
1SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

Application Report
SPRAC17B–January 2016–Revised November 2017

A Guide to Debugging With CCS on the DRA7x, TDA2x
and TDA3x Family of Devices

Piyali Goswami, Stanley Liu, Richard Woodruff

ABSTRACT
Being able to look into the state of the device when an application fails to run as expected is a key enabler
while debugging the application. This application report walks through the different steps required to setup
the TI Code Composer Studio™ (CCS), as well as how to debug applications on the DRA7x, TDA2x and
TDA3x family of devices. The document starts with describing basic CCS debugging techniques and goes
on to highlight advanced non-intrusive ways to debug software.

Contents
1 Different Stages of Debug .. 3
2 Getting Started With CCS .. 5
3 Configuring the Device With GEL Files ... 12
4 Getting Used to the CCS GUI .. 14
5 Breakpoints.. 17
6 Processor Trace .. 22
7 Throughput and Data Traffic Profiling ... 34
8 References .. 39

List of Figures

1 Debugging Techniques at Different Stages of Software Development ... 3
2 Selecting Code Composer Studio v6 Updates in the CCS Install Pop Up Window................................. 6
3 Choosing Automotive Device Support for CSP Package Installation ... 7
4 Hardware Setup to Get Started With Debugging With CCS ... 8
5 Steps to Create and Launch a .ccxml File, Steps 1–6 .. 10
6 Steps to Create and Launch a .ccxml File, Steps 7–14... 11
7 Default GEL Files Associated With CPUs in the .ccxml File ... 12
8 Selectively Running GEL Scripts... 13
9 Functions of Different Shortcuts in the Debug Window ... 14
10 Register View From Cortex-A15 View in DRA7x... 15
11 Register View Find Pop Up Window... 15
12 Memory View From Cortex-A15 View in DRA7x... 16
13 Memory and Cache View From C66x DSP View in TDA2x .. 16
14 DAP Debug SS Memory View.. 17
15 Setting Breakpoints From the Breakpoint Window .. 18
16 Configuring the Breakpoint From the Breakpoint Window .. 19
17 Breakpoint Window Selection to Enable Hardware Watchpoint ... 20
18 Hardware Watchpoint Configuration Window .. 20
19 Breakpoint Properties Window to Configure the Cross Trigger Settings ... 21
20 Steps to Start the Cortex-A15 PC Trace .. 22
21 Cortex-A15 PC Trace Hardware Trace Analysis Configuration and Advanced Properties Windows 23
22 Trace Viewer Window and Controls ... 23

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

www.ti.com

2 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

23 Output of the Cortex-A15 PC Trace ... 25
24 Steps to Enable the C66x DSP PC Trace .. 26
25 C66x DSP PC Trace Hardware Trace Analysis Configuration and Advanced Properties Windows 27
26 C66x DSP PC Trace Viewer Output... 27
27 Steps to Save the Trace Data to a CSV File ... 27
28 CSV Export Data Pop Up Window... 28
29 Function Execution Graph and Program Address vs Cycle Graphical C66x DSP Trace Representation...... 28
30 Steps to Enable the EVE SMSET Trace .. 29
31 EVE SMSET Hardware Trace Analysis Configuration and Advanced Properties Settings 30
32 Example EVE SMSET Trace Viewer Output ... 31
33 Example EVE Analyzer Output... 31
34 Example Trace Viewer Output of EVE Software Messaging ... 33
35 Steps to Enable Throughput and Data Traffic Profiling ... 35
36 Throughput Profiling Hardware Trace Analysis Configuration and Advanced Properties Settings.............. 36
37 Example Output of the Throughput Profiling for an EDMA Transfer to Interleaved EMIF........................ 37
38 Sample Trace Viewer Output of an Average Transaction Latency of a DMA Transfer From DDR to OCMC . 38
39 OCP Watch Point Hardware Trace Analysis Configuration and Advanced Properties Settings................. 39
40 Sample Trace Viewer Output of the OCP Watch Point Trace.. 39

List of Tables

1 Some Key GEL Files for Device Initialization... 12

Trademarks
Code Composer Studio is a trademark of Texas Instruments.
Cortex, ARM are registered trademarks of ARM Limited.
Android is a trademark of Google Inc.
Linux is a registered trademark of Linus Torvalds.
All other trademarks are the property of their respective owners.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

www.ti.com Different Stages of Debug

3SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

1 Different Stages of Debug
Based on the stage of software development, different techniques may be employed to perform debug on
TI platforms. Figure 1 shows the debugging techniques at different stages of software development.

Figure 1. Debugging Techniques at Different Stages of Software Development

Debugging techniques may be intrusive or non-intrusive. When intrusive, the debug techniques may
change the timing of execution of software and may or may not require software changes. Non-intrusive
debugging techniques allow debugging software without changing the run time characteristics, or having
to make any software modifications for debugging.

CCS allows multiple levels of intrusive and non-intrusive debugging techniques. Major debugging
techniques available in the DRA7x, TDA2x and TDA3x family of devices are:

Stop Mode Debug:
• JTAG (IEEE 1149.1) support
• C66x, Cortex®-A15, Cortex-M4, EVE (ARP32), IVA (ARM9), and PRU debug
• Support for HW breakpoints, watch points, and performance counters
• Debug code from reset vector
• CPU and system reset debug
• Symmetrical multi-processing (SMP) debug
• Global run and halt across processors
• Debug across low-power transitions

Processor Trace and Profiling:
• DSP Trace – PC, cycles, data, and events
• Cortex-A15 – PC and cycles
• Embedded trace buffer (ETB)
• DSP cache and pipeline stalls profiling
• PC based function level profiling
• CToolsLib embedded trace instrumentation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Different Stages of Debug www.ti.com

4 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

SoC Instrumentation and Analysis:
• HW assisted print
• Embedded Trace Buffer (ETB) and off-chip collection of system instrumentation
• Cache performance measurement for IPU, and EVE (SCTM)
• Bus bandwidth and latency profiling (Stats Collector)
• Bus interconnect traffic profiling (OCPWP)
• Power and clock management profiling
• IVAHD accelerators execution profiling
• CToolsLib for embedded debug and trace

Run Mode Debug:
• Linux®, Android™, and RTOS support
• Process level execution control
• Process level breakpoints

For the exact list of debugging capabilities of the device, see the device-specific TRM.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

www.ti.com Getting Started With CCS

5SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

2 Getting Started With CCS
TI Code Composer Studio can be downloaded from
http://processors.wiki.ti.com/index.php/Download_CCS. The latest version of CCS (per this release) is
CCS v6.1.1. The instructions to install CCSv6 from the installer can be downloaded from the
Download_CCS link. Once CCS is installed on your system, the next step is to install the Chip Support
Package (CSP) for the device you will be working with.

There are two ways to install the CSP package:

Option 1
1. In CCS window, Click on Help → Install New Software
2. In the pop up window select “Code Composer Studio v6 Updates” in the Work with: field as shown in

Figure 2 and Figure 3.
3. Click on Next and follow the instructions in the pop up windows to install the CSP package.

Option 2
1. Download the package corresponding to the Automotive CSP from

http://processors.wiki.ti.com/index.php/Device_support_files#Automotive.
2. Unzip the package and copy the folders “common” and “emulation” in the <CCS INSTALL

DIR>\ccs_base folder.
3. Select merge folders while copying the folders.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B
http://processors.wiki.ti.com/index.php/Download_CCS
http://processors.wiki.ti.com/index.php/GSG:CCSv6_installation
http://processors.wiki.ti.com/index.php/Device_support_files#Automotive

Getting Started With CCS www.ti.com

6 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

Figure 2. Selecting Code Composer Studio v6 Updates in the CCS Install Pop Up Window

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

www.ti.com Getting Started With CCS

7SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

Figure 3. Choosing Automotive Device Support for CSP Package Installation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Getting Started With CCS www.ti.com

8 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

2.1 Emulator Setup
The basic emulator setup to get started with debugging using CCS is shown in Figure 4.

Figure 4. Hardware Setup to Get Started With Debugging With CCS

Different emulators are supported with the DRA7x, TDA2x and TDA3x devices. Each emulator has a set
of features that it supports. Based on the debugging requirements, you can choose which emulator to
connect with the device. High-level features of each supported emulator are summarized in the following
list.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

www.ti.com Getting Started With CCS

9SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

XDS100 v2:
• Entry-level JTAG for hobbyists and universities
• CCS Cortex-A download speed is approximately 30 KB per second
• USB 2.0
• TI 14 and CTI 20 native
• Open HW reference design

XDS200:
• Performance JTAG at low-cost for users
• CCS Cortex-A download speed is approximately 300 KB per second
• ARM® Serial Wire Debug (SWD) and Serial Wire Output (SWO) support
• USB 2.0 and optional ENET
• TI, MIPI, and ARM connector option

XDS510:
• Performance JTAG
• USB 2.0
• TI 14 and CTI 20 native
• 3P EPK licensed

XDS560 V2 STM:
• High-performance JTAG and cJTAG for professional users
• CCS Cortex-A download speed is approximately 600 KB per second
• Low bandwidth trace receiver (STM and Cortex-M)
• USB 2.0 and ENET
• 4-pin at 100 MHz with auto-skew and jitter calibration
• 128 MB of storage

XDS Pro Trace Receiver:
• High-performance JTAG and cJTAG for professional users
• CCS Cortex-A download speed is approximately 600 KB per second
• High bandwidth dual-channel trace receiver (DSP, Cortex and STM)
• USB 2.0 and ENET
• 32-pin at 250 MHz DDR with auto-skew and jitter calibration
• 2 GB trace storage buffer

2.2 Creating the Target Configuration File
In order to debug DRA7x, TDA2x, or TDA3x family of devices, you must create a target configuration file
(*.ccxml) (see Figure 5 and Figure 6). The list of steps to create a ccxml file are:
1. In the CCS window, click View.
2. Select Target Configuration.
3. In the Target Configuration window, right click and select New Target Configuration.
4. In the new Target Configuration window, give a name to the ccxml file.
5. Click Finish.
6. Select the connected emulator from the Connections drop-down list.
7. In the Board or Device field, type the first few letters to see a reduced board list.
8. Choose the desired board.
9. Save the file.
10. Right click on the ccxml.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

1
2

43

Click finish

Give a valid name

Right click

Choose the
connected
emulator

Getting Started With CCS www.ti.com

10 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

11. Launch the ccxml.
12. Right click on the device host CPU.
13. Click Connect.

Figure 5. Steps to Create and Launch a .ccxml File, Steps 1–6

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

5 6

7

Type first few letters to see a
reduced board list as below

Choose the
desired board

Save the
file

Right
click
on the
ccxml

Launch
the ccxml

Right click on the device host
CPU and click connect

www.ti.com Getting Started With CCS

11SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

Figure 6. Steps to Create and Launch a .ccxml File, Steps 7–14

In cases when connecting to the device host fails, see the set of common issues in the JTAG connectivity
at http://processors.wiki.ti.com/index.php/Debugging_JTAG_Connectivity_Problems.

NOTE: On DRA7x and TDA2x devices, the CCS connection is successful to the IPU2 only when the
PM_CORE_PWRSTCTRL register's LOWPOWERSTATECHANGE bit is 0. This is zero by
default, if you are using CCS GEL scripts for device initialization. However, in case you are
booting with Linux/Android/QNX and trying to connect to the IPU2 via CCS, make sure you
perform the following steps on the device terminal.

omapconf read 0x4AE06700
03FF0F17
omapconf write 0x4AE06700 0x3FF0F07
omapconf read 0x4AE06700
03FF0F07

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B
http://processors.wiki.ti.com/index.php/Debugging_JTAG_Connectivity_Problems

GEL script loaded when ccxml file launched

Configuring the Device With GEL Files www.ti.com

12 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

3 Configuring the Device With GEL Files
General Extension Language (GEL) files are used to automate the device initialization. GEL is an
interpretive language similar to C that lets you create functions to extend the CCS IDE's usefulness. For
details on how to write GEL files and the GEL syntax, see Creating Device Initialization GEL Files.

The DRA7x, TDA2x, and the TDA3x CSP packages include the device initialization GEL files that are
linked to the different processors by default. The GEL files are located in the folder <CCS Installation
Directory>\ccs_base\emulation\gel\<SOC Name>. Table 1 lists key GEL files for device initialization.

Table 1. Some Key GEL Files for Device Initialization

GEL FILE NAME DESCRIPTION
<SOC Name>_prcm_config.gel PRCM functions, DPLLs, power and clocks initialization
<SOC Name>_ddr_config.gel Configure EMIFs for DDR3 at 532 MHz or 400 MHz
<SOC Name>_pad_config.gel Initialize PADCONF registers based on the TI EVM

<SOC Name>_multicore_reset.gel Provides options to enable and reset another CPU core
<SOC Name>_startup_common.gel Contains the initial GEL functions that run when the device host CPU is connected

When the device host CPU is connected, a portion of the GEL initialization script (that is defined in the
<SOC Name>_startup_common.gel file) is executed automatically.

Each CPU has a <SOC Name>_<CPU Name>_startup.gel file that loads the rest of the GEL files that are
associated with the CPU.

The device .ccxml file stores the location of the <Soc Name>_<CPU Name>_startup.gel file that is loaded
when the .ccxml file is launched.

The GEL file associated with the CPU core may be seen in the Advanced tab of the .ccxml file as shown
in Figure 7. In case you do not want to run any GEL files, clear the initialization script field entry
corresponding to each CPU in the .ccxml Advanced tab.

Figure 7. Default GEL Files Associated With CPUs in the .ccxml File

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B
http://www.ti.com/lit/pdf/SPRAA74

Choose the CPU view Choose the GEL
you want to run

Click on scripts

www.ti.com Configuring the Device With GEL Files

13SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

To run a GEL file, click on the desired options from the Scripts menu. Click on the CPU where the GEL
script is executed from the Debug window, as shown in Figure 8.

Figure 8. Selectively Running GEL Scripts

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Connect /
disconnect

Restore
debug
state

Restart

Assembly
step into

Assembly
step over

Resume /
run the code

Step return (F7)

Step over (F6)

Step into (F5)

Terminate the
debug session

Halt the CPU
core

CPU reset or system
reset (warm reset)

Getting Used to the CCS GUI www.ti.com

14 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

4 Getting Used to the CCS GUI
CCS provides multiple views and windows to enable you to debug the application. This section discusses
the basic windows and views that enable you to debug a particular CPU core, reset it, and look at register
or memory content.

4.1 Debug View
The Debug window enables you to choose the CPU core to debug. The Debug window also provides
multiple shortcuts to allow the core to run, halt, single-step a C instruction, step over an assembly function,
and call and rest the CPU or whole device. A description of all buttons in the Debug window is shown in
Figure 9. The same options are available in the Run menu option as well.

Figure 9. Functions of Different Shortcuts in the Debug Window

The Load Program option is used to load the software in the device memory for the CPU to start executing
it. CCS moves the CPU PC to the entry point of the code when loaded through the Load Program option,
whereas Load Symbols load only debug information present in the executable. Load Symbols are typically
used when the CPU code is loaded through a boot medium and debug symbols are loaded using CCS.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Register view for
peripheral registers

Register view for
CPU registers

www.ti.com Getting Used to the CCS GUI

15SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

4.2 Register View
To know the values of registers of a CPU core, open the Register view from the View → Registers menu
option. The Registers window shows the values of all CPU GP registers and control registers. Additionally,
for the device host CPU, peripheral registers are also shown with bit fields and brief text describing them
(see Figure 10).

Figure 10. Register View From Cortex-A15 View in DRA7x

1. Type Ctrl+F or right click → Find to search for any register in the register window.
2. Figure 11 shows the register view find pop up window.
3. In this pop up, enter a portion of the string of the register name and find the register you are searching

for.

Figure 11. Register View Find Pop Up Window

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Getting Used to the CCS GUI www.ti.com

16 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

4.3 Memory and Cache View
The Memory View allows viewing CPU view, intermediate physical view (in the Cortex-A15 hypervisor
applications) and physical view of the memory space. Memory Mapped Registers (MMRs) and memory
content can be viewed in the following steps (see Figure 12).

Figure 12. Memory View From Cortex-A15 View in DRA7x

1. Choose Memory Browser from the menu option View.
2. In the Memory Browser window, type the address in the field Enter Location.
3. Choose the Memory View.
4. You can also view the portion of memory in the L1 and L2 cache for the DSP C66x.
5. Select the menu optionView → Other and a pop up window appears.
6. Select cache to analyze the DSP L1P, L1D, and L2 Cache contents and cache line properties.

The memory view is also color coded to indicate if the data that is viewed is L1 or L2, or cached and non-
cached data.

Figure 13 shows the memory and cache view from the C6xx DSP view in TDA2x.

NOTE: The cached view is available only for the C66x DSP.

Figure 13. Memory and Cache View From C66x DSP View in TDA2x

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

www.ti.com Getting Used to the CCS GUI

17SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

4.4 DebugSS View
In some cases while debugging if the CPU core is hung or you want to see memory or register contents
from a system view while the CPU is running, the DAP_DebugSS view can be used. The DAP_DebugSS
view can be enabled with the following steps.
1. Right click on the connection in the Debug view
2. Click on Show All Cores
3. Memory view (system view) shows system view of the memory (same as what you saw from the

Cortex-A15 context in the memory view).
4. Memory view may be changed to APB view from the memory windows. Figure 14 shows the DAP

debug SS memory view.

Figure 14. DAP Debug SS Memory View

4.5 Disassembly View
The CPU opcodes of the software executing on the target can be viewed in the Disassembly window
(View → Disassembly) of the CPU. Assembly step into and step over buttons in the debug window can be
used to step through the disassembly.

5 Breakpoints
DRA7x, TDA2x, and TDA3x support different types of breakpoints that halt the execution of the CPU core.
Each ISA supports a different list of breakpoint options. The different types of breakpoints supported by
each CPU ISA from the breakpoint window (View → Breakpoints) are as given:
• Cortex-A15:

– Breakpoint
– Count Event
– Cross Trigger
– Hardware breakpoint
– Hardware watchpoint
– Profile Control Point

• Cortex-M4:
– Breakpoint
– Hardware breakpoint
– Profile Control Point

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Breakpoints www.ti.com

18 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

• C66x DSP:
– Breakpoint
– Chained Breakpoint
– Count Event
– Data access count
– Hardware breakpoint
– Hardware watchpoint
– Profile Control Point

• ARP32 EVE:
– Breakpoint
– Hardware breakpoint
– Hardware watchpoint

5.1 Software and Hardware Breakpoints
Breakpoints are program locations where the processor must halt so that debugging can occur. The link
http://processors.wiki.ti.com/index.php/How_Do_ Breakpoints_Work gives information regarding how
software and hardware breakpoints work.

Both hardware and software break points allow the CPU to halt at a given PC location. Hardware
breakpoints can be used regardless of whether the code being executed is in RAM or ROM. However,
Software breakpoints can be used, only volatile memory where the contents of the memory are modified
to indicate the debugger to halt at the PC location.

The advantage of the SWBP is that you can set an unlimited number of them in as many places desired.
The disadvantage is that you cannot put them in non-volatile memory, such as ROM, FLASH, and more,
because CCS cannot write the opcode to the location. The disadvantage of the HWBP is because they
are implemented in hardware, they are limited in number.

Double clicking on the PC location of the C code or the assembly instruction in the disassembly window
creates a software breakpoint or hardware breakpoint based on the memory type automatically.
Alternatively, you can set the breakpoint from the breakpoint window (see Figure 15).

Figure 15. Setting Breakpoints From the Breakpoint Window

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B
http://processors.wiki.ti.com/index.php/How_Do_Breakpoints_Work

www.ti.com Breakpoints

19SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

Optionally, you can set alternate functions when the CPU hits the desired PC location by changing the
breakpoint options (see Figure 16).

Figure 16. Configuring the Breakpoint From the Breakpoint Window

5.2 Chained Breakpoint
The Event Analysis tool allows you to chain breakpoints. For example, if you want to track a bug in
frequently-executing code that only surfaces after the execution of a separate piece of corrupt code. It is
not required to break every time the frequently-executed code is run. The code does not need to break
after the corrupt code is executed.

Configuring a chained breakpoint is very similar to a normal break point, except that you must give two
locations. Only when the first location is executed, the code halts at the second location.

5.3 Count Event
The Count Event functionality allows counting multiple CPU events which give insight into the different
system events, such as cache hits and misses, pipeline stalls, and more. The A15 and DSP support
counting events. The A15 event to be profiled can be selected while defining the Count Event break point.
For DSP, the event to be profiled can be selected after creating the Count Event breakpoint and changing
the property by right clicking on the breakpoint, and selecting Breakpoint Properties.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Breakpoints www.ti.com

20 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

5.4 Hardware Watchpoint
The Hardware Watchpoint can be used to halt the CPU when the CPU reads or writes from or to a
particular memory location. Use the following steps to setup a hardware watchpoint:
1. Open the breakpoint dialog: View → Breakpoints in the Debug Perspective.
2. Select Hardware Watchpoint in the pull down menu.

Figure 17. Breakpoint Window Selection to Enable Hardware Watchpoint

3. In the location field, specify the address that you want to watch, and if it stops on a read or write
access. For example, if you want to watch when a global variable named ext_buf is written to.

4. You can specify ext_buf for the location and write for the memory access.

Figure 18. Hardware Watchpoint Configuration Window

5. If needed, the watchpoint can be further customized by right clicking on the Watchpoint and selecting
Properties. From this dialog box, you can:
1. Configure a data read and write of a particular value from the address
2. Configure the size of the data
3. Configure a mask value (bits that may be ignored)

5.5 Profile Control Points
Profile Control Points are used to enable and disable collection for function profiling or code coverage.
These points can be used to exclude a certain range from getting profiled and vice versa. More
information on profile control points is present in
http://processors.wiki.ti.com/index.php/Profiler#Profile_Control_Points. Profile control points are supported
for Cortex-A15, Cortex-M4, and DSP.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B
http://processors.wiki.ti.com/index.php/Profiler#Profile_Control_Points

&KRRVH�³&KDQQHO�

&RQILJXUHG´�WR�

enable a channel

Choose which event
generates the trigger

Choose what action is taken
when the trigger is received

www.ti.com Breakpoints

21SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

5.6 Cross Trigger
The device supports a cross-triggering feature, which provides a way to propagate debug (trigger) events
from one processor subsystem and module to another. For example, a given subsystem A can be
programmed to generate a debug event, which can then be exported as a global trigger across the device.
Another subsystem B may be programmed to be sensitive to the trigger line input and to generate an
action upon trigger detection.
1. Cross-triggering can be configured from the Cortex-A15 view. In the breakpoint window, select Cross

Trigger to create a dummy cross Trigger Breakpoint.
2. The properties of this cross trigger breakpoint can be altered if you right click the Cross Trigger

Breakpoint and select Properties.
3. A pop up window appears on this action.
4. The property window allows configuring four cross trigger channels.
5. For each channel, configure the Event Watcher, which decides what event in the device causes the

trigger to be generated.
6. The Action Trigger decides what action is taken when the trigger occurs.

Figure 19 shows the Breakpoint Properties window to configure the cross trigger settings.

Figure 19. Breakpoint Properties Window to Configure the Cross Trigger Settings

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Click on tools

Select hardware
trace analyzer

Select PC trace

Processor Trace www.ti.com

22 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

6 Processor Trace
The device supports processor trace for the Cortex-A15 and the DSP processors. Steps to enable the
Cortex-A15, DC processor trace and interpret output data using CCS are discussed in the following
subsections.

6.1 Cortex-A15 PC Trace
The Cortex-A15 supports a non-intrusive PC trace that indicates what instruction runs with each cycle.
The trace can be directed to the internal device 32 KB buffer (the ETB) or can be directly sent to the
emulator through TPIU.

NOTE: The ETB Buffer is a circular buffer and holds the last portion of the CPU trace data when the
buffer is full and wraps around.

1. To enable PC trace, keep the debug context to the Cortex-A15.
2. From the Tools menu option, select Hardware Trace Analyzer → PC Trace (see Figure 20).

Figure 20. Steps to Start the Cortex-A15 PC Trace

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Select the range
of PC to trace.
Based on the
selection fill Start
at Address and
End at Address
fields

Click to start PC trace

Pop-up window when
you click on Advanced
Settings

Select if the PC
Trace would be
stored in ETB or
sent to the XDS
pro trace receiver
through the TPIU

Can trace only PC
values for A15

Click OK when done

www.ti.com Processor Trace

23SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

3. This action opens a pop up window that can be used to further configure the PC trace feature.
Figure 21 shows the Cortex-A15 PC trace hardware trace analysis configuration and Advanced
Properties windows.

Figure 21. Cortex-A15 PC Trace Hardware Trace Analysis Configuration and Advanced Properties
Windows

4. On starting the trace functionality, CCS opens a Trace Viewer window (see Figure 22).

Figure 22. Trace Viewer Window and Controls

5. Once the CPU core is run, the Trace Viewer captures the PC Trace. It provides a tabular output that
describes how many CPU cycles an assembly instruction of a particular function took.

6. The cycle count is given by the number of A15 CPU cycles.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Processor Trace www.ti.com

24 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

The cycle count is updated at every waypoint. A waypoint is a point where instruction execution by the
processor may involve a change in the program flow. The CoreSight Processor Trace Macrocell (PTM)
traces only the following waypoints:
• All indirect branches
• All conditional and unconditional direct branches
• All exceptions
• Any instruction that changes the instruction set state of the processor
• When halting debug mode is enabled, entering or leaving debug state
• Synchronization primitives

CCS can then reconstruct the complete instruction flow from these waypoints to create a graphical
representation of the code flow in Figure 29. Additional analysis can then be performed by looking at the
Function Profiler: Summary window, which gives details on the number of cycles spent in every function
(inclusive and exclusive).

Exclusive time is the amount of execution time that passed within that function excluding the time spent
in functions called from that function.

Inclusive time is the amount of execution time that passed within that function including the time spent in
function called from that function. Figure 23 shows the output of the Cortex-A15 PC trace.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

www.ti.com Processor Trace

25SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

Figure 23. Output of the Cortex-A15 PC Trace

Right click on the Trace Viewer window to save the output data in CSV format for offline analysis.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Processor Trace www.ti.com

26 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

6.2 C66x DSP PC Trace
The DSP allows the tracing of the program counter, data access address and values non-intrusively.
The infrastructure component uses bus snoopers to collect and export trace data using hardware
dedicated to the trace function. Advanced Event Triggering facilities provide a means to restrict the trace
data exported to data of interest to maintain the non-intrusive aspect of trace. This reduces the export
bandwidth requirements and facilitates the successful collection of the data of interest.
1. To start the DSP core trace, click on Tools → Hardware Trace Analyzer → PC trace (see Figure 24).
2. Ensure debug scope is kept to C66x_DSP1/2 core in the Debug window.

Figure 24. Steps to Enable the C66x DSP PC Trace

3. On starting the PC trace, the Hardware Trace Configuration pop up window shows up.
4. You can configure the transport type to ETB (internal 32 KB circular buffer) or XDS Pro Trace dump

from the TPIU to the emulator buffer.

NOTE: The ETB buffer is a circular buffer and holds the last portion of the CPU trace data when the
buffer is full and wraps around.

5. You can optimally define the PC address range across which to trace the DSP by using the Trace
Range drop down menu.

6. Click on Advanced Settings to open the Advanced Properties pop up window.
7. The Receiver ETB properties can be updated in the Advanced Properties pop up.
8. In most cases, the default values are good for DSP tracing.
9. In the PC Trace trigger context, you can define the different data you want to trace.
10. Once selected, click Ok.
11. Click Start in the Hardware Trace Analysis Configuration pop up window to open the Trace Viewer.

There is a tradeoff between the number of instructions traced and the amount of data traced for each
instruction because the amount of trace memory is limited.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Parallel instructions
executed in the
same CPU cycle

DSP clock cycle instance at each instruction

www.ti.com Processor Trace

27SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

Figure 25 shows the C66x DSP PC trace hardware trace analysis configuration and advanced
properties windows.

Figure 25. C66x DSP PC Trace Hardware Trace Analysis Configuration and Advanced Properties
Windows

12. A Trace Viewer window starts capturing trace information once the DSP core starts running.
13. The Trace Viewer is populated with trace information once the DSP core is halted.
14. If you see the message Receiver recording trace data, the Trace Buffer wrapped around. Data is

shown when the recording stops, the ETB circular buffer is full and has wrapped around.
15. On halting the DSP core, or clicking on the Stop Trace button, the Trace viewer is populated with the

trace data entries (see Figure 26). Unlike the Cortex-A15, the cycle count is updated for each
instruction. The Delta Cycles column shows the number of cycles taken by each instruction. Pipeline
stall information is also shown.

Figure 26. C66x DSP PC Trace Viewer Output

16. To save the trace data to a CSV file for off line analysis, right click in the Trace Viewer Window.
Choose Data → Export (see Figure 27).

Figure 27. Steps to Save the Trace Data to a CSV File

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Function names

Function executing

DSP cycle count

Program addresses

Processor Trace www.ti.com

28 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

17. An Export Data pop up opens (see Figure 28). You can choose which columns to save and the file
name through this window.

Figure 28. CSV Export Data Pop Up Window

18. To analyze the trace output graphically, click on the Analyze button in the Trace Viewer window. An
example of the Function Execution Graph and the Program Address vs. Cycle is shown in Figure 29.

Figure 29. Function Execution Graph and Program Address vs Cycle Graphical C66x DSP Trace
Representation

Similar to the Cortex-A15, the Function Profiler: Summary can also be generated from the DSP trace
data, as shown in the function profiler summary in Section 6.1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Select custom
trace

Set EVE debug context

www.ti.com Processor Trace

29SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

6.3 EVE SMSET Trace

6.3.1 EVE System Event Trace
The Software Messaging and System Event Trace (SMSET) is an IP block that allows non-intrusive
tracing of key EVE system events, as well as software messages from the ARP32 CPU. The SMSET
module accepts software messages through its OCP target port, and accepts key system events through
the system event input. These messages and events are queued locally in SMSET and written to the chip-
level Software Trace Module (STM) through the SMSET (and EVE) OCP Debug Initiator port. The STM
module then traces these messages along with trace content from other chip-level agents. For more
information on the EVE SMSET, see the device-specific TRM.
1. To enable EVE SMSET tracing, select Custom System Trace from the Tools menu (see Figure 30).

Figure 30. Steps to Enable the EVE SMSET Trace

2. This action opens a Hardware Trace Analysis Configuration pop up window.
3. Click on Advanced Settings to open the Advanced Properties pop up window.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Processor Trace www.ti.com

30 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

4. Click on the New Trace Trigger icon to create a new trace (see Figure 31).

Figure 31. EVE SMSET Hardware Trace Analysis Configuration and Advanced Properties Settings

5. Update the properties to select the trace type, message generation type, and event selection to
configure the EVE SMSET.

6. Repeat the same for EVE2/3/4 as applicable.
7. Once the SMSET is configured, the code on the EVE must be run to allow the Trace Viewer to capture

events.
8. The Trace Viewer is updated when the EVEs stop running or the Stop Trace Collection button is

clicked.
An example output of the Trace Viewer correlated with theoretical calculation of execution time:
a. 7×7 Gaussian filter of a 768×512 image divided into 128×64 blocks and apportioned across 4 EVE

cores.
b. Four EVE's working horizontally with the first EVE is allocated with 1/4th of the data, and the next

EVE is allocated with 1/4th of the data, and so on.
c. From a compute, expect at least 128×64×49/16×1/2= 12,544 SMSET (ARP32) cycles with 19

cycles of pipeline overhead + 6-7 cycles of parameter decode+6 cycles of command decode=
12,544+32= 12,576.

d. From a DMA, you must bring in a 130×66 and produce a 128×64= 16,722 bytes, which at 5.88
bytes per VCOP cycle must be= 16,772×1÷5.88×1÷2= 1,445 cycles.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

www.ti.com Processor Trace

31SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

Figure 32 shows the example EVE SMSET trace viewer output.

Figure 32. Example EVE SMSET Trace Viewer Output

Click the Analyze → EVE analyzer option to graphically analyze the output from the EVE SMSET
trace. Figure 33 shows the VCOP loop for each EVE that runs for approximately 12,600 ARP32 cycles
and the EDMA that runs for approximately 1,500 cycles.
Figure 33 shows the example EVE analyzer output.

Figure 33. Example EVE Analyzer Output

NOTE: The EVE AETCTL register bit fields STRTEVT and ENDINT must be populated with the
DMA channel numbers from the software to capture the beginning of the series of the EDMA
transactions, and the end of the EDMA transactions.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Processor Trace www.ti.com

32 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

6.3.2 EVE Software Messaging
The STM and SDTI Target Library exports a C interface to the customer's application. You can leverage
these functions to send software messages to the trace by making calls into these APIs. These SM
messages and SET events are shown by the CCS Trace Viewer utility. Link to download STM Libraries
(STMLib) is http://processors.wiki.ti.com/index.php/CToolsLib#Download. An example software sequence
to use the EVE software messaging from the ARP32 CPU core is:
/*---*/
/* Standard header includes for c environment. */
/*---*/

#include <stdio.h>
#include <stdlib.h>
#include "stdlib.h"
#include "StmLibrary.h"
#include "arp32.h"

int test_main()
{

STMHandle * pSTMHandle;
#ifdef _CIO

STMBufObj STMBUFInfo = { NULL, // pFileName: if NULL all STM output directed to STDOUT
false, //fileAppend: if true new data appended to pFilename
"EVE" //pMasterId: char * to master name

};
STMBufObj * pSTMBufInfo = &STMBUFInfo;

#else
STMBufObj * pSTMBufInfo = NULL;

#endif
STMConfigObj STMConfigInfo;
int stmChn = 1;
int num = 0x12345678;
unsigned short data[] = {250,251,252,253};

printf("STM Example Start");

STMConfigInfo.optimized_prinf = true;
STMConfigInfo.STM_BaseAddress = 0x40089000;
STMConfigInfo.STM_ChannelResolution = 8;
STMConfigInfo.pCallBack = NULL;

pSTMHandle = STMXport_open(pSTMBufInfo, &STMConfigInfo);

#ifndef _COMPACT
STMXport_printf(pSTMHandle, stmChn, "STMXport_printf: Hello World %d", num);

#endif

STMXport_logMsg0(pSTMHandle, stmChn, "logMsg0: Hello World");

STMXport_logMsg1(pSTMHandle, stmChn, "logMsg1: Log message single arg -
STM base address is %x",

STMConfigInfo.STM_BaseAddress);

STMXport_logMsg2(pSTMHandle, stmChn, "logMsg2: Log message two args -
num is %d num+1 is %d\0",

num, num+1);

STMXport_logMsg(pSTMHandle, stmChn, "logMsg: Log Message > two args -
num is %d, num+1 is %d num+2 is %d\0",

num, num+1, num+2);

STMXport_logMsg0(pSTMHandle, stmChn, "logMsg0: Dumping 4 shorts\0");
STMXport_putBuf (pSTMHandle, stmChn, (void *)data, eShort, sizeof(data)/sizeof(short);

STMXport_logMsg0(pSTMHandle, stmChn, "logMsg0: Dumping 1st byte of num, 1st short of num, and

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B
http://processors.wiki.ti.com/index.php/CToolsLib#Download

www.ti.com Processor Trace

33SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

num\0");
STMXport_putByte (pSTMHandle, stmChn, (char)num);
STMXport_putShort (pSTMHandle, stmChn, (short)num);
STMXport_putWord (pSTMHandle, stmChn, num);

#ifndef _COMPACT
STMXport_printf(pSTMHandle, stmChn, "%s->Line Number %d\0",__FUNCTION__,__LINE__);

#endif

//STMXPort_close sends extra message to get all user messages to ETB
STMXport_close(pSTMHandle);
printf("STM Example Done");
return(1);

}

The steps to enable trace on the EVE SMSET for the software messaging are the same as the sequence
described in Section 6.3.1. The output obtained from the example sequence:

Figure 34. Example Trace Viewer Output of EVE Software Messaging

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Throughput and Data Traffic Profiling www.ti.com

34 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

7 Throughput and Data Traffic Profiling
The L3 interconnect supports a built-in non-intrusive performance monitoring feature by implementing a
statistics collector (STATCOLL) component, which computes traffic statistics within a user-defined window
and periodically reports through the MIPI-STM interface.

7.1 L3 Statistics Collector
CCS supports multiple use cases of the L3 statistic collector that helps understand the traffic generated by
initiators and the traffic reaching slaves of the L3 interconnect while the application is running in a non-
intrusive fashion. The list of supported use cases are shown below.

Average Burst Length: Calculate the average size (bytes) in a burst transaction. A normal single word
access results in 4 bytes of data per burst (transaction access). DMA transaction, in general, can transfer
data up to 128 bytes per transaction, in general, can transfer data up to 128 bytes per transaction. This
calculation helps to optimize data transaction and improves bus use. For example, to transfer a large
buffer using DMA efficiency, the average burst length for DMA must be close to 128 bytes.

Throughput per Sampling Period: Calculate number of transaction (bytes) per sampling window
(cycles). It is commonly used in bus bandwidth analysis. You can convert the results to bytes per second
by multiplying the above result by statistic collector's operation frequency. For example, on the TDA2x,
DRA7x, and the TDA3x (statistic collector is operated at 266 MHz) if the result is 4,095 (bytes per
sampling period) for a sampling period of 0×FFF the conversion yields 4,095×266 M÷0×FF= 266 Mbytes
per second.

Link Occupancy for All Transactions: Calculate the percentage of time the module is in active (non-
idle) state. When the module is in active state, it may be transferring data, doing arbitration, or analyzing
header.

Arbitration Conflicts for Request: Calculate the percentage of time the module is in active (non-idle)
state. When the module is in active state, it can be transferring data, doing arbitration, or analyzing
header.

Initiator Busy on Response: Calculate the percentage of time the module is in busy state so that it
cannot accept any read data from a target.

Underflow on Request: This statistic allows determination of the cycles during a write transaction when
the initiator is not able to send data to a target at the rate at which the target can accept it.

NOTE: This support may not be available at all probe types.

Histogram of Pressure Distribution: Amount of data bytes for low and high priority transferred during
the sample window period. Show usage of N counters to determine traffic priority attribute of each burst
per sampling period are in a range of 0..n, n+1…m, m+1…k for different transaction types.

Average Latency Distribution: Calculate average read and write latency for each data packet. It is only
available on the NTTP probe type.

Histogram of Latency Distribution: Show usage of N counters to determine latency of read and write
transaction per sampling period are in a range of 0..n, n+1…m, m+1…k for different transaction types.

In order to enable L3 statistic-based analysis, select Memory Throughput Analysis or Custom System
Trace. This opens the Hardware Trace Analysis pop up window. Based on the L3 statistic use case,
further configuration in the Advanced Settings options may vary.

In the following subsections, the ways to measure the Throughput per Sampling Period and Average
Latency. The configuration for the rest of the use cases is similar.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

www.ti.com Throughput and Data Traffic Profiling

35SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

Figure 35 shows the steps to enable throughput and data traffic profiling.

Figure 35. Steps to Enable Throughput and Data Traffic Profiling

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Throughput and Data Traffic Profiling www.ti.com

36 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

7.1.1 Throughput
For throughput a default configuration of the EMIF1 and EMIF2 SYS ports is present. You can choose the
Subsystem Type to another L3 slave or initiator to be able to profile the Throughput per sampling period.
You can also set additional filters with respect to reads only, reads and writes and writes only. Figure 36
shows the throughout profiling Hardware Trace Analysis Configuration and Advanced Properties settings.

Figure 36. Throughput Profiling Hardware Trace Analysis Configuration and Advanced Properties
Settings

Additional transaction filters can be applied, which allows filtering traffic based on an initiator.

The choice of the sampling window size has a direct impact on the resolution of capturing bandwidth
peaks and calculating the device throughput. The number gives the number of L3 clock cycles after which
the data is sent to the device STM. Thus, to calculate the time interval the Sampling window is divided by
the L3 frequency (266 MHz).

Both reads and writes are captured in this example. The Trace Viewer gives the bytes transferred every
sampling widow.

The Y-axis of the memory throughput gives the data is bytes per sampling period. To understand the
throughput, the number in the Y-Axis must be multiplied with the L3 frequency and divided by the
sampling window size. Every point in the X-axis corresponds to one sampling interval. Thus, the ticks
correspond to the number of samples.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

www.ti.com Throughput and Data Traffic Profiling

37SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

An example output for an EDMA transfer to interleaved EMIF is shown in Figure 37.

Figure 37. Example Output of the Throughput Profiling for an EDMA Transfer to Interleaved EMIF

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

Throughput and Data Traffic Profiling www.ti.com

38 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

7.1.2 Average Latency
The average latency can be measured by choosing Average Latency Distribution use case in the
advanced properties tab. The average latency is measured over a sampling window determined by the
sampling window size configuration.

A sample output of the average latency measurement for an EDMA transaction from DDR to OCMC RAM
is shown in Figure 38. The output is represented in the L3 cycles. In Figure 38, the output took an average
of 0x2F cycles for a read request from TC0 to get a response from DDR and 0xF cycles for a write
request from TC0 to OCMC RAM to get a success response.

Figure 38. Sample Trace Viewer Output of an Average Transaction Latency of a DMA Transfer From DDR
to OCMC

7.2 OCP Watchpoint
The L3 interconnect provides functional probes embedded and attached to the following L3 targets:
• GPMC
• L4-PER
• L4-CFG
• DMM_P1 (DMM target port 1)
• DMM_P2 (DMM target port 2)
• OCMC RAM

The probes output are multiplexed together and then sent to the L3 interconnect debug port. A component
called OCP-WP is used to collect data from functional probes and then transmit captured data to the STM
module.

The OCP-WP provides the following main features. For all the features of the OCP WP, see the device-
specific TRM.
• Monitoring the OCP traffic originated by all initiators that can access the selected target where the

probe is attached.
• Filtering OCP monitoring bus traffic by:

– Address range
– Initiator-ID (see the L3 Interconnect specification for initiator-ID mapping)
– Transaction type
– Transaction qualifier

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

www.ti.com References

39SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family
of Devices

Figure 39 shows the OCP Watch Point Hardware Trace Analysis Configuration and Advanced Properties
settings.

Figure 39. OCP Watch Point Hardware Trace Analysis Configuration and Advanced Properties Settings

Figure 40 shows the sample Trace Viewer output of the OCP watch point trace.

Figure 40. Sample Trace Viewer Output of the OCP Watch Point Trace

8 References
• Creating Device Initialization GEL Files
• CCSv6 Getting Started Guide wiki

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B
http://www.ti.com/lit/pdf/SPRAA74
http://processors.wiki.ti.com/index.php/CCSv6_Getting_Started_Guide

Revision History www.ti.com

40 SPRAC17B–January 2016–Revised November 2017
Submit Documentation Feedback

Copyright © 2016–2017, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from A Revision (August 2016) to B Revision .. Page

• Update was made in Section 2.2. ... 9

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC17B

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	A Guide to Debugging With CCS on the DRA7x, TDA2x and TDA3x Family of Devices
	1 Different Stages of Debug
	2 Getting Started With CCS
	2.1  Emulator Setup
	2.2 Creating the Target Configuration File

	3 Configuring the Device With GEL Files
	4 Getting Used to the CCS GUI
	4.1 Debug View
	4.2 Register View
	4.3 Memory and Cache View
	4.4 DebugSS View
	4.5 Disassembly View

	5 Breakpoints
	5.1 Software and Hardware Breakpoints
	5.2 Chained Breakpoint
	5.3 Count Event
	5.4 Hardware Watchpoint
	5.5 Profile Control Points
	5.6 Cross Trigger

	6 Processor Trace
	6.1 Cortex-A15 PC Trace
	6.2 C66x DSP PC Trace
	6.3 EVE SMSET Trace
	6.3.1 EVE System Event Trace
	6.3.2 EVE Software Messaging

	7 Throughput and Data Traffic Profiling
	7.1 L3 Statistics Collector
	7.1.1 Throughput
	7.1.2 Average Latency

	7.2 OCP Watchpoint

	8 References

	Revision History
	Important Notice

