
Application Report
SPRAB92A–May 2010

Using the TMS320VC5505/04 Bootloader
Ming Wei ..

ABSTRACT
This document describes the features of the on-chip ROM for the VC5505/04. Included is a description of
the bootloader and how to interface with it for each of the possible boot devices, as well as instructions for
generating a boot-image to store on an external device.

Contents
1 Introduction .. 1
2 Bootloader Operation ... 2
3 Boot Images ... 5
4 References ... 14

List of Tables

1 VC5505/04 ROM Memory Map ... 1

2 Supported NAND Device IDs.. 3

3 VC5505/04 Unsecure Boot-Image Format .. 6

4 VC5505/04 Secure Boot-Image Format ... 7

1 Introduction

1.1 On-Chip ROM

The on-chip ROM contains several factory-programmed sections.

• Algorithm tables to be referenced by drivers to reduce application data size
• Application programming interface (API) tables for referencing ROM API functions in applications
• Bootloader program

Table 1. VC5505/04 ROM Memory Map

Starting Byte Address Contents

FE_0000h LCD Table

FE_0860h WMA Encode Table

FE_9FA0h WMA Decode Table

FE_D4C4h MP3 Table

FE_F978h Equalization Table

FE_FA58h WM Voice Table

FF_6B38h API Table

FF_6EC0h Bootloader Code (and other built-in API functions)

Code Composer Studio is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

1SPRAB92A–May 2010 Using the TMS320VC5505/04 Bootloader

Copyright © 2010, Texas Instruments Incorporated

Bootloader Operation www.ti.com

1.2 Bootloader Features

The bootloader is always invoked after reset. The function of the bootloader is to transfer user code from
an external source to RAM. Once the transfer is completed, the bootloader transfers control to this user
code.

To ensure that the code cannot be accessed and read outside of the system, the code residing externally
can be encrypted. The bootloader is responsible for bootloading the code from an external device (NAND
Flash, NOR Flash, inter-integrated circuit (I2C) EEPROM, serial peripheral interface (SPI) EEPROM,
MultiMedia card/secure data memory card (MMC/SD), universal serial bus (USB), and universal
asynchronous receiver/transmitter (UART)), decrypting it if necessary, and writing it into DSP memory
(on-chip or off-chip).

NOTE: SARAM31 (byte address 0x4E000 – 0x4FFFF) is reserved for the bootloader.

The major features of the VC5505/04 bootloader are:

• Boot both secure and unsecure images from NOR, NAND, 16-bit SPI EEPROM, and I2C EEPROM.
• Boot secure images from MMC/SD, UART, and USB.
• Support reauthoring for NOR, NAND, 16-bit SPI EEPROM, I2C EEPROM, and MMC/SD.

The bootloader also has the following features:

• Port-addressed register configuration during boot
• Programmable delay during register configuration

2 Bootloader Operation

2.1 Bootloader Initialization

When the VC5505/04 bootloader begins execution, it performs some initialization prior to attempting to
load code.

• All peripherals are idled; the bootloader un-idles peripherals as it uses them.
• CPU Clock setup

– If CLK_SEL = 0, the bootloader powers up the phase-locked loop (PLL) and sets its output
frequency to 12.288 MHz (multiply 32768 Hz RTC Clock by 375).

– If CLK_SEL = 1, the bootloader bypasses the PLL and uses CLKIN. Note that CLKIN is expected to
be 11.2896 MHz, 12.0 MHz, or 12.288 MHz.

• The low-voltage detection circuit is disabled to prevent trim setup (next step) from causing an
unnecessary reset.

• The bootloader reads the trim values from the e-fuse farm and writes them into the analog trim
registers.

2.2 Boot Devices

The VC5505/04 has a fixed order in which it checks for a valid boot-image on each supported boot device.
The device order is NOR Flash, NAND Flash, 16-bit SPI EEPROM, I2C EEPROM, and MMC/SD. The first
device with valid boot-image is used to load and execute user code.

If none of these devices has a valid boot-image, the bootloader modifies the CPU Clock setup as follows:

• If CLK_SEL = 0, the bootloader powers up the PLL and sets its output frequency to 36.864 MHz
(multiply 32768 Hz RTC Clock by 1125).

• If CLK_SEL = 1, the bootloader powers up the PLL and sets it to multiply CLKIN by 3.

This CPU Clock setup change is required to meet the minimum frequency needed by the USB module.

2 Using the TMS320VC5505/04 Bootloader SPRAB92A–May 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Bootloader Operation

Next, the bootloader goes into an endless loop checking for data received on either the UART or USB. If a
valid boot-image is received from either device, it is used to load and execute user code. If no valid
boot-image is received, the bootloader continues to monitor these two devices. During this endless loop, if
the time since the trim setup exceeds 200 ms, the bootloader will re-enable the low-voltage detection
circuit; this is done to prevent leaving the low-voltage detection disabled for an extended period of time.

For a description of the valid boot-image formats, see Section 3.

The following subsections describe details for each supported boot device.

2.2.1 NOR Flash

The bootloader supports booting from a NOR Flash attached to any of the four external memory interface
(EMIF) chip-selects. The NOR Flash must use a 16-bit data bus.

Any 16-bit NOR Flash device should work for read-only use. To support bootloader reauthoring, which
requires writing to the device, CFI-compliant bottom-boot-block and uniform-boot-block devices should
work. Top-boot-block devices may or may not work (vendor dependent due to non-standard CFI
implementations).

The following is a list of NOR Flash devices that are explicitly supported for reauthoring (writing). Other
devices may be supported.

• Spansion S29GL016A
• Spansion S29AL016M
• MXIC MX29LV160T
• Spansion S29GL032A
• SST SST39LF/VF200A
• SST SST39LF/VF400A
• SST SST39LF/VF800A

2.2.2 NAND Flash

The bootloader supports booting from a NAND Flash attached to any of the four EMIF chip-selects. The
NAND Flash must use an 8-bit data bus, and its chip-enable and ready/busy signal must be connected to
the VC5505/04. The bootloader supports both small-block and large-block NAND Flash devices.

The NAND Flash must use the SSFDC format. The bootloader reads the Boot Image Page Pointer (BIPP)
from each of the first 256 physical pages until a non-0 value is found. If the BIPP on page-0 is 0, all other
pages must start with the 3-byte signature 0xE9 0x00 0x00 in order to use the BIPP from that page. The
BIPP is located in bytes 0xC4 through 0xC6 of the page.

Once a valid BIPP is found, this value is used by the bootloader to determine which page contains the
boot-image to load. Note that the boot-image cannot reside on the same page as the BIPP.

See Table 2 for a list of supported NAND Device Ids.

Table 2. Supported NAND Device IDs

Device ID Columns Rows

01h 2 2

33h 1 2

35h 1 2

36h 1 3

39h 1 2

43h 1 2

45h 1 2

46h 1 3

53h 1 2

55h 1 2

56h 1 3

3SPRAB92A–May 2010 Using the TMS320VC5505/04 Bootloader

Copyright © 2010, Texas Instruments Incorporated

Bootloader Operation www.ti.com

Table 2. Supported NAND Device IDs (continued)

Device ID Columns Rows

6Bh 1 2

72h 1 3

73h 1 2

74h 1 3

75h 1 2

76h 1 3

78h 1 3

79h 1 3

A1h 2 2

B1h 2 2

C1h 2 2

E3h 1 2

E5h 1 2

E6h 1 2

F1h 2 2

2.2.3 16-Bit Serial Peripheral Interface (SPI) EEPROM

The bootloader supports booting from an SPI EEPROM with the following requirements for the external
device:

• The device must support at least a 500 kHz SPI clock.
• The device must be connected to SPI CS0 and act as an SPI slave.
• The device uses 2 bytes (16 bits) for internal addressing (up to 64kB).
• The device must have the capability to auto-increment its internal address counter to allow sequential

reads from the device.
• The device can be connected to either valid pin-mapping for SPI; there are two distinct pin-mappings

available. The bootloader attempts to communicate on each SPI pin-mapping, one at a time.

2.2.4 Inter-integrated Circuit (I2C) EEPROM

The bootloader supports booting from an I2C EEPROM with the following requirements for the external
device:

• The device must support the fast I2C specification (400 kHz).
• The device must respond to slave address 0x50 (7-bit address).
• The device uses 2 bytes for internal addressing (up to 64kB).
• The device must have the capability to auto-increment its internal address counter to allow sequential

reads from the device.

2.2.5 MultiMedia Card (MMC)

The bootloader supports booting from an MMC device with the following requirements for the external
device

• The device must be connected to the MMC/SD0 interface.
• The boot-image must be in the first partition with filename boot5505.bin.

4 Using the TMS320VC5505/04 Bootloader SPRAB92A–May 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Boot Images

2.2.6 Secure Data (SD)

The bootloader supports booting from an SD device with the following requirements for the external
device:

• The device must be connected to the MMC/SD0 interface.
• The SD device must comply with SD specification v1.1, or v2.0 for FAT32.
• The SD device must use the SD insecure mode (see SD specification). Note that this does not refer to

the boot-image security; boot-images must be the secure type for use with SD.
• The boot-image must be in the first partition with filename boot5505.bin.

2.2.7 Universal Asynchronous Receiver/Transmitter (UART)

The bootloader supports booting from the UART. The bootloader sets up to receive data using the
following UART parameters: 8-bit data, odd-parity, 1 stop-bit, and 57600 baud-rate.

To reduce the probability of receive errors, the external transmitter should setup to use 2 stop-bits.

Note that this setup may result in data receive errors if CLK_SEL is set to use CLKIN when CLKIN is
11.2896 MHz. Additional time added by the external device between frames (bytes) may reduce the error
rate.

2.2.8 Universal Serial Bus (USB)

The bootloader supports booting from the USB. The bootloader uses bulk-endpoint 1, vendor-id 0x0451,
and product-id 0x9010.

2.3 Register Configuration

Once the bootloader detects a valid boot-image signature (see Section 3), the first data that is used from
the boot-image is the optional register configuration data. This data allows you to setup peripheral
port-addressed registers during the boot process, and before the code sections are copied. This feature
provides the capability to change peripheral registers for specific purposes, such as configuring the EMIF
external memory spaces.

Since some register configurations may have an associated latency that must be observed before
continuing, a delay feature is also available (as part of the register configuration data).

For a description of how to insert register configuration data, including delays, into a boot-image, see
Section 3.3.

2.4 Code Sections

After the optional register configuration is complete, the bootloader copies all of the code sections from the
boot-image to RAM. Each of these code sections may be actual code or just data; these sections are
typically defined by the link-control file.

2.5 Bootloader Completion

After all code sections have been copied, the bootloader waits to ensure that at least 200 ms has elapsed
since the trim setup, re-enables the low-voltage detection circuit, and then branches to the entry-point
address specified in the boot-image.

At this point, the bootloader’s task is complete, and the user application is executing.

3 Boot Images

The bootloader’s primary function is to transfer user code into RAM and then transfer control to this user
code. The user code must be formatted into a boot-image format supported by the bootloader.

There are two distinct formats supported by the VC5505/04 bootloader: an unsecure boot-image format
and a secure boot-image format. These two formats store the same information, with the only difference
being the secure format uses encryption to protect the user’s data/code.

5SPRAB92A–May 2010 Using the TMS320VC5505/04 Bootloader

Copyright © 2010, Texas Instruments Incorporated

Boot Images www.ti.com

The following sections describe these two boot-image formats and how to create boot-images.

3.1 Unsecure Boot Image Format

The unsecure boot-image format contains the following information:

• All user code/data sections to be loaded to RAM.
• Register configuration data for setting up peripheral registers prior to loading code.
• The entry-point of the user’s application.
• A boot-signature to distinguish unsecure boot-images from secure-images. The unsecure boot-image

boot-signature is 0x09AA.

The unsecure boot-image format is shown in Table 3.

Table 3. VC5505/04 Unsecure Boot-Image Format

Word Content Valid Data Entries

1 Boot Signature (16-bits) 0x09AA

2 Entry Point (32-bits) Byte address to begin execution (MSW)

3 Byte address to begin execution (LSW)

4 Register Configuration Count (16-bits, N = count) 1 to 216 - 1

5 Register Config #1 Address in I/O space Repeated according to register
configuration count. Register configuration
address is any valid register in VC5505/04
I/O space. Address 0xFFFF is reserved as
a delay indicator to create delay in
between register writes or at end of
register writes.

6 Register Config #1 Value or delay count

7 Register Config #2 Address in I/O space

8 Register Config #2 Value or delay count

. . .

Register Config #N Address in I/O space

4+2N Register Config #N Value or delay count 0 to 216 - 1

5+2N Section 1 word count (16-bits) Size is the number of valid (non-pad) 1 to 216-1
data words in block M = (size + 2) rounded up to nearest multiple of
64-bit boundary

6+2N Destination MSW address to load Section 1 (32-bits) 16-bit word address MSW

7+2N Destination LSW address to load Section 1 (32-bits) 16-bit word address LSW

8+2N First word of Section 1 (16-bits)

. . .

5+2N+M Last word of Section 1, often pad data (padded to 64-bit boundary)

. . .

X Section X word count (16-bits) Size is the number of valid (non-pad) 1 to 216-1
data words in block N' = (size + 2) rounded up to nearest multiple of
64-bit boundary

X+1 Destination MSW address to load Section X (32-bits) 16-bit word address MSW

X+2 Destination LSW address to load Section X (32-bits) 16-bit word address LSW

X+3 First word of Section X (16-bits)

. . .

X+N' Last word of Section X, often pad data (padded to 64-bit boundary)

X+N'+1 Zero word. Note that if more than one source block was read, word 0x0000
X+N' shown above would be the last word of the last source block.
Each block would have the format shown in the shaded entries.

6 Using the TMS320VC5505/04 Bootloader SPRAB92A–May 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Boot Images

3.2 Secure Boot Image Format

The secure boot-image format contains the following information:

• All user code/data sections to be loaded to RAM (encrypted).
• Register configuration data for setting up peripheral registers prior to loading code (encrypted).
• The entry-point of the user’s application (encrypted).
• The file-key used for encrypting the remainder of the file (encrypted). The encryption-seed, device-id (if

this is a bound image), and a random number are combined to create the file-key.
• The seed-offset for the encryption-seed used. This is an index into the Secure-ROM seed table (value

= 0 to 127).
• A boot-signature to distinguish secure boot-images from unsecure-images, and to indicate the type of

secure boot-image.

There are three different types of secure boot-images:

• Secure boot-image that is not bound to the device; the boot-signature is 0x09A5. The encryption for
this image is based only on an assigned encryption key.

• Secure boot-image that is requesting to be bound to the device; the boot-signature is 0x09A6. The
encryption for this image is based only on an assigned encryption key, but the bootloader re-encrypts
this image using the assigned encryption key and the VC5505/04 device-id, which is unique to each
VC5505/04 device. This re-encrypted image is then said to be bound to that specific VC5505/04
device, and is written back to the external storage device that it was originally read from.

• Secure boot-image that is bound to the device; the boot-signature is 0x09A4. The encryption for this
image is based only on an assigned encryption key and the VC5505/04 device-id. Only a single
VC5505/04 device can decrypt this image.

The secure boot-image format is shown in Table 4.

Table 4. VC5505/04 Secure Boot-Image Format

Word Content Valid Data Entries

1 Boot Signature (16-bits) 0x09A4, 0x09A5, 0x09A6

2 Encryption Seed Offset (16-bits) 0 to 127 (assigned by TI)

3:10 Encrypted File Key (128 bits) Safer(SHA1(Seed OR Seed + ID),File Key)

11:14 Two pad words (0x00000) and Entry Point (32-bits) all Safer encrypted byte address to begin execution
encrypted

15 Register Configuration Count (16-bits, N = count) 1 to 216 – 1 (not encrypted)

16 Register Config #1 Address in I/O space Repeated according to Register configuration count.
Register configuration address is any valid register in
VC5505/04 I/O space. Address 0xFFFFis reserved as a
delay indicator to create delay in between register writes
or at end of register writes. This section is encrypted and
padded to 64-bit boundary.

17 Register Config #1 Value or delay count

18 Register Config #2 Address in I/O space

19 Register Config #2 Value or delay count

. . .

Register Config #N Address in I/O space

15+2N Register Config #N Value or delay count 0 to 216 - 1

16+2N Section 1 word count (16-bits) Size is the number of valid 1 to 216-1 (not encrypted)
(non-pad) data words in block M = (size + 2) rounded up
to nearest multiple of 64-bit boundary

17+2N Destination MSW address to load Section 1 (32-bits) Safer encrypted C55x 16-bit word address (0x000060 to
0x097FFF) MSW

18+2N Destination LSW address to load Section 1 (32-bits) Safer encrypted C55x 16-bit word address (0x000060 to
0x097FFF) LSW

19+2N First word of Section 1 (16-bits) Safer encrypted C55x instructions or any 16 bit wide data
value

7SPRAB92A–May 2010 Using the TMS320VC5505/04 Bootloader

Copyright © 2010, Texas Instruments Incorporated

Boot Images www.ti.com

Table 4. VC5505/04 Secure Boot-Image Format (continued)

Word Content Valid Data Entries

16+2N+M . . . Safer encrypted C55x instructions or any 16 bit wide data
value

Last word of Section 1, often pad data (padded to 64-bit Safer encrypted C55x instructions or any 16 bit wide data
boundary) value

. . .

X Section X word count (16-bits) Size is the number of valid 1 to 216-1 (not encrypted)
(non-pad) data words in block N' = (size + 2) rounded up
to nearest multiple of 64-bit boundary

X+1 Destination MSW address to load Section X (32-bits) Safer encrypted C55x 16-bit word address (0x000060 to
0x097FFF) MSW

X+3 Destination LSW address to load Section X (32-bits) Safer encrypted C55x 16-bit word address (0x000060 to
0x097FFF) LSW

First word of Section X (16-bits) Safer encrypted C55x instructions or any 16 bit wide data
value

X+N' . . . Safer encrypted C55x instructions or any 16 bit wide data
value

Last word of Section X, often pad data (padded to 64-bit Safer encrypted C55x instructions or any 16 bit wide data
boundary) value

X+N'+1 Zero word. Note that if more than one source block was 0x0000
read, word X+N' shown above would be the last word of
the last source block. Each block would have the format
shown in the shaded entries.

X+N'+2 Hash (160-bits) SHA1-HMAC(SHA1(Seed + ID, File Key + data[11:
X+N'+1])

3.3 Creating a Boot-Image

A boot image can be created using the hex55 utility. The hex55 utility is intended for mass Catalog
support.

3.3.1 Creating a Boot Image with Hex55 Utility

Use the following steps to create the boot table:

1. Use the hex conversion utility (hex55.exe) revision 4.3.5 or later. Earlier versions may not support the
boot table features correctly.

2. Use the –boot option to get the hex conversion utility to create a boot table.
3. Use the –v5505 option. This option is very important since some early versions of the C55x hex

conversion utility supported a different boot table format. The wrong boot table format causes the
bootloader to fail.

4. Specify the boot type: –parallel8, –parallel16, -serial16 or –serial8.
5. Specify the desired output format. For detailed information on the available hex conversion utility

output formats, see the TMS320C55x DSP Assembly Language Tools User’s Guide (SPRU280).
6. Specify the output filename using the –o output_filename option. If you do not specify an output

filename, the hex conversion utility will create a default filename based on the output format.

Some examples of how to set the hex conversion utility options to create a boot table are shown below.

3.3.1.1 Creating a Boot Table for Tektronix Output

To create a boot table for the application (my_app.out) with the following conditions:

• Desired boot mode is from 16-bit external asynchronous memory
• No registers are configured during the boot
• No programmed delays will occur during the boot
• Desired output is Tektronix format in a file called my_app.hex

8 Using the TMS320VC5505/04 Bootloader SPRAB92A–May 2010

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRU280

www.ti.com Boot Images

Use the following options on the hex conversion utility command line or command file:

-boot ;option to create a boot table
-v5505 ;use C55x boot table format for TMS320VC5505/04
-parallel16 ;boot mode is 16-bit external asynchronous memory
-x ;desired output format is Tektronix format
-o my_app.hex ;specify the output filename
my_app.out ;specify the input file

3.3.1.2 Creating a Boot Table for Intel Output

To create a boot table for the application (my_app.out) with the following conditions:

• Desired boot mode is from 8-bit standard serial boot
• Configure the register address 0x1C8C with the value 0x0001
• After the register is configured, wait 256 cycles before continuing the boot
• Desired output is Intel format in file a called my_app.io

Use the following options on the hex conversion utility command line or command file:

-boot ;option to create a boot table
-v5505 ;use C55x boot table format for TMS320VC5505/04
-serial8 ;boot mode is 8-bit standard serial boot
-reg_config 0x1c8c, 0x0001 ;write 0x0001 to peripheral register at address 0x1C8C
-delay 0x100 ;delay for 256 CPU clock cycles
-I ;desired output format is Intel format
-o my_app.io ;specify the output filename
my_app.out ;specify the input file

For detailed information about the C55x hex conversion utility, see the TMS320C55x DSP Assembly
Language Tools User’s Guide (SPRU280).

3.3.1.3 Section Alignment Restrictions When Using Hex55 Utility

All code sections must be aligned on a word boundary. Sections that are not properly aligned will be
flagged by the hex55 utility.

To align a code section, use the align command in the linker command file as shown below. Note that if
any function included in a code output section has an alignment associated with it (in C via CODE_ALIGN
pragma) the whole section will inherit that alignment.

.text > ROM PAGE 0 align 2

3.3.1.4 DOS Command Line for Generating Boot Image Using Hex55

hex55 -i USBKey_LED.out -o USBKey_LED.bin -boot -v5505 -b -serial8

3.4 Burn a Boot-Image

Once a boot image (*.bin) is generated, customers can burn the boot image into the NOR Flash, NAND
Flash, SPI EEPROM (16 bit or 24 bit), I2C EEPROM, SPI serial Flash or multimedia card/secure digital
(MMC/SD) card. It is done by a utility called programmer that runs on VC5505/04 using an emulator with
Code Composer Studio™ software. First, open the Code Composer Studio project - programmer.pjt as
shown in Figure 1.

9SPRAB92A–May 2010 Using the TMS320VC5505/04 Bootloader

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRU280

Boot Images www.ti.com

Figure 1. Open the Programmer.pjt in Code Composer Studio

It uses stdout and stdin to allow you to place the contents of a PC file (generally a boot-image) onto a
peripheral device on the VC5505 EVM. It supports NOR, NAND, SPI EEPROM, and I2C EEPROM, as
well as MMC and SD if the card is properly formatted. This utility has been tested extensively on real
silicon with VC5505 EVM.

One way to write to NAND Flash at CS 2 would be to answer 1 (choose device NAND Flash) to the first
prompt, 2 (choose the chip select CS2) to the second prompt, 1C:\projects\flash_image\demo.bin (choose
write operation using C:\projects\flash_image\demo.bin) to the third prompt.

10 Using the TMS320VC5505/04 Bootloader SPRAB92A–May 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Boot Images

Screen shots Figure 2 through Figure 5 demonstrate the multiple prompt procedure for writing
C:\projects\flash_image\demo.bin to NAND Flash on ChipSelect 2.

Figure 2. Standard Input Dialog Box for Programmer.pjt (Choose NAND Flash)

11SPRAB92A–May 2010 Using the TMS320VC5505/04 Bootloader

Copyright © 2010, Texas Instruments Incorporated

Boot Images www.ti.com

Figure 3. Standard Input Dialog Box for Programmer.pjt (Choose ChipSlect 2)

12 Using the TMS320VC5505/04 Bootloader SPRAB92A–May 2010

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Boot Images

Figure 4. Standard Input Dialog Box for Programmer.pjt (Choose Program device with <file>)

13SPRAB92A–May 2010 Using the TMS320VC5505/04 Bootloader

Copyright © 2010, Texas Instruments Incorporated

References www.ti.com

Figure 5. Flashing is Done

The programmer guides you on the stdout display and requests user input with a small popup window;
load and run the program using Code Composer Studio. Then, you can either follow the directions from
the programmer, or you can type in the answers to all prompts starting at the first prompt as a shortcut.
For the previous example, you can also use the shortcut 121C:\projects\flash_image\demo.bin
at the first prompt.

The following are some examples, assuming that you want to load a file named
C:\projects\flash_image\demo.bin.

For writing to NOR flash at CS 3 on an EVM, at the first prompt enter:
231C:\projects\flash_image\demo.bin.

For writing to SPI EEPROM on an EVM, at the first prompt enter:
311C:\projects\flash_image\demo.bin.

For writing to SPI EEPROM on an ezDSP USB Stick Board, at the first prompt enter:
321C:\projects\flash_image\demo.bin.

For writing to I2C EEPROM, at the first prompt enter: 41C:\projects\flash_image\demo.bin.

For writing to MMC card, at the first prompt enter: 51C:\projects\flash_image\demo.bin.

For writing to SD card, at the first prompt enter: 61C:\projects\flash_image\demo.bin.

It takes a while for some devices to complete writing all data. Always wait for an error message or a
Programming Complete message. To run the utility again, you need to use Restart (or reload).

4 References
• TMS320C55x DSP Assembly Language Tools User’s Guide (SPRU280)

14 Using the TMS320VC5505/04 Bootloader SPRAB92A–May 2010

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRU280

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video

Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/communications
http://dsp.ti.com
http://www.ti.com/computers
http://www.ti.com/clocks
http://www.ti.com/consumer-apps
http://interface.ti.com
http://www.ti.com/energy
http://logic.ti.com
http://www.ti.com/industrial
http://power.ti.com
http://www.ti.com/medical
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/space-avionics-defense
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless-apps

	Using the TMS320VC5505/04 Bootloader
	1 Introduction
	1.1 On-Chip ROM
	1.2 Bootloader Features

	2 Bootloader Operation
	2.1 Bootloader Initialization
	2.2 Boot Devices
	2.2.1 NOR Flash
	2.2.2 NAND Flash
	2.2.3 16-Bit Serial Peripheral Interface (SPI) EEPROM
	2.2.4 Inter-integrated Circuit (I2C) EEPROM
	2.2.5 MultiMedia Card (MMC)
	2.2.6 Secure Data (SD)
	2.2.7 Universal Asynchronous Receiver/Transmitter (UART)
	2.2.8 Universal Serial Bus (USB)

	2.3 Register Configuration
	2.4 Code Sections
	2.5 Bootloader Completion

	3 Boot Images
	3.1 Unsecure Boot Image Format
	3.2 Secure Boot Image Format
	3.3 Creating a Boot-Image
	3.3.1 Creating a Boot Image with Hex55 Utility
	3.3.1.1 Creating a Boot Table for Tektronix Output
	3.3.1.2 Creating a Boot Table for Intel Output
	3.3.1.3 Section Alignment Restrictions When Using Hex55 Utility
	3.3.1.4 DOS Command Line for Generating Boot Image Using Hex55

	3.4 Burn a Boot-Image

	4 References

