.70)
• SPI (DMP as master)
• UART (DMP as slave), no flow control (supported with ROM version 3.70)
• UART (DMP as slave), with flow control (supported with ROM version 3.70)
• Ethernet (supported with ROM version 3.70)

When booting in master mode, the boot loader reads boot information from the slave
device as and when required. When booting in slave mode, the boot loader depends on
the master device to feed boot information when required. For all boot modes, the ROM
bootloader disables the watchdog timer for a duration of boot. All applications MUST
avoid configuring watchdog timer during boot process. (No AIS commands or code
should change this during boot).

Table 1. Terms and Abbreviations
Term Description
Bootloader SW/Code for ROM C6452 Bootloader
AIS Application Image Script
BL Boot Loader (referring to the bootloader in this text)
DMP Digital Media Processor (DMP)
I2C Inter Integrated Circuit
OS Op-Code Synchronization
POS Ping Op-Code Synchronization
ROM Read Only Memory
SPI Serial Peripheral Interface
SWS Start-Word Synchronization
EMIF External Memory Interface

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 1
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


www.ti.com

Table 1. Terms and Abbreviations (continued)
Term Description
PLL Phased-Locked Loop
EEPROM Electrically Erasable Programmable Read-Only Memory
MCBSP Multichannel Buffered Serial Port
FIFO First-In-First-Out
HPI Host-Post Interface
PCI Peripheral Component Interconnect
UDP User Datagram Protocol

Contents
1 Boot-Mode Description...................................................................................................... 3
2 Application Image Script................................................................................................... 15
3 Booting Operating Systems (Linux®/DSP/BIOS, ™ etc.).............................................................. 22
4 ROM Bootloader RAM Memory Requirements and Code/Data Placement ........................................ 23
5 AIS Generation Tool , genAIS ............................................................................................ 23
6 Sample AIS Boot Images ................................................................................................. 25
7 Determining On-Chip Bootloader Version............................................................................... 33
8 Debugging Boot Failures .................................................................................................. 33
9 Calculating CRC............................................................................................................ 34
Appendix A Calculating the CRC ............................................................................................. 35

List of Figures

1 SPI Transfer With Polarity = 1, Phase = 0 .............................................................................. 10
2 Packet Flow for SGMII0 Boot............................................................................................. 12
3 Basic Structure of Application Image Script ............................................................................ 15
4 Structure of SET Command .............................................................................................. 16
5 Valid SET Command Data Types........................................................................................ 17
6 Structure of GET Command .............................................................................................. 18
7 Structure of Section Load Command .................................................................................... 18
8 Structure of Section Fill Command ...................................................................................... 19
9 Structure of Jump Command ............................................................................................. 19
10 Structure of Jump_Close Command..................................................................................... 20
11 Structure of Enable CRC/Disable CRC Commands ................................................................... 21
12 Structure of Request CRC Command ................................................................................... 22
13 UART AIS Boot Image..................................................................................................... 31

List of Tables

1 Terms and Abbreviations ................................................................................................... 1
2 C6452 Boot Modes .......................................................................................................... 4
3 PCI Configuration Data for Auto-Init....................................................................................... 7
4 I2C Timing Register Settings With CLKIN of 27 MHz................................................................... 8
5 SPI Master Clock Frequencies............................................................................................. 9
6 SPI Master Boot Modes ................................................................................................... 10
7 UART Connection Attributes for Boot ................................................................................... 11
8 Ethernet 3 Port Switch Settings .......................................................................................... 12
9 BOOTP Request Packet Format ......................................................................................... 13
10 Ethernet Boot Table Frame Format...................................................................................... 14
11 Boot Table Frame Header ................................................................................................ 14
12 Boot Table Format ......................................................................................................... 14

2 Using the TMS320C6452 Bootloader SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


1 Boot-Mode Description

www.ti.com Boot-Mode Description

13 AIS Version 2.0 Supported Opcodes .................................................................................... 16
14 Numeric Formats That Can Be Used in SET Command.............................................................. 17
15 Valid SET Command Data Types........................................................................................ 17
16 Valid SET Command Data Types Field Descriptions ................................................................. 17
17 genAIS Program Options.................................................................................................. 24
18 EMIFA ROM Fast Boot AIS Boot Image Example ..................................................................... 26
19 I2C AIS Boot Image Example ............................................................................................ 27
20 AIS Image in I2C EEPROM Memory .................................................................................... 28
21 SPI AIS Boot Image Example ............................................................................................ 28
22 AIS Image in SPI EEPROM Memory .................................................................................... 29
23 Ethernet Boot Packet Generation Options .............................................................................. 31
24 Debugging Boot Failures .................................................................................................. 34

The selection of the following boot modes depend upon the status of boot device pins. The status of these
pins is captured on the rising edge of device POR reset into the BOOTCFG register. The bootloader reads
the contents of the BOOTCFG register and branches to the appropriate code to implement the selected
boot.

The bootloader supports a FASTBOOT option that is determined by the status of the FASTBOOT pin
sampled at a POR reset of the device. When FASTBOOT is enabled, the bootloader configures the PLL
using a fixed PLL multiplier value. The bootloader on the C6452 sets this multiplier at 19 for all boot
modes except Ethernet boot. This gives a PLL multiplier of x20 for the input clock. When any of the
Ethernet boot modes is selected, the bootloader always configures PLL. When FASTBOOT option is
asserted, the bootloader will program PLL using multiplier of x24, yielding CPU clock of x25 input clock.
When FASTBOOT is not asserted for Ethernet boot mode, the bootloader uses default multiplier of 19.

Boot device pins must be configured to one of the valid modes. A description of each valid mode is given
in subsequent sections. Ethernet boot, I2C boot, and I2C boot modes are supported with ROM version
3.70. All other modes are supported on all extant ROM versions.

DSP/BIOS, are trademarks of Texas Instruments.
Linux is a registered trademark of Linux Torvalds in the U.S. and other countries.
All other trademarks are the property of their respective owners.

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


1.1 Boot Requirements, Constraints, and Default Settings

Boot-Mode Description www.ti.com

All other modes not shown in Table 2 and are reserved and represent invalid settings.

Table 2. C6452 Boot Modes
DEVICE BOOT AND

genAIS DMP DSPBOOTADDRCONFIGURATION PINS BOOT DESCRIPTION (Master/Slave) (DEFAULT)
BOOTMODE[3:0] UHPIEN FASTBOOT

0000 0 or 1 0 or 1 No Boot (Emulation Boot) – 0x0080 0000

0 1 PCI Boot No Auto-initialization Slave 0x0080 0000
0001

1 0 or 1 HPI Boot Slave 0x0080 0000

0 1 PCI Boot With Auto-initialization Slave 0x0080 0000
0010

1 0 or 1 HPI Boot Slave 0x0080 0000

UART Boot with No Hardware Flow0011 0 or 1 0 Slave 0x0080 0000Control

EMIFA ROM Direct Boot(PLL Bypass0 Master 0xA000 0000Mode)0100 0 or 1
1 EMIFA ROM AIS Boot Master 0x0080 0000

0101 0 or 1 0 or 1 I2C Boot [STANDARD MODE] Master 0x0080 0000

0110 0 or 1 0 or 1 SPI Boot Master 0x0080 0000

0111 0 or 1 0 or 1 Reserved – 0x0080 0000

1000 0 or 1 0 or 1 SGMII0 - Boot Port, no packet forwarding Slave 0x0080 0000

SGMII0 - Boot Port, SGMII1 packet1001 0 or 1 0 or 1 Slave 0x0080 0000forwarding

SGMII1 - Boot Port, SGMII0 packet1010 0 or 1 0 or 1 Slave 0x0080 0000forwarding

1011 0 or 1 0 or 1 Reserved – 0x0080 0000

1100 0 or 1 0 or 1 Reserved – 0x0080 0000

1101 0 or 1 0 or 1 Reserved – 0x0080 0000

UART Boot with Hardware Flow Control1110 0 or 1 0 Slave 0x0080 0000[UART0]

1111 0 or 1 0 or 1 Reserved – 0x0080 0000

Please make note of the following requirements:
1. FASTBOOT is required for all PCI boot modes and is the default for all SGMII boot modes.
2. Bootloader supports only 16-bit address width for I2C EEPROMs.
3. For PCI boot with auto-initialization, auto-init data is expected to be stored on I2C EEPROM connected

to I2C of the device.
4. All boot timings are optimized for a 27-MHz input clock frequency.
5. I2C, SPI, UART, and EMIFA CS2 FASTBOOT (BOOTMODE[3:0]=0100b) requires data for boot to be

stored in Application Image Script Format. AIS is a Texas Instruments, Inc. proprietary format for boot
images. A detailed description of AIS is given in Section 1.7 of this document. Any formats used for
HOST modes such as HPI and PCI is solely at the discretion of the user.

6. When FASTBOOT is selected, the bootloader configures the PLL. The value of the PLL multiplier used
has been fixed at 19, yielding CLKIN × 20 as value of SYSCLK. This document bases all timing
calculations assuming a 27-MHz input clock to the device. For more detailed discussion, see the
device-specific data sheet.

7. By default, cache is enabled when the DMP comes out of reset. When the ROM bootloader executes,
it disables all L1 and L2 cache during boot. This affects ALL boot modes with exception of EMIFA
Direct boot. In EMIFA Direct boot, the ROM bootloader code is not executed; therefore, cache is
enabled and is operating according to default power on settings.

8. For UART boot modes, a 27-MHz input clock frequency is required. This is the only boot mode with
this requirement.

Using the TMS320C6452 Bootloader4 SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


1.2 FASTBOOT Mode

1.2.1 CPU Frequency With FASTBOOT Options

1.3 Emulation Boot (BOOTMODE[3:0] = 0000b, FASTBOOT = 0 or 1)

1.4 HPI Boot (BOOTMODE[3:0] = 0001b or 0010b, or 0011b, UHPIEN = 1, FASTBOOT = 0

www.ti.com Boot-Mode Description

When FASTBOOT mode is selected, the ROMed bootloader programs the PLL using a fixed multiplier
value. This affects all boot modes with exception of emulation boot. FASTBOOT is ignored in case of
emulation boot. For all Ethernet/SGMII boot modes, the PLL is programmed regardless of state of
FASTBOOT pin. When any Ethernet/SGMII mode is selected, the state of the FASTBOOT pin is used to
determine the PLL multiplier value. When FASTBOOT = 1, and BOOTMODE[3:0] = 1000b, 1001b, 1011b,
the PLL multiplier is set to 24, yielding CLKIN × 25 as the value of SYSCLK. When FASTBOOT = 0, and
any of the Ethernet/SGMII boot modes is selected, the PLL multiplier is set to the normal FASTBOOT PLL
multiplier of 19. For all other boot modes, the PLL multiplier used is fixed at 19 for FASTBOOT, yielding
CLKIN × 20 as value of SYSCLK.

The bootloader software uses a fixed PLL multiplier of 19 when configuring the PLL for FASTBOOT option
for all boot modes except emulation boot and SGMII boot. For SGMII boot, FASTBOOT PLL multiplier is
fixed at 24. ALL timings in this document are based on a 27-MHz input clock for DMP/CPU and 62.5-Mhz
input to Serdes for Ethernet Port configuration. To determine the CLKIN frequency best suited for your
device and application, see the device-specific datasheet. The assumed input clock frequency and PLL
multiplier used for FASTBOOT may not result in MAX CPU frequency rated for your device. The intent of
FASTBOOT mode is to enable faster boot time by clocking CPU and boot peripherals and greater speeds.
It is not intended to set the maximum CPU frequency at boot. The application may later change the PLL
settings to enable maximum operating frequency after boot is complete.

In this boot mode, the ROM bootloader software executes a SW loop. The emulation software has
responsibility for performing code download and controlling the device. All FASTBOOT options are ignored
for this boot mode. The PLL operates in bypass mode, yielding a CPU timing of 27 MHz.

or 1)
In HPI boot mode, the device bootloader hardware module branches to the start of the ROM bootloader
software. The ROM bootloader code then performs the following sequence:
1. When FASTBOOT = 1, the bootloader programs the PLL based on the PLL multiplier value of 19.
2. Configures any HPI register that may be required.
3. Clears the DSPBOOTADDR register. Clears boot error code field (BOOTCMPLT.ERR) and boot

complete bit (BOOTCMPLT.BC) in the Boot Complete Register (BOOTCMPLT).
4. Posts HINT to the HOST device, signaling that the DMP is awake and ready for code download.
5. Enters a software loop waiting for non-zero value in the BOOTCMPLT.BC register.
6. When download of application is complete, the HOST writes the application start address into the

DSPBOOTADDR register and then sets the boot complete bit in the BOOTCMPLT register.
7. Once BOOTCMPLT.BC has been set by HOST, the ROM bootloader software branches to the address

set by HOST in DSPBOOTADDR.

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


1.5 PCI Boot (BOOTMODE[3:0] = 0001b or 0010b, UHPIEN = 0, FASTBOOT = 1)
Boot-Mode Description www.ti.com

C6452 supports the PCI boot with DMP as PCI slave only. The bootloader implements PCI boot with and
without auto-initialization. When PCI boot with auto-initialization is selected, the bootloader expects
auto-init data to be stored in I2C EEPROM connected to I2C of the device. Please note that although the
bootloader attempts boot when FASTBOOT mode is not enabled, this is not the recommended mode for
PCI boot. Please enable FASTBOOT with any PCI boot mode to ensure PCI timing meets requirements.

In PCI boot mode with no auto-initialization, the ROM bootloader performs the following steps:
1. Configures PLL using a PLL multiplier of 19. (If FASTBOOT is not selected, the bootloader still

attempts to complete boot; however, the PCI operating frequency may not meet minimal PCI
requirements of 33 MHz).

2. Clears the DSPBOOTADDR and BOOTCMPLT register fields.
3. When boot mode = 0001b, the ROM bootloader sets the PCI CONFIG_DONE bit in the PCI

Configuration Done Register (PCICFGDONE) and the PCI Slave Control Register (PCISLVCNTL) to 1.
When boot mode = 0010b, PCI auto-init mode is enabled and the ROM bootloader programs the PCI
wrapper registers setting CONFIG_DONE = 1 after this is complete.

4. Enters a software loop polling for BOOTCMPLT.BC. Once boot complete is detected, the ROM
bootloader software branches to the address set by the HOST in DSPBOOTADDR register.

When FASTBOOT mode and PCI boot are selected, the ROM bootloader software configures the PLL, as
the first step, prior to clearing the DSPBOOTADDR and BOOTCMPLT registers.

Using the TMS320C6452 Bootloader6 SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


1.6 EMIFA ROM Direct Boot (BOOTMODE[3:0] = 0100b, FASTBOOT = 0)

www.ti.com Boot-Mode Description

When PCI boot with auto-initialization is selected, the bootloader reads the PCI configuration data stored
in I2C EEPROM connected to I2C of the device. The data as stored in I2C EEPROM must be in formatted
as shown in Table 3. The data must begin at EEPROM byte address 0×400.

Table 3. PCI Configuration Data for Auto-Init
Byte Address Contents

0×400 Vendor ID [15:8]
0×401 Vendor ID [7:0]
0×402 Device ID [15:8]
0×403 Device ID [7:0]
0×404 Class code [7:0]
0×405 Revision ID [7:0]
0×406 Class code [23:16]
0×407 Class code [15:8]
0×408 Subsystem vendor ID [15:8]
0×409 Subsystem vendor ID [7:0]
0×40a Subsystem ID [15:8]
0×40b Subsystem ID [7:0]
0×40c Max_Latency
0×40d Min_Grant
0×40e Reserved (use 0x00)
0×40f Reserved (use 0x00)
0×410 Reserved (use 0x00)
0×411 Reserved (use 0x00)
0×412 Reserved (use 0x00)
0×413 Reserved (use 0x00)
0×414 Reserved (use 0x00)
0×415 Reserved (use 0x00)
0×416 Reserved (use 0x00)
0×417 Reserved (use 0x00)
0×418 Reserved (use 0x00)
0×419 Reserved (use 0x00)
0×41a Checksum [15:8]
0×41b Checksum [7:0]

Store the PCI initialization data in BIG-ENDIAN format.

EMIFA direct boot does not require intervention from the ROM bootloader software. The DMP hardware
boot module causes direct branch to the start of EMIFA memory at address 0×A0000000. Code execution
begins at that address.

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


1.7 EMIFA ROM Fast Boot with AIS (BOOTMODE[3:0] = 0100b, FASTBOOT = 1)

1.8 I2C Master Mode Boot (BOOTMODE[3:0] = 0101b, FASTBOOT = 0 or 1)

1.8.1 I2C Master Boot Timing

Boot-Mode Description www.ti.com

During EMIFA FAST ROM boot mode, the DMP hardware boot module transfers control to the ROM
bootloader software. This boot mode operates differently than the EMIFA direct boot. The ROM bootloader
controls the boot process, first programming PLL to operate at faster CPU speeds, and then reading
code/data starting at EMIFA address 0×A0000000. The data stored in the FLASH/ROM must be in AIS
format. A description of AIS is given in Section 2 of this document. The AIS boot image consists of AIS
commands and data necessary to load the application code into the DMP memory. Using the AIS format
eliminates the requirement of you having to define a secondary boot loader to load the application. The
ROM bootloader processes AIS commands from the EMIFA ROM until an AIS JUMP_CLOSE instruction
is encountered. The JUMP_CLOSE instruction contains the application code start address. This command
signals that the application has been fully loaded and all AIS commands are processed for the boot. The
ROM bootloader clears it’s internal state and then branches to the start of application code. EMIF
FASTBOOT bootloader sequence is shown below:
1. Programs PLL using a PLL multiplier of 19.
2. Reads value of 8_16 pin as latched into BOOTCFG register and sets EMIF data width accordingly.
3. Fetches AIS data from external memory and processes AIS commands until the JUMP CLOSE

command is encountered.
4. Branches to the application start address given in the JUMP CLOSE command.

The C6452 supports I2C boot with DMP as I2C master only. The DMP hardware boot module transfers
control to the ROM bootloader software at device reset. The ROM bootloader configures the I2C
peripheral device, and begins read of data from the I2C EEPROM. The data stored in the I2C EEPROM is
expected to be in AIS format. The first 32 bits are ignored by the bootloader. This location is currently
reserved. The second 32-bit word must contain the AIS magic number. The remaining data in the I2C
EEPROM must be in AIS format. For more details regarding AIS, see Section 2. Boot sequence for I2C is
as follows:
1. When FASTBOOT = 1, bootloader programs PLL using PLL multiplier value of 19 (generating SYSCLK

of CLKIN × 20).
2. Configures I2C for master mode with slave address register set to 0×50, and own address register set

to 0×29.
3. Processes each AIS command until JUMP_CLOSE command is encountered.
4. Branches to application start address
5. If an error occurs during the I2C boot process, the bootloader writes an error condition in the ERR field

of the BOOTCMPLT register. Then, it attempts to perform boot through UART.

The bootloader sets the following values for I2C clock pre-scale and clock low-hold/clock high-hold
registers depending on value of FASTBOOT configuration pin.

Table 4. I2C Timing Register Settings With CLKIN of 27 MHz
I2C Peripheral Clock I2C Master Clock

FASTBOOT System Clock Frequency Register Value Frequency
0 27 MHz 4.5 MHz IPSC 0×1 140 KHz

ICCLKH 0×2
ICLKL 0×2

1 540 MHz 90 MHz IPSC 0×B 187 KHz
ICCLKH 0×F
ICCLKL 0×F

Using the TMS320C6452 Bootloader8 SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


( ) ( ) ( )
I2C peripheral clock frequency

I2C master clock frequency =
IPSC + 1 * ICCLKL + D ICCLKH + Dé ù+ë û

1.9 SPI Master Mode Boot (BOOTMODE[3:0] = 0110b, FASTBOOT = 0 or 1)

1.9.1 SPI Master Boot Timing

www.ti.com Boot-Mode Description

The frequency of the I2C master clock is derived by:

For C6452, the I2C peripheral clock is derived from the internal clock provided to the I2C. The peripheral
clock is derived by a fixed divide of 1/6 SYSCLK. The value of the quantity represented by D is
determined by the IPSC value (IPSC > 1, D = 5, IPSC = 1, D = 6, IPSC = 0, D = 7). For purposes of
determining the I2C master clock used for boot, D = 5, since the bootloader software always programs a
value of 11 for IPSC. Assuming an input oscillator frequency of 27 MHz, the settings for IPSC, ICCLKH,
ICCLKL, in Table 4 show the I2C lock frequencies.

Because DMP as SPI master is the only mode supported by bootloader, the bootloader configures the SPI
to operate as SPI master, and then initiates data read from the attached SPI EEPROM. The boot flow is
as follows:
1. If FASTBOOT is enabled, the bootloader programs PLL using PLLM value of 19, then,
2. Bootloader reads first byte of data from EEPROM to retrieve address width expressed in number of

bytes.
3. Bootloader reads AIS formatted boot image from EEPROM.
4. When the last AIS command is encountered (JUMP CLOSE command), the bootloader branches to

the application entry address given in the command.

The SPI master clock frequency is derived from the internal clock provided to the SPI. The peripheral
clock is derived by a fixed divide of 1/6 the CPU clock. The SPI master clock frequency is further
determined by the prescale value. When FASTBOOT is enabled, the bootloader uses a fixed prescale
value of 7. When FASTBOOT is disabled, the clock prescale value is set to 0. Table 5 shows the derived
master clock frequency based on FASTBOOT configuration.

Table 5. SPI Master Clock Frequencies
FASTBOOT PRESCALE SYSCLK SPI Peripheral Clock (MHz) SPI Master (MHz)

0 0 27 MHz 4.5 MHz 4.5 MHz
1 7 540 MHz 90 MHz 11.25 MHz

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


1.9.2 SPI Master Boot Signal Descriptions

SPIDI (from slave)

SPIDO (to slave)

SPICLK

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

SPICS1n

1.10 UART Boot (BOOTMODE[3:0] = 0011b, 1110b, FASTBOOT = 0 or 1)

Boot-Mode Description www.ti.com

The SPI module is configured for 4-pin SPI master boot with the following selections:

Table 6. SPI Master Boot Modes
Register Value
SPIFMT0 Field Values Set

POLARITY = 1, PHASE = 0, PRESCALE = 0 or 7, CHARLEN = 8
SPIPC0 Field Values Set

DIFUN = 1, DOFUN = 1, CLKFUN = 1
SPIGCR1 Field Values Set

CLKMOD = 1, MASTER = 1

With these modes selected, the SPI master clock polarity is inactive high. Output data is driven on the
falling edge of the SPICLK, and input data is sampled at the SPIDI pin on the rising edge of the SPICLK.
Though the SCSFUNx field(s) of the SPIPC0 register is not set, the SPICS1 pin is controlled manually by
the bootloader, driven low to access the external SPI device. Furthermore, the SPI_UART_EN field of the
PINMUX register is set such that all muxed pins are SPI pins.

Figure 1. SPI Transfer With Polarity = 1, Phase = 0

UART boot differs from the other boot modes in that the bootloader software performs some
communication with the HOST during the boot process. The bootloader performs the following sequence
when UART boot is selected.
1. When FASTBOOT = 1, the bootloader programs the PLL using the PLL multiplier of 19.
2. Configures UART registers as required by chosen mode.
3. Sends message BOOTME through the serial interface to the HOST.
4. Waits response from the HOST in the form of the AIS magic number. The bootloader continually loops,

waiting for response.
5. When response is received from HOST, the bootloader processes AIS commands as read from the

serial interface until a JUMP CLOSE command is encountered.
6. When JUMP CLOSE command is read, the bootloader sends message, DONE, to the HOST and then

branches to the application start address.

The AIS commands are expected to be in ASCII representation, hence, to send the AIS magic word ,
0×41504954, the character sequence 41, 50, 49, 54, is expected to be received by the bootloader. A
sample AIS stream for UART boot is given in Section 2.

10 Using the TMS320C6452 Bootloader SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


1.10.1 UART Boot Timing

1.11 Ethernet Boot Modes - SGMII0 Only, SGMII0, and SGMII1 (Bootmode[3:0] = 1000b,

www.ti.com Boot-Mode Description

Operationally, UART boot via BOOTMODES[3:0] == 1000b and 1110b are essentially the same. The
difference is management of data flow. When BOOTMODE[3:0] = 1000b, UART boot is executed without
the use of the hardware flow control. If UART BOOTMODE[3:0] = 1110b is selected, then the UART is
configured to use the hardware flow control module. UART FIFO is enabled in both modes and is set for
the maximum FIFO size of 14.

The bootloader software does not use auto-baud detect. The UART clock divide registers are set for a
total divide down value of 15. With a 27-MHz input clock, this yields an approximate baud rate of 115 kbps
(kilobits per second). The input clock supplied to the UART bypasses the PLL; therefore, this baud rate is
unaffected by PLL configuration and advantage can be taken of the FASTBOOT modes for faster CPU
clock. The required connection settings for UART boot are given in Table 7.

Table 7. UART Connection Attributes for Boot
Attribute Value

Baud Rate 11Kbps
Data Bits 8
Stop Bits 1

Parity None
Hardware Flow Control (BOOTMODE[3:0} == 1110b), or None (BOOTMODE[3:0] ==Flow Control 0011b)

1001b, 1010b)

In Ethernet Boot Mode, the ROMed bootloader configures the communication processor Gigabit Ethernet
Switch (CPSW_3G) to enable boot over Ethernet. The CPSW_3G is a 3-port Gigabit Ethernet Switch. Two
of the ports, Port 0 and Port 1, can be configured for boot (Port 2 is assigned as port to DMP). Which port
acts as the boot port for the device is dependent on the boot mode chosen.

When SGMII0 boot mode (BOOTMODE[3:0] = 1001b) is configured, Port 0 of the 3-port Switch is
configured as the boot port. Port 1 of the switch is set in packet-forwarding mode. This configuration
allows multiple DMPs to be daisy-chained on an application board with packets properly forwarded to
each device. In SGMII1 boot configuration (BOOTMODE[3:0] = 1010b), Port 1 is configured as the boot
port, and Port 0 is set in packet forwarding mode. Otherwise, these two boot modes (SGMII0/SGMII1)
operate in the same way. The boot flow for Ethernet boot is as follows:

• Configure the Serializer/Deserializer (SerDes) module
• Configure CPSW_3G with the following settings

– Flow control for Port 0,1, and 2 are enabled
– Read MAC address as latched into DMP MAC address registers (read from EFUSE at device POR

reset)
– Configure CPGMAC_SL0 (port 0), CPGMAC_SL1(port 1) source address registers
– Enable CPDMA transmit and receive
– Enable ALE (address lookup)
– Clear and initialize ALE lookup table inserting single entry of device MAC address as latched into

MAC address register at POR reset
– Configure all ports (0,1,2) in packet forwarding mode
– Configure Port 0 and Port 1 in GMII enabled
– If SGMII0 boot is selected, then configure Port 0 as slave port, and Port 1 as master with

auto-negotiation enabled
– If SGMII1 boot is selected, then configure Port 1 as slave port, and Port 0 as master with

auto-negotiation enabled

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


DSP Core

C

DSP Core

B

DSP Core

A

HostBootp/DHCP Server

Warm/Cold Reset

Backplane
Switch

uHPI/GPIO/etc.

?

Downstream Upstream

0 1

2

0

2

0

2

1 1

1.11.1 Ethernet Boot-Mode Timings

Boot-Mode Description www.ti.com

• An approximate 25-ms wait is inserted after CPSW_3G is fully configured to ensure time for
auto-negotiation to complete. (This time may vary based on processor speed. The 25-ms delay is
calculated based on a CPU speed of 500 MHz.)

• Once the switch has been configured, the bootloader initializes the transmit and receive descriptor
buffers and sends a BOOTP request packet (Ethernet ready announcement frame), through the boot
port.

Note: The BOOTP request packet does not comply with the BOOTP Specification and is a TI
variant. This would normally be discarded or rejected by the standard server.

• The BOOTP request packet is sent only once. The bootloader then waits in a loop, pending receipt of
the BOOT table packets from the Host/Server.

• Once all BOOT packets have been received, the bootloader branches to the start of the downloaded
application code.

Figure 2 illustrates packet flow in a system using the current configuration. The illustration shows the
SGMII0 boot mode in which Port 0 is assumed to be the boot port, and Port 1 is configured for packet
forwarding. For the SGMII1 boot mode, the roles of the ports are reversed. BOOT table frames are
received in Port 1 and packets not intended for current device are forwarded via Port 0.

Figure 2. Packet Flow for SGMII0 Boot

Table 8. Ethernet 3 Port Switch Settings
Sub Module Register Value Description

(Default)Pll enabled, MPY = x20 (assumes 62.5MhzSerDes CFGPLL 0×00000013 input)
CFGTX0/1 0×00000B21 TX enabled, 10-bit bus width, SWING = 5

RX enabled, half rate, 10-bit bus width, signal lossCFGRX0/1 0×00089121 detect enabled
CPSW CONTROL 0×000000E0 Port 0/1 TX flow control, Port 2 RX flow control

SL0_SA_LO, SL0_SA_HI, Device MAC address MAC address as latched at POR from EFUSESL1_SA_LO_SL1_SA_HI

The SerDes PLL module assumes the default settings; therefore, at device POR reset, the PLL is
enabled with default multiplier of x20. The bootloader further configures the SerDes module with
TX/RX at quarter rate, (1 data sample every four PLL output cycles), yielding an effective line rate of
500-625 Mbps.

Using the TMS320C6452 Bootloader12 SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


1.11.2 Ethernet Data Formats

www.ti.com Boot-Mode Description

Once the bootloader configures the 3-Port switch, it sends a BOOTP request packet via the boot port. The
format for the BOOTP request packet is shown in Table 9. The HOST/Server responds by sending the
application code using the Boot Table Format. That application's Boot Table is sent as Boot Table Frames
from the HOST/Server to the DMP. This may require multiple Boot Table Frames to be transferred. The
format that each Boot Table Frame must follow is described in Table 10.

Table 9. BOOTP Request Packet Format
Content Byte Offset Field Description Field Values Notes

5-0 DST MAC Address 0×FF, 0×FF, 0×FF, 0×FF, 0×FF, 0×FF
DIX Ethernet MSB-DMP MAC Address - LSB DMP11-6 SRC MAC Address DMP's MAC addressHeader MAC Address

13-12 Type 0×08, 0×00
14 Version/Length 0×45
15 Type Of Service (TOS) 0×00

17-16 Total Length 0×01, 0×48
19-18 ID 0×00, 0×01
21-20 Flags/Fragment Offset 0×0000

IPV4 Header
22 Time to Live 0×10
23 Protocol 0×11 UDP Protocol

25-24 Header Checksum 0×A9, 0×A5
29-26 SRC IP Address 0×000000
33-30 DST IP Address 0×000000
35-34 SRC Port 68 (0×44)

ROMed boot code
37-36 DST Port 9(0x09) expects packet type of

UDP Header 9 or 'discard'
39-38 Length 308(0×134)
41-40 Checksum 0×00, 0×00

42 Opcode 0×01 Request
43 HW Type 0×01 Ethernet
44 HW Address Length 0×06
45 Hop Count 0×00

49-46 Transaction ID 0×12345678
51-50 Number Seconds 0×0001
53-52 Flags 0×0000

Client IP, DMP IP,
BOOTP 57-54 Client IP 0×00000000 Server IP & Gateway
Payload IP are all zeroes

61-58 DMP IP 0×00000000
65-62 Server IP 0×00000000
69-66 Gateway IP 0×00000000

MSB-DMP MAC Address - LSB DMP85-70 DMP HW (MAC) Address DMP's MAC AddressMAC Address
149-86 Server Host Name ti-boot-table-svr
278-150 Boot File Name ti-boot-table-0000
341-279 Vendor Specific Device ID DMP Device ID

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


Boot-Mode Description www.ti.com

Table 10. Ethernet Boot Table Frame Format

• DIX Ethernet (DMAC, SMAC, type: 14 bytes)
Ethernet Header • 802.3 w/SNAP/LLC (DMAC, SMAC len LLC, SNAP: 22 bytes)

(one of the following types): • DIX Ethernet w/VLAN (18 bytes)
• 802.3 w/VLAN and SNAP LLC (26 bytes)

IVP4 Header IVP4 (20 to 84 bytes)
UDP Header UDP (8 bytes)

Boot Table Frame Header Boot Table Frame Header (4 bytes)
Boot Table Frame Payload (min 4 bytes, max limited by max Ethernet frame – previous headers)

Table 11. Boot Table Frame Header
Byte 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Address
0x0 Magic number (0x544B)
0x2 Opcode (0x01) Sequence Number

Each entry in the Boot Table Frame Header is 16 bits. The first entry is the Magic number. The second
entry consists of two 8-bit fields. The 8-bit opcode field should always be set to 0×01. The 8-bit sequence
number indicates the order of the packet in the stream. Sequence numbering should always begin with 0
as the number for the first packet in the boot stream.

The payload for the boot packets is a Boot Table data stream. The Boot Table must be formatted as
shown in Table 12. The Boot Table data is then split across as many packets/frames as required to
transmit the entire Boot Table for the application. Each Boot Table entry is 32 bits wide.

The Boot Table format is encapsulated in Ethernet frames with IPV4 and UDP headers. If the bootloader
encounters frames that do not conform to the criteria specified below, they are silently discarded;
subsequent frames will be processed. The acceptable Ethernet frames and processing is detailed below:
• Frames using both DIX and 802.3 MAC header formats are accepted as are frames with and without

VLAN tags. Any source MAC address is accepted.
• Initially the bootloader sets the acceptable destination MAC address (for receiving packets) to be the

MAC address read from EFUSE of the device. This is the destination address that is used until boot is
complete. VLAN fields (other than type/len) are ignored.
– The EFUSE MAC address is also used as the source MAC address in the BOOTP packet.

• If 802.3 format MAC format is used, the SNAP/LLC header is verified and skipped. The type field
selects IPV4 type (0×0800).

• The IPV4 header validates the Version (4), flag and fragment fields, and protocol (UDP) field. The
header length field is parsed in order to properly skip the header option words. Any source and
destination IP addresses are accepted.

• The UDP header validates that the source and destination port numbers match those specified in the
boot parameters (in the Ethernet boot code).
– By default, the boot parameter source port field is 0, and in this case any source port is accepted.
– The default value of the destination UDP port is 9 (discard port)

• The UDP header length is sanity-tested against the appropriately adjusted frame length. If the UDP
length is too long for the frame, or is not a multiple of two, the frame is discarded.

• The UDP checksum is verified, and the frame with incorrect UDP checksum is discarded if the UDP
checksum field is non-zero.

Table 12. Boot Table Format
Byte Offset Entry
0x0000 0000 Entry Point Byte Address (starting address to branch to after code has been loaded)
0x0000 0004 Section 1 Size (in bytes)
0x0000 0008 Section 1 Load Address (in bytes)

14 Using the TMS320C6452 Bootloader SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


2 Application Image Script

toload

Total Number of
Bytes of Code/Data

to Load

Magic Number
(0x41504954)

Total Number of
Sections to Load

Command1

Command2

JUMP_CLOSE
Command

Command Op-Code

Optional Data

www.ti.com Application Image Script

Table 12. Boot Table Format (continued)
Byte Offset Entry

0x0000 000C Section 1 Data
.... ....
... ....
... Section 2 Size (in bytes)
... Section 2 Load Address (in bytes)
... Section 2 Data
... ...
... Section N Size (in bytes)
... Section N Load Address (in bytes)
... Section N Data
... ...

The bootloader accepts boot information in the form of a script, called application image script (AIS).
Application image script is a Texas Instruments, Inc. proprietary application image transfer format. This
script is a binary file consisting of a script header followed by various commands that can be interpreted
and executed by the bootloader. Each command contains an op-code, followed by optional additional data
required to execute the op-code. The bootloader currently supports AIS Version 1.99. All commands and
data are assumed to be 32 bits in width.

The AIS header consists of a magic word (0×41504954). The header is then followed by a series of
commands as shown in Figure 3. Each command in turn consists of an op-code followed by optional
additional data. All AIS command streams are terminated with a JUMP_CLOSE command which causes
transfer of control to the loaded application code and terminates execution of the ROM bootloader.

Figure 3. Basic Structure of Application Image Script

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


2.1 SET Command

...

... ...

MAGIC - 041504954

SET Command

More SET Commands

Other  Commands

SET Op-Code

Optional Data

0x58535907

<TYPE>

<ADDRESS>

<DATA>

<DELAY>

Application Image Script www.ti.com

The bootloader only accepts data in AIS format for all modes except HPI ad PCI. The following sections
define each command with the appropriate op-code, structure and placement in AIS. Table 13 lists the
various opcodes that are supported by AIS 1.0:

Table 13. AIS Version 2.0 Supported Opcodes
Opcode Value

Section Load 0×58535901
Request CRC 0×58535902
Enable CRC 0×58535903
Disable CRC 0×58535904

Jump 0×58535905
Jump_Close 0×58535906

Set 0×58535907
Start Over 0×58535908
Reserved 0×58535909

Section Fill 0×5853590A
Get 0×5853590D

Function Execute 0x5853590D

The SET command is a simple mechanism that enables you to write 8-bit, 16-bit, or 32-bit data to any
address in DMP address space. One of the arguments to this command implements a delay after the
memory write happens; use this for memory-mapped register write to take effect. Set commands are used
to configure various peripherals of the DMP. This includes PLL and EMIF at minimum, and can configure
more peripherals if required.

When DMP comes up from reset, the PLL is in bypass mode. As a result, the CPU is clocked at the same
frequency as connected crystal/CLK IN, which is generally very low. This results in slow communication
and high boot time. Selecting FASTBOOT mitigates this by programming the PLL with a slightly higher
multiplier of 0×C, but this does not change the default EMIF wait states, etc. To reduce boot time, the PLL
and EMIF registers can be re-configured at the very beginning of the boot process using a series of SET
commands. For this reason, place all SET commands for configuring EMIF and setting PLL at the
beginning of the AIS boot image as shown in Figure 4.

Figure 4. Structure of SET Command

Each set command consists of the SET (0×58535907) op-code, followed by four words of additional data
as shown. The SET command entries in AIS can be explained using the following representation:
<Address> = <Data><Type>::<Sleep>

16 Using the TMS320C6452 Bootloader SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


2.1.1 Valid SET Command Data Types

www.ti.com Application Image Script

The above command instructs bootloader to write <Data> to address <Address> in DMP address space
and then sleep for <Sleep> * CPU clocks. The data-type field <Type> decides whether <Data> should
be written as 8 bit (B), 16 bit (S) or 32 bit (I). All other fields can be in any numeric format as
described in Table 14.

Table 14. Numeric Formats That Can Be Used in SET Command
Name Format Example 1 Example 2 Example 3

Hexadecimal 1 0[xX][0-9a-fA-F]+ 0×1234abCD 0×1000 0×5a
Hexadecimal 2 [0-9a-fA-F]+[hH] 1234ABCDh 1000H 5ah
Octal 0[0-7]+ 02215125715 010000 0132
Decimal [0-9]+ 305441741 4096 90

The data-type field <Type> determines the size of the data item such as 8 bit (B), 16 bit (S) or 32 bit (l).
Data-type can also be a field or bits. This allows setting of a particular range of bits within the data at the
specified address. For field and bits data-types, the <Type> field also encodes the start and stop bit
positions that define the field to be modified. Table 15 gives a full list of the data-types that may be used.

Table 15. Valid SET Command Data Types
Data Type Value
8 bit 0
16 bits 1
32 bits 2
Field (1-32 bits) 3
Bits (1-32 bits) 4

The field and bits data-types are handled similarly by the bootloader. The difference between these types
are that with a specifier of field, the bootloader performs a read/modify write operation at the given
address. The bits data type results in a read of the address, followed by a write of the new value to the
address. The <Type> specification is a 32-bit word that contains fields for data type (shown in Table 15),
start bit, and stop bit. The start bit and stop bit fields are required only if a data-type of field(3) or (bits(4)”
is used. These fields delimit the number of bits that are affected by the instruction. Table 13 shows the
encoding of the 32 bit <Type>.

Figure 5. Valid SET Command Data Types

31 24 23 16
Reserved Stop Bit

15 8 7 0

Start Bit Data Type

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 16. Valid SET Command Data Types Field Descriptions
Bit Field Value Description

31-24 Reserved 0 Reserved
23-16 Stop Bit Stop bit (for bits and fields data type) last bit position in word that delimits field
15-8 Start Bit Start bit (for bits and fields data type) first bit position in word for start of field
7-0 Data Type Data Type (0,1,2,3,4), specifies type of data to write

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


2.2 Get Command

...

...

MAGIC - 0x41504954

GET Command

Other Commands

GET Op-Code

Data

0x5853490D

<ADDRESS>

<DATA>

<TYPE>

2.3 Section Load Command

...

...

...

...

MAGIC - 0x41504954

SET Commands

SL Commands

More SL Commands

Other Commands

SECTION_LOAD Op-Code

Data

0x58535901

<ADDRESS>

<SIZE>

<DATA>

Application Image Script www.ti.com

The GET command enables fetch of value stored at any read accessible DMP memory address. The GET
command has the same format as the SET command described in Section 2.1, with the exception that
delay is not required. All data formatting rules described in the SET command are valid for the GET
command. The GET command always transmits full 32 bits even if relevant data is only 8- or 16-bits wide.
Data is zero-filled and right-justified (i.e., MSBs are zero for all data that is less than 32 bits in length). The
structure of the GET command is shown in Figure 6.

Figure 6. Structure of GET Command

Each boot table command consists of the SET (0×58535907) op-code, followed by four words of
additional data as shown. The SET command entries in AIS can be explained using the following
representation:
<Address> = <Data><Type>

The Section Load command is used to load a chunk of code/data to DMP memory. All initialized sections
of the application are loaded to DMP memory using Section Load commands. These commands are
placed after all SET commands in AIS. The structure of the Section Load command is shown in Figure 7.

Figure 7. Structure of Section Load Command

Each Section Load command consists of the SECTION_LOAD (0×58535901) op-code, followed by the
section’s start address, size and contents.

18 Using the TMS320C6452 Bootloader SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


2.4 Section Fill Command

...

...
...

MAGIC - 0x41504954

SET Commands

JMP Commands

More SL/SF Commands

Other Commands

SECTION_FILL Op-Code

Data <ADDRESS>

<SIZE>

SL/SF Commands

<TYPE>

<PATTERN>

0x5853590A

2.5 Jump Command

...

...

MAGIC - 0x41504954

SET Commands

SL/SF Commands

JMP Commands

More SL/SF Commands

Jump Op-Code

Data

0x58535905

<ADDRESS>

Other Commands

...

...

www.ti.com Application Image Script

Use the Section Fill command to fill a particular section with a specific pattern. For example, a section that
contains all zeros is initialized with the Section Fill command. Place these commands anywhere that a
regular Section Load command can occur. The structure of the Section Fill command is shown in Figure 8.

Figure 8. Structure of Section Fill Command

Each Section Fill command consists of the SECTION_FILL (0×5853590A) op-code, followed by the
section’s start address, size, pattern-type (8/16/32 bit) and pattern to be filled.

This command instructs the DMP to jump to the start address of the earlier loaded application. It consists
of the JUMP (0×58535905) op-code, followed by the jump address as shown in Figure 9.

Figure 9. Structure of Jump Command

This command is used to implement bootloader2. To achieve this, bootloader2 is loaded through Section
Load and Section Fill commands. Once this is done, a Jump command is issued to start execution from
the start address of bootloader2. Once bootloader2 execution is over, normal AIS interpretation and
execution continues.

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


2.6 Jump_Close Command

...

MAGIC - 0x41504954

SET Commands

SL/SF Commands

JNC Commands JUMP_CLOSE Op-Code

Data

0x58535906

<ADDRESS>

2.7 CRC Options

Application Image Script www.ti.com

This command is used at the end of the boot process to start the execution of the loaded application. it
instructs the DMP to terminate the boot process and jump to the start address of the loaded application.
The structure of the Jump_Close command is shown in Figure 10.

Figure 10. Structure of Jump_Close Command

This command is placed at the end of AIS, after all other commands. It consists of the JUMP_CLOSE
(0×58535906) op-code, followed by the start address of the application where the boot loader should
jump. In addition to the application entry point address, two words, 1) total number of sections that should
have been loaded during boot, and 2) the total number of bytes which should have been loaded during
boot are placed as the last two words of the image.

There is a possibility of error in communication when DMP is booting up. Execution of a corrupted
application image may result in instability or malfunction. In order to avoid such problems, AIS supports
opcodes to verify the validity of data loaded through Section Load/Section Fill commands. A proprietary 32
bit CRC computation algorithm is used for verification. The CRC options are implemented by invoking the
AIS generation tool with the appropriate option. The tool inserts the CRC enable and CRC requests
commands necessary to implement each of the following options:

No CRC—With this option, CRC computation is disabled and there is no way to detect or correct any
error.

Section-Wise CRC—With this option, CRC is computed for each section. Verification is done at the end
of each section and attempt to reload the section is made in case of error.

Single CRC—With this option, single CRC is computed for all the sections. Verification is done at the
end, just before Jump N Close command. In case of error, all the sections are loaded again. CRC
is recalculated and re-verified again at the end.

20 Using the TMS320C6452 Bootloader SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


2.7.1 Enable/Disable CRC Commands

...

...

MAGIC - 0x41504954

CRC Commands

BT Commands

SL/SF Commands

JNC Commands

ENABLE_CRC Op-Code

Optional Data

Optional Data

DISABLE_CRC Op-Code

0x58535903

0x58535903

(No optional data)

(No optional data)

MAGIC - 0x41504954

BT Commands

CRC Commands

SL/SF Commands

JNC Commands

2.7.2 Request CRC Command

www.ti.com Application Image Script

These commands are used to enable/disable computation of CRC for sections loaded through Section
Load/Section Fill commands. The structure of the Enable CRC/Disable CRC commands is shown in
Figure 11.

Figure 11. Structure of Enable CRC/Disable CRC Commands

These commands consist of only a single ENABLE_CRC (0×58535903) or DISABLE_CRC (0x58535904)
op-code. There is no additional data required.

This command is used to request and validate the current value of the CRC computed by DMP. Using this
command requires that the Enable CRC command is issued earlier in AIS. This command consists of the
REQUEST_CRC (0×58535902) op-code, followed by the expected CRC value and seek-value. The CRC
of the loaded/filled section(s) are compared with the expected CRC value. If the CRC is correct, the
seek-value is ignored and execution continues to the next command.

A mismatch in CRC indicates that the data loaded to DMP memory using the earlier Section Load/Section
Fill commands is corrupted. To load the data again, re-execute AIS from the last known error-free point.
To locate that point, a seek-value is made available as part of the Request CRC command. This value is
interpreted as a negative number and should be added to the current address in AIS. When this is done,
the address points to the last error-free point in AIS. Continue execution as normal from this updated
address.

In case of CRC error, the host indicates the same to the DMP using the Start-Over command described
below. After doing that, it adds the seek-value to the AIS address pointer and starts executing AIS from
that point onwards.

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


...

...

MAGIC - 0X41504954

BT Commands

ENA CRC Command

First SL/SF Command

More SL/SF Commands

REQ CRC Command

JNC Command

REQUEST_CRC Op-Code

Optional Data

0x58535902

<CRC>

<SEEK>

2.7.3 Start-Over Command

3 Booting Operating Systems (Linux®/DSP/BIOS, ™ etc.)

Booting Operating Systems (Linux®/DSP/BIOS, ™ etc.) www.ti.com

On receiving the Start-Over command, the DMP knows that the CRC error has occurred. It resets its CRC
computation and becomes ready to accept more commands from the host. The structure of the Request
CRC command is shown in Figure 12.

Figure 12. Structure of Request CRC Command

For a Single CRC option, this command appears only once in AIS, after the last Section Load/Section Fill
command. The seek value is interpreted as a negative number; which when added to current offset in AIS,
makes offset point to start of the first Section Load/Section Fill command as shown.

For Section-wise CRC option, this command appears after each Section Load/Section Fill commands. The
seek value is interpreted as a negative number; when added to the current offset in AIS it makes an offset
point to the start of the previous Section Load/Section Fill command as shown in Figure 12.

The Start-Over command consists of a STARTOVER (0×58535908) op-code with no additional data. This
command instructs the bootloader to reset its computed CRC value to 0. Please note that this command
(and op-code) is normally issued by the host on its own when it detects a CRC mismatch for slave modes.
For master modes, this is taken care of by the bootloader state machine.

The ROM bootloader operates independently of boot modes provided by specific operating systems. The
boot-startup code for any operating system must be in a format in compliance with the ROM boot modes
described in the previous sections. The ROM bootloader views all operating system start-up code no
different than any other application code. Therefore, if the operating system requires any specialized
formats to boot the preponderance of its code, this must be done via secondary boot. The secondary
bootloader for the operating system must be presented in the appropriate format for the ROM bootloader
to properly load its code. After loading the operating system boot code (secondary boot if necessary), the
ROM bootloader branches to the operating system startup/boot-up. If a secondary bootloader was
required, the secondary bootloader then completes the download of the rest of the operating system and
begins execution.

Please, note that for this scenario, only the secondary bootloader must follow the appropriate ROM
bootloader protocol for the boot mode chosen. The rest of the operating system code/data may be in any
format required for the secondary boot to complete the load of the system.

For example, if using universal boot for the uCLinux operating system, only the code for u-boot itself would
need to be in AIS format, if booting from SPI/I2C, Fast EMIF, etc. The remaining code/data for the
uCLinux operating system would be in the compressed format expected by u-boot. u-boot would then
uncompress and load the remainder of the uCLinux code to DMP memory.

Using the TMS320C6452 Bootloader22 SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


4 ROM Bootloader RAM Memory Requirements and Code/Data Placement

5 AIS Generation Tool , genAIS

www.ti.com ROM Bootloader RAM Memory Requirements and Code/Data Placement

The ROM bootloader requires a small amount of RAM in the internal memory space of the device to use
for stack, and temporary buffer/data storage space. Memory is allocated in address range 0x00B10000 –
0x00B1F200 for this purpose. Applications must not link any initialized code/data sections into this area of
memory. Doing so may result in overwriting of essential data used by the bootloader to effect boot. This
causes the boot to fail. Un-initialized sections such as the compiler generated sections , .bss, and .far, can
be allocated to this area, since these are not populated until after the boot process is complete and the
application starts to run.

genAIS is a Perl script that converts an application linked executable file to an AIS boot image file for the
selected boot mode. For example, genAIS converted a linked executable for the DM647 to the appropriate
format for the given boot mode and data/memory widths.

genAIS is a command line tool and may be invoked as part of a larger script or Make file. The current
version of genAIS was developed using Active Perl V5.8.6.

A simple invocation of genAIS includes the name of the application executable file, the name of the AIS
output file, the type of the output file, the boot mode, and the data or address/memory width of the device
where the image will eventually be stored.

For example:

genAIS –I MyApplication.out –o MyApplication.ais –bootmode spi –otype ascii –addrsz 16

This invocation would produce a converted ASCII AIS file formatted for SPI boot. The AIS generation tool
can produce either an ASCII, binary, or asm output file. The asm output file contains the AIS image in the
form of assembly .word directives. This assembly file may then be assembled/linked and passed to the
Hex Conversion Utility for use with an EEPROM burner. A list of available options for the genAIS tool is
shown in Table 17.

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


AIS Generation Tool , genAIS www.ti.com

Table 17. genAIS Program Options
Option Description
-I Specifies input executable file
-o Specifies name of AIS output file
-opath Specifies path where output files should be placed, default is to use the same path as

input file
-crc N (N = 0,1,2) Selects CRC generation:

N = 0 - No CRC generation
N = 1 - CRC generated for each section load
N = 2 - Single CRC generated for entire load

-bootmode N (N=i2c, spi, uart, nand, Specifies boot mode for which conversion is to be generated:
enet, raw) • Raw generates an AIS image that is mode independent.

• Boot modes supported by this utility may not be supported on your device.
For more information regarding which modes are supported, see the device-specific data
sheet and or bootloader documentation.

-otype N (N=ascii, binary, asm, cfile, txt) Specifies content format for AIS output
ascii - Generates ASCII text file output
binary - Generates Binary file output
asm - Generates C6x assembly output
cfile - This mode is reserved for ENET boot mode, and generates C header file and
single .cpp file with packet contents
txt - Generates text output for use with UART boot mode

-memwidth N (N=8,16,24) Specifies memory/address width for external memories associated with I2C and SPI
boot modes.

-datawidth N (N=8,16) Specifies NOR flash data access width for EMIF FASTBOOT option.
Note: Selecting this option is not a substitute for setting the proper EMIF 8_16-bit pin on
the device when booting from EMIF.

-cfg Specifies the name of an optional configuration file that contains a sequence of SET or
Function Execute commands to be included at the beginning of the AIS output file.

-srcipaddr Source IP address given in form 000.000.000.000, all numbers must be in decimal
format.

-dstipaddr Destination IP address given in form 000.000.000.000, all numbers must be in decimal
format.

-srcmacaddr Source MAC address given in form 000.000.000.000.000.000, all numbers must be in
decimal format

-dstmacaddr Destination MAC address given in form 000.000.000.000.000.000, all numbers must be
in decimal format.

-htype N (N=dix, snap, vlan, vsnap) Ethernet Header Type
-packetsize Size in bytes of Ethernet Boot Packet payload (not including header)

This value must be evenly divisible by 4, and has a maximum value of 1400.

Using the TMS320C6452 Bootloader24 SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


6 Sample AIS Boot Images

www.ti.com Sample AIS Boot Images

AIS data streams are required for fast EMIFA, SPI, I2C, NAND Flash, and UART boot modes. A sample
AIS stream for each of these modes is presented in this section. The AIS boot images were created using
genAIS. genAIS is discussed in Section 5. All boot images generated in this section use the same sample
assembly source shown in Example 1.

Example 1. Sample Source Code for AIS Examples

;=======================================
; Sample Assembly Source File
; a = 6;
; while(1) {
; b = a + 1;
; c = b + 2;
; }
;
;=======================================

.global _a,_b,_c

.sect "myData"
_a .word 0xA
_b .word 0xB
_c .word 0xC

.text
.global Start

Start:
MVKL .S1 _a,A3
MVKL .S1 _c,A5
MVKL .S1 _b,A4
MVKH .S1 _a,A3

|| MVK .S2 6,B4
STW .D1T2 B4,*A3

|| MVKH .S1 _c,A5
MV .L2X A3,B5

|| MVKH .S1 _b,A4

loop:
LDW .D2T2 *B5,B4
NOP 4
ADD .L2 1,B4,B4
STW .D1T2 B4,*A4
NOP 2
LDW .D1T1 *A4,A3
NOP 4
ADD .L1 2,A3,A3
STW .D1T1 A3,*A5
NOP 2
B .S1 loop
NOP 5

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


6.1 AIS Boot Image for EMIFA ROM Boot
Sample AIS Boot Images www.ti.com

The first 8-bit byte in the FLASH/ROM accessed via EMIFA must contain the EEPROM size. Valid values
are 0×00 → 8 bit, 0×01 → 16 bit. The next 3 bytes are reserved. The first valid AIS word begins on the
next 32-bit word boundary. This word must contain the AIS magic word, 0×41504954. Any valid AIS
command can appear after the magic word. Table 14 shows the sample data stream for a 16-bit FLASH,
using the sample source included at the beginning of this section.

Table 18. EMIFA ROM Fast Boot AIS Boot Image Example
Data Explanation

0x00000001 First byte of word specifies external memory data width
0×41504954 AIS Magic Number
0×58535903 Enable CRC Command
0×58535901 Section Load Command
0×10800000 Section Load Address
0×00000040 Section Size in Bytes
0×01802028 Start of Raw Section Data
0×02802428
0×02002228
0×01884069
0×0200032A
0×020C0277
0×02884068
0×028C1FDB
0×02084068

0×6C6E10CD
0×10442641
0×003C2C6E
0×45B06C6E
0×2C6E00B4
0×8C6E008A
0×EFC08000 End of Raw Section Data
0×58535902 Request CRC Command
0×0E85A97B Expected CRC Value
0×FFFFFFA8 Negative Pointer to Last Valid Command in Stream
0×58535901 Section Load Command
0×10800040 Section Load Address
0×0000000C Section Size in Bytes
0×0000000A Start of Section Raw Data
0×0000000B
0×0000000C End of Section Raw Data
0×58535902 Request CRC Command
0×8434A250 Expected CRC Value
0×FFFFFFDC Negative Pointer to Last Valid Command in Stream
0×58535906 Jump Close Command
0×10800000 Application Entry Point Address
0×00000002 Total number of sections that should have been loaded
0×0000004C Total number of bytes that should have been loaded

Using the TMS320C6452 Bootloader26 SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


6.2 AIS Boot Image for I2C Boot

www.ti.com Sample AIS Boot Images

The first 32-bit word on the AIS header for the I2C boot mode is reserved and is ignored by the
bootloader. The second 32-bit word must contain the AIS magic number. A sample AIS image for I2C is
shown in Table 18.

Table 19. I2C AIS Boot Image Example
Data Explanation

0×00000002
0×41504954 AIS Magic Number
0×58535903 AIS Magic Number
0×58535901 Section Load Command
0×10800000 Section Load Address
0×00000040 Section Size in Bytes
0×01802028 Start Section Raw Data
0×02802428
0×02002228
0×01884069
0×02884068
0×028C1FDB
0×02084068

0×6C6E10CD
0×10442641
0×003C2C6E
0×45B06C6E
0×2C6E00B4
0×8C6E008A
0×EFC08000 End Section Raw Data
0×58535902 Request CRC Command
0×0E85A97B Expected CRC Value
0×FFFFFFA8 Negative Pointer to Last Valid Command
0×58535901 Section Load Command
0×10800040 Section Load Address
0×0000000C Section Size in Bytes
0×0000000A Start of Section RAW Data
0×0000000B
0×0000000C End Section Raw Data
0×58535902 Request CRC Value
0×8434A250 Expected CRC Value
0×FFFFFFDC Negative Pointer to Last Valid Command
0×58535906 Jump Close Command
0×10800000 Application Entry Point Address
0×00000002 Total number of sections that should have been loaded
0×0000004C Total number of bytes that should have been loaded

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


6.3 AIS Boot Image for SPI Boot

Sample AIS Boot Images www.ti.com

Table 20 details the expected byte arrangement of the AIS boot image in I2C EEPROM.

Table 20. AIS Image in I2C EEPROM Memory
Byte

Address Byte0 Byte1 Byte2 Byte3 32-Bit AIS Data Explanation
0×0000 0×02 0×00 0×00 0×00 0×00000002 First byte contains address size

in bytes – this is ignored by the
bootloader for this device

0×0004 0×54 0×49 0×50 0×41 0×41504954 AIS Magic Word
0×0008 0×03 0×59 0×53 0×58 0×58535903 Enable CRC Command
0×000C 0×01 0×59 0×53 0×58 0×58535901 Section Load Command
0×0010 0×00 0×00 0×80 0×10 0×10800000 Section Load Address
0×0014 0×40 0×00 0×00 0×00 0×00000040 Section Size in Bytes
0×001C 0×28 0×20 0×80 0×01 0×01802028 Start Section Raw Data
0×0020 0×28 0×24 0×80 0×02 0×02802428
0×0024 0×28 0×22 0×00 0×02 0×02002228
0×0028 0×69 0×40 0×88 0×01 0×01884069

0×008C 0×58535906 JUMP CLOSE Command
0×0090 0×10800000 Application Entry Point Address
0×0094 0×00000002 Total Number of Sections
0×0098 0×0000004C Total Number of Bytes

The AIS boot image for SPI is the same as for other master boot modes, with exception that the first 32-bit
word in AIS boot image must contain the address width of the SPI EEPROM expressed as bytes. The
byte containing the address width must be located at address “0” of the EEPROM. Only values of 0x02
(16-bit SPI EEPROM) or 0x03 (24-bit SPI EEPROM/Flash) are acceptable.

Table 21. SPI AIS Boot Image Example
Data Explanation

0×00000002 EEPROM Address Width in Bytes
0×41504954 AIS Magic Number
0×58535903 Enable CRC Command
0×58535901 Section Load Command
0×10800000 Section Load Address
0×00000040 Section Size in Bytes
0×01802028 Start Section Raw Data
0×02802428
0×02002228
0×01884069
0×0200032A
0×020C0277
0×02884068
0×028C1FDB
0×02084068

0×6C6E10CD
0×10442641
0×003C2C6E
0×45B06C6E

28 Using the TMS320C6452 Bootloader SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


www.ti.com Sample AIS Boot Images

Table 21. SPI AIS Boot Image Example (continued)
Data Explanation

0×2C6E00B4
0×8C6E008A
0×EFC08000 End Section Raw Data
0×58535902 Request CRC Command
0×0E85A97B Expected CRC Value
0×FFFFFFA8 Negative Pointer to Last Valid Command
0×58535901 Section Load Command myData section
0×10800040 Section Load Address
0×0000000C Section Size in Bytes
0×0000000A Start Section Raw Data
0×0000000B
0×0000000C End Section Raw Data
0×58535902 Request CRC Command
0×8434A250 Expected CRC Value
0×FFFFFFDC Negative Pointer to Last Valid Command
0×58535906 Jump Close Command
0×10800000 Application Entry Point Address
0×00000002 Total number of sections that should have been loaded
0×0000004C Total number of bytes that should have been loaded

Please note that the byte ordering of data stored in the EEPROM should be as follows using the AIS data
from Table 20 as an example.

Table 22. AIS Image in SPI EEPROM Memory
Byte

Address Byte0 Byte1 Byte2 Byte3 32-Bit AIS Data Explanation
0×0000 0×02 0×00 0×00 0×00 0×00000002 First byte contains address size

in bytes
0×0004 0×54 0×49 0×50 0×41 0×41504954 AIS Magic Word
0×0008 0×03 0×59 0×53 0×58 0×58535903 Enable CRC Command
0×000C 0×01 0×59 0×53 0×58 0×58535901 Section Load Command
0×0010 0×00 0×00 0×80 0×10 0×10800000 Section Load Address
0×0014 0×40 0×00 0×00 0×00 0×00000040 Section Size in Bytes
0×001C 0×28 0×20 0×80 0×01 0×01802028 Start Section Raw Data
0×0020 0×28 0×24 0×80 0×02 0×02802428
0×0024 0×28 0×22 0×00 0×02 0×02002228
0×0028 0×69 0×40 0×88 0×01 0×01884069

0×008C 0×58535906 JUMP CLOSE Command
0×0090 0×10800000 Application Entry Point Address
0×0094 0×00000002 Total Number of Sections
0×0098 0×0000004C Total Number of Bytes

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


6.4 AIS Boot Image for UART Boot
Sample AIS Boot Images www.ti.com

UART boot mode differs from the previous modes in that some communication is carried out between the
DMP and HOST, in addition to the transfer of the AIS commands. The DMP UART acts as slave in the
boot process. But, to alert the HOST that the DMP is alive and ready to receive, it sends an initial BOOT
ME message to the HOST. As acknowledgment, the HOST then begins sending the AIS Boot image,
beginning with the AIS magic number. The AIS data is sent as ASCII text. The bootloader software
converts to the equivalent hexadecimal constant.

The bootloader continues to process the AIS command transmitted by the HOST until the JUMP CLOSE
command is encountered. After the JUMP CLOSE command is received, the bootloader sends the DONE
message to the HOST. This signals the HOST that boot has completed successfully.

DMP HOST
SENDS → “BOOT ME” →

← “41” ← SENDS first byte of AIS Magic #
← “50” ← SENDS second byte of AIS Magic #
← “49” ← SENDS third byte of AIS Magic #
← “54” ← SENDS last byte of AIS Magic #
← “58” ← SENDS first byte of AIS command
← “53” ← SENDS second byte of AIS command
← “59” ← SENDS third byte of AIS command
← “03” ← SENDS last byte of AIS command

← HOST continues to SEND commands and
data until JUMP CLOSE command is issued

← “58” ← SENDS first byte of JUMP CLOSE
← “53” ← SENDS second byte of JUMP CLOSE
← “59” ← SENDS third byte of JUMP CLOSE
← “06” ← SENDS last byte of JUMP CLOSE
← “10” ← SENDS first byte of entry point address
← “80” ← SENDS second byte of entry point address
← “00” ← SENDS third byte of entry point address
← “00” ← SENDS last byte of entry point address
← “00” ← SENDS first bye of section count
← “00” ← SENDS second byte of section count
← “00” ← SENDS third byte of section count
← “02” ← SENDS last byte of section count
← “00” ← SENDS first byte of byte count
← “00” ← SENDS second byte of byte count
← “00” ← SENDS third byte of byte count
← “4C” ← SENDS last byte of byte count

SENDS → “ DONE” →

Using the TMS320C6452 Bootloader30 SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


415049545853590358535901108000000000004001802028028024280200222801884069020

0032A020C027702884068028C1FDB020840686C6E10CD10442641003C2C6E45B06C6E2

C6E00B48C6E008AEFC08000585359020E85A97BFFFFFFA858535901108000400000000

C0000000A0000000B0000000C585359028434A250FFFFFFDC58535906108000000000000

20000004C

6.5 Boot Packet Generation for Ethernet Boot Mode

www.ti.com Sample AIS Boot Images

At this point the boot process is complete and the bootloader branches to the application start address. If
an error occurs, for example a CRC error, the bootloader issues a CORRUPT message to the host and
places an error condition in the ERR field of the BOOTCMPLT register. It then re-attempts boot.

The AIS boot image for UART is an ASCII string with no spaces or carriage returns between elements.

Figure 13. UART AIS Boot Image

Several options are required to generate boot packets formatted for Ethernet boot mode. That list is
shown in Table 23. The genAIS tool creates a separate C source file containing the data for each packet
generated. It also creates a C header file that contains the external declarations and size information for
each packet. These files can then be included in the build for the HOST/Server application, which sends
the boot packets to the C6452 for boot.

Table 23. Ethernet Boot Packet Generation Options
Option Description

-srcipaddr Source IP address given in form 000.000.000.000 , all values must be in decimal format
Source MAC address given in form 000.000.000.000.000.000.000, all values must be in-srcmacaddr decimal format

-dstipaddr Destination IP address given in form 000.000.000.000, all values must be in decimal format
Destination MAC address in form 000.000.000.000.000.000, all values must be in decimal-dstmacaddr format

-htype Ethernet Header Type (dix, vlan, snap, vsnap)
Size in byes of payload for packets, this does not include header and max size allowed is-packetsize 1400 bytes

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


Sample AIS Boot Images www.ti.com

A sample invocation of the ais tool would be:

genAIS -otype cfile -I my.out -bootmode enet -packetsize 1400 -srcipaddr 11.22.33.44 -dstipaddr
55.66.77.88 -srcmacaddr 123.156.158.218.23.12 -dstmacaddr 123.156.158.218.23.14 -opath
myOutputPath

Example 2. Sample C Header File Associated With Packet

//==============================================================
// This is an auto-generated file:
// Creation Time Stamp:
// Nov, 13, 2007, 13:47:10
// Created By User: a0321848
// Created from .out File : docExample.out
//==============================================================
#ifdef __PACKETHDR__

#define __PACKETHDR__
#include <tistdtypes.h>
#ifndef NULL
#define NULL (0L)
#endif

//==============================================================
// Define Total Number of BOOTP Packets
//==============================================================

#define TOTAL_NUM_BOOTP_PACKETS 1

//==============================================================
// External Packet Array Declarations
//==============================================================

#define SIZE_PACKET0 144
extern Uint32 packet0[];

//==============================================================
// Initialize Packet Size Array
//==============================================================

Uint32 packetSize[TOTAL_NUM_BOOTP_PACKETS] = {
144

};
#endif

The utility creates as output a the C header file that contains the external declarations and size for all data
packets created by the utility. The data for each packet is stored in two dimensional array that is defined in
a single C file with extension ".cpp". The first packet is packet 0 and contains the branch address for the
application code once it is loaded to the DMP. If the -opath option is used in the invocation of genAIS,
then the header and packet file are placed in the specified directory. Otherwise, these are placed in the
same directory as the input file.

Alternatively, if -otype txt is specified, the AIS generation tool with create a single ASCII ".txt" file that
contains a linear list of all packet data. It will still produce a C header file that describes the length and
number of packets generated. This information can then be to parse the text file into the appropriate
packets for sending to DMP.

Using the TMS320C6452 Bootloader32 SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


6.6 Configuration Data File

7 Determining On-Chip Bootloader Version

8 Debugging Boot Failures

www.ti.com Determining On-Chip Bootloader Version

Example 3. Sample Packet Created by AIS Utility

Uint32 packet[][] = {
0xDA9E9C7B ,
0x9C7B0E17 ,
0x0C17DA9E ,
0x00450008 ,
0x00008400 ,
0x11100000 ,
0x160B7206 ,
0x42372C21 ,
0xA8AB584D ,
0x70000000 ,
0x544B7C34 ,
0x40000100 ,
0x004010F0 ,
0x40000000 ,
0x202810F0 ,
0x242801A0 ,
0x222802A0 ,
0x78690220 ,
0x032A0188 ,
0x02770200 ,
0x7868020C ,
0x1FDB0288 ,
0x7868028C ,
0x10CD0208 ,
0x26416C6E ,
0x2C6E1044 ,
0x6C6E003C ,
0x00B445B0 ,
0x008A2C6E ,
0x80008C6E ,
0x000CEFC0 ,
0x40400000 ,
0x000A10F0 ,
0x000B0000 ,
0x000C0000 ,
0x00000000 ,
0x00000000

By using the –cfg option, a sequence of the SET commands can be included at the beginning of the
AIS output data file. This allows the option to configure DDR, EMIF, PLL to enable proper boot from/to
external memories. The commands in this file precede any other AIS data that is generated. The data
in the configuration file is not parsed by the genAIS tool. It is simply passed directly through to the
output file. Take care to ensure that a correct data sequence appears in the file.

The bootloader version can be found by reading ROM location 0×0080ff00. There are currently two
versions extant, version 0×00003060 and version 0x00003070. Version 0x00003070 contains full
implementations for I2C (DMP master), UART (DMP slave), and Ethernet (DMP slave) boot modes. These
modes are not fully operational in version 0x00003060.

When the device fails to boot as expected, some helpful information may be gleaned from the ERR field of
the BOOTCMPLT register. If you can connect via JTAG to the chip and read this register, then Table 24
may help you determine the cause of the failure.

SPRAAW2A–June 2009 Using the TMS320C6452 Bootloader 33
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


9 Calculating CRC

Calculating CRC www.ti.com

Table 24. Debugging Boot Failures
Value Name Description

1 ERR_UNKNOWN_COMMAND An invalid AIS command was encountered in the boot image
2 ERR_BAD_MAGIC_NUMBER Not used
3 ERR_TRANSMIT_SYNC Not used
4 ERR_BAD_CRC In PCI boot, indicates s bad checksum in auto-init table.

Otherwise CRC failure in AIS modes.
5 ERR_INVALID_ADDRESS_SIZE In SPI boot, and invalid number of address bytes specified in

first word.
6 ERR_UNSUPPORTED_BOOTMODE Boot pin configuration is invalid
7 ERR_TIMEOUT_WAITING_FOR_HOST A timeout was encountered in UART or PCI boot modes
8 ERR_TIMEOUT_I2C_BUS_BUSY I2C bus reported as busy and did not become availiable during

4096 retries.
9 ERR_TIMEOUT_MCBSP_SPI_RECEIVE Not used
10 ERR_NAND_ACCESS_TIMEOUT Not used
11 ERR_RECEPTION_ERR Various issues with receiving data in UART, PCI, and I2C boot

modes
12 ERR_BAD_FUNCTION_PTR One of various internal function pointers were found to be NULL

– may indicate a ROM issue.
13 ERR_PLL_LOCKUP PLL configuration failed during FASTBOOT setup
14 ERR_CFG_FUNCTION_CALL Too many arguments specified for function execute function, or

invalid function number.

The on-chip bootloader uses a 32-bit CRC. The code for calculating the CRC is given in the Appendix A.
The CRC, as calculated for the on-chip bootloader, requires three calls to the BL_updateCrc function. The
first call is made sending the section load address as the data word. The second call uses the section size
in bytes as the data word. The third call sends the actual section data, calculating a CRC across all the
data elements in the section. The final CRC is a combination of the CRCs calculated for section address,
section size and section data. A sample set of calls to the function to create the expected CRC value is
shown below:

unsigned int crc;
unsigned int sectionAddr;
unsigned int sectionSize;
unsigned int *sectionData;
crc = BL_updateCRC(&sectionAddr, 4, 0);
crc = BL_updateCRC(&sectionSize, 4, crc);
crc = BL_updateCRC(sectionData, sectionSize, crc);

The last crc value calculated is the value that should be written as the expected CRC for the
REQUEST_CRC command. If calculating a single CRC for the entire application load, simply pass each
successive crc” value into the subsequent calls to BL_updateCRC.

typedef struct {
unsigned int sectionAddr;
unsigned int sectionSize;
unsigned int *sectionData;

} SectionDatObj;
SectionDataObj mySections[10];
unsigned int crc;
crc = 0;
for(i=0;i<10;i++) {

crc = BL_updateCRC(&(mySections[i].sectionAddr), 4, crc);
crc = BL_updateCRC(&(mySections[i].sectionSize), 4, crc);
crc = BL_updateCRC(mySections[i].sectionData, mySections[i].sectionSize, crc);

}

34 Using the TMS320C6452 Bootloader SPRAAW2A–June 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


Appendix A Calculating the CRC

www.ti.com Appendix A

The CRC calculated to process the REQUEST_CRC command is based on the following algorithm,
where data_ptr points to the first data element in the current section; section_size is the size of the
section expressed in 8-bit bytes, and crc is the current crc value.
unsigned int BL_updateCRC(unsigned int *data_ptr, unsigned int section_size, unsigned int
crc)
{

unsigned int n, crc_poly = 0x04C11DB7; /* CRC - 32 */
unsigned int msb_bit;
unsigned int residue_value;
int bits;

for( n = 0; n < (section_size>>2); n++ )
{

bits = 32;
while( --bits >= 0 )
{

msb_bit = crc & 0x80000000;
crc = (crc << 1) ^ ( (*data_ptr >> bits) & 1 );
if ( msb_bit )

crc = crc ^ crc_poly;
}
data_ptr ++;

}

switch(section_size & 3)
{

case 0:
break;

case 1:
residue_value = (*data_ptr & 0xFF) ;
bits = 8;
break;

case 2:
residue_value = (*data_ptr & 0xFFFF) ;
bits = 16;
break;

case 3:
residue_value = (*data_ptr & 0xFFFFFF) ;
bits = 24;
break;

}

if(section_size & 3)
{

while( --bits >= 0 )
{

msb_bit = crc & 0x80000000;
crc = (crc << 1) ^ ( (residue_value >> bits) & 1 );
if ( msb_bit ) crc = crc ^ crc_poly;

}
}
return( crc );

}

SPRAAW2A–June 2009 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAW2A


IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	1 Boot-Mode Description
	1.1 Boot Requirements, Constraints, and Default Settings
	1.2 FASTBOOT Mode
	1.2.1 CPU Frequency With FASTBOOT Options

	1.3 Emulation Boot (BOOTMODE[3:0] = 0000b, FASTBOOT = 0 or 1)
	1.4 HPI Boot (BOOTMODE[3:0] = 0001b or 0010b, or 0011b, UHPIEN = 1, FASTBOOT = 0 or 1)
	1.5 PCI Boot (BOOTMODE[3:0] = 0001b or 0010b, UHPIEN = 0, FASTBOOT = 1)
	1.6 EMIFA ROM Direct Boot (BOOTMODE[3:0] = 0100b, FASTBOOT = 0)
	1.7 EMIFA ROM Fast Boot with AIS (BOOTMODE[3:0] = 0100b, FASTBOOT = 1)
	1.8 I2C Master Mode Boot (BOOTMODE[3:0] = 0101b, FASTBOOT = 0 or 1)
	1.8.1 I2C Master Boot Timing

	1.9 SPI Master Mode Boot (BOOTMODE[3:0] = 0110b, FASTBOOT = 0 or 1)
	1.9.1 SPI Master Boot Timing
	1.9.2 SPI Master Boot Signal Descriptions

	1.10 UART Boot (BOOTMODE[3:0] = 0011b, 1110b, FASTBOOT = 0 or 1)
	1.10.1 UART Boot Timing

	1.11 Ethernet Boot Modes - SGMII0 Only, SGMII0, and SGMII1 (Bootmode[3:0] = 1000b, 1001b, 1010b)
	1.11.1 Ethernet Boot-Mode Timings
	1.11.2 Ethernet Data Formats


	2 Application Image Script
	2.1 SET Command
	2.1.1 Valid SET Command Data Types

	2.2 Get Command
	2.3 Section Load Command
	2.4 Section Fill Command
	2.5 Jump Command
	2.6 Jump_Close Command
	2.7 CRC Options
	2.7.1 Enable/Disable CRC Commands
	2.7.2 Request CRC Command
	2.7.3 Start-Over Command


	3 Booting Operating Systems (Linux/DSP/BIOS, etc.)
	4 ROM Bootloader RAM Memory Requirements and Code/Data Placement
	5 AIS Generation Tool , genAIS
	6 Sample AIS Boot Images
	6.1 AIS Boot Image for EMIFA ROM Boot
	6.2 AIS Boot Image for I2C Boot
	6.3 AIS Boot Image for SPI Boot
	6.4 AIS Boot Image for UART Boot
	6.5 Boot Packet Generation for Ethernet Boot Mode
	6.6 Configuration Data File

	7 Determining On-Chip Bootloader Version
	8 Debugging Boot Failures
	9 Calculating CRC
	Appendix A Calculating the CRC



