
1SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Application Report
SPRAC21A–June 2016–Revised June 2019

TDA2xx and TDA2ex Performance

ABSTRACT
This application report provides information on the TDA2xx and TDA2ex device throughput performances
and describes the TDA2xx and TDA2ex System-on-Chip (SoC) architecture, data path infrastructure, and
constraints that affect the throughput and different optimization techniques for optimum system
performance. This document also provides information on the maximum possible throughput performance
of different peripherals on the SoC.

Contents
1 SoC Overview .. 6
2 Cortex-A15 .. 22
3 System Enhanced Direct Memory Access (System EDMA).. 27
4 DSP Subsystem EDMA ... 35
5 Embedded Vision Engine (EVE) Subsystem EDMA... 45
6 DSP CPU.. 52
7 Cortex-M4 (IPU) .. 68
8 USB IP ... 74
9 PCIe IP .. 77
10 IVA-HD IP ... 80
11 MMC IP .. 84
12 SATA IP ... 85
13 GMAC IP .. 86
14 GPMC IP .. 89
15 QSPI IP .. 97
16 Standard Benchmarks.. 103
17 Error Checking and Correction (ECC) ... 111
18 DDR3 Interleaved vs Non-Interleaved ... 125
19 DDR3 vs DDR2 Performance ... 131
20 Boot Time Profile ... 134
21 L3 Statistics Collector Programming Model ... 137
22 Reference .. 140

List of Figures

1 TDA2xx Device Block Diagram .. 6
2 TDA2xx and TDA2ex SoC Interconnect Diagram ... 8
3 TDA2xx and TDA2ex Bandwidth Regulator Mechanism Illustration... 12
4 TDA2xx and TDA2ex DSS Adaptive MFLAG Illustration ... 14
5 TDA2xx and TDA2ex Memory Subsystem Interconnection .. 16
6 DDR Row, Column and Bank Access ... 16
7 OCP Interconnect Signals... 19
8 L3 Statistic Collectors Basic Infrastructure.. 20
9 DSS Single VID-Single VENC 720×480 70 fps RGB.. 21
10 EDMA Controller Block Diagram ... 28
11 EDMA Third-party Transfer Controller (EDMA_TPTC) Block Diagram ... 32

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com

2 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

12 Effect of DBS on System EDMA TC Utilization .. 34
13 DSP Subsystem Block Diagram and Clocking Scheme .. 36
14 DSP Subsystem EDMA Block Diagram ... 37
15 DSP EDMA Third-party Transfer Controller (EDMA_TPTC) Block Diagram 42
16 EVE Subsystem Block Diagram and Subsystem Clocking Architecture .. 45
17 EVE Subsystem EDMA Controller Block Diagram... 46
18 EVE EDMA Third-party Transfer Controller (EDMA_TPTC) Block Diagram 49
19 DSP Subsystem Block Diagram and Clocking Structure ... 52
20 DSP CPU Pipeline Copy Software Pipelining .. 55
21 DSP CPU Pipeline Read Software Pipelining .. 56
22 DSP CPU Pipeline Write Software Pipeline .. 58
23 DSP CPU Pipeline L2 Stride-Jmp Read Software Pipelining .. 60
24 DSP CPU Read and Write Performance With Different Data Sizes to DDR 62
25 Impact on Prefetch Enable versus Disable on CPU Performance... 63
26 Impact of Source and Destination Memory on DSP CPU RD-WR Performance 64
27 Impact of MMU Enable on DSP RD-WR Performance.. 65
28 Impact of Posted and Non-Posted Writes on DSP Cache Flush .. 66
29 IPU Block Diagram... 69
30 IVAHD Block Diagram ... 80
31 IVAHD Software Performance Probe Points ... 81
32 Tx/Rx Throughput Measurement Set Up.. 86
33 Tx only and Rx Only Throughput Measurement Set Up .. 87
34 Back-to-Back Read (tACC) Operation Timing Diagram... 91
35 Asynchronous Single Read Timing Parameters ... 91
36 NOR Flash Page Read Timing Diagram .. 92
37 Asynchronous Page Read Timing Parameters... 93
38 Back-to-Back Write Operation Timing Diagram .. 94
39 Asynchronous Single Write to a Non-Multiplexed Add/Data Device .. 95
40 QSPI Block Diagram ... 98
41 IPU (QSPI XIP) Vision SDK + Networking Bandwidth Profile .. 101
42 EDMA ASYNC Transfer QSPI to DDR (ACNT = 65535) .. 101
43 IPU (QSPI XIP) Vision SDK + Networking Bandwidth Profile With Concurrent EDMA Traffic 102
44 IPU (QSPI XIP) Vision SDK + Networking Bandwidth Profile EDMA BW Limited to Approximately 18

MBps ... 102
45 IPU (QSPI XIP) Vision SDK + Networking Bandwidth Profile EDMA BW Limtied to Approximately 9 MBps 102
46 DMIPS Numbers Trend With Optimization Level (-O) Change and Speed Option (-opt_for_speed).......... 104
47 TDA2xx and TDA2ex Cortex-A15 LMbench Latency Results .. 107
48 TDA2xx and TDA2ex Cortex-M4 LMbench Latency Results ... 108
49 TDA2xx and TDA2ex Cortex-A15 STREAM Benchmark Results .. 109
50 TDA2xx and TDA2ex Cortex-M4 STREAM Benchmark Results ... 110
51 System EDMA Single Transfer Controller ... 127
52 DSP EDMA Single Transfer Controller .. 128
53 EVE EDMA Single Transfer Controller... 129
54 L3 STATCOLL EMIF1 and EMIF2 PROBE Mechanism... 130
55 DDR2 versus DDR3 Performance and Efficiency for Single Initiator .. 132

List of Tables

1 Acronyms and Definitions .. 7
2 List of Master Ports in TDA2xx and TDA2ex .. 8

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com

3SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

3 List of L3 Slaves in TDA2xx and TDA2ex ... 9
4 TDA2xx and TDA2ex Subsystem Operating Frequencies.. 18
5 Cortex-A15 CPU Settings ... 23
6 TI Compiler Timer Based Results.. 27
7 GCC Compiler With ASM Optimized Copy Results ... 27
8 Frequency and Bus Widths of Modules ... 28
9 System EDMA 1 TC Bandwidth for Different Source Destination Combinations With GP Timer (Single TC) . 29
10 System EDMA 1 TC Bandwidth for Different Source Destination Combinations With L3 Statistic

Collectors (Single TC) ... 30
11 System EDMA 2 TC Bandwidth for Multiple Source Destination Combinations With GP Timer 30
12 System EDMA 2 TC Bandwidth for Multiple Source Destination Combinations With L3 Statistic Collectors .. 31
13 Default Configuration for the Transfer Controllers ... 32
14 CTRL_CORE_CONTROL_IO_1 ... 33
15 System EDMA TC Optimization Rules .. 35
16 Factors Affecting System EDMA Performance... 35
17 DSP Subsystem EDMA 1 TC Read and Write Throughput With CorePac Timer 38
18 DSP Subsystem EDMA 1 TC Read and Write Throughput With L3 Statistic Collectors 39
19 DSP Subsystem EDMA 2 TC Read and Write Throughput With CorePac Timer 40
20 DSP Subsystem EDMA 2 TC Read and Write Throughput With L3 Statistic Collectors 41
21 Default Configuration for the Transfer Controllers ... 42
22 C66x_OSS_BUS_CONFIG ... 43
23 DSP EDMA TC Optimization Rules.. 44
24 Factors Affecting System EDMA Performance... 44
25 EVE EDMA Single TC Read and Write Performance With ARP32 Counters...................................... 47
26 EVE EDMA Single TC Read and Write Performance With L3 Statistic Collectors 48
27 EVE EDMA Configuration for the Transfer Controllers.. 49
28 EVE_BUS_CONFIG ... 50
29 EVE EDMA TC Optimization Rules.. 51
30 Factors Affecting EVE EDMA Performance .. 51
31 Factors Affecting DSP CPU RD-WR Performance .. 67
32 IPU RD, WR, COPY Performance With Cache Disabled ... 71
33 IPU RD, WR, COPY Performance With Cache Enabled (Policy: Write-Back, No Write-Allocate), 32-Bit

Word Size ... 72
34 Impact of Different Cache Policies on IPU CPU Performance, 32-Bit Word Size 72
35 Impact of Word Size Used on IPU CPU Performance (Cache Policy: Write-Back, No-Write Allocate) 72
36 IPU RD, WR, COPY Performance With Cache Enabled (Policy: Write-Back, No-Write Allocate), 32-Bit

Word Size ... 73
37 Factors Affecting IPU Cortex-M4 CPU Performance .. 73
38 USB IP Performance... 76
39 GEN1, X1 PCIe Performance .. 78
40 GEN1, X2 PCIe Performance .. 78
41 GEN2, X1 PCIe Performance .. 78
42 GEN2, X2 PCIe Performance .. 79
43 IVAHD Measurement Frequency Table ... 81
44 H.264 Decoder Performance Data... 82
45 MJPEG Decoder Performance Data for Same Codec .. 83
46 MJPEG Decoder Performance Data for Same Codec Type ... 83
47 MJPEG Decoder Performance Data for Different Codec ... 83
48 MMC Read and Write Throughput ... 84
49 SATA - File System Performance.. 85

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com

4 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

50 GMAC RGMII Rx/Tx Transfer .. 87
51 GMAC RGMII Rx Only... 88
52 GMAC RGMII Tx Only... 88
53 Optimum Configuration for GPMC for Reads of NOR Flash Single Read.. 92
54 Optimum Configuration for GPMC Timing Values for Successful Page Read Operation 94
55 Optimum Configuration for GPMC Timing Values for Successful Page Write Operation 95
56 Asynchronous NAND Flash Read/Write using CPU Prefetch Mode .. 96
57 Asynchronous NOR Flash Single Read by CPU... 96
58 Asynchronous NOR Flash Single Read by DMA .. 96
59 NOR Flash Page Read by CPU (Page Length: 16 × 16 bit) ... 96
60 Asynchronous NOR Flash Page Read by DMA (Page Length: 16 × 16 bit) 96
61 QSPI Throughput Using DMA .. 99
62 QSPI Throughput Using CPU .. 99
63 M4_0 CPU Execution Time in QSPI XIP Mode... 100
64 M4_0 CPU Networking Bandwidth Performance ... 100
65 M4_0 CPU Networking Bandwidth Performance for Different EDMA ACNT Values 100
66 M4_0 CPU Networking Bandwidth Performance for Concurrent EDMA Traffic at Different EDMA

Throughputs ... 101
67 TDA2xx and TDA2ex Cortex-A15 LMbench Bandwidth Micro Benchmark Results 106
68 TDA2xx and TDA2ex Cortex-M4 LMbench Bandwidth Micro Benchmark Results 106
69 CFG_OCMC_ECC.. 112
70 OCMC ECC Programming Example ... 113
71 CFG_OCMC_ECC_CLEAR_HIST ... 114
72 CFG_OCMC_ECC_ERROR .. 114
73 INTR0_ENABLE_SET/INTR1_ENABLE_SET .. 114
74 CTRL_WKUP_EMIF1_SDRAM_CONFIG_EXT .. 115
75 EMIF_ECC_ADDRESS_RANGE_1 (0x114) ... 116
76 EMIF_ECC_ADDRESS_RANGE_2 (0x118) ... 116
77 EMIF_ECC_CTRL_REG (0x110) .. 116
78 1B_ECC_ERR_THRSH – 1-Bit ECC Error Threshold Register (0x0134)... 117
79 EMIF_1B_ECC_ERR_ADDR_LOG – 1-Bit ECC Error Address Log Register (0x013C) 118
80 EMIF_2B_ECC_ERR_ADDR_LOG – 2-Bit ECC Error Address Log Register (0x0140) 118
81 EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET (0x00b4)... 118
82 Mapping of Starterware Functions to ECC Programming Steps ... 120
83 ECC Correctness for 32-Bit EMIF for Uncached CPU Data Writes ... 120
84 ECC Correctness for 16-Bit EMIF for Uncached CPU Data Writes ... 120
85 ECC Correctness for Software Breakpoints on ECC Enabled Regions ... 122
86 Impact of EMIF ECC Errata i882 Hardware Fix .. 123
87 System EDMA Operation Throughput ... 124
88 DSP EDMA Operation Throughput... 124
89 EVE EDMA Operation Throughput ... 124
90 DMM_LISA_MAP_x .. 125
91 Impact of Interleaved vs Non-Interleaved DDR3 for Multiple Initiators .. 130
92 Impact of DDR3 versus DDR2 for Multiple Initiators ... 133
93 ROM Boot Time With Different Image Sizes.. 134
94 System Boot Time Profile for GP and HS Samples for SYSBOOT Production 136
95 System Boot Time Profile for GP and HS Samples for SYSBOOT Development 136

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com

5SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Trademarks
OMAP is a trademark of Texas Instruments.
NEON is a trademark of ARM Limited.
Cortex, Arm are registered trademarks of Arm Limited.
DesignWare is a registered trademark of Synopsys, Inc.
All other trademarks are the property of their respective owners.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Dual Cortex-A15

SGX544 MP2

3D Graphics

Dual DSP C66x

2x Dual

Cortex-M4

IVA-HD

HD Video
Encode/
Decode

Wake-up
MCU

MCSPI

CAN
Network

Aux HD
Video

4x Camera

Display

DCAN

GMAC

3x VIP

DSS

LCD

HDMI

I2C

NOR Flash/
FPGA

DDR2 DDR3

GPMC EMIF EMIF

TDA2x

intro-002

NOR
Flash

QSPI

Ethernet

USB

VPE

Display

GC320

2D Graphics

Quad EVE

Video Analytics

MCASP

I2C

MCASP

Multi-
channel

DAC

Mic/Aux In

SD / MMC

SD Slot USB
Hub

SoC Overview www.ti.com

6 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

1 SoC Overview

1.1 Introduction
TDA2xx and TDA2ex are high-performance, infotainment-application devices, based on the enhanced
OMAP™ architecture integrated on a 28-nm technology. The architecture is designed for advanced
graphical HMI and Navigation, Digital and Analog Radio, Rear Seat Entertainment and Multimedia
playback, providing Advanced Driver Assistance integration capabilities with Video analytics support, and
best-in-class CPU performance, video, image, and graphics processing sufficient to support, among
others. Figure 1 shows high-level block diagrams of the processors, interfaces, and peripherals and their
various operating frequencies.

A The speeds shown are the highest design targeted, non-binned OPP.

Figure 1. TDA2xx Device Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com SoC Overview

7SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

1.2 Acronyms and Definitions

Table 1. Acronyms and Definitions

Term Definition
AESCTR Advanced Encryption Standard Counter Mode
AESECB Advanced Encryption Standard Electronic Code Book
BL Bandwidth Limiter (in L3)
BW Bandwidth (measured in megabytes per second (MB/s))
BWR Bandwidth Regulator (in L3)
CBC-MAC Cipher Block Chaining-Message Authentication Code
CCM CBC-MAC + CTR
CPU/MPU Cortex®-A15
DDR Double Data Rate
DVFS Dynamic Voltage and Frequency Scaling
EVE Embedded Vision Engine
GCM Galois Counter Mode
GMAC Galois Message Authentication Code
LPDDR Low-Power Double Data Rate
NVM Non-Volatile Memory
OCP Open Core Protocol
OTFA On-The-Fly Advanced Encryption Standard
PHY Hard macro that converts single data rate signals to double data rate
QSPI Quad Serial Peripheral Interface
ROM On-Chip ROM Bootloader
SDRAM Synchronous Dynamic Random Access Memory
SoC System On-Chip
Stat Coll Statistics collector in interconnect

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

SoC Overview www.ti.com

8 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

1.3 TDA2xx and TDA2ex System Interconnect
The system’s interconnect and master to slave connection in the TDA2xx and TDA2ex devices is shown in
Figure 2. For those initiators and peripherals not supported by TDA2ex, the slave and master ports to L3
are tied to a default value resulting in errors when trying to access a peripheral not present in the device.

Figure 2. TDA2xx and TDA2ex SoC Interconnect Diagram

Broadly, the list of masters and slaves in the system are listed in Table 2 and Table 3.

Table 2. List of Master Ports in TDA2xx and TDA2ex

Master
Supported

Maximum Tag
Number

Maximum Burst
Size (Bytes) Type

MPU 32 120 RW
CS_DAP 1 4 RW
IEEE1500_2_OCP 1 4 RW
DMA_SYSTEM RD 4 128 RO
MMU1 33 128 RW
DMA_CRYPTO RD 4 124 RO
DMA_CRYPTO WR 2 124 WR
TC1_EDMA RD 32 128 RO
TC2_EDMA RD 32 128 RO
TC1_EDMA WR 32 128 WR
TC2_EDMA WR 32 128 WR
DMA_SYSTEM WR 2 128 WR
DSP1 CFG 33 128 RW
DSP1 DMA 33 128 RW
DSP1 MDMA 33 128 RW
DSP2 CFG (1) 33 128 RW
DSP2 DMA (1) 33 128 RW
DSP2 MDMA (1) 33 128 RW
CSI2_1 1 128 WR
IPU1 8 56 RW
IPU2 8 56 RW

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com SoC Overview

9SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 2. List of Master Ports in TDA2xx and TDA2ex (continued)

Master
Supported

Maximum Tag
Number

Maximum Burst
Size (Bytes) Type

EVE1 P1 (1) 17 128 RW
EVE1 P2 (1) 17 128 RW
EVE2 P1 (1) 17 128 RW
EVE2 P2 (1) 17 128 RW
EVE3 P1 (1) 17 128 RW
EVE3 P2 (1) 17 128 RW
EVE4 P1 (1) 17 128 RW
EVE4 P2 (1) 17 128 RW
PRUSS1 PRU1 2 128 RW
PRUSS1 PRU2 2 128 RW
PRUSS2 PRU1 2 128 RW
PRUSS2 PRU2 2 128 RW
GMAC_SW 2 128 RW
SATA 2 128 RW
MMC1 1 124 RW
MMC2 1 124 RW
USB3_SS 32 128 RW
USB2_SS 32 128 RW
USB2_ULPI_SS1 32 128 RW
USB2_ULPI_SS2 32 128 RW
GPU P1 16 128 RW
MLB 1 124 RW
PCIe_SS1 16 128 RW
PCIe_SS2 16 128 RW
MMU2 33 128 RW
VIP1 P1 16 128 RW
VIP1 P2 16 128 RW
VIP2 P1 16 128 RW
VIP2 P2 16 128 RW
VIP3 P1 16 128 RW
VIP3 P2 16 128 RW
DSS 16 128 RW
GPU P2 16 128 RW
GRPX2D P1 32 128 RW
GRPX2D P2 32 128 RW
VPE P1 16 128 RW
VPE P2 16 128 RW
IVA 16 128 RW

(1) Not present in TDA2ex.

Table 3. List of L3 Slaves in TDA2xx and TDA2ex

Slave Tag Number Maximum Burst Size
(Bytes)

GPMC 1 124
GPU 1 8

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

SoC Overview www.ti.com

10 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 3. List of L3 Slaves in TDA2xx and TDA2ex (continued)

Slave Tag Number Maximum Burst Size
(Bytes)

IVA1 SL2IF 1 16
OCMC_RAM1 1 128
DSS 1 124
IVA1 CONFIG 1 124
IPU1 1 56
AES1 1 4
AES2 1 4
SHA2MD5_1 1 4
DMM P1 32 128
DMM P2 32 128
L4_WKUP 1 124
IPU2 1 56
OCMC_RAM2 (1) 1 128
OCMC_RAM3 (1) 1 128
DSP1 SDMA 1 128
DSP2 SDMA (1) 1 128
OCMC_ROM 1 16
TPCC_EDMA 1 128
PCIe SS1 1 120
VCP1 1 128
L3_INSTR 1 128
DEBUGSS CT_TBR 1 128
QSPI 256 128
VCP2 1 128
TC1_EDMA 1 128
TC2_EDMA 1 128
McASP1 1 128
McASP2 1 128
McASP3 1 128
PCIe SS2 1 120
SPARE_TSC_ADC 1 128
GRPX2D 1 4
EVE1 (1) 16 128
EVE2 (1) 16 128
EVE3 (1) 16 128
EVE4 (1) 16 128
PRUSS1 1 128
PRUSS2 1 128
MMU 1 32 128
MMU 2 32 128
SHA2MD5_2 1 4
L4_CFG 1 124
L4_PER1 P1 1 124
L4_PER1 P2 1 124
L4_PER1 P3 1 124
L4_PER2 P1 1 124
L4_PER2 P2 1 124

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com SoC Overview

11SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 3. List of L3 Slaves in TDA2xx and TDA2ex (continued)

Slave Tag Number Maximum Burst Size
(Bytes)

L4_PER2 P3 1 124
L4_PER3 P1 1 124
L4_PER3 P2 1 124
L4_PER3 P3 1 124

(1) Not present in TDA2ex.

The L3 high-performance interconnect is based on a Network-On-Chip (NoC) interconnect infrastructure.
The NoC uses an internal packet-based protocol for forward (read command, write command with data
payload) and backward (read response with data payload, write response) transactions. All exposed
interfaces of this NoC interconnect, both for Targets and Initiators; comply with the OCP IP2.x reference
standard.

1.4 Traffic Regulation Within the Interconnect
The interconnect has internal components that can aid in the traffic regulation from a specific initiator to a
specific target. The components are called Bandwidth Regulators and Bandwidth limiters. Additionally, the
initiator IPs can set their respective MFLAG or MREQPRIORITY signals, which is understood by the
interconnect and subsequently DMM/EMIF to give priority to a given initiator.

The default value of the various traffic regulator within the interconnect is set to a default that allows most
use case to work without any tweaking. However, if there is any customization needed for a given use
case, it is possible by various programmable parameters explained in subsequent sections.

1.4.1 Bandwidth Regulators
The bandwidth regulators prevent master NIUs from consuming too much bandwidth of a link or a slave
NIU that is shared between several data flows: packets are then transported at a slower rate. The value of
a bandwidth can be programmed in the bandwidth regulator. When the bandwidth is below the
programmed value, the pressure bit is set to 1, giving priority to this master. When the bandwidth is above
the programmed value, the pressure bit is set to 0 and the concerned master has the same weight as
others.

Bandwidth regulators are by default enabled in interconnect with the default configuration such that the
expected average bandwidth is set to zero. With any amount of traffic, the actual average bandwidth seen
will be greater than zero and, hence, lower pressure bits (00b) will be enabled by default. You need to
program the regulators to achieve the desired regulation in case of concurrences. If set, the bandwidth
regulator discards the L3 initiator priority using the device control module.

Bandwidth regulators:
• Regulates the traffic through priority; does not really stop traffic.
• Sets low-priority, by default. On setting a valid bandwidth other than 0, the initiator is given higher

priority when the bandwidth is lower than the threshold.
• Does not set an upper limit, If there is no contention, the initiator can claim full share as well.

Bandwidth regulator available for the following IPs:
• MMU2
• EVE1, EVE2, EVE3, EVE4 – both TC0 and TC1
• DSP1, DSP2 MDMA (CPU access port)
• DSP1, DSP2 EDMA
• IVA
• GPU
• GMAC
• PCIe

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

C
o

u
n

te
r

V
a

lu
e

Watermark (in Bytes)

Time

Pressure = PressLow

Pressure = PressHigh

* Traffic pattern is for illustration only

Transfers

SoC Overview www.ti.com

12 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Figure 3. TDA2xx and TDA2ex Bandwidth Regulator Mechanism Illustration

Programming API for the bandwidth regulator is:
set_bw_regulator(int port, unsigned int average_bw, unsigned int time_in_us

{
unsigned int base_address = get_bw_reg_base_address(port);
WR_REG32(base_address+0x8,(int)(ceil(average_bw/8.3125));
WR_REG32(base_address+0xC,(time_in_us*average_bw));
WR(REG32(base_address+0x14,0x1);
}

get_bw_reg_base_address(port) {
if (port == "EVE1_TC0") { return

L3_NOC_AVATAR__DEBUGSS_CS_DAP_INIT_OCP_L3_NOC_AVATAR_CLK1_EVE1_TC0_BW_REGULATOR;
}

...
}

1.4.2 Bandwidth Limiters
The bandwidth limiter regulates the packet flow in the L3_MAIN interconnect by applying flow control
when a user-defined bandwidth limit is reached. The next packet is served only after an internal timer
expires, thus ensuring that traffic does not exceed the allocated bandwidth. The bandwidth limiter can be
used with a watermark mechanism that allows traffic to temporarily exceed the peak bandwidth.

Bandwidth limiter:
• Limits the bandwidth by flow control (actually stops traffic)
• Enabled by default not to cap the maximum bandwidth of any initiator. Hence, by default, it allows the

maximum bandwidth that the CPU can generate without any other initiators. The upper limit can be set
by programming the Bandwidth Limiter (BL) appropriately to the desired maximum bandwidth.

• Actually sets an upper limit allowing for some maximum water mark.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com SoC Overview

13SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Programming API for the bandwidth limiter is:
set_bw_limiter(port,limit-bw) {

base_address = get_bw_limiter_base_address(port);
bandwidth = int(limit_bw / 8.3125);
bandwidth_int = (bandwidth & 0xFFFFFFE0) >> 5;
bandwidth_frac = (bandwidth & 0x1F);
WR_REG32(base_address+0x8,bandwidth_frac);
WR_REG32(base_address+0xC,bandwidth_int);
WR_REG32(base_address+0x10,0x0);
WR_REG32(base_address+0x14,0x1);
}

get_bw_limiter_base_address(port) {
if (port == "VPE_P2") { return

L3_NOC_AVATAR__DEBUGSS_CS_DAP_INIT_OCP_L3_NOC_AVATAR_CLK1_VPE_P2_BW_LIMITER;
}

...

}

1.4.3 Initiator Priority
Certain initiators in the system can generate MFLAG signals that provide higher priority to the data traffic
initiated by them. The modules that can generate the MFLAG dynamically are VIP, DSS, EVE, and DSP.
Following is a brief discussion of the DSS MFLAG.
• DSS MFLAG

– DSS has four display read pipes (Graphics , Vid1, Vid2, and Vid3) and one write pipe (WB).
– DSS drives MFLAG if any of the read pipes are made high priority and FIFO levels are below low

threshold for high-priority display pipe.
– VIDx have 32 KB FIFO and GFX has 16 KB FIFO.
– FIFO threshold is measured in terms of 16-byte word.
– Recommended settings for high and low threshold are 75% and 50%, respectively.
– MFLAG can be driven high permanently through a force MFLAG configuration of the

DISPC_GLOBAL_MFLAG_ATTRIBUTE register.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

SoC Overview www.ti.com

14 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The behavior of setting the MFLAG dynamically can be realized using Figure 4.

Figure 4. TDA2xx and TDA2ex DSS Adaptive MFLAG Illustration

The programming model used to enable dynamic MFLAG is:
Enable MFlag Generation DISPC_GLOBAL_MFLAG_ATTRIBUTE
DISPC_GLOBAL_MFLAG_ATTRIBUTE = 0x2;
Set Video Pipe as High Priority DISPC_VIDx_ATTRIBUTES
DISPC_VID1_ATTRIBUTES | = (1<<23);
DISPC_VID2_ATTRIBUTES | = (1<<23);
DISPC_VID3_ATTRIBUTES | = (1<<23);
Set Graphics Pipe as High Priority DISPC_GFX_ATTRIBUTES
DISPC_GFX_ATTRIBUTES | = (1<<14);

GFX threshold 75 % HT , 50 % LT
DISPC_GFX_MFLAG_THRESHOLD = 0x03000200;
VIDx threshold 75 % HT , 50 % LT
DISPC_VID1_MFLAG_THRESHOLD = 0x06000400;
DISPC_VID2_MFLAG_THRESHOLD = 0x06000400;
DISPC_VID3_MFLAG_THRESHOLD = 0x06000400;

• DSP EDMA + MDMA
– EVTOUT[31] and EVTOUT[30] are used for generation of MFLAGs dedicated to the DSP MDMA

and EDMA ports, respectively.
– EVTOUT[31/30] = 1 → Corresponding MFLAG is high.

• EVE TC0/TC1
– For EVE port 1 and port 2 (EVE TC0 and TC1), MFlag is driven by evex_gpout[63] and

evex_gpout[62], respectively.
– evex_gpout[63] is connected to DMM_P1 and EMIF.
– evex_gpout[62] is connected to DMM_P2 and EMIF.

• VIP/VPE
– In the VIP/VPE Data Packet Descriptor Word 3, can set the priority in [11:9] bits.
– This value is mapped to OCP Reqinfo bits.
– 0x0 = Highest Priority, 0x7 = Lowest Priority.
– VIP Has Dynamic MFLAG specific scheme based on internal FIFO status

• Based on HW set margins to overflow/underflow
• Enabled by default, no MMR control

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com SoC Overview

15SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Many other IPs have their MFLAG driving mechanism via the control module registers.

The CTRL_CORE_L3_INITIATOR_PRESSURE_1 to CTRL_CORE_L3_INITIATOR_PRESSURE_4
registers are used for controlling the priority of certain initiators on the L3_MAIN.
• 0x3 = Highest Priority/Pressure
• 0x0 = Lowest Priority/Pressure
• Valid for MPU, DSP1, DSP2, IPU1, PRUSS1, GPU P1, GPU P2

There are SDRAM initiator priorities that control the priority of each initiator accessing two EMIFs. The
CTRL_CORE_EMIF_INITIATOR_PRIORITY_1 to CTRL_CORE_EMIF_INITIATOR_PRIORITY_6 registers
are intended to control the priority of each initiator accessing the two EMIFs. Each 3-bit field in these
registers is associated only with one initiator. Setting this bit field to 0x0 means that the corresponding
initiator has a highest priority over the others and setting the bit field to 0x7 is for lowest priority. This
feature is useful in case of concurrent access to the external SDRAM from several initiators.

In the context of TDA2xx and TDA2ex, the CTRL_CORE_EMIF_INITIATOR_PRIORITY_1 to
CTRL_CORE_EMIF_INITIATOR_PRIORITY_6 are overridden by the DMM PEG Priority and, hence, it is
recommended to set the DMM PEG priority instead of the Control module EMIF_INITIATOR_PRIORITY
registers.

The MFLAG influences the priority of the Traffic packets at multiple stages:
• At the interconnect level, the NTTP packet is configured with one bit of pressure. This bit, when set to

1, gives priority to the concerned packet across all arbitration points. This bit is set to 0 for all masters.
The pressure bit can be set to 1 either using the bandwidth regulators (within L3) or can be directly
driven by masters using OCP MFlag. MFLAG asserted pressure is embedded in the packet while
pressure from the BW regulator is a handshake signal b/w the BW regulator and the switch.

• At the DMM level, the MFLAG is used to drive the DMM Emergency mechanism. At the DMM, the
initiators with MFLAG set will be classified as higher priority. A weighted round-robin algorithm is used
for arbitration between high priority and other initiators. Set DMM_EMERGENCY[0] to run this
arbitration scheme. The weight is set in the DMM_EMERGENCY[20:16] WEIGHT field.

• At the EMIF level, the MFLAG from all of the system initiators are ORed to have higher priority to the
system traffic versus the MPU traffic when any system initiator has the MFLAG set.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

L3_MAIN Interconnect

Device

MPU

Memory Subsystem

DMM TILER
ELM

1
2
8
-b

it

1
2
8
-b

it

1
2
8
-b

it

1
2
8
-b

it

3
2
-b

it

1
2
8
-b

it

1
2
8
-b

it

1
2
8
-b

it

OCMC_RAM1

OCMC_RAM2

OCMC_RAM3

OCM Subsystem

GPMCEMIF2EMIF1

DDR2/
DDR3

Memory

DDR2/
DDR3

Memory

NOR/NAND Flash,
PSRAM

SoC Overview www.ti.com

16 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

1.5 TDA2xx and TDA2ex Memory Subsystem
The different memory subsystems in TDA2xx and TDA2ex and their interconnection is as shown in
Figure 5.

Figure 5. TDA2xx and TDA2ex Memory Subsystem Interconnection

NOTE: TDA2ex does not contain EMIF2, OCMC RAM 2 and 3.

The EMIF is the memory controller of the system’s main memory (DRAM). Supported DRAM types are
DDR2 (400 MHz), DDR3 (532 MHz), TDA2ex specifically supports DDR3 (666 MHz) and so on. This
external memory controller module supports 32-bit, 16-bit mode (narrow mode), up to 2KB page size, up
to 8 banks, 128 byte burst. The bank distribution and the row, column and bank access pattern is as
shown in Figure 6.

A M is the number of columns (as determined by PAGESIZE) minus 1, P is the number of banks (as determined by
IBANK) minus 1, and N is the number of rows (as determined by both PAGESIZE and IBANK) minus 1.

Figure 6. DDR Row, Column and Bank Access

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com SoC Overview

17SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

All the measurements done in this report use the following configurations, unless mentioned otherwise.
• DDR3 Memory Part Number: MT41K128M16 16 Meg × 16 × 8 banks
• CAS write latency = 6
• CAS Latency = 7
• SDRAM Data Bus width: 32
• DDR in non-interleaved mode.
• Number of banks (P + 1) = 8
• Number of Columns (M + 1) = 210

• Number of Rows (N + 1) = 214

• Size of each DDR cell = 16 bits
• Page size is 1024 cells. This makes the effective page size = (1024 × 16 bits) × 2 = 32768 bits =

4096 Bytes = 4KB.

1.5.1 Controller/PHY Timing Parameters
Based on the DRAM data sheet, the respective timing values specified in time need to be translated into
clock cycles and programmed into the MEMSS MMR. Also, parameters like refresh rate DRAM topology,
CAS latencies are also programmed in these MMR. The MEMSS PHY interface also has a MMR space
that needs to be configured to enable the PHY and program parameters like read latency.

1.5.2 Class of Service
For priority escalation, there is one more level of escalation that can be enabled inside MEMSS using
class of service with eight priority levels. There are two classes of service (CoS) implemented in MEMSS.
Each class of service can support up to three master connection IDs. Each of the three masters can be
associated with the same or different priority levels. Each class of service has a priority raise counter that
can be set to N, which implies N times 16 clocks. This counter value specifies the number of clocks after
which MEMSS momentarily raises the priority of the class of service command (master connections are
arbitrated using priority levels with in a class of service). Using masks along with master connection IDs, a
maximum of 144 master connection IDs can participate in this class of service.

NOTE:
• Priority raise counter is also available to momentarily raise the priority of the oldest

command in the command FIFO. This counter can be set to N, which implies N times 16
clocks.

• Read and write execution thresholds register can be programmed to a maximum burst
size after which the MEMSS arbitration will switch to executing the other type of
commands (set write threshold to provide a chance for read commands to execute).

• DRAM page open entails cost; so if you avoid multiple page closes and opens, you can
obtain better performance.

1.5.3 Prioritization Between DMM/SYS PORT or MPU Port to EMIF
Each EMIF has two ports in the TDA2xx and TDA2ex devices. EMIF OCP configuration by default gives
equal priority to values set in the system and MPU cmd FIFO. In case the priority of these cmd FIFO
needs to be changed, use the EMIF_OCP_CONFIG register settings.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

SoC Overview www.ti.com

18 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

1.6 TDA2xx and TDA2ex Measurement Operating Frequencies
The sections that follow report the system bandwidth for the various system initiators based on the
subsystem operating frequencies in Table 4, unless mentioned otherwise.

Table 4. TDA2xx and TDA2ex Subsystem Operating Frequencies

IP/Core/Memory
TDA2xx and TDA2ex Si Frequency

(MHz) Bus Width (bits)
Cortex-A15 1000 128

EDMA TPTC+TPTC 266 128
L3 266 128

OCMC RAM 266 128
EMIF 266 128
DDR 532 32

DSP SS 600 128
IVAHD SL2 388.33 128
ICSS RAM 200 32

M4 - L2 RAM 212.8 128
EVE 535 128
Timer 20 -

1.7 System Instrumentation and Measurement Methodology

1.7.1 GP Timers
The GP Timers are good tools to have a quick measurement of performance of different initiators in the
system. Though this provides a quick way to measure throughput, it should be kept in mind that there are
some inherent errors involved with this technique of measurement. To make sure the measurement error
is relatively small the transfer size should be kept larger. The typical pseudo code for the GP Timer-based
throughput measurement is as follows:
/*Get the Timer Start Stamp*/
timerStartStamp = timerRead(TIMER_NUM);

/*Start the transfer*/
transferStart();

/*Wait for Transfer Completion*/
waitForTransferCompletion();

/*Get the Time Stamp*/
timerEndStamp = timerRead(TIMER_NUM);

/* Calculate the bandwidth - Note that one needs to multiply x2 from the calculated value to get
* Bandwidth when the source and destination memory are the same */
if (timerEndStamp > timerStartStamp)

BW = (((float) (TRANSFER_SIZE)/ (float) (timerEndStamp - timerStartStamp)) * TIMER_FREQ);
else

BW = (((float) (TRANSFER_SIZE)/ (float) (timerEndStamp -
timerStartStamp + 0xFFFFFFFF)) * TIMER_FREQ);

The formulas used for the throughput calculations are:

Actual Throughput = (Transfer Size/Time Taken)

Ideal Throughput = Frequency of Limiting Port × Data Bus Width in Bytes

Utilization or Efficiency = (Actual Throughput/Ideal Throughput) × 100

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com SoC Overview

19SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Consider the data is transferred from one memory M1 to another memory M2.

The interconnect signals that implement OCP protocol used to transfer the data between the two
memories, are as shown in Figure 7.

Figure 7. OCP Interconnect Signals

There are two data lanes:
• MData that contains the data to be written
• SData that contains the data to be read

For further details on the exact operation of the OCP signals, see the OCP specifications.

Due to the presence of two data lanes, the case when the theoretical maximum throughput is obtained is
when the MData contains valid data to be written and SData contains valid data to be read on every clock
cycle of the transaction.

Mathematically stating this:

if Source Mem = Destination Mem, Ideal Throughputmem2mem = 2 × Frequency × Bus Width

if Source Mem ≠ Destination Mem, Ideal Throughputmem2mem = Frequency × Bus Width

Hence, when the source and destination memories are the same, the measured bandwidth should be
multiplied into 2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

NIU NIU

Initiator Target

Probe Probe

Req ReqRsp Rsp

Statistics Collector

NoC

NIU

Dedicated
Target

SoC Overview www.ti.com

20 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

1.7.2 L3 Statistic Collectors
The interconnect in TDA2xx and TDA2ex has a special component called statistics collector, see Figure 8,
that computes traffic statistics within a user-defined window and periodically reports the results in a
memory-mapped register or DEBUGSS interface. TDA2xx and TDA2ex has 10 statistic collectors and are
dedicated for load/latency monitoring.

Figure 8. L3 Statistic Collectors Basic Infrastructure

The key features of the statistic collector are:
• Nonintrusive monitoring
• Programmable filters and counters
• Collects results at a programmable time interval

Event detectors are programmed through the L3_STCOL_REQEVT and L3_STCOL_RSPEVT
configuration registers for request and response ports, respectively. The following events can be identified:
• Word transfer
• WAIT cycles
• Flow control
• Payload transfers
• Latency measurements

Performance monitoring is enabled through the L3_STCOL_EN register. The L3_STCOL_SOFTEN
register enables software to monitor the performance. Event muxes are programmed through the
L3_STCOL_EVTMUX_SEL0 configuration register that determines which port will be monitored by a filter
configured by the filter registers.

Filters are programmed through the L3_STCOL_FILTER_i_GLOBALEN configuration register, along with
additional selection criteria programmed through the mask and match registers. A filter can be configured
to accept or reject:
• Read operations
• Write operations
• Errors
• Addresses

Filter operation is programmed through the L3_STCOL_OP registers.

There are ten statistic collectors used to monitor the traffic on DRAM (EMIF1, EMIF2, MA_MPU_P1 and
MA_MPU_P2), MPU, MMU, TPTC, VIP, VPE, EVE Subsystem, DSP MDMA/EDMA, IVA, GPU, BB2D,
DSS, IPU, OCMC RAM, USB, PCIe Subsystem, DSP CFG, MMC, SATA, VCP, GPMC, and McASP ports.

The L3 statistic collectors provide a more accurate measurement of the bandwidth of different initiators.
This provides a very good visualization of peaks in the traffic profile of different initiators in the system.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

0

50

100

150

200

2
8

.1

2
8

.7

2
9

.3

2
9

.9

3
0

.5

3
1

.1

3
1

.7

3
2

.3

3
2

.9

3
3

.5

3
4

.1

3
4

.7

3
5

.3

3
5

.9

3
6

.5

3
7

.1

3
7

.7

3
8

.3

3
8

.9

3
9

.5

4
0

.1

4
0

.7

4
1

.3

4
1

.9

4
2

.5

4
3

.1

4
3

.7

4
4

.3

4
4

.9

4
5

.5

4
6

.1

4
6

.7

4
7

.3

4
7

.9

4
8

.5

4
9

.1

4
9

.7

5
0

.3

5
0

.9

5
1

.5

5
2

.1

5
2

.7

5
3

.3

5
3

.9

5
4

.5

5
5

.1

5
5

.7

5
6

.3

5
6

.9

5
7

.5

5
8

.1

B
W

 (
M

B
p

s)

Time (ms)

www.ti.com SoC Overview

21SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The formulas and concepts for bandwidth measurement when source and destination memories are the
same is described in Section 1.7.1.

Bandwidth profiles can be captured using L3 statistic collectors through software executing on the target
by using the following steps:
1. Capture the number of bytes transferred every ‘x’ µs at the initiator ports (read + write) or the

destination memory.
2. Use a timer to maintain ‘x’ µs time gap.
3. The number of bytes obtained is divided by ‘x’ µs to get the average BW within the ‘x’ µs.
4. The process is repeated multiple times to generate a bandwidth profile.

As an example of this measurement technique, the DSS bandwidth profile is captured using x = 100 µs as
shown in Figure 9.

As can be seen in Figure 9, with the bandwidth profile you can clearly see the peak bandwidth that
corresponds to the DSS pre-fetch period at the beginning of the frame, the gaps in the profile that
correspond to the period DSS is displaying data from internal buffers and not requesting for new data. The
steady-state bandwidth corresponds to the real-time traffic.

Figure 9. DSS Single VID-Single VENC 720×480 70 fps RGB

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Cortex-A15 www.ti.com

22 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

2 Cortex-A15
The Arm® Cortex-A15 (also referred to as CPU/MPU) is a 32-bit RISC microprocessor with NEON™ SIMD
coprocessor and can be clocked up to 1.5 GHz. The Cortex-A15 (ARMv7 architecture based) has an
MMU, 32KB of level1 instruction and data cache, and up to 4MB configurable level2 cache. For more
details on the Cortex-A15, see the Cortex®-A15 Technical Reference Manual: r2p0.

2.1 Level1 and Level2 Cache
The Level1 instruction and data cache are of 32KB each with 4-way set associativity and a cache line size
of 32 bytes.

The L2 memory system consists of a tightly-coupled L2 cache and an integrated Snoop Control Unit
(SCU), connecting up to four processors within a Cortex-A15 MP Core device. The L2 memory system
has the following features:
• Configurable L2 cache size of 512KB, 1MB, 2MB, and 4MB.
• Fixed line length of 64 bytes.
• Physically indexed and tagged cache.
• 16-way set-associative cache structure.

NOTE: Using the level1 and level2 cache significantly improves the performance of A15 by many
folds as compared to when the caches are disabled.

For more details on A15 level1 and level2 cache, see the Cortex®-A15 Technical Reference Manual:
r2p0.

2.2 MMU
MMU is a memory management unit that works with level1 and level2 cache memories to translate virtual
addresses to physical addresses. The translation applies for any accesses to and from the main memory.
The MMU in Cortex-A15 supports page table entries of 4 KB, 64 KB, 1 MB, and 16 MB. MMU supports
the following features:
• 32-entry fully-associative L1 instruction TLB
• Two separate 32-entry fully associative L1 TLBs for data load and store pipelines
• 4-way set-associative 512-entry L2 TLB in each processor
• Intermediate table walk caches
• The TLB entries contain a global indicator or an Address Space Identifier (ASID) to permit context

switches without TLB flushes.
• The TLB entries contain a Virtual Machine Identifier (VMID) to permit virtual machine switches without

TLB flushes.
• The default replacement policy is pseudo round-robin

For more details on A15 MMU, see the Cortex®-A15 Technical Reference Manual: r2p0.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438c/index.html

www.ti.com Cortex-A15

23SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

2.3 Performance Control Mechanisms
The Cortex-A15 subsystem has various performance control mechanisms at various levels of the code
and data access path to the main memory (DRAM). Some of the key control mechanisms are explained in
detail in this section.

2.3.1 Cortex-A15 Knobs
Table 5 shows a few of the Cortex-A15 knobs available via CP15 programming and other special
registers.

Table 5. Cortex-A15 CPU Settings

Number Cortex-A15 CPU Settings
1 L1 I Cache enabled
2 L1 D Cache enabled
3 L2 Cache enabled
4 Branch Prediction Enabled
5 MMU Enabled
6 L2 Prefetch Enabled. Prefetch offset set to maximum (3 cache lines for instruction and 8 for data).
7 Write Streaming thresholds

2.3.2 MMU Page Table Knobs
MMU supports memory accesses based on memory sections or pages that are essentially formulated as
the page table. The translation tables held in memory could have two levels. The Page table has
descriptors that define the attributes and characteristics of the memory (for example, 4KB size page) for
all of the pages in the 4 GB map for a 32-bit address range. TEX [2:0], C, B are key bit fields in the page
descriptor that can be programmed to tweak the following knobs.
• Bufferable (B), Cacheable (C), and Type Extension (TEX) settings
• Outer cache policy (L2) – defined by TEX[1:0]
• Write back Write allocate
• Write back Write no allocate
• Write through Write no allocate
• Non-cacheable
• Inner cache policy (L1)
• Write back Write allocate
• Write back Write no allocate
• Write through Write no allocate
• Non-cacheable
• Bufferable and cacheable

For more details on the MMU Page attributes, see chapter B3 of the ARM Architectural Reference Manual
- ARMv7-A and ARMv7-R edition http://infocenter.arm.com/help/topic/com.arm.doc.ddi0406c/index.html.

2.4 Cortex-A15 CPU Read and Write Performance
This section describes the Cortex-A15 CPU Read and Write performance obtained on the TDA2xx and
TDA2ex platform. The results described correspond to OPP100. Write back Write Allocate (WB-WA) is the
default configuration used for all performance measurement. Linux operating system has moved from WB-
WA to WB-Write no allocate after ARMv7A. A default L3 initiator priority is used (00b) for all initiators.
MMU page table is 16KB size with 1MB section granularity.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0406c/index.html

Cortex-A15 www.ti.com

24 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

2.4.1 Cortex-A15 Functions
Following are the three functions used for Cortex-A15 operations:

The C code for the write function is:
void memWrite (UWORD32 DstAddr, UWORD32 transSize) {
register UWORD32 wrData=0xA5B5C5D5;
register UWORD32 i_wr;
register volatile UWORD32 *wrAddr;
wrAddr = (UWORD32*)DstAddr;

for(i_wr=0; i_wr<transSize; i_wr+=128) {
/*128 Words Increment*/
*wrAddr++ =wrData; /*Word 1*/
*wrAddr++ =wrData; /*Word 2*/
*wrAddr++ =wrData; /*Word 3*/
*wrAddr++ =wrData; /*Word 4*/
*wrAddr++ =wrData; /*Word 5*/
...
...
...
*wrAddr++ =wrData; /*Word 127*/
*wrAddr++ =wrData; /*Word 128*/

}
}

The C code for the read function is:
void memRead (UWORD32 SrcAddr, UWORD32 transSize) {
register UWORD32 rdData;
register UWORD32 i_rd;
register volatile UWORD32 *rdAddr;
rdAddr = (UWORD32*)SrcAddr;

for(i_rd=0; i_rd<transSize; i_rd+=128) {
/*128 Words Increment*/
*rdAddr++ =rdData; /*Word 1*/
*rdAddr++ =rdData; /*Word 2*/
*rdAddr++ =rdData; /*Word 3*/
*rdAddr++ =rdData; /*Word 4*/
*rdAddr++ =rdData; /*Word 5*/
...
...
...
*rdAddr++ =rdData; /*Word 127*/
*rdAddr++ =rdData; /*Word 128*/

}
}

The C code for the copy function is:
void memCopy (UWORD32 SrcAddr, UWORD32 DstAddr, UWORD32 trasSize) {
register volatile UWORD32 *rdAddr, *wrAddr;
register UWORD32 i;
rdAddr = (UWORD32*)SrcAddr;
wrAddr = (UWORD32*)DstAddr;

for(i=0; i<transSize; i=i+32) {
*wrAddr++ = *rdAddr++; /*Word 1*/
*wrAddr++ = *rdAddr++; /*Word 2*/
*wrAddr++ = *rdAddr++; /*Word 3*/
*wrAddr++ = *rdAddr++; /*Word 4*/
*wrAddr++ = *rdAddr++; /*Word 5*/
...
...
...
*wrAddr++ = *rdAddr++; /*Word 30*/
*wrAddr++ = *rdAddr++; /*Word 31*/
*wrAddr++ = *rdAddr++; /*Word 32*/

}
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com Cortex-A15

25SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Additionally, an optimized asm copy is used that is found to have the highest memory copy performance.
The parameters passed to the function are:
• R0 – Source Buffer Address
• R1 – Destination Buffer Address
• R2 – Number of Bytes to transfer
void memcpy_arm(UWORD32 srcBuffer, UWORD32 destBuffer, UWORD32 numBytes);

.text

.global memcpy_arm
memcpy_arm:

CMP r2,#3
BLS _my_memcpy_lastbytes
ANDS r12,r0,#3
BEQ l1
LDRB r3,[r1],#1
CMP r12,#2
ADD r2,r2,r12
LDRLSB r12,[r1],#1
STRB r3,[r0],#1
LDRCCB r3,[r1],#1
STRLSB r12,[r0],#1
SUB r2,r2,#4
STRCCB r3,[r0],#1

l1:
ANDS r3,r1,#3
BEQ __my_aeabi_memcpy4

l3:
SUBS r2,r2,#8
BCC l2
LDR r3,[r1],#4
LDR r12,[r1],#4
STR r3,[r0],#4
STR r12,[r0],#4
B l3

l2:
ADDS r2,r2,#4
LDRPL r3,[r1],#4
STRPL r3,[r0],#4
MOV r0,r0

_my_memcpy_lastbytes:
LSLS r2,r2,#31
LDRCSB r3,[r1],#1
LDRCSB r12,[r1],#1
LDRMIB r2,[r1],#1
STRCSB r3,[r0],#1
STRCSB r12,[r0],#1
STRMIB r2,[r0],#1
BX lr

__my_aeabi_memcpy4:
__my_aeabi_memcpy8:
__my_rt_memcpy_w:

PUSH {r4-r8,lr}
SUBS r2,r2,#0x20
BCC l4
DSB
PLD [r1, #0x20]
PLD [r1, #0x40]
PLD [r1, #0x60]
PLD [r1, #0x80]
PLD [r1, #0xa0]
PLD [r1, #0xc0]
PLD [r1, #0xe0]

l5:
PLD [r1,#0x100]

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Cortex-A15 www.ti.com

26 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

LDMCS r1!,{r3-r8,r12,lr}
SUBCSS r2,r2,#0x20
STMCS r0!,{r3-r8,r12,lr}
BCS l5

l4:
LSLS r12,r2,#28
LDMCS r1!,{r3,r4,r12,lr}
STMCS r0!,{r3,r4,r12,lr}
LDMMI r1!,{r3,r4}
STMMI r0!,{r3,r4}
POP {r4-r8,lr}
LSLS r12,r2,#30
LDRCS r3,[r1],#4
STRCS r3,[r0],#4
BXEQ lr

_my_memcpy_lastbytes_aligned:
LSLS r2,r2,#31
LDRCSH r3,[r1],#2
LDRMIB r2,[r1],#1
STRCSH r3,[r0],#2
STRMIB r2,[r0],#1
BX lr

.end

2.4.2 Setup Limitations
L1 and L2 caches along with the Cortex-A15 MMU are enabled in all the measurements. Based on the
write back write allocate cache policy, the net amount of reads and writes to the main memory (DDR3) are
greater or lesser than the intended data size. In this case, the performance measurement is mostly based
on the time taken for the intended size read, write, and copy, and not the actual data size. The GP Timer
3 is easy to use and widely used for profiling; however, this timer runs only at 20 MHz so there will be a
minor difference in the accuracy. For large transfer sizes like 4MB, the difference is negligible.

2.4.3 System Performance
This section lists the standalone Cortex-A15 performance with SDRAM (DDR3) and OCMC RAM. All of
the performance data is calibrated for Megabytes per second (MB/s).

2.4.3.1 Cortex-A15 Stand-Alone Memory Read, Write, Copy
Cortex-A15 settings:
• L1 cache enabled
• L2 cache enabled
• MMU enabled
• Branch Prediction enabled
• L2 Prefetch distance: Icache = 3, Dcache = 8
• Compiler Options: -O3,--opt_for_speed = 5

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com System Enhanced Direct Memory Access (System EDMA)

27SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

2.4.3.2 Results
As observed in Table 6 and Table 7, MEM copy throughput numbers are better with the GCC compiler as
compared to the TI compiler flow for DDR-to-DDR transfers.

Table 6. TI Compiler Timer Based Results

Operations for
Cortex-A15 Source Destination Transfer Size (KB)

Bandwidth with Cache
Policy - WB WA

(MBps)
CPU_WR CPU Register DDR 8192 3642

CPU Register OCMC 256 1392
CPU_RD DDR CPU Register 8192 2203

OCMC CPU Register 256 2173
COPY DDR DDR 8192 1907

OCMC OCMC 256 3935

Table 7. GCC Compiler With ASM Optimized Copy Results

Initiator/Operation Source Destination Size (KB) Bandwidth (MB/s)
Cortex-A15 MEM COPY DDR DDR 8192 2467.36

3 System Enhanced Direct Memory Access (System EDMA)
This section provides a throughput analysis of the EDMA module. The enhanced direct memory access
module, also called EDMA, performs high-performance data transfers between two slave points, memories
and peripheral devices without microprocessor unit (MPU) or digital signal processor (DSP) support during
transfer. EDMA transfer is programmed through a logical EDMA channel, which allows the transfer to be
optimally tailored to the requirements of the application. The EDMA can also perform transfers between
external memories and between Device subsystems internal memories, with some performance loss
caused by resource sharing between the read and write ports.

The EDMA controller block diagram is shown in Figure 10. The EDMA controller is based on two major
principal blocks:
• EDMA third-party channel controller (EDMA_TPCC)
• EDMA third-party transfer controller (EDMA_TPTC)

The EDMA controller’s primary purpose is to service user programmed data transfers between internal or
external memory-mapped slave endpoints. It can also be configured for servicing event driven peripherals
(such as serial ports), as well. There are 64 direct memory access (DMA) channels and 8 QDMA channels
serviced by two concurrent physical channels.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

EDMA Controller

To/from
EDMA

Programmer

DMA/QDMA
Channel

Logic

Event
Queues

PaRAM
Transfer
Request

Submission

Transfer
Controllers

TPTC0

TR
R/W

Completion

IRQ

MMR
Access

EDMA_TC0_IRQ_ERR

Read/Write
Commands
and Data

TPTC1

TR
R/W

Completion

IRQ

MMR
Access

EDMA_TC1_IRQ_ERR

Read/Write
Commands
and Data

EDMA_TPCC_IRQ_ERR Completion
and Error
Interrupt

Logic

Completion
DetectionEDMA_TPCC_IRQ_REGION[7:0]

EDMA_TPCC_IRQ_MP

System Enhanced Direct Memory Access (System EDMA) www.ti.com

28 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Figure 10. EDMA Controller Block Diagram

DMA channels are triggered by external event, manual write to event set register (ESR), or chained event.
QDMA are auto-triggered when write is performed to the user-programmable trigger word. Once a trigger
event is recognized, the event is queued in the programmed event queue. If two events are detected
simultaneously, then the lowest-numbered channel has highest priority. Each event in the event queue is
processed in the order it was queued. On reaching the head of the queue, the PaRAM associated with
that event is read to determine the transfer details. The transfer request (TR) submission logic evaluates
the validity of the TR and is submits a valid transfer request to the appropriate transfer controller. The
maximum theoretical bandwidth for a given transfer can be found by multiplying the width of the interface
and the frequency at which it transfers data.

The maximum speed the transfer can achieve is equal to the bandwidth of the limiting port. In general, a
given transfer scenario will never achieve maximum theoretical band width due to several factors, like
transfer overheads, access latency of source/destination memories, finite number of cycles taken by
EDMA CC and EDMA TC between the time the transfer event is registered to the time the first read
command is issued to EDMA TC. These overheads can be calibrated by looking at the time taken to do a
1 byte transfer. These factors are not excluded in these throughput measurements.

The frequency and bus widths of the different memory and slave end points are summarized in Table 8.

Table 8. Frequency and Bus Widths of Modules

Module Name Frequency (MHz) Bus Width (bits)
EDMA TPTC+TPTC 266 128

L3 266 128
OCMC RAM 266 128

EMIF 266 128
DSPL2 RAM 600 128
IVAHD SL2 388.33 128
ICSS RAM 200 32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com System Enhanced Direct Memory Access (System EDMA)

29SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

3.1 System EDMA Performance

3.1.1 System EDMA Read and Write
The common system setup for the EDMA throughput measurement is:
• EMIF configuration
• CAS write latency – 6
• CAS latency - 7
• SDRAM Data Bus width : 32
• DDR in non-interleaved mode

The data presented is for stand-alone transfers with no other ongoing or competing traffic. All profiling is
done with the TIMER 2 counter running at SYS_CLK2 = 22.57 MHz.

3.1.2 System EDMA Results

NOTE: When using multiple TCs transferring data to DDR it is important to understand the impact of
DDR page open and close on the overall DDR efficiency.

Table 9. System EDMA 1 TC Bandwidth for Different Source Destination Combinations With
GP Timer (Single TC)

No. Source Destination ACNT BCNT
Size
(KB)

Ideal
Throughput

(MB/s)

Measured
Bandwidth

(MB/s)

TC
Utilization

(%)
1 EMIF 0 DDR EMIF 0 DDR 65535 128 8192 4256 3274.08 76.93
2 OCMC RAM0 EMIF 0 DDR 65535 4 256 4256 3186.1 74.86
3 EMIF 0 DDR OCMC RAM0 65535 4 256 4256 3071.96 72.18
4 OCMC RAM2 OCMC RAM2 65535 8 512 4256 3942 92.6
5 DSP L2 EMIF 0 DDR 65535 4 256 4256 3015.59 70.86
6 EMIF 0 DDR DSP L2 65535 4 256 4256 2956.82 69.47
7 IVA SL2 EMIF 0 DDR 65535 4 256 4256 1486.21 34.92
8 EMIF 0 DDR IVA SL2 65535 4 256 4256 1486.77 34.93
9 IVA SL2 DSP L2 65535 4 256 4256 1486.21 34.92
10 DSP L2 IVA SL2 65535 4 256 4256 1486.21 34.92
11 DSP L2 OCMC RAM 65535 4 256 4256 3017.9 70.91
12 OCMC RAM DSP L2 65535 4 256 4256 3020.22 70.96
13 PRUSS1 IRAM EMIF 0 DDR 1024 12 12 800 287.55 35.94
14 EMIF 0 DDR PRUSS1 IRAM 1024 12 12 800 287.55 35.94
15 PRUSS1 DRAM0 EMIF 0 DDR 1024 8 8 800 287.33 35.92
16 EMIF 0 DDR PRUSS1 DRAM0 1024 8 8 800 285.99 35.75
17 PRUSS1 DRAM1 EMIF 0 DDR 1024 8 8 800 286.66 35.83
18 EMIF 0 DDR PRUSS1 DRAM1 1024 8 8 800 285.99 35.75
19 PRUSS2 IRAM EMIF 0 DDR 1024 8 8 800 283.58 35.45
20 EMIF 0 DDR PRUSS2 IRAM 1024 8 8 800 281.86 35.23
21 PRUSS2 DRAM0 EMIF 0 DDR 1024 12 12 800 275.76 34.47
22 EMIF 0 DDR PRUSS2 DRAM0 1024 12 12 800 272.73 34.09
23 PRUSS2 DRAM1 EMIF 0 DDR 1024 8 8 800 313.64 39.21
24 EMIF 0 DDR PRUSS2 DRAM1 1024 8 8 800 314.04 39.26
25 PRUSS2 DRAM2 EMIF 0 DDR 1024 32 32 800 313.84 39.23
26 EMIF 0 DDR PRUSS2 DRAM2 1024 32 32 800 313.84 39.23

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

System Enhanced Direct Memory Access (System EDMA) www.ti.com

30 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 10. System EDMA 1 TC Bandwidth for Different Source Destination Combinations With
L3 Statistic Collectors (Single TC)

No. Source Destination ACNT BCNT
Size
(KB)

Ideal
Throughput

(MB/s)

Measured
Bandwidth

(MB/s)

TC
Utilization

(%)
1 EMIF 0 DDR EMIF 0 DDR 65535 128 8192 4256 3456 81
2 OCMC RAM0 EMIF 0 DDR 65535 4 256 4256 3300 78
3 EMIF 0 DDR OCMC RAM0 65535 4 256 4256 3400 80
4 OCMC RAM2 OCMC RAM2 65535 8 512 4256 3900 92
5 DSP L2 EMIF 0 DDR 65535 4 256 4256 3070 72
6 EMIF 0 DDR DSP L2 65535 4 256 4256 3070 72
7 IVA SL2 EMIF 0 DDR 65535 4 256 4256 1530 36
8 EMIF 0 DDR IVA SL2 65535 4 256 4256 1530 36
9 IVA SL2 DSP L2 65535 4 256 4256 1530 36
10 DSP L2 IVA SL2 65535 4 256 4256 1530 36
11 DSP L2 OCMC RAM 65535 4 256 4256 3070 72
12 OCMC RAM DSP L2 65535 4 256 4256 3070 72
13 PRUSS1 IRAM EMIF 0 DDR 1024 12 12 800 380 48
14 EMIF 0 DDR PRUSS1 IRAM 1024 12 12 800 380 48
15 PRUSS1 DRAM0 EMIF 0 DDR 1024 8 8 800 380 48
16 EMIF 0 DDR PRUSS1 DRAM0 1024 8 8 800 380 48
17 PRUSS1 DRAM1 EMIF 0 DDR 1024 8 8 800 380 48
18 EMIF 0 DDR PRUSS1 DRAM1 1024 8 8 800 380 48
19 PRUSS2 IRAM EMIF 0 DDR 1024 8 8 800 380 48
20 EMIF 0 DDR PRUSS2 IRAM 1024 8 8 800 380 48
21 PRUSS2 DRAM0 EMIF 0 DDR 1024 12 12 800 380 48
22 EMIF 0 DDR PRUSS2 DRAM0 1024 12 12 800 380 48
23 PRUSS2 DRAM1 EMIF 0 DDR 1024 8 8 800 380 48
24 EMIF 0 DDR PRUSS2 DRAM1 1024 8 8 800 380 48
25 PRUSS2 DRAM2 EMIF 0 DDR 1024 32 32 800 380 48
26 EMIF 0 DDR PRUSS2 DRAM2 1024 32 32 800 380 48

Table 11. System EDMA 2 TC Bandwidth for Multiple Source Destination Combinations With
GP Timer

No. Source Destination ACNT BCNT
Size
(KB)

Ideal
Throughput

(MB/s)

Measured
Bandwidth

(MB/s)

TC
Utilization

(%)
1 EMIF 0 DDR EMIF 0 DDR 65535 128 8192 4256 2594.2 60.95
2 OCMC RAM EMIF 0 DDR 65535 4 256

4256 2502.79 58.81
3 EMIF 0 DDR OCMC RAM 65535 4 256
4 DSP L2 EMIF 0 DDR 65535 4 256

4256 2501.2 58.77
5 EMIF 0 DDR DSP L2 65535 4 256
6 IVA SL2 EMIF 0 DDR 65535 4 256

4256 1516.78 35.64
7 EMIF 0 DDR IVA SL2 65535 4 256
8 IVA SL2 DSP L2 65535 4 256

4256 1515.03 3.56
9 DSP L2 IVA SL2 65535 4 256
10 DSP L2 OCMC RAM 65535 4 256

4256 3132.96 73.61
11 OCMC RAM DSP L2 65535 4 256
12 PRUSS1 IRAM EMIF 0 DDR 1024 12 12

800 311.53 38.94
13 EMIF 0 DDR PRUSS1 IRAM 1024 12 12

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com System Enhanced Direct Memory Access (System EDMA)

31SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 11. System EDMA 2 TC Bandwidth for Multiple Source Destination Combinations With
GP Timer (continued)

No. Source Destination ACNT BCNT
Size
(KB)

Ideal
Throughput

(MB/s)

Measured
Bandwidth

(MB/s)

TC
Utilization

(%)
14 PRUSS1 DRAM0 EMIF 0 DDR 1024 8 8

800 321.84 40.23
15 EMIF 0 DDR PRUSS1 DRAM0 1024 8 8
16 PRUSS1 DRAM1 EMIF 0 DDR 1024 8 8

800 321.42 40.18
17 EMIF 0 DDR PRUSS1 DRAM1 1024 8 8
18 PRUSS2 IRAM EMIF 0 DDR 1024 8 8

800 305.61 38.2
19 EMIF 0 DDR PRUSS2 IRAM 1024 8 8
20 PRUSS2 DRAM0 EMIF 0 DDR 1024 12 12

800 307.77 38.47
21 EMIF 0 DDR PRUSS2 DRAM0 1024 12 12
22 PRUSS2 DRAM1 EMIF 0 DDR 1024 8 8

800 323.31 40.41
23 EMIF 0 DDR PRUSS2 DRAM1 1024 8 8
24 PRUSS2 DRAM2 EMIF 0 DDR 1024 32 32

800 323.21 40.4
25 EMIF 0 DDR PRUSS2 DRAM2 1024 32 32

Table 12. System EDMA 2 TC Bandwidth for Multiple Source Destination Combinations With
L3 Statistic Collectors

No. Source Destination ACNT BCNT
Size
(KB)

Ideal
Throughput

(MB/s)

Measured
Bandwidth

(MB/s)

TC
Utilization

(%)
1 EMIF 0 DDR EMIF 0 DDR 65535 128 8192 4256 3050 71.66
2 OCMC RAM EMIF 0 DDR 65535 4 256

4256 3143 73.85
3 EMIF 0 DDR OCMC RAM 65535 4 256
4 DSP L2 EMIF 0 DDR 65535 4 256

4256 3250 76.36
5 EMIF 0 DDR DSP L2 65535 4 256
6 IVA SL2 EMIF 0 DDR 65535 4 256

4256 1560 36.65
7 EMIF 0 DDR IVA SL2 65535 4 256
8 IVA SL2 DSP L2 65535 4 256

4256 1560 36.65
9 DSP L2 IVA SL2 65535 4 256
10 DSP L2 OCMC RAM 65535 4 256

4256 3250 76.36
11 OCMC RAM DSP L2 65535 4 256
12 PRUSS1 IRAM EMIF 0 DDR 1024 12 12

800 330 41.25
13 EMIF 0 DDR PRUSS1 IRAM 1024 12 12
14 PRUSS1 DRAM0 EMIF 0 DDR 1024 8 8

800 330 41.25
15 EMIF 0 DDR PRUSS1 DRAM0 1024 8 8
16 PRUSS1 DRAM1 EMIF 0 DDR 1024 8 8

800 330 41.25
17 EMIF 0 DDR PRUSS1 DRAM1 1024 8 8
18 PRUSS2 IRAM EMIF 0 DDR 1024 8 8

800 330 41.25
19 EMIF 0 DDR PRUSS2 IRAM 1024 8 8
20 PRUSS2 DRAM0 EMIF 0 DDR 1024 12 12

800 330 41.25
21 EMIF 0 DDR PRUSS2 DRAM0 1024 12 12
22 PRUSS2 DRAM1 EMIF 0 DDR 1024 8 8

800 330 41.25
23 EMIF 0 DDR PRUSS2 DRAM1 1024 8 8
24 PRUSS2 DRAM2 EMIF 0 DDR 1024 32 32

800 330 41.25
25 EMIF 0 DDR PRUSS2 DRAM2 1024 32 32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

128

128

128

128

Write Status

Write Status

TPTC1

Completion
Lookup

TPTC0

Configuration
Port

empty0

Completion
Interface

Completion
Interface

Configuration
Port

empty1

Empty[1:0]

TPCC
Configuration

Interface

Source Active
Reg

D
M

A
P

ro
g
 R

e
g

Channel FIFO

Dst FIFO Reg

Read
Interface

Write
Interface

System Enhanced Direct Memory Access (System EDMA) www.ti.com

32 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

3.2 System EDMA Observations

NOTE: On the TDA2xx and TDA2ex device, all transfer controllers yield identical performance for all
transfer scenarios because both TCs have the same configuration, and most importantly the
same FIFOSIZE for a given burst size.

EDMA channel parameters allow many different transfer configurations. Typical transfer configurations
result in transfer controllers bursting the read write data in default burst size chunks, thereby, keeping the
busses fully utilized. However, in some configurations, the TC issues less than optimally sized read and
write commands (less than default burst size), reducing performance. To properly design a system, it is
important to know which configurations offer the best performance for high-speed operations.

On TDA2xx and TDA2ex, there are two transfer controllers to move data between slave end points. The
default configuration for the transfer controllers is shown in Table 13.

Table 13. Default Configuration for the Transfer Controllers

Name Description TC0 TC1
TCCFG[2:0] FIFOSIZE Channel FIFO Size 1024 Bytes 1024 Bytes

TCCFG[5:4] BUSWIDTH Data Transfer Bus Width 16 Bytes 16 Bytes
TCCFG[9:8] DSTREGDEPTH Destination Register Depth 4 entries 4 entries

DBS (Default Burst Size) Size of each data burst Configurable Configurable

The individual TC performance for paging and memory-to-memory transfers is essentially dictated by the
TC configuration. In most scenarios, the FIFOSIZE and default burst size configuration for the TC have
the most significant impact on the TC performance; the BUSWIDTH configuration is dependent on the
device architecture and the DSTREGDEPTH values impact the number of in-flight transfers.

Figure 11. EDMA Third-party Transfer Controller (EDMA_TPTC) Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com System Enhanced Direct Memory Access (System EDMA)

33SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The default burst size (DBS) can be controlled with the CTRL_CORE_CONTROL_IO_1 register in the
TDA2xx and TDA2ex Control Module Registers, as shown in Table 14.

Table 14. CTRL_CORE_CONTROL_IO_1

Address offset 0x0000 0554
Physical Address 0x4A00 2554 Instance CTRL_MODULE_CORE
Description Register to configure some IP level signals
Type RW

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

M
M

U
2_

D
IS

A
B

LE

R
E

S
E

R
V

E
D

M
M

U
1_

D
IS

A
B

LE

R
E

S
E

R
V

E
D

TC
1_

D
E

FA
U

LT
_B

U
R

S
T_

S
IZ

E

R
E

S
E

R
V

E
D

TC
0_

D
E

FA
U

LT
_B

U
R

S
T_

S
IZ

E

R
E

S
E

R
V

E
D

G
M

II2
_S

E
L

R
E

S
E

R
V

E
D

G
M

II1
_S

E
L

Bits Field Name Description Type Reset
31:21 RESERVED Reserved R 0x0

20 MMU2_DISABLE MMU2 DISABLE setting RW 0x0

19:17 RESERVED Reserved R 0x0

16 MMU1_DISABLE MMU1 DISABLE setting RW 0x0

15:14 RESERVED Reserved R 0x0

13:12 TC1_DEFAULT_BURST_SIZE EDMA TC1 DEFAULT BURST SIZE setting RW 0x3

11:10 RESERVED Reserved R 0x0

9:8 TC0_DEFAULT_BURST_SIZE EDMA TC0 DEFAULT BURST SIZE setting RW 0x3

7:6 RESERVED Reserved R 0x0

5:4 GMII2_SEL GMII2 selection setting RW 0x0

3:2 RESERVED Reserved R 0x0

1:0 GMII1_SEL GMII1 selection setting RW 0x0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

77%

69%

52%

28%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

T
C

 %
 U

ti
li

za
ti

o
n

Different DBS Settings (Bytes)

Effect of DBS Setting on TC Utilization

128 Bytes per Burst 64 Bytes per Burst 32 Bytes per Burst 16 Bytes per Burst

System Enhanced Direct Memory Access (System EDMA) www.ti.com

34 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The effect of the DBS setting on the TC% utilization can be realized with the graph in Figure 12. The data
transfer used to obtain these results is a DDR-to-DDR transfer of 16 MB. It is observed that the default
setting of 128 bytes per burst generates the maximum TC utilization.

Figure 12. Effect of DBS on System EDMA TC Utilization

The TC read and write controllers in conjunction with the source and destination register sets are
responsible for issuing optimally-sized reads and writes to the slave endpoints. An optimally-sized
command is defined by the transfer controller default burst size (DBS).

The EDMA_TPTC attempts to issue the largest possible command size as limited by the DBS value or the
ABCNT_n[15:0] ACNT and ABCNT_n[31:16] BCNT value of the TR. The EDMA_TPTC obeys the
following rules:
• The read and write controllers always issue commands less than or equal to the DBS value.
• The first command of a 1D transfer command always aligns the address of subsequent commands to

the DBS value.

Table 15 lists the TR segmentation rules that are followed by the EDMA_TPTC. In summary, if the
ABCNT_n[15:0] ACNT value is larger than the DBS value, then the EDMA_TPTC breaks the
ABCNT_n[15:0] ACNT array into DBS-sized commands to the source and destination addresses. Each
ABCNT_n[31:16] BCNT number of arrays are then serviced in succession.

For BCNT arrays of ACNT bytes (that is, a 2D transfer), if the ABCNT_n[15:0] ACNT value is less than or
equal to the DBS value, then the TR may be optimized into a 1D-transfer in order to maximize efficiency.
The optimization takes place if the EDMA_TPTC recognizes that the 2D-transfer is organized as a single
dimension (ABCNT_n[15:0] ACNT == BIDX_n) and the ACNT value is a power of 2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com DSP Subsystem EDMA

35SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 15. System EDMA TC Optimization Rules

ACNT ≤ DBS ACNT is Power of 2 BIDX = ACNT BCNT ≤ 1023 SAM/DAM =
Increment Description

Yes Yes Yes Yes Yes Optimized
No X X X X Not Optimized
X No X X X Not Optimized
X X No X X Not Optimized
X X X No X Not Optimized
X X X X No Not Optimized

In summary, Table 16 lists the factors that affect the EDMA performance.

Table 16. Factors Affecting System EDMA Performance

Factors Impact General Recommendation
Source/Destination Memory The transfer speed depends on SRC/DST

memory bandwidth.
Know the nature of the source and destination memory,
specifically the frequency of operation and the bus
width.

Transfer Size Throughput is less for small transfers due to
transfer overhead and latency.

Configure EDMA for larger transfer size as throughput,
small transfer size is dominated by transfer overhead.

A-Sync/AB-Sync Performance depends on the number of TRs
(Transfer Requests). More TRs would mean
more overhead.

Using AB-Sync transfers gives better performance than
chaining A-Sync transfers.

Source/Destination Bidx Optimization will not be done if BIDX is not
equal to ACNT value optimization guidelines.

Whenever possible, follow the EDMA TC optimization
guidelines. See the TPTC spec for optimization details.

Queue TC Usage Performance is the same for both TCs. Both TCs have the same configuration and show the
same performance.

Burst Size Decides the largest possible read/write
command submission by TC.

The default burst size for all transfer controllers is 128
bytes. This also results in most efficient
transfers/throughput in most memory-to-memory
transfer scenarios.

Source/Destination Alignment Slight performance degradation if
source/destination are not aligned to Default
Burst Size (DBS) boundaries.

For smaller transfers, as much as possible, source and
destination addresses should be aligned across DBS
boundaries.

4 DSP Subsystem EDMA
The DSP subsystem is built around the high-performance TI's standard TMS320C66x™ DSP CorePac
core. The subsystem includes EDMA and L2 interconnect to facilitate high-bandwidth transfers between
chip-level resources/memory and DSP memory.

The DSP subsystem inputs a primary /1 (dsp_clk) and internally generates the /2 (clk2) or /3 (clk3) or /4
(clk4) clock rates. The division is defined upon device boot time through a signal level externally applied
on the device sysboot15 input. The actual bit configuration is latched upon power-on reset by the
CTRL_CORE_BOOTSTRAP[15] SYS_BOOT_15_CLOCK_DIVIDER boot status bit in the TDA2xx and
TDA2ex Control Module Registers. Only DSP_CLK3 clock is supported on TDA2xx and TDA2ex.
Sysboot[15] must be pulled to vdd for proper device operation (SR1.x). For SR2.0, it is used to
permanently disable the internal PU/PD resistors on pads gpmc_a[27:19]. For SR2.0 the DSP EDMA
always operates at clk3.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Device

MMU0

DSP_EDMA

L3_MAIN interconnect

dspss-001

TMS320C66x
CPU

L1P
memory
controller

L1D
memory
controller

L2
memory
controller

XMC EMC

b
y
p
a
s
s

CPU
Master

DSP_NoC
(L2 Interconnect)

MMU1

L3
Slave

CC

TPTC0 TPTC1

R W R W

SYS
wakeup

logic

CFG
Master

Internal
interrupts

External
Interrupts

Wakeup to PRCM

Ext.
DMA EventsSDMAMDMA CFG

SYS
Control

Clocks, (CPU, L3)
POR
Warm Reset
Retention Reset
Local Reset
Master standby/Slave idle and
Other PRCM
protocols

Debug I/F

DMA
Master

L1P
SRAM/
cache

L1D
SRAM/
cache

DSP
Interrupt
controller

DSP
Power-down

controller

64

64

Debug &
Trace
Logic

128 128 32

128

Device
DMA

Crossbar

128 Device
Interrupt
Crossbar

L2
SRAM/
cache

L2
SRAM
only

TMS320C66x DSP CorePac
TM DSP subsystem

(A)

DSP Subsystem EDMA www.ti.com

36 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The different portions of the DSP subsystem run at the DSP_CLK3 and DSP_CLK, as shown in Figure 13.

Figure 13. DSP Subsystem Block Diagram and Clocking Scheme

This section provides a throughput analysis of the DSP SS EDMA module. The enhanced direct memory
access module, also referred to as EDMA, performs high-performance data transfers between two slave
points, memories and peripheral devices without the digital signal processor (DSP) support during
transfer. EDMA transfer is programmed through a logical EDMA channel, which allows the transfer to be
optimally tailored to the requirements of the application. The EDMA can also perform transfers between
external memories and between device subsystems internal memories, with some performance loss
caused by resource sharing between the read and write ports.

The EDMA controller block diagram is shown in Figure 14. The EDMA controller is based on two major
principal blocks:
• EDMA third-party channel controller (EDMA_TPCC)
• EDMA third-party transfer controller (EDMA_TPTC)

The EDMA controller’s primary purpose is to service user-programmed data transfers between internal or
external memory-mapped slave endpoints. It can also be configured for servicing event driven peripherals
(such as serial ports), as well. There are 64 direct memory access (DMA) channels and 8 QDMA channels
serviced by two concurrent physical channels.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

EDMA Controller

To/from
EDMA

Programmer

DMA/QDMA
Channel

Logic

Event
Queues

PaRAM
Transfer
Request

Submission

Transfer
Controllers

TPTC0

TR
R/W

Completion

IRQ

MMR
Access

EDMA_TC0_IRQ_ERR

Read/Write
Commands
and Data

TPTC1

TR
R/W

Completion

IRQ

MMR
Access

EDMA_TC1_IRQ_ERR

Read/Write
Commands
and Data

EDMA_TPCC_IRQ_ERR Completion
and Error
Interrupt

Logic

Completion
DetectionEDMA_TPCC_IRQ_REGION[7:0]

EDMA_TPCC_IRQ_MP

www.ti.com DSP Subsystem EDMA

37SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Figure 14. DSP Subsystem EDMA Block Diagram

DMA channels are triggered by external event, manual write to event set register (ESR), or chained event.
QDMA are auto-triggered when write is performed to the user-programmable trigger word. Once a trigger
event is recognized, the event is queued in the programmed event queue. If two events are detected
simultaneously, then the lowest-numbered channel has highest priority. Each event in the event queue is
processed in the order it was queued. On reaching the head of the queue, the PaRAM associated with
that event is read to determine the transfer details. The transfer request (TR) submission logic evaluates
the validity of the TR and is submits a valid transfer request to the appropriate transfer controller.

The maximum theoretical bandwidth for a given transfer can be found by multiplying the width of the
interface and the frequency at which it transfers data. The maximum speed the transfer can achieve is
equal to the bandwidth of the limiting port. In general, a given transfer scenario will never achieve
maximum theoretical band width due to several factors, like transfer overheads, access latency of
source/destination memories, finite number of cycles taken by EDMA CC and EDMA TC between the time
the transfer event is registered to the time the first read command is issued to EDMA TC. These
overheads can be calibrated by looking at the time taken to do a 1 byte transfer. These factors are not
excluded in these throughput measurements.

4.1 DSP Subsystem EDMA Performance
The formulas used for the throughput calculations are:

Actual Throughput = (Transfer Size/Time Taken)

Ideal Throughput = Frequency of Limiting Port × Data Bus Width in Bytes

TC Utilization = (Actual Throughput/Ideal Throughput) × 100

4.1.1 DSP Subsystem EDMA Read and Write
The common system setup for the EDMA throughput measurement is:
• EMIF configuration
• CAS write latency – 6
• CAS latency - 7
• SDRAM Data Bus width : 32
• DDR in non-interleaved mode

The data presented is for stand-alone transfers with no other ongoing or competing traffic. All profiling is
done with the C66x CorePac Timer operating at 600 MHz.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

DSP Subsystem EDMA www.ti.com

38 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

4.1.2 DSP Subsystem EDMA Results

Table 17. DSP Subsystem EDMA 1 TC Read and Write Throughput With CorePac Timer

No. Source Destination ACNT BCNT
Size
(KB)

Ideal
Throughput

(MB/s)
Bandwidth

(MB/s)

TC
Utilization

(%)
1 EMIF 0 DDR EMIF 0 DDR 65535 128 8192 3200 2998.91 94
2 OCMC RAM0 EMIF 0 DDR 65535 4 256 3200 2540.81 79
3 EMIF 0 DDR OCMC RAM 65535 4 256 3200 2540.81 79
4 DSP L2 EMIF 0 DDR 65535 8 256 3200 2537.86 79
5 EMIF 0 DDR DSP L2 65535 4 256 3200 2585.93 81
6 IVA SL2 EMIF 0 DDR 65535 4 256 3200 1524.68 48
7 EMIF 0 DDR IVA SL2 65535 4 256 3200 1524.68 48
8 IVA SL2 DSP L2 65535 4 256 3200 1526.82 48
9 DSP L2 IVA SL2 65535 4 256 3200 1525.75 48
10 DSP L2 OCMC RAM 65535 4 256 3200 2537.86 79
11 OCMC RAM DSP L2 65535 4 256 3200 2592.06 81
12 PRUSS1 IRAM EMIF 0 DDR 1024 12 12 800 319.22 40
13 EMIF 0 DDR PRUSS1 IRAM 1024 12 12 800 318.23 40
14 PRUSS1 DRAM0 EMIF 0 DDR 1024 8 8 800 333.37 42
15 EMIF 0 DDR PRUSS1 DRAM0 1024 8 8 800 332.56 42
16 PRUSS1 DRAM1 EMIF 0 DDR 1024 8 8 800 333.37 42
17 EMIF 0 DDR PRUSS1 DRAM1 1024 8 8 800 333.37 42
18 PRUSS2 IRAM EMIF 0 DDR 1024 8 8 800 313.36 39
19 EMIF 0 DDR PRUSS2 IRAM 1024 8 8 800 312.41 39
20 PRUSS2 DRAM0 EMIF 0 DDR 1024 12 12 800 319.33 40
21 EMIF 0 DDR PRUSS2 DRAM0 1024 12 12 800 317.85 40
22 PRUSS2 DRAM1 EMIF 0 DDR 1024 8 8 800 326.72 41
23 EMIF 0 DDR PRUSS2 DRAM1 1024 8 8 800 326.72 41
24 PRUSS2 DRAM2 EMIF 0 DDR 1024 32 32 800 326.92 41
25 EMIF 0 DDR PRUSS2 DRAM2 1024 32 32 800 326.33 41

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com DSP Subsystem EDMA

39SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 18. DSP Subsystem EDMA 1 TC Read and Write Throughput With L3 Statistic Collectors

No. Source Destination ACNT BCNT
Size
(KB)

Ideal
Throughput

(MB/s)
Bandwidth

(MB/s)

TC
Utilization

(%)
1 EMIF 0 DDR EMIF 0 DDR 65535 128 8192 3200 3100 97
2 OCMC RAM EMIF 0 DDR 65535 4 256 3200 2700 84
3 EMIF 0 DDR OCMC RAM 65535 4 256 3200 2900 91
4 DSP L2 EMIF 0 DDR 65535 8 256 3200 2760 86
5 EMIF 0 DDR DSP L2 65535 4 256 3200 2950 92
6 IVA SL2 EMIF 0 DDR 65535 4 256 3200 1610 50
7 EMIF 0 DDR IVA SL2 65535 4 256 3200 1600 50
8 IVA SL2 DSP L2 65535 4 256 3200 1600 50
9 DSP L2 IVA SL2 65535 4 256 3200 1610 50
10 DSP L2 OCMC RAM 65535 4 256 3200 2660 83
11 OCMC RAM DSP L2 65535 4 256 3200 2710 85
12 PRUSS1 IRAM EMIF 0 DDR 1024 12 12 800 320 40
13 EMIF 0 DDR PRUSS1 IRAM 1024 12 12 800 320 40
14 PRUSS1 DRAM0 EMIF 0 DDR 1024 8 8 800 320 40
15 EMIF 0 DDR PRUSS1 DRAM0 1024 8 8 800 320 40
16 PRUSS1 DRAM1 EMIF 0 DDR 1024 8 8 800 320 40
17 EMIF 0 DDR PRUSS1 DRAM1 1024 8 8 800 320 40
18 PRUSS2 IRAM EMIF 0 DDR 1024 8 8 800 320 40
19 EMIF 0 DDR PRUSS2 IRAM 1024 8 8 800 320 40
20 PRUSS2 DRAM0 EMIF 0 DDR 1024 12 12 800 320 40
21 EMIF 0 DDR PRUSS2 DRAM0 1024 12 12 800 320 40
22 PRUSS2 DRAM1 EMIF 0 DDR 1024 8 8 800 320 40
23 EMIF 0 DDR PRUSS2 DRAM1 1024 8 8 800 320 40
24 PRUSS2 DRAM2 EMIF 0 DDR 1024 32 32 800 320 40
25 EMIF 0 DDR PRUSS2 DRAM2 1024 32 32 800 320 40

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

DSP Subsystem EDMA www.ti.com

40 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 19. DSP Subsystem EDMA 2 TC Read and Write Throughput With CorePac Timer

No. Source Destination ACNT BCNT
Size
(KB)

Ideal
Throughput

(MB/s)
Bandwidth

(MB/s)

TC
Utilization

(%)
1 EMIF 0 DDR EMIF 0 DDR 65535 128 8192 3200 2728.92 85
2 OCMC RAM EMIF 0 DDR 65535 4 256

3200 2678.6 84
3 EMIF 0 DDR OCMC RAM 65535 4 256
4 DSP L2 EMIF 0 DDR 65535 4 256

3200 3006 94
5 EMIF 0 DDR DSP L2 65535 4 256
6 IVA SL2 EMIF 0 DDR 65535 4 256

3200 1527.81 48
7 EMIF 0 DDR IVA SL2 65535 4 256
8 IVA SL2 DSP L2 65535 4 256

3200 1529.86 48
9 DSP L2 IVA SL2 65535 4 256

10 DSP L2 OCMC RAM 65535 4 256
3200 3009.75 94

11 OCMC RAM DSP L2 65535 4 256
12 PRUSS1 IRAM EMIF 0 DDR 1024 12 12

800 322.56 40
13 EMIF 0 DDR PRUSS1 IRAM 1024 12 12
14 PRUSS1 DRAM0 EMIF 0 DDR 1024 8 8

800 338.8 42
15 EMIF 0 DDR PRUSS1 DRAM0 1024 8 8
16 PRUSS1 DRAM1 EMIF 0 DDR 1024 8 8

800 338.8 42
17 EMIF 0 DDR PRUSS1 DRAM1 1024 8 8
18 PRUSS2 IRAM EMIF 0 DDR 1024 8 8

800 316.12 40
19 EMIF 0 DDR PRUSS2 IRAM 1024 8 8
20 PRUSS2 DRAM0 EMIF 0 DDR 1024 12 12

800 322.69 40
21 EMIF 0 DDR PRUSS2 DRAM0 1024 12 12
22 PRUSS2 DRAM1 EMIF 0 DDR 1024 8 8

800 327.8 41
23 EMIF 0 DDR PRUSS2 DRAM1 1024 8 8
24 PRUSS2 DRAM2 EMIF 0 DDR 1024 32 32

800 327.89 41
25 EMIF 0 DDR PRUSS2 DRAM2 1024 32 32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com DSP Subsystem EDMA

41SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 20. DSP Subsystem EDMA 2 TC Read and Write Throughput With L3 Statistic Collectors

No. Source Destination ACNT BCNT
Size
(KB)

Ideal
Throughput

(MB/s)
Bandwidth

(MB/s)

TC
Utilization

(%)
1 EMIF 0 DDR EMIF 0 DDR 65535 128 8192 3200 2690 84
2 OCMC RAM EMIF 0 DDR 65535 4 256

3200 2870 90
3 EMIF 0 DDR OCMC RAM 65535 4 256
4 DSP L2 EMIF 0 DDR 65535 4 256

3200 3050 95
5 EMIF 0 DDR DSP L2 65535 4 256
6 IVA SL2 EMIF 0 DDR 65535 4 256

3200 1600 50
7 EMIF 0 DDR IVA SL2 65535 4 256
8 IVA SL2 DSP L2 65535 4 256

3200 1610 50
9 DSP L2 IVA SL2 65535 4 256
10 DSP L2 OCMC RAM 65535 4 256

3200 3050 95
11 OCMC RAM DSP L2 65535 4 256
12 PRUSS1 IRAM EMIF 0 DDR 1024 12 12

800 340 43
13 EMIF 0 DDR PRUSS1 IRAM 1024 12 12
14 PRUSS1 DRAM0 EMIF 0 DDR 1024 8 8

800 340 43
15 EMIF 0 DDR PRUSS1 DRAM0 1024 8 8
16 PRUSS1 DRAM1 EMIF 0 DDR 1024 8 8

800 340 43
17 EMIF 0 DDR PRUSS1 DRAM1 1024 8 8
18 PRUSS2 IRAM EMIF 0 DDR 1024 8 8

800 340 43
19 EMIF 0 DDR PRUSS2 IRAM 1024 8 8
20 PRUSS2 DRAM0 EMIF 0 DDR 1024 12 12

800 340 43
21 EMIF 0 DDR PRUSS2 DRAM0 1024 12 12
22 PRUSS2 DRAM1 EMIF 0 DDR 1024 8 8

800 340 43
23 EMIF 0 DDR PRUSS2 DRAM1 1024 8 8
24 PRUSS2 DRAM2 EMIF 0 DDR 1024 32 32

800 340 43
25 EMIF 0 DDR PRUSS2 DRAM2 1024 32 32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

128

128

128

128

Write Status

Write Status

TPTC1

Completion
Lookup

TPTC0

Configuration
Port

empty0

Completion
Interface

Completion
Interface

Configuration
Port

empty1

Empty[1:0]

TPCC
Configuration

Interface

Source Active
Reg

D
M

A
P

ro
g
 R

e
g

Channel FIFO

Dst FIFO Reg

Read
Interface

Write
Interface

DSP Subsystem EDMA www.ti.com

42 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

4.2 DSP Subsystem EDMA Observations

NOTE: On the TDA2xx and TDA2ex device, all DSP subsystem transfer controllers yield identical
performance for all transfer scenarios because both TC have the same configuration, and
most importantly the same FIFOSIZE for a given burst size.

EDMA channel parameters allow many different transfer configurations. Typical transfer configurations
result in transfer controllers bursting the read write data in default burst size chunks, thereby, keeping the
busses fully utilized. However, in some configurations, the TC issues less than optimally sized read/write
commands (less than default burst size), reducing performance. To properly design a system, it is
important to know which configurations offer the best performance for high-speed operations.

On TDA2xx and TDA2ex, there are two transfer controllers to move data between slave end points. The
default configuration for the transfer controllers is shown in Table 21.

Table 21. Default Configuration for the Transfer Controllers

Name Description TC0 TC1
TCCFG[2:0] FIFOSIZE Channel FIFO Size 1024 Bytes 1024 Bytes

TCCFG[5:4] BUSWIDTH Data Transfer Bus Width 16 Bytes 16 Bytes
TCCFG[9:8] DSTREGDEPTH Destination Register Depth 4 entries 4 entries

DBS (Default Burst Size) Size of each data burst Configurable Configurable

The individual TC performance for paging/memory to memory transfers is essentially dictated by the TC
configuration. In most scenarios, the FIFOSIZE and default burst size configuration for the TC have the
most significant impact on the TC performance; the BUSWIDTH configuration is dependent on the device
architecture and the DSTREGDEPTH values impact the number of in-flight transfers.

Figure 15. DSP EDMA Third-party Transfer Controller (EDMA_TPTC) Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com DSP Subsystem EDMA

43SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The default burst size (DBS) can be controlled with the C66x_OSS_BUS_CONFIG register in the TDA2xx
and TDA2ex DSP Subsystem OCP Registers, as shown in Table 22.

Table 22. C66x_OSS_BUS_CONFIG

Address offset 0x0000 0014
Physical Address 0x1D0 0014 (DSP View) Instance C66x_OCP_REGISTERS
Description Bus Configuration
Type RW

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
E

S
E

R
V

E
D

SDMA_PRI

R
E

S
E

R
V

E
D

N
O

P
O

S
TO

V
E

R
R

ID
E

R
E

S
E

R
V

E
D

S
D

M
A

_L
2P

R
E

S

R
E

S
E

R
V

E
D

C
FG

_L
2P

R
E

S

R
E

S
E

R
V

E
D

TC
1_

L2
P

R
E

S

R
E

S
E

R
V

E
D

TC
0_

L2
P

R
E

S

R
E

S
E

R
V

E
D

TC
1_

D
B

S

R
E

S
E

R
V

E
D

TC
0_

D
B

S

Bits Field Name Description Type Reset
31 RESERVED Reserved R 0x0

30:28 SDMA_PRI Sets the CBA/VBusM Priority for the CGEM SDMA port. Can
typically be left at default value.

R 0x4

27:25 RESERVED Reserved R 0x0
24 NOPOSTOVERRIDE Non-Posted writes setting RW 0x1

23:22 RESERVED Reserved R 0x0
21:20 SDMA_L2PRES OCP Slave port L2 interconnect pressure driven on ocp mflag to

control arbitration within the L2 interconnect
RW 0x0

19:18 RESERVED Reserved R 0x0
17:16 CFG_L2PRES CGEM CFG L2 interconnect pressure driven on ocp mflag to control

arbitration within the L2 interconnect
RW 0x0

15:14 RESERVED Reserved R 0x0
13:12 TC1_L2PRES TC1 L2 interconnect pressure driven on ocp mflag to control

arbitration within the L2 interconnect
RW 0x0

11:10 RESERVED Reserved R 0x0
9:8 TC0_L2PRES TC0 L2 interconnect pressure driven on ocp mflag to control

arbitration within the L2 interconnect
RW 0x0

7:6 RESERVED Reserved R 0x0
5:4 TC1_DBS TC1 Default Burst size setting RW 0x3
3:2 RESERVED Reserved R 0x0
1:0 TC0_DBS TC0 Default Burst size setting RW 0x3

The TC read and write controllers in conjunction with the source and destination register sets are
responsible for issuing optimally-sized reads and writes to the slave endpoints. An optimally-sized
command is defined by the transfer controller default burst size (DBS).

The EDMA_TPTC attempts to issue the largest possible command size as limited by the DBS value or the
ABCNT_n[15:0] ACNT and ABCNT_n[31:16] BCNT value of the TR. EDMA_TPTC obeys the following
rules: The read/write controllers always issue commands less than or equal to the DBS value. The first
command of a 1D transfer command always aligns the address of subsequent commands to the DBS
value.

Table 23 lists the TR segmentation rules that are followed by the EDMA_TPTC. In summary, if the
ABCNT_n[15:0] ACNT value is larger than the DBS value, then the EDMA_TPTC breaks the
ABCNT_n[15:0] ACNT array into DBS-sized commands to the source/destination addresses. Each
ABCNT_n[31:16] BCNT number of arrays are then serviced in succession.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

DSP Subsystem EDMA www.ti.com

44 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

For BCNT arrays of ACNT bytes (that is, a 2D transfer), if the ABCNT_n[15:0] ACNT value is less than or
equal to the DBS value, then the TR may be optimized into a 1D-transfer in order to maximize efficiency.
The optimization takes place if the EDMA_TPTC recognizes that the 2D-transfer is organized as a single
dimension (ABCNT_n[15:0] ACNT == BIDX_n) and the ACNT value is a power of 2.

Table 23. DSP EDMA TC Optimization Rules

ACNT ≤ DBS ACNT is Power of 2 BIDX = ACNT BCNT ≤ 1023
SAM/DAM =
Increment Description

Yes Yes Yes Yes Yes Optimized
No X X X X Not Optimized
X No X X X Not Optimized
X X No X X Not Optimized
X X X No X Not Optimized
X X X X No Not Optimized

In summary, Table 24 lists the factors that affect the EDMA performance.

Table 24. Factors Affecting System EDMA Performance

Factors Impact General Recommendation
Source/Destination Memory The transfer speed depends on SRC/DST

memory bandwidth.
Know the nature of the source and destination
memory, specifically the frequency of operation
and the bus width.

Transfer Size Throughput is less for small transfers due to
transfer overhead/latency.

Configure EDMA for larger transfer size as
throughput, small transfer size is dominated by
transfer overhead.

A-Sync/AB-Sync Performance depends on the number of TRs
(Transfer Requests). More TRs would mean
more overhead.

Using AB-Sync transfers gives better performance
than chaining A-Sync transfers.

Source/Destination Bidx Optimization will not be done if BIDX is not
equal to ACNT value optimization
guidelines.

Whenever possible, follow the EDMA TC
optimization guidelines. See the TPTC spec for
optimization details.

Queue TC Usage Performance is the same for both TCs. Both TCs have the same configuration and show
the same performance.

Burst Size Decides the largest possible read/write
command submission by TC.

The default burst size for all transfer controllers is
128 bytes. This also results in most efficient
transfers/throughput in most memory-to-memory
transfer scenarios.

Source/Destination Alignment Slight performance degradation if
source/destination are not aligned to Default
Burst Size (DBS) boundaries.

For smaller transfers, as much as possible,
source and destination addresses should be
aligned across DBS boundaries.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

2

EDMA

CCTC1 TC0

ARP32

P D

P$

OCP High Performance
Interconnect

VCOP

W IHIL

MMU0MMU1

Custom
Memory
Switch

SM SM SM SM SM

DMEM WBuf IBuf
LA

IBuf
LB

IBuf
HA

IBuf
HB

MMR reset
clk(s)
int_o/int_i/gp signalsReset/CLK

Interrupts

SCTM
SMSET

Mailbox

OCP Init
Debug port

CFG Interconnect

Interconnect
Init1

Interconnect
Init0

Interconnect
Target Port

EVE

R W R W

Legend:

CLK/1

CLK/2

32b OCP

128b OCP
Custom
Memory

eve-001

www.ti.com Embedded Vision Engine (EVE) Subsystem EDMA

45SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

5 Embedded Vision Engine (EVE) Subsystem EDMA

NOTE: This section is not applicable to TDA2ex.

The Embedded Vision Engine (EVE) module, Figure 16, is a programmable imaging and vision processing
engine, intended to be used in devices that serves consumer electronics imaging and vision applications.
The EVE Module consists of an ARP32 scalar core and a VCOP vector core and DMA controller.

Figure 16. EVE Subsystem Block Diagram and Subsystem Clocking Architecture

The ARP32 scalar core plays the role of the subsystem controller, coordinating internal EVE interaction
(VCOP, EDMA), as well as interaction with the host processor (ARM typically) and DSP (CGEM typically).
The ARP32 program memory is serviced via a dedicated direct-mapped program cache. Data memory
accesses are typically serviced by tightly coupled DMEM block though ARP32 is able to access other
memory blocks as well as both internal and external MMRs. The Vector Coprocessor (VCOP) is a SIMD
engine with built-in loop control and address generation. The EDMA block is the local DMA, and is used to
transfer data between system memories (typically SDRAM, and/or L3 SRAM) and internal EVE memories.

The OCP interconnect is conceptually broken into two categories: OCP high performance interconnect
and OCP configuration interconnect. The OCP high performance interconnect serves as the primary high
bandwidth (partial) crossbar connection between the EDMA, ARP32, DMA OCP Init/Target busses and
the EVE Memories. The OCP CFG interconnect provides connectivity to the various MMRs located within
EVE.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

EDMA Controller

To/from
EDMA

Programmer

DMA/QDMA
Channel

Logic

Event
Queues

PaRAM
Transfer
Request

Submission

Transfer
Controllers

TPTC0

TR
R/W

Completion

IRQ

MMR
Access

EDMA_TC0_IRQ_ERR

Read/Write
Commands
and Data

TPTC1

TR
R/W

Completion

IRQ

MMR
Access

EDMA_TC1_IRQ_ERR

Read/Write
Commands
and Data

EDMA_TPCC_IRQ_ERR Completion
and Error
Interrupt

Logic

Completion
DetectionEDMA_TPCC_IRQ_REGION[7:0]

EDMA_TPCC_IRQ_MP

Embedded Vision Engine (EVE) Subsystem EDMA www.ti.com

46 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

This section provides a throughput analysis of the EVE EDMA. The enhanced direct memory access
module, also called EDMA, performs high-performance data transfers between two slave points, memories
and peripheral devices without ARP32 support during transfer. EDMA transfer is programmed through a
logical EDMA channel, which allows the transfer to be optimally tailored to the requirements of the
application. The EDMA can also perform transfers between external memories and between device
subsystems internal memories, with some performance loss caused by resource sharing between the read
and write ports.

The EDMA controller block diagram is shown in Figure 17. The EDMA controller is based on two major
principal blocks:
• EDMA third-party channel controller (EDMA_TPCC)
• EDMA third-party transfer controller (EDMA_TPTC)

The EDMA controller’s primary purpose is to service user programmed data transfers between internal or
external memory-mapped slave endpoints. It can also be configured for servicing event driven peripherals
(such as serial ports), as well. There are 64 direct memory access (DMA) channels and 8 QDMA channels
serviced by two concurrent physical channels.

Figure 17. EVE Subsystem EDMA Controller Block Diagram

DMA channels are triggered by external event, manual write to event set register (ESR), or chained event.
QDMA are auto-triggered when write is performed to the user-programmable trigger word. Once a trigger
event is recognized, the event is queued in the programmed event queue. If two events are detected
simultaneously, then the lowest-numbered channel has highest priority. Each event in the event queue is
processed in the order it was queued. On reaching the head of the queue, the PaRAM associated with
that event is read to determine the transfer details. The transfer request (TR) submission logic evaluates
the validity of the TR and is submits a valid transfer request to the appropriate transfer controller. The
maximum theoretical bandwidth for a given transfer can be found by multiplying the width of the interface
and the frequency at which it transfers data.

The maximum speed the transfer can achieve is equal to the bandwidth of the limiting port. In general, a
given transfer scenario will never achieve maximum theoretical band width due to several factors, like
transfer overheads, access latency of source/destination memories, finite number of cycles taken by
EDMA CC and EDMA TC between the time the transfer event is registered to the time the first read
command is issued to EDMA TC. These overheads can be calibrated by looking at the time taken to do a
1 byte transfer. These factors are not excluded in these throughput measurements.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com Embedded Vision Engine (EVE) Subsystem EDMA

47SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

5.1 EVE EDMA Performance
The formulas used for the throughput calculations are:

Actual Throughput = (Transfer Size/Time Taken)

Ideal Throughput = Frequency of Limiting Port × Data Bus Width in Bytes

TC Utilization = (Actual Throughput/Ideal Throughput) × 100

5.1.1 EVE EDMA Read and Write
The common system setup for the EDMA throughput measurement is:
• EVE ARP32 clock: 266 MHz (unless specified)
• DDR clock: 532 MHz (unless specified)
• EMIF configuration
• CAS write latency – 6
• CAS latency - 7
• SDRAM Data Bus width : 32
• DDR in non-interleaved mode

The data presented is for stand-alone transfers with no other ongoing or competing traffic. All profiling has
been done with ARP32 CPU counters.

5.1.2 EVE EDMA Results

Table 25. EVE EDMA Single TC Read and Write Performance With ARP32 Counters

No. Source Destination ACNT BCNT CCNT
Transfer
Size (KB)

Ideal
Through-
put (MB/s)

Through-
put (MB/s)

TC
Utilization

(%)
1 EMIF 0 EMIF 0 65535 128 1 8192 4256 2984.86 70.13
2 EMIF 0 EMIF 1 65535 128 1 8192 4256 3298.52 77.5
3 EMIF 1 EMIF 0 65535 128 1 8192 4256 3299.09 77.52
4 EMIF 1 EMIF 1 65535 128 1 8192 4256 2986.49 70.17
5 OCMC RAM EMIF 0 65535 4 1 256 4256 3268.26 76.79
6 EMIF 0 OCMC RAM 65535 4 1 256 4256 3283.01 77.14
7 DSP L2 EMIF 0 65535 4 1 256 4256 3114.47 73.18
8 EMIF 0 DSP L2 65535 4 1 256 4256 3096 72.74
9 IVA SL2 EMIF 0 65535 4 1 256 4256 1519.59 35.7

10 EMIF 0 IVA SL2 65535 4 1 256 4256 1518.73 35.68
11 IVA SL2 DSP L2 65535 4 1 256 4256 1517.86 35.66
12 DSP L2 IVA SL2 65535 4 1 256 4256 1519 35.69
13 IBUFLA EMIF 0 8192 1 1 8 4256 2019.77 47.46
14 EMIF 0 IBUFLA 8192 1 1 8 4256 1953.18 45.89
15 IBUFHA EMIF 0 8192 1 1 8 4256 2023.79 47.55
16 EMIF 0 IBUFHA 8192 1 1 8 4256 1932.66 45.41
17 IBUFLB EMIF 0 8192 1 1 8 4256 2022.17 47.51
18 EMIF 0 IBUFLB 8192 1 1 8 4256 1932.4 45.4
19 IBUFHB EMIF 0 8192 1 1 8 4256 1994.79 46.87
20 EMIF 0 IBUFHB 8192 1 1 8 4256 1930.02 45.35
21 IBUFLA OCMC RAM 8192 1 1 8 4256 2149.98 50.52
22 OCMC RAM IBUFLA 8192 1 1 8 4256 2035.46 47.83
23 IBUFLB OCMC RAM 8192 1 1 8 4256 2140.57 50.3
24 OCMC RAM IBUFLB 8192 1 1 8 4256 2045.61 48.06

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Embedded Vision Engine (EVE) Subsystem EDMA www.ti.com

48 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 25. EVE EDMA Single TC Read and Write Performance With ARP32 Counters (continued)

No. Source Destination ACNT BCNT CCNT
Transfer
Size (KB)

Ideal
Through-
put (MB/s)

Through-
put (MB/s)

TC
Utilization

(%)
25 IBUFHA OCMC RAM 8192 1 1 8 4256 2113.56 49.66
26 OCMC RAM IBUFHA 8192 1 1 8 4256 2051.92 48.21
27 IBUFHB OCMC RAM 8192 1 1 8 4256 2130.14 50.05
28 OCMC RAM IBUFHB 8192 1 1 8 4256 2067.09 48.57
29 EVE1 IBUFHB EVE2 IBUFHB 8192 1 1 8 4256 2107.1 49.51
30 EVE2 IBUFHB EVE1 IBUFHB 8192 1 1 8 4256 2067.33 48.57
31 EVE1 IBUFHB EVE3 IBUFHB 8192 1 1 8 4256 2142.66 50.34
32 EVE3 IBUFHB EVE1 IBUFHB 8192 1 1 8 4256 2071.76 48.68
33 EVE1 IBUFHB EVE4 IBUFHB 8192 1 1 8 4256 2133.89 50.14
34 EVE4 IBUFHB EVE1 IBUFHB 8192 1 1 8 4256 2076.25 48.78

Table 26. EVE EDMA Single TC Read and Write Performance With L3 Statistic Collectors

No. Source Destination ACNT BCNT CCNT
Transfer
Size (KB)

Ideal
Through-
put (MB/s)

Through-
put (MB/s)

TC
Utilization

(%)
1 EMIF 0 EMIF 0 65535 128 1 8192 4256 3070 72
2 EMIF 0 EMIF 1 65535 128 1 8192 4256 3320 78
3 EMIF 1 EMIF 0 65535 128 1 8192 4256 3330 78
4 EMIF 1 EMIF 1 65535 128 1 8192 4256 3010 71
5 OCMC RAM EMIF 0 65535 4 1 256 4256 3280 77
6 EMIF 0 OCMC RAM 65535 4 1 256 4256 3280 77
7 DSP L2 EMIF 0 65535 4 1 256 4256 3150 74
8 EMIF 0 DSP L2 65535 4 1 256 4256 3260 77
9 IVA SL2 EMIF 0 65535 4 1 256 4256 3200 75

10 EMIF 0 IVA SL2 65535 4 1 256 4256 3200 75
11 IVA SL2 DSP L2 65535 4 1 256 4256 3200 75
12 DSP L2 IVA SL2 65535 4 1 256 4256 3200 75
13 IBUFLA EMIF 0 8192 1 1 8 4256 2750 65
14 EMIF 0 IBUFLA 8192 1 1 8 4256 2720 64
15 IBUFHA EMIF 0 8192 1 1 8 4256 2750 65
16 EMIF 0 IBUFHA 8192 1 1 8 4256 2720 64
17 IBUFLB EMIF 0 8192 1 1 8 4256 2720 64
18 EMIF 0 IBUFLB 8192 1 1 8 4256 2720 64
19 IBUFHB EMIF 0 8192 1 1 8 4256 2750 65
20 EMIF 0 IBUFHB 8192 1 1 8 4256 2720 64
21 IBUFLA OCMC RAM 8192 1 1 8 4256 2720 64
22 OCMC RAM IBUFLA 8192 1 1 8 4256 2790 66
23 IBUFLB OCMC RAM 8192 1 1 8 4256 2720 64
24 OCMC RAM IBUFLB 8192 1 1 8 4256 2790 66
25 IBUFHA OCMC RAM 8192 1 1 8 4256 2720 64
26 OCMC RAM IBUFHA 8192 1 1 8 4256 2800 66
27 IBUFHB OCMC RAM 8192 1 1 8 4256 2730 64
28 OCMC RAM IBUFHB 8192 1 1 8 4256 2800 66

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

128

128

128

128

Write Status

Write Status

TPTC1

Completion
Lookup

TPTC0

Configuration
Port

empty0

Completion
Interface

Completion
Interface

Configuration
Port

empty1

Empty[1:0]

TPCC
Configuration

Interface

Source Active
Reg

D
M

A
P

ro
g
 R

e
g

Channel FIFO

Dst FIFO Reg

Read
Interface

Write
Interface

www.ti.com Embedded Vision Engine (EVE) Subsystem EDMA

49SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

5.2 EVE EDMA Observations

NOTE: On the TDA2xx devices, both EVE transfer controllers yield identical performance for all
transfer scenarios because both TC have the same configuration, and most importantly the
same FIFOSIZE for a given burst size. The performance of the transfer controllers across
multiple instantiation of EVEs in TDA2xx is also the same.

EDMA channel parameters allow many different transfer configurations. Typical transfer configurations
result in transfer controllers bursting the read write data in default burst size chunks, thereby, keeping the
busses fully utilized. However, in some configurations, the TC issues less than optimally sized read/write
commands (less than default burst size), reducing performance. To properly design a system, it is
important to know which configurations offer the best performance for high-speed operations.

On TDA2xx, there are two transfer controllers to move data between slave end points. The default
configuration for the transfer controllers is shown in Table 27.

Table 27. EVE EDMA Configuration for the Transfer Controllers

Name Description TC0 TC1
TCCFG[2:0] FIFOSIZE Channel FIFO Size 1024 Bytes 1024 Bytes

TCCFG[5:4] BUSWIDTH Data Transfer Bus Width 16 Bytes 16 Bytes
TCCFG[9:8] DSTREGDEPTH Destination Register Depth 4 entries 4 entries

DBS (Default Burst Size) Size of each data burst Configurable Configurable

The individual TC performance for paging/memory to memory transfers is essentially dictated by the TC
configuration. In most scenarios, the FIFOSIZE and default burst size configuration for the TC have the
most significant impact on the TC performance; the BUSWIDTH configuration is dependent on the device
architecture and the DSTREGDEPTH values impact the number of in-flight transfers.

Figure 18. EVE EDMA Third-party Transfer Controller (EDMA_TPTC) Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Embedded Vision Engine (EVE) Subsystem EDMA www.ti.com

50 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The DBS can be controlled with the register EVE_BUS_CONFIG. The default burst size of 128 bytes per
burst generates the maximum TC throughput, as shown in Table 28.

Table 28. EVE_BUS_CONFIG

EVE System
Address offset

0x0000 0014

Physical Address
EVE Internal

0x4008 0014 Instance EVE_SYSTEM

Description EVE Bus Configuration
Type RW

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

TC
1_

D
B

S

R
E

S
E

R
V

E
D

TC
0_

D
B

S

R
E

S
E

R
V

E
D

D
B

P
_E

N
A

B
LE

M
A

X
_I

N
_F

LI
G

H
T

Bits Field Name Description Reset

Access
When

UNLOCKED

Access
When

LOCKED
31:14 RESERVED Reserved 0x0 R R
13:12 TC1_DBS TC1 Default Burst size setting 0x3 RW R
11:10 RESERVED Reserved 0x0 R R

9:8 TC0_DBS TC0 Default Burst size setting 0x3 RW R
7:5 RESERVED Reserved 0x0 R R
4 DBP_ENABLE Program Cache Demand Based Prefetch enable 0x1 RW R

3:0 MAX_IN_FLIGHT Defines maximum number of OCP requests in flight.
Can be reduced to limit the peak bandwidth for Software
Directed Preload, which in turn may provide advantage
to other EVE level (for example, EDMA) or system level
initiators.

0x4 RW R

The TC read and write controllers in conjunction with the source and destination register sets are
responsible for issuing optimally-sized reads and writes to the slave endpoints. An optimally-sized
command is defined by the transfer controller default burst size (DBS).

The EDMA_TPTC attempts to issue the largest possible command size as limited by the DBS value or the
ABCNT_n[15:0] ACNT and ABCNT_n[31:16] BCNT value of the TR. EDMA_TPTC obeys the following
rules: The read/write controllers always issue commands less than or equal to the DBS value. The first
command of a 1D transfer command always aligns the address of subsequent commands to the DBS
value.

Table 29 lists the TR segmentation rules that are followed by the EDMA_TPTC. In summary, if the
ABCNT_n[15:0] ACNT value is larger than the DBS value, then the EDMA_TPTC breaks the
ABCNT_n[15:0] ACNT array into DBS-sized commands to the source/destination addresses. Each
ABCNT_n[31:16] BCNT number of arrays are then serviced in succession.

For BCNT arrays of ACNT bytes (that is, a 2D transfer), if the ABCNT_n[15:0] ACNT value is less than or
equal to the DBS value, then the TR may be optimized into a 1D-transfer in order to maximize efficiency.
The optimization takes place if the EDMA_TPTC recognizes that the 2D-transfer is organized as a single
dimension (ABCNT_n[15:0] ACNT == BIDX_n) and the ACNT value is a power of 2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com Embedded Vision Engine (EVE) Subsystem EDMA

51SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 29. EVE EDMA TC Optimization Rules

ACNT ≤ DBS ACNT is Power of 2 BIDX = ACNT BCNT ≤ 1023
SAM/DAM =
Increment Description

Yes Yes Yes Yes Yes Optimized
No X X X X Not Optimized
X No X X X Not Optimized
X X No X X Not Optimized
X X X No X Not Optimized
X X X X No Not Optimized

In summary, Table 30 lists the factors that affect the EDMA performance.

Table 30. Factors Affecting EVE EDMA Performance

Factors Impact General Recommendation
Source/Destination Memory The transfer speed depends on SRC/DST

memory bandwidth.
Know the nature of the source and destination memory,
specifically the frequency of operation and the bus width.

Transfer Size Throughput is less for small transfers due to
transfer overhead/latency.

Configure EDMA for larger transfer size as throughput,
small transfer size is dominated by transfer overhead.

A-Sync/AB-Sync Performance depends on the number of
TRs (Transfer Requests). More TRs would
mean more overhead.

Using AB-Sync transfers gives better performance than
chaining A-Sync transfers.

Source/Destination Bidx Optimization will not be done if BIDX is not
equal to ACNT value optimization
guidelines.

Whenever possible, follow the EDMA TC optimization
guidelines. See the TPTC spec for optimization details.

Queue TC Usage Performance is the same for both TCs. Both TCs have the same configuration and show the
same performance.

Burst Size Decides the largest possible read/write
command submission by TC.

The default burst size for all transfer controllers is 128
bytes. This also results in most efficient
transfers/throughput in most memory-to-memory transfer
scenarios.

Source/Destination Alignment Slight performance degradation if
source/destination are not aligned to Default
Burst Size (DBS) boundaries.

For smaller transfers, as much as possible, source and
destination addresses should be aligned across DBS
boundaries.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Device

MMU0

DSP_EDMA

L3_MAIN interconnect

dspss-001

TMS320C66x
CPU

L1P
memory
controller

L1D
memory
controller

L2
memory
controller

XMC EMC

b
y
p
a
s
s

CPU
Master

DSP_NoC
(L2 Interconnect)

MMU1

L3
Slave

CC

TPTC0 TPTC1

R W R W

SYS
wakeup

logic

CFG
Master

Internal
interrupts

External
Interrupts

Wakeup to PRCM

Ext.
DMA EventsSDMAMDMA CFG

SYS
Control

Clocks, (CPU, L3)
POR
Warm Reset
Retention Reset
Local Reset
Master standby/Slave idle and
Other PRCM
protocols

Debug I/F

DMA
Master

L1P
SRAM/
cache

L1D
SRAM/
cache

DSP
Interrupt
controller

DSP
Power-down

controller

64

64

Debug &
Trace
Logic

128 128 32

128

Device
DMA

Crossbar

128 Device
Interrupt
Crossbar

L2
SRAM/
cache

L2
SRAM
only

TMS320C66x DSP CorePac
TM DSP subsystem

(A)

DSP CPU www.ti.com

52 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

6 DSP CPU
C66x CorePac is the name used to designate the hardware that includes the following components:
TMS320C66x DSP, Level 1 program (L1P) memory controller, Level 1 data (L1D) memory controller,
Level 2 (L2) memory controller, Internal DMA (IDMA), external memory controller (EMC), extended
memory controller (XMC), bandwidth management (BWM), interrupt controller (INTC) and power down
controller (PDC).

The TMS320C66x DSP CorePac memory components include:
• A 32-KiB L1 program memory (L1P) configurable as cache and / or SRAM. When configured as a

cache, the L1P is a 1-way set-associative cache with a 32-byte cache line
• A 32-KiB L1 data memory (L1D) configurable as cache and / or SRAM. When configured as a cache,

the L1D is a 2-way set-associative cache with a 64-byte cache line
• A 288-KiB (program and data) L2 memory, only part of which is cacheable. When configured as a

cache, the L2 memory is a 4-way set associative cache with a 128-byte cache line. Only 256 KiB of L2
memory can be configured as cache or SRAM. 32 KiB of the L2 memory is always mapped as SRAM.

The C66x DSP CorePac block in the DSP subsystem is shown in Figure 19.

A This diagram shows a single DSP instance. Each device may have one or two identical DSP instances. For more
information, see the device-specific data manual.

Figure 19. DSP Subsystem Block Diagram and Clocking Structure

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com DSP CPU

53SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

This section describes the DSP CPU read-write performance with no other traffic in the system. The three
operations that the bandwidth is measured for are: a pipelined copy from source to destination buffer,
pipeline read from the source buffer and pipelined write to the destination buffer. The CPU data path in the
DSP Subsystem is from the CorePac XMC to the WC, optionally through the MMU0 and out of the DSP
subsystem through the MDMA port.

6.1 DSP CPU Performance
The formulas used for the throughput calculations are:

Actual Throughput = (Transfer Size/Time Taken)

Ideal Throughput = Frequency of Limiting Port × Data Bus Width in Bytes

TC Utilization = (Actual Throughput/Ideal Throughput) × 100

6.1.1 DSP CPU Read and Write
The common system setup for the DSP CPU Read and Write throughput measurement is:
• DSP C66x clock: 600 MHz (unless specified)
• DDR clock: 532 MHz (unless specified)
• EMIF configuration
• CAS write latency – 6
• CAS latency - 7
• SDRAM Data Bus width : 32
• DDR in non-interleaved mode

The data presented is for stand-alone transfers with no other ongoing or competing traffic. All profiling has
been done with C66x CorePac Timer operating at 600 MHz.

The theoretical bandwidth is calculated with the limiting port as the MDMA operating at 200 MHz. With this
in mind, the theoretical bandwidth is calculated as 16 Bytes × 200 MHz = 3200 MB/s.

6.1.2 Code Setup
The source and destination buffers from and to which the DSP CPU read and write throughput would be
measured are placed in the system memory (DDR/OCMC RAM). Rest of the code, stack, global variables,
constants, and so on, are placed in the L2 RAM to avoid any other traffic in the system other than the
system buffer access.

The compiler version used during the measurements is TI Code Gen Tool v7.4.4. Target processor
version is set to 6600 (-mv6600).

The pipeline copy, read and write functions are optimized with the code optimization level 3 setting (–O3)
and the space optimization of level 3 (-ms3). Additionally, all debug symbols are suppressed by setting --
symdebug:none.

In order to statically debug the loops for the iterative copy/read/write, the following compiler option was
used:
• --debug_software_pipeline or –mw: To generate verbose software pipelining information.
• --keep_asm or –k: Keep the generated assembly language (.asm) file.

The aim of the optimized code is to ensure that the two load/store engines in the C66x CPU is occupied
every cycle of the loop performing 64-bit loads or stores.

With this in mind, the following sections provide some sample codes and their disassembly to help
understand the pipeline copy, read and write functions used in the throughput measurements.

The following sections analyze the copy, read and write loops as scheduled iterations and pipelined loops.
You are encouraged to go through the following link to understand the basics of software pipelined loops
on the C6000 architecture: C6000 Compiler: Tuning Software Pipelined Loops.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A
http://processors.wiki.ti.com/index.php/C6000_Compiler:_Tuning_Software_Pipelined_Loops

DSP CPU www.ti.com

54 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

6.1.2.1 Pipeline Copy
The C code for the pipeline copy function is:
extern volatile float wrDuration;
void pipeline_copy(int byte_cnt)
{

long long *restrict dst = (long long *)ext_buf[1];
long long *restrict src = (long long *)ext_buf[0];
unsigned int wrStartTime, wrStopTime;
int i;
_nassert((int)dst == 0);
_nassert((int)src == 0);
wrStartTime = CSL_tscRead();
for (i=0; i<byte_cnt/8; i++) {

dst[i] = src[i];
}
WBINVALIDATE
wrStopTime = CSL_tscRead();
wrDuration = (float)(wrStopTime-wrStartTime)/(DSP_FREQ/1000);

}

The analysis of the scheduled iteration is given out by the compiler as:
;*--*
;* SOFTWARE PIPELINE INFORMATION
;*
;* Loop found in file : ../pipeline_loop.c
;* Loop source line : 37
;* Loop opening brace source line : 44
;* Loop closing brace source line : 46
;* Known Minimum Trip Count : 1
;* Known Max Trip Count Factor : 1
;* Loop Carried Dependency Bound(^) : 0
;* Unpartitioned Resource Bound : 1
;* Partitioned Resource Bound(*) : 1
;* Resource Partition:
;* A-side B-side
;* .L units 0 0
;* .S units 0 0
;* .D units 1* 1*
;* .M units 0 0
;* .X cross paths 0 1*
;* .T address paths 1* 1*
;* Long read paths 0 0
;* Long write paths 0 0
;* Logical ops (.LS) 0 1 (.L or .S unit)
;* Addition ops (.LSD) 0 0 (.L or .S or .D unit)
;* Bound(.L .S .LS) 0 1*
;* Bound(.L .S .D .LS .LSD) 1* 1*
;*
;* Searching for software pipeline schedule at ...
;* ii = 1 Schedule found with 7 iterations in parallel
;*--*
;* SINGLE SCHEDULED ITERATION
;*
;* CC330:
;* 0 LDDW .D1T1 *A3++,A5:A4 ; |45|
;* 1 NOP 4
;* 5 DADD .L2X 0,A5:A4,B5:B4 ; |45| Define a twin register
;* 6 STDW .D2T2 B5:B4,*B6++ ; |45|
;* || SPBR CC330
;* 7 ; BRANCHCC OCCURS {CC330} ; |37|
;*--*

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

LDDW NOP NOP NOP NOP DADD STDW

ii = 1 LDDW NOP NOP NOP NOP DADD STDW

LDDW NOP NOP NOP NOP DADD STDW

LDDW NOP NOP NOP NOP DADD STDW

Pipeline

Prologue LDDW NOP NOP NOP NOP DADD STDW

Pipeline Kernel LDDW NOP NOP NOP NOP DADD STDW

LDDW NOP NOP NOP NOP DADD STDW

7 iterations in

parallel

LDDW NOP NOP NOP NOP DADD STDW

…..

www.ti.com DSP CPU

55SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The pipeline can be viewed as in Figure 20. It can be observed that once the loop prologue (pipe up)
completes, the code would keep the two 64-bit load and store engines occupied every cycle until the loop
begins to pipe down.

Figure 20. DSP CPU Pipeline Copy Software Pipelining

6.1.2.2 Pipeline Read
The C code for the pipeline read function is:
extern volatile float wrDuration;
long long temp1, temp2, temp3, temp4;
void pipeline_read(unsigned byte_cnt)
{

long long *restrict src = (long long *)ext_buf[0];
unsigned int wrStartTime, wrStopTime;
int i;
wrStartTime = CSL_tscRead();
for (i=0; i<byte_cnt/8; i+=4)
{

temp1 = src[i];
temp2 = src[i+1];
temp3 = src[i+2];
temp4 = src[i+3];

}
wrStopTime = CSL_tscRead();
WBINVALIDATE
wrDuration = (float)(wrStopTime-wrStartTime)/(DSP_FREQ/1000);

}

The analysis of the scheduled iteration is given out by the compiler as:
;*--*
;* SOFTWARE PIPELINE INFORMATION
;*
;* Loop found in file : ../pipeline_loop.c
;* Loop source line : 59
;* Loop opening brace source line : 66
;* Loop closing brace source line : 75
;* Known Minimum Trip Count : 1
;* Known Max Trip Count Factor : 1
;* Loop Carried Dependency Bound(^) : 1
;* Unpartitioned Resource Bound : 2
;* Partitioned Resource Bound(*) : 2
;* Resource Partition:
;* A-side B-side
;* .L units 0 0
;* .S units 0 0
;* .D units 2* 2*
;* .M units 0 0
;* .X cross paths 0 1
;* .T address paths 2* 2*
;* Long read paths 0 0
;* Long write paths 0 0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

LDDW

LDDW

|| ADD LDDW

LDDW

|| MV

LDDW

LDDW

|| ADD LDDW

LDDW

|| MV

LDDW

LDDW

|| ADD LDDW

LDDW

|| MV

Pipeline Prologue ……

Pipeline Kernel

DSP CPU www.ti.com

56 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

;* Logical ops (.LS) 1 0 (.L or .S unit)
;* Addition ops (.LSD) 0 1 (.L or .S or .D unit)
;* Bound(.L .S .LS) 1 0
;* Bound(.L .S .D .LS .LSD) 1 1
;*
;* Searching for software pipeline schedule at ...
;* ii = 2 Schedule found with 2 iterations in parallel
;*--*
;* SETUP CODE
;*
;* MV A8,B8
;*
;* SINGLE SCHEDULED ITERATION
;*
;* CC201:
;* 0 LDDW .D1T1 *+A8(16),A7:A6 ; |72| ^
;* 1 LDDW .D1T1 *+A8(24),A5:A4 ; |73| ^
;* || ADD .L1 A3,A8,A8 ; ^
;* 2 LDDW .D2T2 *B8,B7:B6 ; |67| ^
;* 3 LDDW .D2T2 *+B8(8),B5:B4 ; |71| ^
;* || MV .L2X A8,B8 ; ^ Define a twin register
;* || SPBR CC201
;* 4 ; BRANCHCC OCCURS {CC201} ; |59|
;*--*

The pipeline can be viewed as in Figure 21. It can be observed that once the loop prologue (pipe up)
completes, the code would keep the two 64-bit load engines occupied every cycle until the loop begins to
pipe down.

Figure 21. DSP CPU Pipeline Read Software Pipelining

6.1.2.3 Pipeline Write
The C code for the pipeline write function is:
void pipeline_write(unsigned byte_cnt)
{

long long *restrict dst = (long long *)ext_buf[1];
unsigned int wrStartTime, wrStopTime;
int i;
_nassert((int)dst == 0);
wrStartTime = CSL_tscRead();
#pragma UNROLL(2)
for (i=0; i<byte_cnt/8; i++)
{

dst[i] = 0xDEADDEAD;
}
wrStopTime = CSL_tscRead();
WBINVALIDATE
wrDuration = (float)(wrStopTime-wrStartTime)/(DSP_FREQ/1000);

}

The analysis of the scheduled iteration is given out by the compiler as:
;*--*

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com DSP CPU

57SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

;* SOFTWARE PIPELINE INFORMATION
;*
;* Loop found in file : ../pipeline_loop.c
;* Loop source line : 89
;* Loop opening brace source line : 96
;* Loop closing brace source line : 98
;* Loop Unroll Multiple : 2x
;* Known Minimum Trip Count : 1
;* Known Max Trip Count Factor : 1
;* Loop Carried Dependency Bound(^) : 0
;* Unpartitioned Resource Bound : 1
;* Partitioned Resource Bound(*) : 1
;* Resource Partition:
;* A-side B-side
;* .L units 0 0
;* .S units 0 0
;* .D units 1* 1*
;* .M units 0 0
;* .X cross paths 0 0
;* .T address paths 1* 1*
;* Long read paths 0 0
;* Long write paths 0 0
;* Logical ops (.LS) 0 0 (.L or .S unit)
;* Addition ops (.LSD) 0 0 (.L or .S or .D unit)
;* Bound(.L .S .LS) 0 0
;* Bound(.L .S .D .LS .LSD) 1* 1*
;*
;* Searching for software pipeline schedule at ...
;* ii = 1 Schedule found with 2 iterations in parallel
;*--*
;* SETUP CODE
;*
;* MV B6,A3
;* ADD 8,A3,A3
;* MV A4,B4
;* MV A5,B5
;*
;* SINGLE SCHEDULED ITERATION
;*
;* CC94:
;* 0 STDW .D2T2 B5:B4,*B6++(16) ; |97|
;* || STDW .D1T1 A5:A4,*A3++(16) ; |97|
;* || SPBR CC94
;* 1 NOP 1
;* 2 ; BRANCHCC OCCURS {CC94} ; |89|
;*--*

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

STDW

||

STDW NOP

STDW

||

STDW NOP

STDW

||

STDW NOP

….

Pipeline Prologue

Pipeline Kernel

DSP CPU www.ti.com

58 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The pipeline can be viewed as in Figure 22. It can be observed that this code would make sure the two
store engines are occupied every cycle of the pipeline.

Figure 22. DSP CPU Pipeline Write Software Pipeline

The CGEM (C66x CorePac) L2 cache controller can get up to 4 L2 line allocations in flight. Each
allocation brings in 128 bytes. The XMC can get an additional 8 pre-fetch requests (also for 128 bytes) in
flight. In the best case, L2 + XMC can get 12 × 128 = 1.5K bytes worth of requests outstanding at once.

NOTE: In terms of bus requests, the L2 cache controller and XMC actually make 64 byte requests,
so this is actually 24 64-byte requests in the best case.

In steady state, however, this should drop to 8 × 128 = 1K bytes total in-flight, because XMC only sends
additional pre-fetches in response to pre-fetch hits. This is because, the XMC only sends new pre-fetches
in two cases: (1) on recognizing a new stream, and (2) on getting hits to an existing stream. In steady
state, there are no new streams, so you are only in case (2). In the "100% pre-fetch hit" steady state case,
the L2 misses will all hit in the XMC pre-fetch buffer and stop there, and the only traffic leaving XMC will
be additional pre-fetches. Thus, the total number of outstanding requests is limited to the total number of
outstanding pre-fetches.

To get higher performance, you would need an optimized copy loop that can get 4 L2 misses pipelined up
as much as possible, or if XMC pre-fetch is enabled, at least 4 pre-fetch streams active to maximize out
the DSP Subsystem busses. In order to emulate this behavior, the following functions were defined that
read or write the first 64-bit word of the L2 cache line of 128 bytes. Since they access only the first word of
the L2 cache line, they are named L2 Stride-Jmp Copy, L2 Stride-Jmp Read, and L2 Stride-Jmp Write,
respectively.

6.1.2.4 L2 Stride-Jmp Copy
Following is the C code for the L2 Stride-Jmp Copy function. The difference from the earlier pipeline copy
is as highlighted.
void l2_stride_jmp_copy(int byte_cnt)
{

long long *restrict dst = (long long *)ext_buf[1];
long long *restrict src = (long long *)ext_buf[0];
unsigned int wrStartTime, wrStopTime;
int i;
_nassert((int)dst == 0);
_nassert((int)src == 0);
wrStartTime = CSL_tscRead();
for (i=0; i<byte_cnt/8; i+=16)
{

dst[i] = src[i];
}
wrStopTime = CSL_tscRead();

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com DSP CPU

59SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

WBINVALIDATE
wrDuration = (float)(wrStopTime-wrStartTime)/(DSP_FREQ/1000);

}

Following is the analysis of the scheduled iteration given out by the compiler. The pipeline remains the
same as with the pipeline copy with addition of the parallel add operations with the LDDW and STDW.
;*--*
;* SOFTWARE PIPELINE INFORMATION
;*
;* Loop found in file : ../pipeline_loop.c
;* Loop source line : 37
;* Loop opening brace source line : 44
;* Loop closing brace source line : 46
;* Known Minimum Trip Count : 1
;* Known Max Trip Count Factor : 1
;* Loop Carried Dependency Bound(^) : 1
;* Unpartitioned Resource Bound : 1
;* Partitioned Resource Bound(*) : 1
;* Resource Partition:
;* A-side B-side
;* .L units 0 0
;* .S units 0 0
;* .D units 1* 1*
;* .M units 0 0
;* .X cross paths 1* 1*
;* .T address paths 1* 1*
;* Long read paths 0 0
;* Long write paths 0 0
;* Logical ops (.LS) 1 2 (.L or .S unit)
;* Addition ops (.LSD) 0 0 (.L or .S or .D unit)
;* Bound(.L .S .LS) 1* 1*
;* Bound(.L .S .D .LS .LSD) 1* 1*
;*
;* Searching for software pipeline schedule at ...
;* ii = 1 Schedule found with 7 iterations in parallel
;*--*
;* SINGLE SCHEDULED ITERATION
;*
;* CC325:
;* 0 LDDW .D1T1 *A3,A5:A4 ; |45| ^
;* || ADD .L1X B6,A3,A3 ; ^
;* 1 NOP 4
;* 5 DADD .S2X 0,A5:A4,B5:B4 ; |45| Define a twin register
;* 6 STDW .D2T2 B5:B4,*B7 ; |45| ^
;* || ADD .L2 B6,B7,B7 ; ^
;* || SPBR CC325
;* 7 ; BRANCHCC OCCURS {CC325} ; |37|
;*--*

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

LDDW || ADDK ||

LDDW || ADDK NOP

LDDW || ADDK ||

LDDW || ADDK NOP

LDDW || ADDK ||

LDDW || ADDK NOP

….

DSP CPU www.ti.com

60 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

6.1.2.5 L2 Stride-Jmp Read
Following is the C code for the L2 Stride-Jmp Read function. The difference from the earlier pipeline read
is as highlighted.
long long temp1, temp2, temp3, temp4;
void l2_stride_jmp_read(unsigned byte_cnt)
{

long long *restrict src = (long long *)ext_buf[0];
unsigned int wrStartTime, wrStopTime;
int i;
wrStartTime = CSL_tscRead();
for (i=0; i<byte_cnt/8; i+=32)
{

temp1 = src[i];
temp2 = src[i+16];

}
wrStopTime = CSL_tscRead();
WBINVALIDATE
wrDuration = (float)(wrStopTime-wrStartTime)/(DSP_FREQ/1000);

}

The pipeline can be viewed as in Figure 23. It can be observed that this code would make sure the two
load engines are occupied every cycle of the pipeline.

Figure 23. DSP CPU Pipeline L2 Stride-Jmp Read Software Pipelining

6.1.2.6 L2 Stride-Jmp Write
Following is the C code for the L2 Stride-Jmp Write function. The difference from the earlier pipeline read
is as highlighted.
void l2_stride_jmp_write(unsigned byte_cnt)
{

long long *restrict dst = (long long *)ext_buf[1];
unsigned int wrStartTime, wrStopTime;
int i;
_nassert((int)dst == 0);
wrStartTime = CSL_tscRead();
#pragma UNROLL(2)
for (i=0; i<byte_cnt/8; i+=16)
{

dst[i] = 0xDEADDEAD;
}
wrStopTime = CSL_tscRead();
WBINVALIDATE
wrDuration = (float)(wrStopTime-wrStartTime)/(DSP_FREQ/1000);

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com DSP CPU

61SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Following is the analysis of the scheduled iteration is given out by the compiler. The pipeline is the same
as the pipeline write function with the difference of additional ADD operations happening in parallel with
the two store operations.
;*--*
;* SOFTWARE PIPELINE INFORMATION
;*
;* Loop found in file : ../pipeline_loop.c
;* Loop source line : 88
;* Loop opening brace source line : 95
;* Loop closing brace source line : 97
;* Loop Unroll Multiple : 2x
;* Known Minimum Trip Count : 1
;* Known Max Trip Count Factor : 1
;* Loop Carried Dependency Bound(^) : 1
;* Unpartitioned Resource Bound : 1
;* Partitioned Resource Bound(*) : 1
;* Resource Partition:
;* A-side B-side
;* .L units 0 0
;* .S units 1* 1*
;* .D units 1* 1*
;* .M units 0 0
;* .X cross paths 0 0
;* .T address paths 1* 1*
;* Long read paths 0 0
;* Long write paths 0 0
;* Logical ops (.LS) 0 0 (.L or .S unit)
;* Addition ops (.LSD) 0 0 (.L or .S or .D unit)
;* Bound(.L .S .LS) 1* 1*
;* Bound(.L .S .D .LS .LSD) 1* 1*
;*
;* Searching for software pipeline schedule at ...
;* ii = 1 Schedule found with 2 iterations in parallel
;*--*
;* SETUP CODE
;*
;* MV A4,B4
;* MV A5,B5
;*
;* SINGLE SCHEDULED ITERATION
;*
;* CC94:
;* 0 STDW .D2T2 B5:B4,*B6 ; |96| ^
;* || ADDK .S2 256,B6 ; |96| ^
;* || STDW .D1T1 A5:A4,*A3 ; |96| ^
;* || ADDK .S1 256,A3 ; |96| ^
;* || SPBR CC94
;* 1 NOP 1
;* 2 ; BRANCHCC OCCURS {CC94} ; |88|
;*--*

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

DSP CPU www.ti.com

62 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

6.2 DSP CPU Observations
Figure 24 gives the average DSP bandwidth in MBps (y-axis) measured for the different functions
introduced above, for different data sizes of 16 KiB, 64 KiB, 128 KiB, 256 KiB, and 8 MiB (x-axis) for the
L1D and L2 cache size of 32 K and 128 K, respectively. The given bandwidth was measured with prefetch
enable, MMU off, and L1D write back policy enabled. Each cache line fetch for 128 bytes is actually two
VBUS commands for 64 bytes.

Figure 24. DSP CPU Read and Write Performance With Different Data Sizes to DDR

For a memcpy() type operation, there are both reads and writes. Furthermore, the L2 cache write-
allocates. For buffer sizes that fit entirely within L2, the traffic at the MDMA boundary will look like two
streams of reads. For buffer sizes larger than L2, there is a third stream consisting of victim writes. That’s
why the numbers start falling off as the data sizes get above 128K. The reads do not show this trend as
the cache lines do not become dirty and the cache would not perform a write back of the cache line when
the data sizes are larger than the cache line.

The L2 pipeline functions generate more L2 cache line fetches and write backs in a shorter time span
leading to a higher throughput.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com DSP CPU

63SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The L2 memory controller conveys to the XMC whether a given address range is pre-fetchable. This
information comes directly from the “PFX” field in the corresponding MAR register. Figure 25 shows the
effect of pre-fetch ON versus OFF for DDR transfers with MMU off, MDMA Posted writes and L1D write
back policy enabled. The XMC pre-fetcher does not distinguish read-allocate from write-allocate; it will try
to pre-fetch for either to speed things up as seen by the ~2x performance increase with pre-fetch ON
versus OFF for both read and write streams.

Figure 25. Impact on Prefetch Enable versus Disable on CPU Performance

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

DSP CPU www.ti.com

64 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The DSP CPU read and writes throughput varies with the source and the destination of the buffer.
Figure 26 shows the difference in bandwidth obtained when the data is transferred from DDR-to-DDR
versus OCMC RAM-to-OCMC RAM for different data transfer sizes, with pre-fetch enabled, L2 cache size
of 128K, and L1D of 32K with L1D write back policy enabled, MMU off and non-posted writes at the
MDMA boundary for cached data.

Figure 26. Impact of Source and Destination Memory on DSP CPU RD-WR Performance

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com DSP CPU

65SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

A standalone memory management unit (DSP_MMU0) is included within the DSP1 (DSP1_MMU0) and
DSP2 (DSP2_MMU0) subsystems boundaries. The DSP_MMU0 is integrated on the C66x CPU MDMA
path to the device L3_MAIN interconnect. This provides several benefits including protection of the system
memories from corruption by DSP1 and DSP2 accidental accesses. Figure 27 shows the effect of MMU
off versus MMU on, with pre-fetch enabled, L2 cache size of 128K, and L1D of 32K with L1D write back
policy enabled and posted writes at the MDMA boundary for cached data. The MMU adds to the latency in
the path leading to slight drop in the throughput. (16MB Page size in TLB)

Figure 27. Impact of MMU Enable on DSP RD-WR Performance

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

DSP CPU www.ti.com

66 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The C66x CorePac submits writes denoted as either “cacheable” or non-cacheable. Write accesses that
are non-cacheable will be submitted as interconnect (L3_MAIN) non-posted writes; whereas, write
accesses that are cacheable are submitted as interconnect posted writes based on the configuration of
the C66xOSS_BUS_CONFIG. Figure 28 gives the comparison of the posted versus non-posted writes
when measuring bandwidth of the cache flush operation while transferring data to DDR with pre-fetch
enabled, L2 cache size of 128K, and L1D of 32K with L1D write back policy enabled.

Figure 28. Impact of Posted and Non-Posted Writes on DSP Cache Flush

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com DSP CPU

67SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

6.3 Summary
Based on the observations made in Section 6.2, Table 31 lists the factors that affect the DSP CPU RD
WR performance.

Table 31. Factors Affecting DSP CPU RD-WR Performance

Factors Impact General Recommendation
Source/Destination Memory The transfer speed depends on SRC/ DST

memory bandwidth.
Know the nature of the source and
destination memory, specifically the
frequency of operation and the bus width.

Transfer Size versus Cache Size Larger data buffers written to than the
cache size introduces a L2 cache line write
back along with the L2 cache line reads at
write allocate at the MDMA port.

Expect drop in performance when the data
buffer size written to is larger than the L2
cache size.

Code Optimization The more the load and store units in the
DSP core are occupied the better will be
the CPU read and write performance.

You would need an optimized copy loop that
can get 4 L2 misses pipelined up as much
as possible, or if XMC pre-fetch is enabled,
at least 4 pre-fetch streams active to max
out the DSP Subsystem MDMA bus. Use
the compiler options and pipelined loops to
achieve this.

MAR Register Pre-fetch Enable Improves the CPU RD-WR throughput. Enable pre-fetch in the MAR register for
better CPU RD-WR throughput.

C66xOSS_BUS_CONFIG: MDMA
posted versus non-posted writes

Posted writes give better performance than
the non-posted writes.

Enable posted writes whenever you do not
expect race conditions when the data would
be read even before the memory gets
updated.

MMU Enable Enabling MMU leads to slight drop in CPU
RD-WR throughput.

MAR Register Cache ability Improves the CPU RD-WR performance
when regions are made cacheable.

Set the MAR cacheable bit for regions
accessed by the DSP CPU.

Maximizing cache line reuse Improves the CPU RD-WR performance. The same memory locations within a cached
line should be reused as often as possible.
Either the same data can be reread or new
data written to already cache locations so
that subsequent reads will hit.

Eviction of a line Avoiding eviction of a line as long as it is
being reused improves the CPU RD-WR
performance.

Stall cycles per miss Reducing the number of stall cycles per
miss improves the CPU RD-WR
performance.

This can be achieved by exploiting miss
pipelining.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Cortex-M4 (IPU) www.ti.com

68 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

7 Cortex-M4 (IPU)
IPU Subsystem, Figure 29, is the name used to designate the hardware that includes the following
components: Dual ARM Cortex-M4 CPUs, Level 1 Unicache, L1 MMU, L2 MMU, L2 ROM, L2 RAM, and
interconnect.

Main features of IPU subsystem:
• Dual Cortex-M4 cores
• Interrupt controller integrated per Cortex-M4 routing up to 80 interrupt events (external and internal)

including NMI and reset
• 32 KB L1 cache (Shared cache/Unicache) with internal AMMU for attribute and internal address

translation.
• 16 KB L2 ROM
• 64 KB L2 RAM
• L2 MMU (32 entries) at IPU L3 Master Port with Table Walking Logic
• One OCP Initiator and One OCP Target port to L3 interconnect

NOTE: The 32-bit Master ISS OCP port and ISS bridge in Figure 29 are not available in the TDA2xx
and TDA2ex class of devices.

7.1 Cortex-M4 CPU Performance

7.1.1 Cortex-M4 CPU Read and Write
The common system setup for the Cortex-M4 CPU Read and Write throughput measurement is:
• Cortex-M4 clock: 212.8 MHz
• GP timer clock: 20 MHz
• Program code running from L2 RAM
• Optimization enabled (-O3)
• Word size 32-bit/64-bit

7.1.2 Code Setup
The source and destination buffers from and to which the Cortex-M4 read and write throughput would be
measured are placed in the system memory (DDR/OCMC RAM). Rest of the code, stack, global variables,
constants, and so on, are placed in the L2 RAM to avoid any other traffic in the system other than system
buffer access.

The compiler version used during the measurements is TI Code Gen Tool v5.0.4. Target processor
version is set to Generic Cortex-M4 (-mv7M4).

The copy, read and write functions are optimized with the code optimization level 3 setting (–O3) and the
space optimization of level 3 (-ms3).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

IPUx subsystem

NVIC

IPUx_C0

NVIC

IPUx_UNICACHE Interface

IPUx_UNICACHE IPUx_UNICACHE_MMU

L2 MIF

16-KiB ROM 64-KiB banked RAM

Interrupts

L3_MAIN interconnect

C
o
n
fi
g

IP
U

x
_
W

U
G

E
N

IPUx_MMU

(Cortex-M4 core)

Config port

L2 MPORT

Bridge Bridge

IPUx_SCTM

IPUx_C1

(Cortex-M4 core)

www.ti.com Cortex-M4 (IPU)

69SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Figure 29. IPU Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Cortex-M4 (IPU) www.ti.com

70 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

7.1.3 Cortex-M4 Functions
Following are the three functions used for Cortex-M4 operations.

NOTE: The read, write, and copy functions use unrolled loops as it will generate more optimized
code. With loop unrolled, it will check for loop condition after every 128 words (read or write)
or 32 words (copy) transfer. Without loop unrolled, it will check for loop condition after each
word transfer so it will generate less optimized code.

The C code for the write function is:
void memWrite(UWORD32 DstAddr, UWORD32 transSize) {

register UWORD32 wrData = 0xA5B5C5D5;
register UWORD32 i_wr;
register volatile UWORD32* wrAddr;
wrAddr = (UWORD32 *)DstAddr;
for(i_wr=0; i_wr<transSize; i_wr+=128){

/*128 words increment */
*wrAddr++ = wrData /*word 1*/
*wrAddr++ = wrData /*word 2*/
*wrAddr++ = wrData /*word 3*/
*wrAddr++ = wrData /*word 4*/
*wrAddr++ = wrData /*word 5*/
...
...
...
*wrAddr++ = wrData /*word 127*/
*wrAddr++ = wrData /*word 128*/

}
}

The C code for the read function is:
void memRead(UWORD32 SrcAddr, UWORD32 transSize) {

register UWORD32 rdData;
register UWORD32 i_rd;
register volatile UWORD32* rdAddr;
rdAddr = (UWORD32 *)SrcAddr;
for(i_rd=0; i_rd<transSize; i_rd+=128){

/*128 words increment */
rdData = *rdAddr++ /*word 1*/
rdData = *rdAddr++ /*word 2*/
rdData = *rdAddr++ /*word 3*/
rdData = *rdAddr++ /*word 4*/
rdData = *rdAddr++ /*word 5*/
...
...
...
rdData = *rdAddr++ /*word 127*/
rdData = *rdAddr++ /*word 128*/

}
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com Cortex-M4 (IPU)

71SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The C code for the copy function is:
void memCopy(UWORD32 SrcAddr, UWORD32 DstAddr, UWORD32 transSize) {

register volatile UWORD32* rdAddr, *wrAddr;
register UWORD32 i;
rdAddr = (UWORD32 *)SrcAddr;
wrAddr = (UWORD32 *)DstAddr;
for(i=0; i<transSize; i=32){

/*32 words increment */
*wrAddr++ = *rdAddr++ /*word 1*/
*wrAddr++ = *rdAddr++ /*word 2*/
*wrAddr++ = *rdAddr++ /*word 3*/
*wrAddr++ = *rdAddr++ /*word 4*/
*wrAddr++ = *rdAddr++ /*word 5*/
...
...
...
*wrAddr++ = *rdAddr++ /*word 31*/
*wrAddr++ = *rdAddr++ /*word 32*/

}
}

7.1.4 Setup Limitations
In case of cache enabled and write back write allocate cache policy, the net amount of reads/writes to the
main memory (DDR3) will be greater or lesser than the intended data size; In this case, the performance
measurement is mostly based on the time taken for the intended size read/write/copy and not the actual
data size. GP Timer 3 is easy to use and widely used for profiling; however, this timer runs only at 20 MHz
so there will be a minor difference in the accuracy. For large transfer sizes like 4MB, the difference is
negligible.

7.2 Cortex-M4 CPU Observations
Cortex-M4 CPU write, read, and copy performance varies with the source and the destination of the
buffer. Table 32 and Table 33 show the difference between the bandwidth obtained when the data is
transferred from DDR-to-DDR versus OCMC RAM-to-OCMC RAM. OCMC RAM gives better bandwidth
performance than DDR memory.

7.2.1 Cache Disable

Table 32. IPU RD, WR, COPY Performance With Cache Disabled

Initiator/Operation Source Destination Size (KB) Bandwidth (MB/s)
M4 WR CPU Register DDR 4096 175.68
M4 RD DDR CPU Register 4096 13.98
M4 COPY DDR DDR 4096 22.38
M4 WR CPU Register OCMC 128 175.18
M4 RD OCMC CPU Register 128 28.87
M4 COPY OCMC OCMC 128 100.4

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Cortex-M4 (IPU) www.ti.com

72 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

7.2.2 Cache Enable

Table 33. IPU RD, WR, COPY Performance With Cache Enabled
(Policy: Write-Back, No Write-Allocate), 32-Bit Word Size

Initiator/Operation Source Destination Size (KB) Bandwidth (MB/s)
M4 WR CPU Register DDR 4096 268.03
M4 RD DDR CPU Register 4096 93.59
M4 COPY DDR DDR 4096 111.39
M4 WR CPU Register OCMC 128 276.12
M4 RD OCMC CPU Register 128 158.76
M4 COPY OCMC OCMC 128 177.34

Table 34. Impact of Different Cache Policies on IPU CPU Performance, 32-Bit Word Size

Initiator/
Operation Source Destination Size (KB)

Write-Back,
Write Allocate

Write-Back,
No-Write
Allocate

Write-
Through,

Write Allocate

Write-
Through,
No-Write
Allocate

M4 WR CPU Register DDR 4096 75.2 268.03 267.98 267.03
M4 RD DDR CPU Register 4096 93.48 93.59 93.15 93.61
M4 COPY DDR DDR 4096 80.56 111.39 110.44 111.42
M4 WR CPU Register OCMC 128 148.78 276.12 269.51 269.6
M4 RD OCMC CPU Register 128 158.73 158.76 155.07 158.73
M4 COPY OCMC OCMC 128 141.7 177.34 174.21 177.78

• Transfer speed depends on Cache allocation policy.
• No-Write allocate policy gives better transfer performance for write operation than Write allocate policy.

In case of write allocate policy, write miss causes cache line size written back to next level memory
and new line read into the cache. For larger data transfer, due to frequent misses it will add extra
latency and reduces transfer speed.

• Both Write-back and Write-through policies can use either of Write allocate or No-write allocate policy.
But generally paired in this way: a Write-back policy uses Write allocate, hoping for subsequent writes
to the same location, which is now cached; a Write-through policy uses No-write allocate policy, here
subsequent writes have no advantage as they still need to be written to backing store.

Table 35. Impact of Word Size Used on IPU CPU Performance
(Cache Policy: Write-Back, No-Write Allocate)

Initiator/Operation Word Size Source Destination Size (KB) Bandwidth (MB/s)
M4 WR 32 bit CPU Register DDR 4096 267.95
M4 RD 32 bit DDR CPU Register 4096 93.17
M4 COPY 32 bit DDR DDR 4096 110.42
M4 WR 64 bit CPU Register DDR 8192 179.88
M4 RD 64 bit DDR CPU Register 8192 78.09
M4 COPY 64 bit DDR DDR 8192 100.2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com Cortex-M4 (IPU)

73SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 36 shows the performance difference between with and without loop unroll. In case of without loop
unroll (when there is only one read, write, and copy operation in the loop) gives inferior performance
compared to with loop unroll as it checks for loop condition after every word transfer in case of without
loop unroll. In case of with loop unroll, it checks for loop condition only after a 128 words (write or read) or
a 32 words (copy) transfer.

Table 36. IPU RD, WR, COPY Performance With Cache Enabled
(Policy: Write-Back, No-Write Allocate), 32-Bit Word Size

Initiator/Operation Source Destination Size (KB)
Bandwidth (MB/s)
(with loop unroll)

Bandwidth (MB/s)
(without loop

unroll)
M4 WR CPU Register DDR 4096 267.76 203.08
M4 RD DDR CPU Register 4096 93.19 69.2
M4 COPY DDR DDR 4096 110.6 104.24

7.3 Summary
Based on the observations made in Section 7.2, Table 37 lists the factors that affect the IPU Cortex-M4
CPU performance.

Table 37. Factors Affecting IPU Cortex-M4 CPU Performance

Factors Impact General Recommendation
Source/Destination Memory The transfer speed depends on SRC/DST

memory bandwidth.
Know the nature of the source and destination
memory, specifically the frequency of
operation and the bus width.

Transfer Size versus Cache Size Larger data buffers written to than the cache
size introduces a cache line write back along
with the cache line reads for write allocate
cache policy.

Expect drop in performance when the data
buffer size written to is larger than the cache
size.

Cache ability Transfer speed depends on Unicache
enable/disable.

Enable Unicache to get performance boost.

Cache Policy Transfer speed depends on cache policy;
write-back versus write-through and write-
allocate versus no-write allocate.

Use write-through, no-write allocate policy to
get more transfer speed.

Maximizing cache line reuse Improves the CPU RD-WR performance. The same memory locations within a cached
line should be reused as often as possible.
Either the same data can be reread or new
data written to already cached locations so
that subsequent reads will hit.

Eviction of a line Avoiding eviction of a line as long as it is
being reused improves the CPU RD-WR
performance.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

USB IP www.ti.com

74 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

8 USB IP

8.1 Overview
SuperSpeed USB DRD subsystem has four instances in the TDA2xx and TDA2ex device:
• USB1: SuperSpeed (SS) USB 3.0 Dual-Role-Device (DRD) subsystem with integrated SS (USB3.0)

PHY and HS/FS (USB2.0) PHY
• USB2: High-Speed (HS) USB 2.0 Dual-Role-Device (DRD) subsystem with integrated HS/FS PHY
• USB3: High-Speed (HS) USB 2.0 Dual-Role-Device (DRD) subsystem with ULPI (SDR) interface to

external HS/FS PHYs
• USB4 (not available in TDA2ex): High-Speed (HS) USB 2.0 Dual-Role-Device (DRD) subsystem with

ULPI (SDR) interface to external HS/FS PHYs

SuperSpeed USB DRD subsystem has the following features:
• Dual-role-device (DRD) capability:

– Supports USB Peripheral (or Device) mode at speeds SS (5 Gbps) (USB1 only), HS (480 Mbps),
and FS (12 Mbps)

– Supports USB Host mode at speeds SS (5 Gbps) (USB1 only), HS (480 Mbps), FS (12 Mbps), and
LS (1.5 Mbps)

– USB static peripheral operation
– USB static host operation
– Flexible stream allocation
– Stream priority
– External Buffer Control

• Each USB instance contains a single xHCI controller with the following features:
– Internal DMA controller
– Descriptor caching and data prefetching
– Interrupt moderation and blocking
– Power management USB3.0 states for U0, U1, U2, and U3
– Dynamic FIFO memory allocation for all endpoints
– Supports all modes of transfers (control, bulk, interrupt, and isochronous)
– Supports high-bandwidth ISO mode

• Connects to an external charge pump for VBUS 5 V generation
• USB-HS PHY (USB2PHY1 for USB1 and USB2PHY2 for USB2): contains the USB functions, drivers,

receivers, and pads for correct D+/D– signaling
• USB3PHY. The USB3PHY is embedded in the USB1 subsystem and contains:

– USB3RX_PHY deserializer to receive data at SuperSpeed mode
– USB3TX_PHY serializer to transmit data at SuperSpeed mode
– Power sequencer that contains a power control state machine, generating the sequences to power

up/down the USB3RX_PHY/USB3TX_PHY

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com USB IP

75SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

8.2 USB IP Performance

8.2.1 Test Setup
Configuration used for the performance numbers are:
• Data Size used for calculation: Data transfer rates are 1Mbytes of data sent out 100 times in each of

the observations.
• USB frequency:

– SuperSpeed (SS):
• Data transfer/differential Port: 5 GHz
• Configuration Port : 133 MHz

– High-Speed (HS):
• Data transfer/differential Port: 480 Mbps
• Configuration Port : 133 MHz

• L3 frequency : 133 MHz of L3 clock is used to configure the USB registers.

The USB can be used in 2 different modes: Peripheral and Host mode. For these two modes, the
configuration of the test used is:
• Peripheral mode tests:

– Host PC
• Dell Precision T3600 - Xubuntu 13.10
• 2 XHCI host cards, one from NEC and one from TI
• On-board EHCI controller

– TDA2xx and TDA2ex-evm
• TDA2xx-evm running mass storage gadget with RAM backed storage for Bulk I/O tests. (Mass

storage gadget are pen drives/TDA2xx and TDA2ex-evm as Storage device in case of
Peripheral mode.)

• TDA2xx-evm running g_zero gadget for raw ISO I/O tests. (g_zero gadget is a linux usb test
peripheral driver that has source/sink capabilities for bulk and ISO transfers. Only the ISO
endpoints for the ISO throughput test are used.)

• CPU locked at 1 GHz
• Host mode tests:

– TDA2xx and TDA2ex-evm used as host
• CPU locked at 1 GHz

– Peripheral gadget
• OMAP5 µEVM running mass storage gadget with RAM backed storage for Bulk I/O tests. (Mass

storage gadget are pen drives/TDA2xx and TDA2ex-evm as Storage device in case of
Peripheral mode.)

• OMAP5 µEVM running g_zero gadget for raw ISO I/O tests. (g_zero gadget is a linux usb test
peripheral driver that has source/sink capabilities for bulk and ISO transfers. Only the ISO
endpoints for the ISO throughput test are used.)

• CPU locked at 1 GHz
For host bulk tests, uses the OMAP5 µEVM as a mass storage device. For host ISO tests, uses
the µEVM as a g_zero gadget.

Commands used for the transactions are:
• IN: dd if=/dev/sda of=/dev/null bs=1M count=100 iflag=direct
• OUT: dd if=/dev/zero of=/dev/sda bs=1M count=100 oflag=direct

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

USB IP www.ti.com

76 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

8.2.2 Results and Observations

NOTE: Data transfer rates are 1 Mbytes of data sent out 100 times in each of the observations.

Table 38. USB IP Performance

Role of
(TDA2xx and

TDA2ex) Device Type Speed Protocol Conditions

TDA2xx and TDA2ex
(MB/s)

CommentIN OUT

Host

Mass storage
with RAM
backed storage
connected

HS XHCI TDA2xx and
TDA2ex-evm
high-speed host
port (USB2)

35.6 33.6

SS XHCI TDA2xx and
TDA2ex-evm
SuperSpeed
host port (USB1)

118.2 111

Peripheral

As Mass storage
with RAM
backed storage

HS
EHCI PC 32.8 27.6
XHCI PC + NEC Card 33.3 31.3
XHCI PC + TI Card 32.2 31.3

SS
XHCI PC + NEC Card 104 71
XHCI PC + TI Card 90.2 79.1

Raw ISO
transfers

HS EHCI PC 24 24 24MB/s is
maximum
theoretical
possible
bandwidth for
ISO transfers in
HS mode

8.2.3 Summary
TDA2xx and TDA2ex performs 3x better in the SuperSpeed (SS) mode than in the High-Speed (HS)
mode, when operating as a host or as a peripheral.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com PCIe IP

77SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

9 PCIe IP

9.1 Overview
The peripheral component interconnect express (PCIe) module is a multi-lane I/O interconnect that
provides low pin count, high reliability, and high-speed data transfer at rates of up to 5.0 Gbps per lane
per direction, for serial links on backplanes and printed wiring boards. The device has two PCIe
subsystems (PCIe_SS1 and PCIe_SS2) each of which is built on a Synopsys DesignWare® core (DWC)
PCIe controller. Each of the two PCIe controllers is capable to operate either in Root Complex (RC) or in
End Point (EP) PCIe mode. PCIe_SS1 can be configured to operate in either 2-Lane (dual lane) or 1-Lane
(single lane) mode. PCIe_SS2 can only operate in 1-Lane mode.

9.2 PCIe IP Performance

9.2.1 Test Setup
The test setup consists of two TDA2xx and TDA2ex EVM (for gen1, x1 mode) PCIe ports connected by
way of a PCIe cable. 64kB of data is transferred from DDR of one TDA2xx and TDA2ex board to DDR of
the other TDA2xx and TDA2ex board (EVM-to-EVM for x1) by way of a PCIe slot/cable. The TDA2xx and
TDA2ex GP Timer of the initiator board (board initiating read/write transfer on the PCIe through the
EDMA) is used to measure the time taken for the transfer for read/write transfer and arrive at the
bandwidth measurement. The EDMA is used for the data transfer.

Configuration for the different modules is:
• PCIe configuration:

– Packet sizes: 128, 64, 32, 16 bytes
– RC and EP configurations

• EDMA configuration:
– AB cnt: a_cnt = 16k, b_cnt = 4, tptc0
– Burst sizes: 128, 64, 32, 16 bytes

• Timer Configuration:
– GP Timer 2, Clock Frequency = 22.5 MHz
– L3 clock frequency of 266 MHz

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

PCIe IP www.ti.com

78 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

9.2.2 Results and Observations

Table 39. GEN1, X1 PCIe Performance

Operation (WR/RD) Data Direction Burst Size Size (KB) Bandwidth (Mbits/s)
WR RC writing Into EP 128 bytes 65534 1510
WR RC writing Into EP 64 bytes 65534 1510
WR RC writing Into EP 32 bytes 65534 1223.06
WR RC writing Into EP 16 bytes 65534 884.02
RD RC reading from EP 128 bytes 65534 1430.35
RD RC reading from EP 64 bytes 65534 1409.83
RD RC reading from EP 32 bytes 65534 1141.04
RD RC reading from EP 16 bytes 65534 821.05
WR EP writing Into RC 128 bytes 65534 1512.32
WR EP writing Into RC 64 bytes 65534 1512.32
WR EP writing Into RC 32 bytes 65534 1223.03
WR EP writing Into RC 16 bytes 65534 883.8
RD EP reading from RC 128 bytes 65534 1430.39
RD EP reading from RC 64 bytes 65534 1409.88
RD EP reading from RC 32 bytes 65534 1140.41
RD EP reading from RC 16 bytes 65534 819.88

Table 40. GEN1, X2 PCIe Performance

Operation (WR/RD) Data Direction Burst Size Size (KB) Bandwidth (Mbits/s)
WR RC writing Into EP 128 bytes 65534 3006.14
WR RC writing Into EP 64 bytes 65534 3006.14
WR RC writing Into EP 32 bytes 65534 2427.18
WR RC writing Into EP 16 bytes 65534 1719.3
RD RC reading from EP 128 bytes 65534 2839.01
RD RC reading from EP 64 bytes 65534 2808.6
RD RC reading from EP 32 bytes 65534 2136.97
RD RC reading from EP 16 bytes 65534 1250.25
WR EP writing Into RC 128 bytes 65534 3010.75
WR EP writing Into RC 64 bytes 65534 3006.14
WR EP writing Into RC 32 bytes 65534 2431.68
WR EP writing Into RC 16 bytes 65534 1763.24
RD EP reading from RC 128 bytes 65534 2841.15
RD EP reading from RC 64 bytes 65534 2814.71
RD EP reading from RC 32 bytes 65534 2133.56
RD EP reading from RC 16 bytes 65534 1255.47

Table 41. GEN2, X1 PCIe Performance

Operation (WR/RD) Data Direction Burst Size Size (KB) Bandwidth (Mbits/s)
WR RC writing Into EP 128 bytes 65534 3013.15
WR RC writing Into EP 64 bytes 65534 3013.15
WR RC writing Into EP 32 bytes 65534 2440.82
WR RC writing Into EP 16 bytes 65534 1765.68
RD RC reading from EP 128 bytes 65534 2849.3
RD RC reading from EP 64 bytes 65534 2826.77

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com PCIe IP

79SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 41. GEN2, X1 PCIe Performance (continued)
Operation (WR/RD) Data Direction Burst Size Size (KB) Bandwidth (Mbits/s)

RD RC reading from EP 32 bytes 65534 2278.12
RD RC reading from EP 16 bytes 65534 1639.72
WR EP writing Into RC 128 bytes 65534 3013.15
WR EP writing Into RC 64 bytes 65534 3015.46
WR EP writing Into RC 32 bytes 65534 2439.31
WR EP writing Into RC 16 bytes 65534 1764.88
RD EP reading from RC 128 bytes 65534 2849.3
RD EP reading from RC 64 bytes 65534 2828.81
RD EP reading from RC 32 bytes 65534 2280.77
RD EP reading from RC 16 bytes 65534 1645.21

Table 42. GEN2, X2 PCIe Performance

Operation (WR/RD) Data Direction Burst Size Size (KB) Bandwidth (Mbits/s)
WR RC writing Into EP 128 bytes 65534 5966.86
WR RC writing Into EP 64 bytes 65534 5957.82
WR RC writing Into EP 32 bytes 65534 4824.74
WR RC writing Into EP 16 bytes 65534 3507.73
RD RC reading from EP 128 bytes 65534 5476.38
RD RC reading from EP 64 bytes 65534 5530.3
RD RC reading from EP 32 bytes 65534 3357.85
RD RC reading from EP 16 bytes 65534 1904.14
WR EP writing Into RC 128 bytes 65534 5957.82
WR EP writing Into RC 64 bytes 65534 5957.82
WR EP writing Into RC 32 bytes 65534 4830.66
WR EP writing Into RC 16 bytes 65534 3510.86
RD EP reading from RC 128 bytes 65534 5514.78
RD EP reading from RC 64 bytes 65534 5522.53
RD EP reading from RC 32 bytes 65534 3389.69
RD EP reading from RC 16 bytes 65534 1943.67

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

IVA-HD

Shared L2 interface

2x1281281281284x128

8x128

128

Master i/f

Host

SL2 i/f

32

2x1282x128

Host1

control i/f

Host2

control i/f
32

Clock, Reset, PM i/f

Debug and Test i/f

Shared L2 memory

8 banks

V
D

M
A

2x128

MailBox

32

128

IVAHD Interconnect (32-bit)

16 16 32 16 16 32 16 16 32 16 16 32 16 16 32 16 16 32

32

16 16 32

IM
E

3

SB

IP
E

3

SB

IL
F

3

SB

M
C

3

SB

C
A

L
C

3

SB

E
C

D
3

SB

IC
O

N
T

2

SB

32

128

16 16 32

IC
O

N
T

1

SB

32

Message interface (16-bit)

sysctrl

32

SMSET

Debug

master i/f

32

32 32

½ Async

bridge

½ Async

bridge

½ Async

bridge

½ Async

bridge

½ Async

bridge x2

IVA-HD IP www.ti.com

80 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

10 IVA-HD IP

10.1 Overview
HDVICP2/IVAHD is TIs second generation Video and Imaging co-processor designed to accelerate the
HD Video encoding and decoding. It is a successor to the HDVICP 1.0. Both generations support 4:2:0
Chroma formats only. HDVICP2 is sometimes referred to as IVAHD 1.0. The DM46x devices are some of
the SoCs that have HDVICP 1.0.

DM816x, DM814x, DM813x, OMAP4, and OMAP5 are some of the SoCs that have HDVICP 2.0. These
different SoCs have varying number of instances of HDVICP2 and operating frequency. For more details,
see the device-specific data sheet.

The block diagram of IVAHD is shown in Figure 30.

Figure 30. IVAHD Block Diagram

The typical process call structure for the IVAHD codecs that encodes or decodes a single frame of a
single channel of encode or decode is shown in Figure 31. The major performance probe points are:
• Process Call Start – Begin the CODEC operation.
• HDVICP2 Resource Acquire – Acquire IVAHD resource to start IVAHD operations.
• HDVICP2 Wait – M4 pre-processing completes. M4 can perform a thread switch to perform some other

operation while IVAHD performs encode or decode operations.
• HDVICP2 Done – M4 receives a completion interrupt from IVAHD and switches back to the codec

thread.
• HDVICP2 Release – M4 post processing thread releases the IVAHD resource.
• Process Call End – Completion of the frame encodes or decode operation.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com IVA-HD IP

81SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Figure 31. IVAHD Software Performance Probe Points

10.2 H.264 Decoder

10.2.1 Description
H.264 is a video compression standard from the ITU-T Video Coding Experts Group and the ISO/IEC
Moving Picture Experts Group. This H.264 Decoder is validated on IVAHD (also known as, HDVICP2) and
Media Controller (M4) based platform with code generation tools version 4.5.1.

10.2.2 Test Setup
Codec Version Used: REL.500.V.H264AVC.D.HP.IVAHDSRC.01.00.00.12

Frequencies of operation for each of the modules involved is listed in Table 43.

Table 43. IVAHD Measurement Frequency Table

IP TDA2xx and TDA2ex Si Frequency (MHz)
L3 266

EMIF 266
DDR 532

IVAHD 388.33
M4 212.8

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

IVA-HD IP www.ti.com

82 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The configuration used to measure the performance is for H.264 High Profile Universal Decoder:
Resolutions up to 1920 × 1080.

10.2.3 Test Results

Table 44. H.264 Decoder Performance Data

Stream Name Stream Properties
IVAHD (Mega Cycles per Second)

Average Peak
cabac_mot_fld0_full.264 D1 (720 × 480) Resolution, Interlaced, I,

P, and B Fields
31.2122 31.76064

bigships_p1280x720_60fps_420pl_600fr.yuv 720p Resolution, Progressive, I, P, and B
Frames

70.45614 73.5405

Shields_i1920x1080_30fps_14mbps.264 1080p Resolution, Interlaced, I, P, and B
Fields

166.9958 230.9215

10.3 MJPEG Decoder

10.3.1 Description
JPEG is an international standard for color image compression. This standard is defined in the ISO 10918-
1 JPEG Draft International Standard CCITT Recommendation T.81. It is a widely used Image compression
algorithm that uses Inverse Quantization, Inverse Discrete Cosine Transform (IDCT) coding of the residual
data and Huffman entropy coding.

10.3.2 Test Setup
The test setup used to measure frame level switch overheads leading to three categories of
measurements:
• Same Codec: When frames of the same codec (MJPEG) and same stream are decoded back to back.

The M4 MHz consumed will be the least in this case as the codec does not save and restore channel
persistent data and codec IVAHD ICONT code.

• Same Codec Type: When frames of the same codec (MJPEG) and different streams are decoded back
to back. The overheads for channel specific persistent data save and restore come into picture for this
case.

• Different Codec: When frames from different codecs are run back to back. Here, the overheads include
both channel specific persistent data save and restore and Codec ICONT code load.

The overhead in all of the cases can be observed in the M4 MHz for the Codec as shown in
Section 10.3.3.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com IVA-HD IP

83SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

10.3.3 Test Results

Table 45. MJPEG Decoder Performance Data for Same Codec

Test Cases
Output
Format

M3 Cycles / MHz

Bitrate
(Mb/s)

IVAHD
(MHz)

Process Entry
to

HDVICP Wait

HDVICPwait
to

HDVICPdone

HDVICPdone
to

Process End

Total MHz
(M3

Overhead)
crowdRun_1280x720_420.mjpeg 420SP 7196 1094578 2798 0.30 96 64
city_1280x720_420p.mjpeg 420SP 7173 1048932 2789 0.30 60 61
crowdRun_1280x720_422.mjpeg 420SP 7443 1434446 2890 0.31 109.2 83
city_1280x720_422.mjpeg 420SP 7401 1288815 2765 0.30 56.65 75

Table 46. MJPEG Decoder Performance Data for Same Codec Type

Test Cases
Output
Format

M3 Cycles / MHz

Bitrate
(Mb/s)

IVAHD
(MHz)

Process Entry
to

HDVICP Wait

HDVICPwait
to

HDVICPdone

HDVICPdone
to

Process End

Total MHz
(M3

Overhead)
crowdRun_1280x720_420.mjpeg 420SP 16254 1094656 12901 0.87 96 63
city_1280x720_420p.mjpeg 420SP 16674 1048568 12821 0.88 60 57
crowdRun_1280x720_422.mjpeg 420SP 16932 1434460 12798 0.89 109.2 81
city_1280x720_422.mjpeg 420SP 17108 1288789 13010 0.90 56.65 75

Table 47. MJPEG Decoder Performance Data for Different Codec

Test Cases
Output
Format

M3 Cycles / MHz

Bitrate
(Mb/s)

IVAHD
(MHz)

Process Entry
to

HDVICP Wait

HDVICPwait
to

HDVICPdone

HDVICPdone
to

Process End

Total MHz
(M3

Overhead)
crowdRun_1280x720_420.mjpeg 420SP 34126 1094590 14107 1.45 96 63
city_1280x720_420p.mjpeg 420SP 33921 1048978 14239 1.45 60 57
crowdRun_1280x720_422.mjpeg 420SP 34201 1434501 13997 1.45 109.2 81
city_1280x720_422.mjpeg 420SP 34153 1288954 14076 1.45 56.65 75

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

MMC IP www.ti.com

84 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

11 MMC IP

11.1 MMC Read and Write Performance

11.1.1 Test Description
MMC1: Full SD Extreme Pro card from SanDisk [SanDisk Extreme Pro SDHC I U1 C10 8GB (SDR104
capable)]

MMC2: eMMC capable of HS200 [Device Micron MTFC8GLWDM-3M AIT Z (HS-200 capable eMMC
device)]

MMC1: always 4-bit mode by design

MMC2: could be 4-bit or 8-bit

SDR: Single Data Rate

DDR: Double Data Rate

The MMC, in general, has ideal READ throughput only; for WRITE, the throughput would be much less
than READ as write is limited by flash write performance of card.

The test used would be to WRITE and READ 100 MB of data from MMC1 to Full SD card (MMC2 to
eMMC). MMC ADMA has been used to perform the transfers in the data shown in Table 48. It has been
found that using the MMC SDMA does not give any advantage in terms of bare metal MMC throughput
but does give an advantage in the programming of DMA due to the number of descriptors that can be
programmed and the chaining possible between them.

11.1.2 Test Results

Table 48. MMC Read and Write Throughput

Operation Frequency (MHz) Mode
Throughput (MB/s)

Ideal RD
Throughput (MB/s)

Actual RD
Throughput (MB/s)

Actual WR
MMC2 48 DDR mode 8-bit 96 81.2 36.1
MMC2 48 DDR mode 4-bit 48 43.1 30.1
MMC2 48 SDR mode 8-bit 48 43.1 30.2
MMC2 48 SDR mode 4-bit 24 22.2 19.7
MMC1 96 SDR mode 4-bit 48 44.4 38
MMC2 192 SDR mode 4-bit 96 87 37 (1)
MMC2 192 SDR mode 8-bit 192 162 40 (1)
MMC2 96 SDR mode 4-bit 48 44 31 (1)
MMC2 96 SDR mode 8-bit 96 85 37 (1)
MMC1 192 SDR mode 4-bit 96 89 77 (1)

(1) The speeds of write operation are applicable only to TDA2xx SR2.0. For more information, see the TDA2x SoC for Advanced
Driver Assistance Systems (ADAS) Silicon Revision 2.0, 1.x Silicon Errata (SPRZ397).

11.2 Summary
eMMC sequential WRITE throughput from the data sheet is 15 MB/s in 192-MHz 8-bit mode, whereas,
you can see approximately 40 MB/s, which means that more than nominal throughput (mentioned in the
data sheet) was achieved.

eMMC sequential READ throughput from the data sheet is 160 MB/s in 192-MHz 8-bit mode, whereas,
you can see approximately162 MB/s, which means that more than nominal throughput (mentioned in the
data sheet) was achieved.

From the results, the READ and WRITE throughputs are matching to the expectations.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com SATA IP

85SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

12 SATA IP
The SATA controller complies to the Serial ATA Standard Specification (revision 2.6) and Serial ATA
Advanced Host Controller Interface Specification (AHCI) revision 1.1. The AHCI-based SATA host
controller supports both Gen1/2 speeds: 1.5 Gbps (SATA-1) and 3 Gbps (SATA-2).

12.1 SATA Read and Write Performance

12.1.1 Test Setup
SATA performance measurements were done in both RAW mode and using the file system in Linux.

12.1.2 Observations

12.1.2.1 RAW Performance
With SATA in GEN2 mode, the standalone RAM performance for Reads and Writes to a SanDisk iSSD
device are:
• Read performance data: 273 MB/s
• Write performance data: 105 MB/s

12.1.2.2 SDK Performance
Seagate ST3500514NB SATA-II drive is used to measure the performance data in Table 49.

Table 49. SATA - File System Performance

File System
Total Bytes

Transferred (MBytes)
TDA2xx and TDA2ex

Read (MB/s) Write (MB/s)
Ext2 1000 133 100
Ext4 1000 129 117
VFat 1000 134 90

12.2 Summary
Lower write performance using SATA iSSD is mainly attributed to the slower flash write speed of the iSSD
device. There is no restriction from the TDA2xx and TDA2ex SoC to attain full write speed as specified in
the SATA specification.

When using HDD and the file system, it is observed that there is marginal lower SATA write performance
than read performance. This is as expected as the HDD drive write has higher seek time than reads and
other file system write overheads.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

GMAC IP www.ti.com

86 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

13 GMAC IP
The three-port gigabit Ethernet switch subsystem (GMAC_SW) provides Ethernet packet communication
and can be configured as an Ethernet switch. It provides the media independent interface (MII), reduced
gigabit media independent interface (RGMII), reduced media independent interface (RMII) and the
management data input output (MDIO) for physical layer device (PHY) management.

GMAC sub-system in TDA2xx and TDA2ex supports the following features:
• Two Ethernet ports (port 1 and port 2) plus internal CPPI on port 0
• Synchronous 10/100/1000 Mbit operation
• Wire rate switching (802.1d)
• Internal DMA controller
• Support for Audio/Video Bridging (P802.1Qav/D6.0)
• Energy Efficient Ethernet (EEE) support (802.3az)
• Reset isolation (switch function remains active even in case of all device resets except for POR pin

reset and ICEPICK cold reset)
• Static Packet Filter(SPF)

13.1 GMAC Receive/Transmit Performance

13.1.1 Test Setup
• All benchmarking tests run from Cortex-M4 CPU (IPU) (Frequency: 212 MHz and unicache enabled).
• DDR3 Clock : 532 MHz
• L3 Frequency : 266 MHz
• Throughput is in Mbps and data size in bytes
• Throughput measured without any application stack running. Throughput numbers are collected with

AVV bare metal tests without any application stack or actual TCP/IP network connected.
• GMAC subsystem is configured in RGMII 1000 Mbps mode
• Data Transfer path for performance measurements is as shown below:

– Transmit and Receive throughput set up: This test set up involves GMAC port1 transmitting data
that is looped back on GMAC port2. Channel 0 of 8-channel CPDMA used for receive and channel
7 used for transmit. Single EVM was used for test.

Figure 32. Tx/Rx Throughput Measurement Set Up

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com GMAC IP

87SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

– Transmit only and Receive only performance set up: two TDA2xx EVMs were connected back-to-
back to measure Tx only and Rx only performances. On one EVM transmit throughput was
measured, while on other receive throughput was measured.

Figure 33. Tx only and Rx Only Throughput Measurement Set Up

13.1.2 Test Description

13.1.2.1 CPPI Buffer Descriptors
The buffer descriptor is a central part of the GMAC_SW Ethernet Subsystem and is how the application
software describes Ethernet packets to be sent and empty buffers to be filled with incoming packet data.
The TDA2xx and TDA2ex GMAC subsystem contains 8KB internal CPPI RAM for buffer descriptor
storage, which can be shared for receive and transmit transfer however the application software intends.
GMAC also supports using SRAM and DDR memory for buffer descriptors. In throughput measurement
tests, all three memories have been used for storing descriptors.

13.1.3 Test Results
The tests results for GMAC in RGMII mode are as shown below.

13.1.3.1 Receive/Transmit Mode (see Table 50)

Table 50. GMAC RGMII Rx/Tx Transfer

Sr. No
RX/TX

Descriptor Location Source Destination
Data Size

(packet no x packet size (in bytes))
Throughput

(Mbps)
Utilization/Efficiency

(% to 2Gbps)
1 DDR DDR DDR 9000 x 1512 1833.916 91.6958
2 OCMC DDR DDR 9000 x 1512 1853.943 92.69715
3 DDR DDR DDR 125 x 1512 1791.954 89.5977
4 OCMC DDR DDR 125 x 1512 1801.491 90.07455
7 CPPI BUFFER DDR DDR 125 x 1512 1817.703 90.88515

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

GMAC IP www.ti.com

88 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

13.1.3.2 Receive Only Mode (see Table 51)

Table 51. GMAC RGMII Rx Only

Sr. No
RX/TX

Descriptor Location Source
Data Size

(packet no x packet size (in bytes))
Throughput

(Mbps)
Utilization/Efficiency

(% to 2Gbps)
1 DDR DDR 9000 x 1512 936.9456 93.69456
2 OCMC DDR 9000 x 1512 937.0865 93.70865
3 DDR DDR 1000 x 1512 938.2352 93.82352
4 OCMC DDR 1000 x 1512 938.2467 93.82467
5 DDR DDR 125 x 1512 938.3187 93.83187

OCMC 125 x 1512 938.4111 93.84111
6 DDR DDR 125 x 1512 938.3187 93.83187

OCMC 125 x 1512 938.4111 93.84111
7 CPPI BUFFER DDR 125 x 1512 938.4111 93.84111

OCMC 125 x 1512 938.5034 93.85034

13.1.3.3 Transmit Only Mode (see Table 52)

Table 52. GMAC RGMII Tx Only

Sr. No
RX/TX

Descriptor Location Source
Data Size

(packet no x packet size (in bytes))
Throughput

(Mbps)
Utilization/Efficiency

(% to 2Gbps)
1 DDR DDR 9000 x 1512 928.6769 93.66769
2 OCMC DDR 9000 x 1512 936.914 93.6914
3 DDR DDR 1000 x 1512 936.4754 93.64754
4 OCMC DDR 1000 x 1512 936.4754 93.67149
5 DDR DDR 125 x 1512 934.7566 93.47566

OCMC 125 x 1512 935.0294 93.50294
6 OCMC DDR 125 x 1512 934.9384 93.49384

OCMC 125 x 1512 935.3023 93.53023
7 CPPI BUFFER DDR 125 x 1512 935.2113 93.52113

OCMC 125 x 1512 935.3023 93.53023

13.2 Summary
GMAC CPPI internal memory should be used to get the optimized performance as latency to access CPPI
buffer memory is low compared to DDR/SRAM for CPDMA. This is applicable only if the CPU is not
accessing GMAC descriptors very frequently like in case of high bandwidth stream small size packets. In
this case as latency to access CPPI RAM from CPU is more compared to the DDR keeping descriptors in
DDR would give better performance. So care should be taken for selecting CPPI descriptor location
depending on the use-case.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com GPMC IP

89SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

14 GPMC IP
The General-Purpose Memory Controller is the TDA2xx and TDA2ex unified memory controller dedicated
to interface external memory devices like asynchronous SRAM-like memories, asynchronous, page mode
and synchronous burst NOR Flash, NAND Flash and pseudo-SRAM devices. The GPMC data access
engine provides a flexible programming model to interface all known standard memories. The access
engine can support the following interfacing protocols:
• Asynchronous read/write access
• Asynchronous read page access (4-8-16-32 Word16, 4-8-16 Word32)
• Synchronous read/write access
• Synchronous read/write burst access without wrap capability (4-8-16-32 Word16, 4-8-16 Word32)
• Synchronous read/write burst access with wrap capability (4-8-16-32 Word16, 4-8-16 Word32)
• Address and Data multiplexed access
• Little-Endian and Big-Endian access

This enables to interface a wide range of external devices like:
• External asynchronous or synchronous 8-bit width memory or device (non-burst device)
• External asynchronous or synchronous 16-bit width memory or device
• External asynchronous or synchronous 32-bit width memory or device
• External 16-bit non-multiplexed NOR Flash device
• External 16-bit and 32-bit address and data multiplexed NOR Flash device
• External 8-bit and 16-bit NAND flash device
• External 16-bit and 32-bit pSRAM device

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

GPMC IP www.ti.com

90 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

14.1 GPMC Read and Write Performance

14.1.1 Test Setup

14.1.1.1 NAND Flash
Configuration used for the performance numbers are:
• NAND Flash part number is MT29F2G08ABCWP
• 16-bit NAND device
• 1 Page size = 1024 words + 32 spare data words
• 1 block size = 64 pages
• Timing information about the NAND Flash:

– The page read initiates the transfer of 2048 bytes of data from the flash array to the data register
that requires a time of 25 µs

– The random read command helps to access the data from any column address in a page with an
initial access time of min 80 ns

– 1 page write costs a time of about 220-300 µs
– Sequential read time per byte is 50 ns

14.1.1.2 NOR Flash
Configuration used for the performance numbers are:
• NOR Flash part number is s29gl512s
• GPMC functional clock = L3_MAIN_CLK = 266 MHz
• 512-Mbyte density
• x16 data bus
• Asynchronous 32-byte Page read

14.1.2 Test Description

14.1.2.1 Asynchronous NAND Flash Read/Write Using CPU Prefetch Mode
This performance measurement is done using prefetch mode for read and post engine mode for write.
This mode is more efficient than the normal polling method since in both these modes, a programmable
FIFO threshold (maximum 64 bytes) is set. The FIFO input on the host OCP side is accessible at any
address in the associated chip-select memory region. Using prefetch mode and post engine mode and
polling of the FIFO status, the following results are obtained.
• DDR3 at 532 MHz
• L3 MAIN Frequency = GPMC functional clock frequency = 266 MHz
• GP Timer was used to time the number of clock cycles it took for data transfer. Timer Clock for

profiling selected as 20 MHz.
• All throughput data collected “standalone”. No other ongoing traffic.
• 8-bit BCH correction algorithm is used.

GPMC timing parameters used:
• NAND_CSWROFFTIME: 13
• NAND_CSRDOFFTIME: 13
• NAND_RDCYCLETIME: 13
• NAND_WRCYCLETIME: 13
• NAND_RDACCESSTIME: 12
• NAND_WRACCESSTIME: 12
• NAND_OEOFFTIME: 11

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com GPMC IP

91SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

14.1.2.2 Asynchronous NOR Flash Single Read
Address access time (tACC) is equal to the delay from stable addresses to valid output data The chip
enable access time (tCE) is the delay from stable CE# to valid data at the outputs. In order for the read
data to be driven on to the data outputs, the OE# signal must be low for at least the output enable time
(tOE) before valid data is available.

Figure 34 shows the read operation timing diagram at the Flash.

Figure 34. Back-to-Back Read (tACC) Operation Timing Diagram

Figure 35 shows the read operation timing diagram with GPMC signal parameters.

Figure 35. Asynchronous Single Read Timing Parameters

For the successful read operation to occur, GPMC timing parameters have to be set satisfying the Flash
level timing values. Table 53 shows the optimum configuration for GPMC timing values for successful read
operation. 1 GPMC clock =~ 3.7 ns. Here “Timeparagranularity” is set as 0x1, which will multiply the
configured timing values by 2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

GPMC IP www.ti.com

92 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 53. Optimum Configuration for GPMC for Reads of NOR Flash Single Read

Signal Parameter Description
Value

Programmed

Read op

RDACCESSTIME Address latch + Initial access time = 0ns + 110ns =
30 GPMC clock cycles

0x0F

RDCYCLETIME RDACCESSTIME + Data holding + tDF = 30 + 4 + 4 =
38 GPMC clock cycles

0x13

nCS
CSONTIME Assert after address latch 0x00
CSRDOFFTIME RDACCESSTIME + Data holding = 30 + 4 = 34 GPMC clock cycles 0x11

nADV
ADVONTIME Immediate assert with read cycle 0x00
ADVOFFTIME Provide ADV assertion duration of 2 cycles 0x01

nOE
OEONTIME Assert after address latch 0x00
OEOFFTIME RDACCESSTIME + Dataholding 0x11

14.1.2.3 Asynchronous NOR Flash Page Read
In Page mode read, each read can access a maximum of 32-byte pages in parallel. For page read to be
successful, asynchronous page read access time (tPACC) should be satisfied.

Figure 36 shows the page read operation timing diagram at the Flash.

Figure 36. NOR Flash Page Read Timing Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com GPMC IP

93SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Figure 37 shows the page read operation timing diagram with GPMC signal parameters.

Figure 37. Asynchronous Page Read Timing Parameters

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

GPMC IP www.ti.com

94 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 54 shows the optimum configuration for GPMC timing values for successful page read operation.
1 GPMC clock = approximately 3.7 ns. Here “Timeparagranularity” is set as 0x1, which will multiply the
configured timing values by 2.

Table 54. Optimum Configuration for GPMC Timing Values for Successful Page Read Operation

Signal Parameter Description
Value

Programmed

Read op

RDACCESSTIME Address latch + Initial access time = 0ns + 110ns =
30 GPMC clock cycles

0x0F

RDCYCLETIME = RDCYCLETIME0 +
RDCYCLETIME1

RDACCESSTIME + Data holding + tDF = 30 + 4+ 4 =
38 GPMC clock cycles

0x13

nCS
CSONTIME Assert after address latch 0x00
CSRDOFFTIME = CSRDOFFTIME0 +
CSRDOFFTIME1

RDACCESSTIME + Data holding = 30 + 4 =
34 GPMC clock cycles

0x11

nADV
ADVONTIME Immediate assert with read cycle 0x00
ADVOFFTIME Provide ADV assertion duration of 2 cycles 0x01

nOE
OEONTIME Assert after address latch 0x00
OEOFFTIME = OEOFFTIME0
+ OEOFFTIME1

RDACCESSTIME + Data holding 0x11

Page Burst
Access

PAGEBURSTACCESSTIME tPACC = 25 ns (min) ~ 7 GPMC clock cycles 0x04

Pagelength ATTACHEDDEVICEPAGELENGTH 16 words burst size 0x10

14.1.2.4 Asynchronous NOR Flash Single Write
Figure 38 shows the write operation timing diagram at the Flash.

Figure 38. Back-to-Back Write Operation Timing Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com GPMC IP

95SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Figure 39 shows the asynchronous write operation timing diagram with GPMC signal parameters.

Figure 39. Asynchronous Single Write to a Non-Multiplexed Add/Data Device

Table 55 shows the optimum configuration for GPMC timing values for successful write operation.
1 GPMC clock = approximately 3.7 ns. Here “Timeparagranularity” is set as 0x1, which will multiply the
configured timing values by 2.

Table 55. Optimum Configuration for GPMC Timing Values for Successful Page Write Operation

Signal Parameter Description
Value

Programmed

Write op
WRACCESSTIME Address latch + delay from Start access time to first data capture = 0ns +

60 ns = 16 GPMC clock cycles
0x08

WRCYCLETIME WRACCESSTIME + Data holding = 34 GPMC clock cycles 0x11

nCS
CSONTIME Assert after address latch 0x00
CSWROFFTIME WRACCESSTIME + Data holding = 30 + 4 = 34 GPMC clock cycles 0x11

nADV
ADVONTIME Immediate assert with read cycle 0x00
ADVOFFTIME Provide ADV assertion duration of 2 cycles 0x01

WE
WEONTIME Assert after address latch 0x00
WEOFFTIME WRACCESSTIME + Data holding 0x11

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

GPMC IP www.ti.com

96 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

14.1.3 Test Results
This section provides the test results for Asynchronous NAND Flash read/write using CPU Prefetch mode.

Table 56. Asynchronous NAND Flash Read/Write using CPU Prefetch Mode

Initiator/Operation Source Destination Size (KB)
Bandwidth (MB/s)

(with ECC)
Bandwidth (MB/s)

(without ECC)
Flash Read NAND Flash DDR 4 8.63 10.76

NAND Flash DDR 16 8.64 10.77
NAND Flash DDR 128 8.64 10.77

Flash Write DDR NAND Flash 8 6.06 6.40
DDR NAND Flash 32 6.06 6.42
DDR NAND Flash 128 6.06 6.41

Table 57. Asynchronous NOR Flash Single Read by CPU

Transfer Type Source Destination Transfer Size (KB) Throughput
CPU Flash read NOR Flash DDR 16 7.434104
CPU Flash read NOR Flash DDR 32 7.429332
CPU Flash read NOR Flash DDR 64 7.426684
CPU Flash read NOR Flash DDR 128 7.424434

Table 58. Asynchronous NOR Flash Single Read by DMA

Transfer Type Source Destination Transfer Size (KB) Throughput
DMA Flash read NOR Flash DDR 16 13.2409
DMA Flash read NOR Flash DDR 32 13.2477
DMA Flash read NOR Flash DDR 64 13.2478
DMA Flash read NOR Flash DDR 128 13.2489

Table 59. NOR Flash Page Read by CPU (Page Length: 16 × 16 bit)

Transfer Type Source Destination Transfer Size (KB) Throughput
CPU Flash read NOR Flash DDR 16 10.17551
CPU Flash read NOR Flash DDR 32 10.17004
CPU Flash read NOR Flash DDR 64 10.17551
CPU Flash read NOR Flash DDR 128 10.17402

Table 60. Asynchronous NOR Flash Page Read by DMA (Page Length: 16 × 16 bit)

Transfer Type Source Destination Transfer Size (KB) Throughput
DMA Flash read NOR Flash DDR 16 49.6268
DMA Flash read NOR Flash DDR 32 49.7215
DMA Flash read NOR Flash DDR 64 49.7809
DMA Flash read NOR Flash DDR 128 49.7867

14.2 Summary
• GPMC timing parameters have to be set according to the minimum flash timing requirements to get the

optimized performance.
• Different knobs in the controller such as prefetch mode, burst mode and different knobs supported by

flash such as page mode improves the flash read throughput.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com QSPI IP

97SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

• DMA reads give improved performance compared to the CPU because of the 128-byte burst access.

15 QSPI IP
The QSPI is a Serial Peripheral Interface module that allows for single, dual, or quad read access to
external memory devices. The Quad SPI protocol is a 6-pin interface that supports master mode only in 3-
pin, 4-pin, or 6-pin configurations. Up to 4 chip selects are supported. This Serial Flash Interface does not
directly support all details of writing to serial Flash devices and also does not support dual/quad write.

This device supports a normal configuration port mode as well as a memory-mapped interface, which
provides a direct memory interface for accessing data from the external SPI device, simplifying software
requirements.
• Configuration Port Mode: In this mode, commands can be sent through the core SPI to communicate

with a serial Flash device, but software must load the command into the SPI data transfer register
along with additional configuration fields, perform the byte transfer, then place the data to be sent (or
configure for receive) along with additional configuration fields, and perform that transfer. Reads and
writes to serial Flash devices are more specific. First, the read or write command byte is sent, followed
by 1 to 4 bytes of address (corresponding to the address to read/write), then followed by the data
write/receive phase. Data is always sent in 8-bit chunks (byte oriented). Once the address has been
loaded, data can be continuously read or written and internally to the serial Flash device, the address
will automatically increment to each byte address.

• Memory-Mapped Mode: This mode supports long transfers through a frame style sequence. In its
generic SPI use mode (referred to as core SPI), a word can be defined up to 32 bits and multiple
words can be transferred during a single access. For each word, the processor will need to read or
write the new data and then tell the SPI module to continue the current operation. Using this sequence,
up to 4096 words (32-bit max) can be transferred in a single SPI read or write operation. While this
allows for the greatest flexibility in terms of connecting to various types of devices, it does not lend
itself to a memory-mapped type device such as a serial Flash device.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

SPI/SFI Memory Map

Interface

Config

VBUSP

SPI Core

Data

Shifter

Control

Interface

Clock

Generator

SPI

External SPI

Interface

Control

State

Machine

SPI Clock

Source

SFI Register

Control

SFI Memory

Mapped

Protocol

Translator

Memory

Mapped

VBUSP

Interrupt

VBUSP

32

spi_cs_o[3:0]

spi_dout_o

spi_dout_oe_n

spi_din_i

spi_clk_o

spi_dout_i

spi_qdin0_i

spi_qdin1_i

spi_clk_i

QSPI IP www.ti.com

98 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

A block diagram representation of QSPI controller is shown in Figure 40.

Figure 40. QSPI Block Diagram

15.1 QSPI Read and Write Performance

15.1.1 Test Setup
The tests are performed on the TDA2xx and TDA2ex Pre-silicon (Quick-turn) and Post-silicon platforms.
Configuration used for the performance numbers are:
• Cortex-A15 Frequency: 1176 MHz
• DDR3 Clock: 532 MHz
• L3 Frequency: 266 MHz
• EDMA Burst length: 0x20
• CPU Burst length: 0x10
• QSPI OCP Profiling: 32 bits (Sdata and Mdata is 32 bits)
• QSPI mode: 0x3
• External Flash is configured in Quad Mode

Memory-mapped SETUP Register is programmed for:
• Read Command = 0x6B
• Number of Address Bytes = 0x2 (3-byte addressing for external flash)
• Number of Dummy Bytes = 0x1 (8 bits as dummy bytes)
• Read Type = 0x3 (Quad Read)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com QSPI IP

99SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

DM Timer was used to time the number of clock cycles it took for data transfer. The Timer Clock for
profiling selected as 20 MHz. All throughput data collected “standalone”. No other ongoing traffic.

15.1.2 Test Results

Table 61. QSPI Throughput Using DMA

No. Activity Source Destination
Transfer
Size (KB)

SPI
Clock
(MHz) Throughput (MB/s)

1 Flash read Memory-Mapped Flash OCMC1 4 48 16.3
2 Flash read Memory-Mapped Flash OCMC1 8 48 16.5
3 Flash read Memory-Mapped Flash OCMC1 16 48 16.5
4 Flash read Memory-Mapped Flash OCMC1 4 64 19.5
5 Flash read Memory-Mapped Flash OCMC1 8 64 19.5
6 Flash read Memory-Mapped Flash OCMC1 16 64 19.5

Table 62. QSPI Throughput Using CPU

No. Activity Source Destination
Transfer
Size (KB)

SPI
Clock
(MHz) Throughput (MB/s)

1 Flash read Memory-Mapped Flash OCMC1 4 48 16.3
2 Flash read Memory-Mapped Flash OCMC1 8 48 16.5
3 Flash read Memory-Mapped Flash OCMC1 16 48 16.5

15.1.3 Analysis

15.1.3.1 Theoretical Calculations
Theoretical maximum bandwidth is 30.5 MB/s in quad mode, if the SPI clock is 64 MHz (4 bits per clock
cycle in quad mode: ((64 × 106) × 4)/(8 × 1024 × 1024) = 30.5 MB/s

15.1.3.2 % Efficiency
A typical Read transfer consists of:
• Total clks = CMD + ADDR + Dummy Byte(/s) + spi_clks between dummy byte tx to Read start + (reads

spi_clks per trans × number of trans per CS# low) + (idle spi_clks between two reads × number of
reads in CS# low - 1) + end of read to start of new read

• So, total spi_clks = 8 + 24 + 8 + 8 + (32 × 8) + (8 × 7) + 13 = 373
• Actual spi_clks in a transfer (CS# low) = 32 × 8 = 256
• Typical % efficiency = (256/373) × 100 = 68.63%
• A throughput of 19.5 MB/s (typically for a EDMA transfer). So the typical efficiency will be:

(19.5/30.5) × 100 = 64%
• 4% efficiency delta could be because of 20-MHz timer that is used to measure count for transfers.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

QSPI IP www.ti.com

100 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

15.2 QSPI XIP Code Execution Performance
In order to understand the impact of executing code from QSPI flash in XIP mode, the following test setup
was used on the TDA2xx device:
• QSPI configured to Mode 0 and 64 MHz operating frequency
• Vision SDK (version 2.9) IPU application modified to run out of QSPI. The TI Vision SDK is a multi-

processor software development platform for TI’s family of ADAS SoCs. For more information, see the
TI Vision SDK, Optimized Vision Libraries for ADAS Systems (SPRY260). The software framework
allows users to create different ADAS application data flows involving video capture, video pre-
processing, video analytics algorithms and video display.

• Cortex-M4 Unicache enabled
• Cortex-M4 operating at 212 MHz

Table 63 provides a comparative analysis of the impact of QSPI XIP code execution versus DDR Cortex-
M4-based Capture Display Vision SDK. Note Cortex-M4 frequency is 212 MHz. The FPS was found to
match between DDR and QSPI XIP code execution. (30 FPS)

Table 63. M4_0 CPU Execution Time in QSPI XIP Mode

Scenario
M4_0 CPU Task Load (%) (load can vary by 2 % in different
runs)

M4_0 code execution from DDR3 532 MHz Approximately 6.2 %
QSPI XIP (64 MHz clock frequency, Mode 0) Approximately 10.91 %

In order to understand the impact of the QSPI Code execution for a fully loaded M4 CPU, the networking
usecase was also run with the capture display usecase. In order to run the networking threads on the
M4_0 core, the Network Development Kit (NDK) (http://www.ti.com/lit/ug/spru524j/spru524j.pdf) windows
application was run as shown below:
ndk_2_24_02_31\packages\ti\ndk\winapps>send <IPAddress> 2000

This tool prints out the number of megabytes of data that were sent by the tool and serviced by the
TDA2xx device (M4_0) running the network stack. The M4_0 is 100% loaded in the following experiments.
Table 64 provides the comparison of the achieved network throughput at different device conditions.

Table 64. M4_0 CPU Networking Bandwidth Performance

Networking Bandwidth Achieved
(all numbers mega Bytes per second) QSPI4 (64 MHz) DDR3 532 MHz
M4 (212.8 MHz) 3.05 5.26

When there is a concurrent EDMA transfer from QSPI to DDR (possible application image copy from
QSPI) while the M4_0 is executing code out of QSPI, there is a significant impact on the M4_0 code
execution time. The impact on M4 code execution for varying EDMA ACNT parameter for AB_SYNC and
ASYNC transfers is shown in Table 65.

Table 65. M4_0 CPU Networking Bandwidth Performance for Different EDMA ACNT Values

Networking Bandwidth Achieved
With concurrent EDMA Traffic
M4 @ 212.8 MHz QSPI @ 64 MHz

A_SYNC
(Bandwidth in MBps)

AB_SYNC
With BCNT = 512

(Bandwidth in MBps)
ACNT = 65535 0.0118 0.0046
ACNT = 16384 0.0379 0.0046
ACNT = 4096 0.233 0.0050
ACNT = 512 1.638 0.0088
ACNT = 256 2.048 0.0121
ACNT = 128 2.559 0.0122
ACNT = 64 2.730 0.0186
Without EDMA 2.935 2.935

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A
http://www.ti.com/lit/pdf/SPRY260
http://www.ti.com/lit/ug/spru524j/spru524j.pdf

www.ti.com QSPI IP

101SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The impact on M4 traffic can be controlled by using bandwidth limiter on the EDMA Read from QSPI.
Table 66 provides the impact on performance for M4_0 code running the (1) network usecase + Capture
and Display and (2) Capture-display usecase only in two independent runs.

Table 66. M4_0 CPU Networking Bandwidth Performance for Concurrent EDMA Traffic at Different
EDMA Throughputs

BW Limited EDMA TPUT
(ACNT = 65535, A SYNC)

M4 Networking Performance (MBps)
QSPI4 (64 MHz)

M4 Capture Display Total CPU Load (%)
QSPI4 (64 MHz)

22.46 MBps 0.0118 MBps 99.9 %
17.86 MBps 0.621 MBps 40.1 %
8.98 MBps 1.772 MBps 19.2 %
Without EDMA 2.935 MBps 13.2 %

The impact of the performance of the IPU code can also be understood by looking at the traffic profile
using L3 statistic collectors. Figure 41 through Figure 45 shows how the IPU traffic is impacted with a
concurrent EDMA traffic and how the performance of IPU can be recovered using BW limiters on the
EDMA Read from QSPI. QSPI is operating at 64 MHz in all the below BW plots.

Figure 41. IPU (QSPI XIP) Vision SDK + Networking Bandwidth Profile

Figure 42. EDMA ASYNC Transfer QSPI to DDR (ACNT = 65535)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

QSPI IP www.ti.com

102 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Figure 43. IPU (QSPI XIP) Vision SDK + Networking Bandwidth Profile With Concurrent EDMA Traffic

Figure 44. IPU (QSPI XIP) Vision SDK + Networking Bandwidth Profile EDMA BW Limited to
Approximately 18 MBps

Figure 45. IPU (QSPI XIP) Vision SDK + Networking Bandwidth Profile EDMA BW Limtied to
Approximately 9 MBps

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

()1/ Execution Time Number _ of _Runs
DMIPS / MHz

1,757 MCU Frequency in MHz

*
=

*

www.ti.com QSPI IP

103SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

15.3 Summary
• Current QSPI reads from external flash are not continuous.
• This is due to the asynchronous nature of SPI_clk (used to drive shift register) and ocp_clk. Your

design needs to wait for “word done” and “next command issue” from design before communicating
with external flash.

• This causes the design to wait for some clk cycles (typically 7-8 external spi_clk cycles) before
receiving next “word” from external flash.

• Due to this wait time, QSPI throughput comes down to an efficiency of 82% than actually supported by
the external device.

• QSPI XIP performance is comparable to 60 % of DDR performance when operating at 64 MHz.
• There is a significant impact on the CPU QSPI XIP performance when there is concurrent EDMA copy

from QSPI. Application developers should use ASYNC EDMA transfers with lower ACNT or BW limiter
to balance the share of the CPU and DMA traffic to the CPU for the CPU traffic to not get starved. The
application developer can choose the BW limit/ACNT based on the priority of the application image
load versus the IPU CPU performance.

16 Standard Benchmarks
This section covers standard benchmark results of the TDA2xx and TDA2ex devices, for example,
Dhrystone, LMbench, STREAM, Whetstone, and Core mark.

16.1 Dhrystone
The Dhrystone benchmark was designed to test performance factors important in non-numeric systems
programming (operating systems, compilers, word processors, and so on). Some important features of
Dhrystone are:
• Contains no floating-point operations.
• A considerable percentage of time is spent in string functions making the test very dependent upon the

way such operations are performed (for example, by in-line code or routines written in assembly
language) making it susceptible to manufacturers 'tweaking' of critical routines.

• Contains hardly any tight loops so in the case of very small caches, the majority of instruction
accesses will be misses; however, the situation changes radically as soon as the cache reaches a
critical size and can hold the main measurement loop.

• Only a small amount of global data is manipulated (as opposed to Whetstone).
• The output is the number of Dhrystones per second (the number of iterations of the main code loop per

second).
• The industry has adopted the VAX 11/780 as the reference 1 MIP machine. The VAX 11/780 achieves

1757 Dhrystones per second.

The DMIPS Calculation is shown in Equation 1.

(1)
• cycles_per_run = Clock_cycles/Number_Of_Runs
• User_Time = Clock_cycles/(CPU cycles per second)
• Dhrystones_Per_Second = Number_Of_Runs/User_Time
• DMIPS = Dhrystones_Per_Second/1757.0
• DMIPS/MHz = DMIPS/(CPU cycles per second)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7

O3

O2

O1

O0

O_OFF

A15

Dhrystone

Score

(DMIPS/M

HZ)

opt. for

speed

Standard Benchmarks www.ti.com

104 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

16.1.1 Cortex-A15 Tests and Results
Test setup:
• Compile options used:
-mv7A8 --code_state=32 --abi=eabi -me -O3
--opt_for_speed=5
--include_path="C:/ti/ccsv5/tools/compiler/arm_5.1.1/include"
--include_path="..."
--diag_warning=225 --display_error_number --asm_listing

• Icache and Dcache enabled
• MMU enabled
• Branch prediction enabled

TDA2xx and TDA2ex Cortex-A15 has a score of 2.95 DMIPS/MHz for the first running 3 seconds.

Figure 46. DMIPS Numbers Trend With Optimization Level (-O) Change and Speed Option
(-opt_for_speed)

16.1.2 Cortex-M4 Tests and Results
Test setup:
• Compile options used:
-mv7M4 --code_state=32 --abi=eabi -me -O3
--opt_for_speed=5
--include_path="C:/ti/ccsv5/tools/compiler/arm_5.1.1/include"
--include_path="..."
--diag_warning=225 --display_error_number --asm_listing

• Unicache enabled
• MMU enabled
• Program code, data, variables, and constants stored in L2 RAM.

TDA2xx and TDA2ex Cortex-M4 has a score of 1.0649 DMIPS/MHz for the running 3 seconds. The score
is close to the ARM reference of 1.25 DMIPS/MHz per core with difference due to the TI compiler
optimization.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com Standard Benchmarks

105SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

16.2 LMbench
LMbench is a widely-used memory benchmark in the embedded systems benchmarking. This section also
covers a brief comparison with a predecessor device AM435x.

Some features of LMbench are:
• A kernel benchmark developed by Larry McVoy.
• LMbench is still active as of 2007, with Carl Staelin acting as maintainer.
• Suite of simple, portable, ANSI/C micro benchmarks for UNIX/POSIX.
• Compares different UNIX systems performance.
• Measure system latency and bandwidth of data movement among the processor and memory,

network, file system, and disk.
• Focus on latency and bandwidth because performance issues are usually caused by latency problems,

bandwidth problems, or some combination of the two.
• Version 3A15 includes a total of approximately 41 metrics divided under the categories of bandwidth,

latency, and others.
– Out of the 41 micro benchmarks, bandwidth and latency micro benchmarks are explored in the next

sections.

16.2.1 LMbench Bandwidth
bw_mem is the bandwidth micro benchmark of LMbench. It allocates twice the specified amount of
memory, zeroes it, and then times the copying of the first half to the second half. Results are reported in
megabytes moved per second. The size specification may end with ‘‘KB’’ or ‘‘MB’’ to mean kilobytes or
megabytes.

Following are the functions part of the bw_mem benchmark:
• Stride 4 read: this is a read of stride 4 (also referred to as a partial read, read first 4 bytes for every

16 bytes, skip the rest, and continue)
• Stride 4 write: this is a write of stride 4 (also referred to as a partial write, write first 4 bytes for every

16 bytes, skip the rest, and continue)
• Stride 4 read write: this is a read and write to the same memory address of stride 4
• Stride 4 copy: this is a read and write to the different memory address of stride 4
• Stride 1 write: this is a write of stride 1
• Stride 1 read: this is a read of stride 1
• Stride 1 copy: this is a copy (different memory address) of stride 1

Following are the functions not part of the bw_mem benchmark but present in libraries:
• Memset : bzero
• Memmove : bcopy

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Standard Benchmarks www.ti.com

106 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

16.2.1.1 TDA2xx and TDA2ex Cortex-A15 LMbench Bandwidth Results
The results of TDA2xx and TDA2ex Cortex-A15 for the bandwidth benchmark are shown in Table 67.

Table 67. TDA2xx and TDA2ex Cortex-A15 LMbench Bandwidth Micro Benchmark Results

Benchmark Function Function Name
Memory Block Size

(kB)

TDA2xx and TDA2ex
Cortex-A15 Bandwidth

(MB/s)
AM437x Bandwidth

(MB/s)
Stride 4 read rd 4096 2026.34 194.73
Stride 4 write wr 4096 1195.27 165.92

Stride 4 read write rdwr 4096 852.81 165.93
Stride 4 copy mcp 4096 431.05 114.78
Stride 1 write fwr 4096 1138.87 1592.78
Stride 1 read frd 4096 569.03 158.13
Stride 1 copy fcp 4096 700.01 128.39

16.2.1.2 TDA2xx and TDA2ex Cortex-M4 LMBench Bandwidth Results
The results of TDA2xx and TDA2ex Cortex-M4 for the bandwidth benchmark are shown in Table 68.

Table 68. TDA2xx and TDA2ex Cortex-M4 LMbench Bandwidth Micro Benchmark Results

Benchmark Function Function Name
Memory Block Size

(kB)
TDA2xx and TDA2ex Cortex-

M4 Bandwidth (MB/s)
Stride 4 read rd 4096 97.70
Stride 4 write wr 4096 1064.50

Stride 4 read write rdwr 4096 87.62
Stride 4 copy mcp 4096 74.32
Stride 1 write fwr 4096 76.78
Stride 1 read frd 4096 268.10
Stride 1 copy fcp 4096 56.06

16.2.1.3 Analysis
• The AM435x device has a Cortex-A9 running at 500 Hz, uses a 16-bit DDR2, a different architecture

with the same MMU and cache settings as in the TDA2xx and TDA2ex Cortex-A15.
• Cortex-A15 LMbench bandwidth micro benchmark Stride 1 read/write/copy bandwidth numbers are

similar to what is obtained using the C-functions from the system performance test cases.
• A 16-bit DDR2 versus a 32-bit DDR2 difference is clearly seen with respect to Stride 1 and Stride 4

writes. The read traffic profile of the Cortex-A9 seems to not really take advantage of the DDR bus
width; while in the case of the Cortex-A15, the difference between Stride 1 and Stride 4 performance is
clearly seen.

• Cortex-M4 LMbench bandwidth micro benchmark Stride 1 read/write/copy performance numbers are
matching with performance numbers obtained using the C-functions from the system performance test
cases.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

TDA2xx A15 Latency

A15 @1GHz

www.ti.com Standard Benchmarks

107SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

16.2.2 LMbench Latency
Lat_mem_rd is the bandwidth micro benchmark of LMbench.
• lat_mem_rd measures memory read latency for varying memory sizes and strides. The results are

reported in nanoseconds per load.
• The entire memory hierarchy is measured, including on-board cache latency and size, external cache

latency and size, main memory latency, and TLB miss latency.
• Only data accesses are measured; the instruction cache is not measured.
• The benchmark runs as two nested loops. The outer loop is the stride size. The inner loop is the array

size. For each array size, the benchmark creates a ring of pointers that point backward one stride.
Traversing the array is done by p = (char **)*p; in a for loop (the over head of the for loop is not
significant; the loop is an unrolled loop 100 loads long).

• The size of the array varies from 512 bytes to (typically) 8 megabytes. For the small sizes, the cache
will have an effect and the loads will be much faster. This becomes much more apparent when the
data is plotted.

• Default stride length is 128.

The result of the latency micro benchmark plots are shown in the next sections. The index shown has the
format Bare metal (BM) – device name (CPU Frequency : DDR frequency). Bare metal since it is done in
a no-operating system environment.

16.2.2.1 TDA2xx and TDA2ex Cortex-A15 LMbench Latency Results
The results of the TDA2xx and TDA2ex Cortex-A15 for the LMbench latency benchmark are shown in
Figure 47.

Figure 47. TDA2xx and TDA2ex Cortex-A15 LMbench Latency Results

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

La
te

n
cy

Size (kB)

TDA2xx M4 Latency

M4 @213MHz

Standard Benchmarks www.ti.com

108 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

16.2.2.2 TDA2xx and TDA2ex Cortex-M4 LMbench Latency Results
The results of the TDA2xx and TDA2ex Cortex-M4 for the LMbench latency benchmark are shown in
Figure 48.

Figure 48. TDA2xx and TDA2ex Cortex-M4 LMbench Latency Results

16.2.2.3 Analysis
• The latency plot of any SoC device usually has n plateaus, if there are n levels to reach the external

memory after all the cache boundaries.
• The Y-axis is in nano seconds (ns) and the X-axis is in KiloBytes (KB).
• In the TDA2xx and TDA2ex device, there are 2 levels of cache (L1, L2) and then the external memory

is on the L3. From the latency plot, you can find out how many levels of cache an SoC has and what
are their approximate cache sizes; from the plot, you can see that there are 3 plateaus.

• L1 plateau ends by ~32 KB (cache size)
• L2 plateau ends by ~2 MB (cache size)
• L3 plateau starts after 2MB (L2) and the peak of saturation at DDR2 latency.
• The DDR2 latency is very high due to the limitation mentioned in Section 2.4.2.

16.3 STREAM
The STREAM benchmark is a simple synthetic benchmark program that measures sustainable memory
bandwidth (in MB/s) and the corresponding computation rate for simple vector kernels. STREAM has 2
versions and each version performs 4 operations. We worked on version 1, which consists of the following
4 functions:
• Copy => a[i] = b[i]
• Scale => a[i] = k × b[i]
• Add => a[i] = b[i] + c[i]
• Triad => a[i] = b[i] + k × c[i]

Stream is integrated as a part of the latest LMbench suite.

Stream version 2 has the same copy function, zero, fill, sum, and daxpy (triad-like) functions.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

0

200

400

600

800

1000

1200

1400

1600

copy scale add triad

1529

418

185
268

TDA2xx A15 STREAM Performance

A15 @1GHz

www.ti.com Standard Benchmarks

109SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

16.3.1 TDA2xx and TDA2ex Cortex-A15 STREAM Benchmark Results
The results of the TDA2xx and TDA2ex Cortex-A15 for the STREAM benchmark are shown in Figure 49.

Figure 49. TDA2xx and TDA2ex Cortex-A15 STREAM Benchmark Results

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

0

20

40

60

80

100

copy scale add triad

94

47
53

36

TDA2xx M4 STREAM Performance

M4 @213MHz

Standard Benchmarks www.ti.com

110 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

16.3.2 TDA2xx and TDA2ex Cortex-M4 STREAM Benchmark Results
The results of the TDA2xx and TDA2ex Cortex-M4 for the STREAM benchmark are shown in Figure 50.

Figure 50. TDA2xx and TDA2ex Cortex-M4 STREAM Benchmark Results

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com Error Checking and Correction (ECC)

111SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

17 Error Checking and Correction (ECC)
TDA2xx and TDA2ex Error Checking and Correction (ECC) implemented on the OCMC RAM 1, 2, and 3,
and EMIF. The ECC memory wrappers can perform single error correction and double error detection.

Overview of the OCMC ECC features are:
• Error correction and detection: Single Error Correction and Dual Error Detection (SECDED)

– 9-bit Hamming Error Correction Code (ECC) calculated on 128 data word concatenated with
memory address bits

– Hamming distance of 4 (single error detection/correction and double error detection; triple error
detection (TED) is NOT supported).

– Enable/Disable/Test-Suspend Mode Control through control register
– Read transaction single bit error correction
– Hardware Automated write back of correctable detected error
– Exclude repeated addresses from correctable error address trace history
– ECC valid for all write transactions to enabled region
– 128-bit aligned/128-bit length writes have no additional overhead
– Sub 128-bit writes supported by way of read-modify-write

• ECC Error Status Reporting features:
– Corrected Error Address Trace History Buffer (FIFO): Depth of 4
– Non-correctable error address trace history buffer (including DED): Depth of 4
– Interrupt Generation for correctable/uncorrectable detected errors

• ECC Diagnostics Configuration:
– SEC/DED/Addr Error Event Counters
– Programmable SEC/DED/Addr Error Event Counter Exception Threshold registers
– Corrected Single Error bit distribution history
– Register control for enable and disabling of diagnostics
– Configuration registers and ECC status accessible through OCP MMR interface (L4)

The EMIF ECC features are:
• ECC on SDRAM data bus.

– 7-bit ECC over 32-bit quanta or 6-bit ECC over 16-bit quanta in Narrow mode.
– 1-bit correction and 2-bit detection.
– Programmable address ranges to define ECC protected region.
– ECC calculated and stored on all writes to ECC protected address region.
– ECC verified on all reads from ECC protected address region.
– Statistics for 1-bit ECC and 2-bit ECC errors.
– All DDRs must have the same data bus width. The ECC DDR must support the same data bus

width as the normal DDR ICs for data. The total width of the ECC DDR data bus is 8 bits.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Error Checking and Correction (ECC) www.ti.com

112 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

17.1 OCMC ECC Programming
The programming sequence to use the OCMC RAM ECC feature is:
1. Enable OCMC RAM ECC by configuring CFG_OCMC_ECC[2:0]:CFG_OCMC_MODE in the OCM

subsystem, as shown in Table 69.

Table 69. CFG_OCMC_ECC

Bits Field Name Description Type Reset
31:6 RESERVED Reserved R 0x0

5 CFG_ECC_OPT_NON_ECC_READ Optimize read latency for non-ECC read. Returns
the data one cycle faster, if the read access is from
a non-ECC enabled space.

RW 0x0

4 CFG_ECC_ERR_SRESP_EN ECC non-correctable error SRESP enable. Enables
ERR return on L3 OCP SRESP when a non-
correctable data (DED) or address error is detected.

RW 0x0

3 CFG_ECC_SEC_AUTO_CORRECT SEC error auto correction mode. Enables the
OCMC_ECC to automatically update the error data
word with the corrected word.

RW 0x0

2:0 CFG_OCMC_MODE OCM Controller memory access modes. RW 0x0
000: Non-ECC mode (data access)
001: Non-ECC mode (code access)
010: Full ECC enabled mode
011: Block ECC enabled mode
1xx: Reserved (internally defaults to 000 mode)

• When enabled, a 9-bit Hamming ECC is calculated and stored for each consecutive 128-bit block
of the SRAM. The ECC is calculated based on a code word constructed by concatenating the
128 bits of data with the address bits A21 through A4 of the L3_MAIN. The ECC generated is
Hamming(155,146) code and has a Hamming distance of 4. The OCM controller uses this code to
validate the content of the SRAM, to correct a single bit error that occurs within the 128-bit
boundary or to determine if a non-correctable error has occurred within the 128-bit boundary.

• When SECDED is enabled, for every 128-bit write transaction that starts at an ECC boundary, the
ECC is calculated and stored in the ECC bit field for that boundary.

• A sub 128-bit or a non-aligned 128-bit write transaction (with at least one deasserted write-data
byte-enable signal) is handled as a read-modify-write.

• When SECDED is enabled, on every read transaction within an ECC boundary, the ECC is
regenerated on the memory address and the 128-bit data read out of the memory. The code is
then compared against the ECC value stored at the address. If the two ECCs match, then the data
is transferred to the requesting bus master without further exceptions.

• If the two ECCs do not match, then a check is made to determine if the error is correctable or not.
If the error is not correctable (double-error), then the starting address of the 128-bit ECC boundary
(128-bit MEMORY word address) is stored in the uncorrectable double error address FIFO and the
uncorrectable error exception flag is asserted.

• If the error is correctable (single error), the controller first determines if the bit error is in the
address, data, or code portion. If the error is located in the data itself, the bit in error is corrected
and presented to the requesting bus master and the bit in error is corrected in the SRAM location
by the auto re-write feature (if this feature is enabled in the cfg_ecc register). Also, the starting
address of the 128-bit ECC boundary in which the detected error occurred is pushed to the
correctable error event address FIFO and the correctable error event counter is incremented by 1.
If the bit error is located in the address portion of the quanta, then an address error exception is
generated. If the ECC code bit-error (which indicates a single bit error in the code word) is
detected, the data is returned to the bus master unchanged but the single error counter is
incremented.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com Error Checking and Correction (ECC)

113SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

2. Given that the ECC parity bits are uninitialized when TDA2xx and TDA2ex is first powered on and the
parity is calculated every 128 bits, it is important for the software to first initialize every 128 bits that the
code will read from after enabling the ECC.
• This step would ensure that the parity bits are correctly set before the code access to ECC

enabled regions.
• This step would ensure that NC ECC error scenarios are not generated for uninitialized parity data.
• This step can be done by either the CPU memset or the EDMA transfer to the memory region.
• The value of the data with which the ECC enabled space is initialized does not matter. Initializing

the full 128-bit line is important as parity will not be set correctly if only a portion of the 128 bits is
written to. The following example illustrates this concept.

• Example: Consider the state of the memory as shown in Table 70. Address 0x40300010 to
0x4030001F is initialized with some known byte pattern. The corresponding 9 bits of ECC
corresponding to this is also initialized. When initializing only word 0x40300020, the OCMC ECC
controller treats this as a read-modify-write and, hence, causes the ECC controller to read the
uninitialized parity and data, check for ECC errors and then modify the parity based on the new
word written and write the data and the partially initialized parity into the ECC parity memory. This
sequence can lead to NC ECC errors being generated as the ECC parity bits are not in a known
state.

Table 70. OCMC ECC Programming Example

OCMC Memory 0 4 8 C ECC
0x40300000 32-bit word 32-bit word 32-bit word 32-bit word 9-bit Parity
0x40300010 Initialized Initialized Initialized Initialized Initialized
0x40300020 Initialized Un-Initialized Un-Initialized Un-Initialized Partially Initialized

When using an EDMA to initialize the memory, the EDMA would access OCMC using a 128-bit
access and thus initialize the whole 128 bits in one OCP write command. Care should be taken to
ensure the start address and end address is 128-bit aligned when initializing.

NOTE: When un-cached CPU memset is used to initialize the memory, care should be taken to
clear the error counts by writing to the CFG_OCMC_ECC_CLEAR_HIST register in the
OCM subsystem, as shown in Table 71, as the NC errors may get set when initializing
the memory word by word or byte by byte (sub 128 bit) as shown in the previous
example.

NOTE: When cache policy of Write Back (WB)/ Write Allocate (WA) is enabled on the CPU, care
should be taken to not have the cache lines being read from uninitialized ECC memory.
Typically when the CPU cache is enabled in WB-WA mode and the CPU is trying to
initialize the OCMC ECC enabled memory, the cache line would be first read into the
cache leading to the ECC controller to start reporting ECC errors. Additionally, the
initialization would reside in cache unless explicitly flushed to memory. The way to avoid
errors from the ECC controller when using cache is to always initialize the ECC enabled
memory before performing any read or write to cached ECC enabled memory region.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Error Checking and Correction (ECC) www.ti.com

114 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 71. CFG_OCMC_ECC_CLEAR_HIST

Bits Field Name Description Type Reset
31:4 RESERVED Reserved R 0x0

3 CLEAR_SEC_BIT_DISTR Clear stored SEC bit distribution history. Write of 1 causes the
STATUS_SEC_ERROR_DISTR registers to be cleared. Reads
return 0.

R/W1C 0x0

2 CLEAR_ADDR_ERR_CNT Clear stored ADDR error history. Write of 1 causes the
ADDR_ERROR_CNT bit and
ADDR_ERROR_ADDRESS_TRACE FIFO to be cleared. Reads
return 0.

R/W1C 0x0

1 CLEAR_DED_ERR_CNT Clear stored DED error history. Write of 1 causes the
DED_ERROR_CNT bit and DED_ERROR_ADDRESS_TRACE
FIFO to be cleared. Reads return 0.

R/W1C 0x0

0 CLEAR_SEC_ERR_CNT Clear stored SEC error history. Write of 1 causes the
SEC_ERROR_CNT bit and SEC_ERROR_ADDRESS_TRACE
FIFO to be cleared. Reads return 0.

R/W1C 0x0

3. Set up the count of the errors for which the interrupt should be triggered using the
CFG_OCMC_ECC_ERROR register in the OCM subsystem, as shown in Table 72, before enabling
the interrupt to the CPU. Enable interrupts for ECC errors using the
INTR0_ENABLE_SET/INTR1_ENABLE_SET registers in the OCM subsystem, as shown in Table 73.

Table 72. CFG_OCMC_ECC_ERROR

Bits Field Name Description Type Reset
31:25 RESERVED Reserved R 0x0

24 CFG_DISCARD_DUP_ADDR Do not save duplicate error address. R/W 0x0
0: Save the duplicated addresses.
1: Save only the unique addresses.

23:20 CFG_ADDR_ERR_CNT_MAX Number of ADDR errors to trigger an interrupt (The value must
be > 0 to generate an interrupt).

R/W 0x1

19:16 CFG_DED_CNT_MAX Number of DED errors to trigger an interrupt (The value must
be > 0 to generate an interrupt).

R/W 0x1

15:0 CFG_SEC_CNT_MAX Number of SEC error to trigger an interrupt (The value must be
> 0 to generate an interrupt).

R/W 0x1

Table 73. INTR0_ENABLE_SET/INTR1_ENABLE_SET

Bits Field Name Type Reset
31:15 RESERVED R 0x0

14 CBUF_SHORT_FRAME_DETECT_FOUND R/W 0x0
13 CBUF_UNDERFLOW_ERR_FOUND R/W 0x0
12 CBUF_OVERFLOW_WRAP_ERR_FOUND R/W 0x0
11 CBUF_OVERFLOW_MID_ERR_FOUND R/W 0x0
10 CBUF_READ_SEQUENCE_ERR_FOUND R/W 0x0
9 CBUF_VBUF_READ_START_ERR_FOUND R/W 0x0
8 CBUF_READ_OUT_OF_RANGE_ERR_FOUND R/W 0x0
7 CBUF_WRITE_SEQUENCE_ERR_FOUND R/W 0x0
6 CBUF_VBUF_WRITE_START_ERR_FOUND R/W 0x0
5 CBUF_WR_OUT_OF_RANGE_ERR_FOUND R/W 0x0
4 CBUF_VIRTUAL_ADDR_ERR_FOUND R/W 0x0
3 OUT_OF_RANGE_ERR_FOUND R/W 0x0
2 ADDR_ERR_FOUND R/W 0x0
1 DED_ERR_FOUND R/W 0x0
0 SEC_ERR_FOUND R/W 0x0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com Error Checking and Correction (ECC)

115SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

4. Resume normal operation of the code.
5. If the ECC logic generates an error that indicates single error detection or double error detection, the

following registers can be read to understand the state of the ECC controller:
a. STATUS_ERROR_CNT
b. STATUS_SEC_ERROR_TRACE
c. STATUS_DED_ERROR_TRACE
d. STATUS_ADDR_TRANSLATION_ERROR_TRACE
e. STATUS_SEC_ERROR_DISTR_0 through STATUS_SEC_ERROR_DISTR_4

17.2 EMIF ECC Programming
The programming sequence to use the OCMC RAM ECC feature is:
1. Enable EMIF ECC by configuring the EMIF1_EN_ECC bit in the

CTRL_WKUP_EMIF1_SDRAM_CONFIG_EXT register in the TDA2xx and TDA2ex Control Module
Registers, as shown in Table 74.

Table 74. CTRL_WKUP_EMIF1_SDRAM_CONFIG_EXT

Address Offset 0x0 0044
Physical Address 0x4AE00 C144 Instance CTRL_MODULE_WKUP__Core_Registers
Description
Type RW

Bits Field Name Description Type Reset
31:18 Reserved RO 0x0000

17 EMIF1_NARROW_ONLY EMIF1 ECC can be enabled RW 0
0: ECC cannot be enabled
1: ECC can be enabled

16 EMIF1_EN_ECC
15:14 EMIF1_REG_PHY_NUM_OF_SAMPLES RW 0x0

13 EMIF1_REG_PHY_SEL_LOGIC RW 0
12 EMIF1_REG_PHY_ALL_DQ_MPR_RD_RESP RW 0

11:9 EMIF1_REG_PHY_OUTPUT_STATUS_SELECT RW 0x0
8 EMIF1_DYNAMIC_PWRDN_ENABLE RW 1
7 EMIF1_SDRAM_DISABLE_RESET RW 0

6:5 EMIF1_PHY_RD_LOCAL_ODT RW 0x0
4 EMIF1_STATIC_CMOSEN_ENABLE RW 0
3 EMIF1_DFI_CLOCK_PHASE_CTRL RW 0
2 EMIF1_EN_SLICE_2 RW 1
1 EMIF1_EN_SLICE_1 RW 1
0 EMIF1_EN_SLICE_0 RW 1

7-bit ECC is calculated over 32-bit data when in 32-bit DDR mode (reg_narrow_mode = 0). 6-bit ECC
is calculated over 16-bit data when in 16-bit DDR mode (reg_narrow_mode = 1). The ECC is
calculated for all accesses that are within the address ranges protected by ECC.

NOTE: Note that only EMIF1 supports ECC on TDA2xx and TDA2ex.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Error Checking and Correction (ECC) www.ti.com

116 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

2. Set the address range for ECC operation. The address ranges are specified in the ECC Address
Range 1 and ECC Address Range 2 registers shown in Table 75 and Table 76.

(1) This register can only be written if lock_config_ctrl port is cleared to 0.
(2) The range is inclusive of the start and end addresses.

Table 75. EMIF_ECC_ADDRESS_RANGE_1 (0x114) (1) (2)

Bits Field Name Description Type Reset
31:16 REG_ECC_END_ADDR_1 End caddress [31:16] for ECC address range 1. The

other 16 LSBs are always 0xFFFF.
R/W 0x0

15:0 REG_ECC_STRT_ADDR_1 Start caddress [31:16] for ECC address range 1. The
other 16 LSBs are always 0xFFFF.

R/W 0x0

(1) This register can only be written if lock_config_ctrl port is cleared to 0.
(2) The range is inclusive of the start and end addresses.

Table 76. EMIF_ECC_ADDRESS_RANGE_2 (0x118) (1) (2)

Bits Field Name Description Type Reset
31:16 REG_ECC_END_ADDR_2 End caddress [31:16] for ECC address range 2. The

other 16 LSBs are always 0xFFFF.
R/W 0x0

15:0 REG_ECC_STRT_ADDR_2 Start caddress [31:16] for ECC address range 2.The
other 16 LSBs are always 0xFFFF.

R/W 0x0

Example:
//EMIF_ECC_ADDRESS_RANGE_1 - 0x80000000 to 0x90000000
WR_MEM_32(0x4C000114, 0x0FFF0000);
//EMIF_ECC_ADDRESS_RANGE_2 - 0x90000000 to 0xA0000000
WR_MEM_32(0x4C000118, 0x1FFF1000);

CAUTION
The EMIF ECC region should not overlap; this can lead to unexpected results.

3. Enable ECC on both ranges by writing to the EMIF_ECC_CTRL_REG register as shown in Table 77.
This register needs to be programmed to enable ECC, enable the regions and to define whether the
ECC needs to be done within the region or outside the region.
Table 77 explains the value of various bit fields.

(1) This register can only be written if lock_config_ctrl port is cleared to 0.

Table 77. EMIF_ECC_CTRL_REG (0x110) (1)

Bits Field Name Description Type Reset
31 REG_ECC_EN ECC enable R/W 0x0

0: ECC is disabled.
1: ECC is enabled.

30 REG_ECC_ADDR_RGN_PROT Setting this field to 1 and reg_ecc_en to a 1 will
enable ECC calculation for accesses within the
address ranges and disable ECC calculation for
accesses outside the address ranges. The address
ranges can be specified using the ECC Address
Range 1 and 2 registers.

R/W 0x0

29:2 RESERVED Reserved R 0x0
1 REG_ECC_ADDR_RGN_2_EN ECC address range 2 enable. R/W 0x0

0: ECC address range 2 is disabled.
1: ECC address range 2 is enabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com Error Checking and Correction (ECC)

117SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 77. EMIF_ECC_CTRL_REG (0x110) (1) (continued)
Bits Field Name Description Type Reset

0 REG_ECC_ADDR_RGN_1_EN ECC address range 1 enable. R/W 0x0
0: ECC address range 1 is disabled.
1: ECC address range 1 is enabled.

NOTE: In DDR3 mode, software must trigger PHY initialization and full-leveling/calibration after
enabling ECC for the first time. The ECC can then be enabled/disabled for test purposes
without triggering full-leveling.

NOTE: ECC enable bit in CTRL_WKUP_EMIF_SDRAM_CONFIG_EXT register should be set even
if ECC feature is not used.

Example:
if (ENABLE_ECC) //ECC Enabled

{
HW_WR_REG32(SOC_CTRL_MODULE_WKUP_CORE_REGISTERS_BASE +

CTRL_WKUP_EMIF1_SDRAM_CONFIG_EXT,
0x0001C127U); /* EMIF1_EN_ECC = 1 */

}

NOTE: EMIF must be set to non-interleaving mode so that the lower 2-GiB memory can be properly
mapped to EMIF1 with ECC support and EMIF2 that doesn’t have ECC supported.

Example:
if (MEMMAP_2GB_NON_INTL_EMIFX2)
{

printf("Two EMIFs in non interleaved mode (2GB total)\n");
/* MA_LISA_MAP_i */
WR_MEM_32(0x482AF040, 0x80600100);
WR_MEM_32(0x482AF044, 0xC0600200);
/* DMM_LISA_MAP_i */
WR_MEM_32(0x4E000040, 0x80600100);
WR_MEM_32(0x4E000044, 0xC0600200);

}

4. Set the threshold for 1 bit error interrupt - optional.
Single bit errors are corrected by ECC logic. So user need not get worried about that. But in cases,
when there are many single bit errors, this can potentially mean that something in the environment or
the memory is not correct. Software may choose to be informed of such condition. For that purpose,
EMIF controller provides means to interrupt when single bit error crosses a desired threshold. For
details of the register, see Table 78.

Table 78. 1B_ECC_ERR_THRSH – 1-Bit ECC Error Threshold Register (0x0134)

Bits Name Description
31:24 REG_1B_ECC_ERR_THRSH 1-bit ECC error threshold. The EMIF will generate an interrupt when the 1-bit ECC

error count is greater than this threshold. A value of 0 will disable the generation
of interrupt.

23:16 RESERVED RESERVED
15:0 REG_1B_ECC_ERR_WIN 1-bit ECC error window in number of refresh periods. The EMIF will generate an

interrupt when the 1-bit ECC error count is equal to or greater than the threshold
within this window. A value of 0 will disable the window. Refresh period is defined
by reg_refresh_rate in SDRAM Refresh Control register.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Error Checking and Correction (ECC) www.ti.com

118 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

5. Clear the error status - optional.
This is again an optional step. Before enabling/using ECC, it is a good programming practice to clear
any stale ECC error status. Table 79 and Table 80 should be cleared by writing 0x1 to it.

Table 79. EMIF_1B_ECC_ERR_ADDR_LOG – 1-Bit ECC Error Address Log Register (0x013C)

Bits Name Description
31:0 REG_1B_ECC_ERR_ADDR 1-bit ECC error address. Most significant bits of the starting address(es) related

to the SDRAM reads that had a 1-bit ECC error. This field displays up to two
addresses logged in the 4 deep address logging FIFO. Writing a 0x1 will pop
one element of the FIFO. Writing a 0x2 will pop all elements of the FIFO. Writing
any other value has no effect.

Table 80. EMIF_2B_ECC_ERR_ADDR_LOG – 2-Bit ECC Error Address Log Register (0x0140)

Bits Name Description
31:0 REG_2B_ECC_ERR_ADDR 2-bit ECC error address. Most significant bits of the starting address of the first

SDRAM burst that had the 2-bit ECC error. Writing a 0x1 will clear this field.
Writing any other value has no effect.

6. Enable the interrupts.
In order to receive interrupts, one should set the EMIF interrupt enable in the EMIF configuration
space. The register description is shown in Table 81.

Table 81. EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET (0x00b4)

Bits Name Description
31:6 Reserved Reserved - writes are ignored, always reads zeros.

5 ONEBIT_ECC_ERR_SYS Enabled status of sysem ECC one bit error correction interrupt. Writing a 1 will
enable the interrupt, and set this bit as well as the corresponding Interrupt Enable
Clear Register. Writing a 0 has no effect.

4 TWOBIT_ECC_ERR_SYS Enabled status of system ECC two bit error detection interrupt. Writing a 1 will
enable the interrupt, and set this bit as well as the corresponding Interrupt Enable
Clear Register. Writing a 0 has no effect.

3 WR_ECC_ERR_SYS Enabled status of system ECC Error interrupt when a memory access is made to
a non-quanta aligned location. Writing a 1 will enable the interrupt, and set this bit
as well as the corresponding Interrupt Enable Clear Register. Writing a 0 has no
effect.

2-1 Reserved Reserved
0 EN_ERR_SYS Enable set for system OCP interrupt for command and address error. Writing a 1

will enable the interrupt, and set this bit as well as the corresponding Interrupt
Enable Clear Register. Writing a 0 has no effect.

Also, the SoC crossbar should be configured properly to receive the EMIF interrupt to the desired
CPU. For example, for A15, SYSBIOS, below code needs to be added in configuration file.
var IntXbar = xdc.useModule('ti.sysbios.family.shared.vayu.IntXbar');
var Hwi = xdc.useModule('ti.sysbios.family.arm.gic.Hwi');
/* IRQ_CROSSBAR_105 EMIF1_IRQ. Interrupt 57 on A15 */
IntXbar.connectIRQMeta(57, 105);
var hwi_param_0 = new Hwi.Params;
hwi_param_0.arg = 0;
Hwi.create(57+32, '&emifErrIrqIsr', hwi_param_0);

7. Initialize ECC enabled memory regions. DDR initialization is needed so that the ECC checksum
memory gets initialized properly. Given that the DDR and ECC parity bits are uninitialized when the
device is first powered on, it is important for the software to first initialize the whole memory after
enabling the ECC.
a. This step ensures that the parity bits are correctly set before the code access to ECC enabled

regions.
b. This step ensures that ECC error scenarios are not generated for uninitialized parity data.
c. This step can be done by either the CPU memset or the EDMA transfer to the memory region.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com Error Checking and Correction (ECC)

119SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

d. The initialization requirement is multiple of 2 bytes for narrow_mode = 0, 4 bytes for narrow_mode
= 1.

e. When using an EDMA to initialize the memory, Care should be taken to ensure the start address
and end address is 32- or 16-bit aligned (based on normal or narrow mode) when initializing.

8. ECC programming is now complete, resume normal operation of the code.

There are other steps related to the below that are not listed but can be used and present in software
provided by TI:
• Disable ECC
• Clearing interrupts status
• Disabling interrupts
• Getting RAW status of error
• Getting ECC error info

For more description on how to do these, see the TI software.

NOTE: When cache policy of WB (Write Back)/ WA (Write Allocate) is enabled on the CPU care
should be taken to not have the cache lines being read from uninitialized ECC memory.
Typically when the CPU cache is enabled in WB-WA mode and the CPU is trying to initialize
the EMIF ECC enabled memory the cache line would be first read into the cache leading to
the ECC controller to start reporting ECC errors. Additionally the initialization would reside in
cache unless explicitly flushed to memory. The way to avoid errors from the ECC controller
when using cache is to always initialize the ECC enabled memory before performing any
read or write to cached ECC enabled memory region.

It is recommended to set the ECC enabled DDR memory as non-cacheable and strongly
ordered during initialization, and then re-configure the memory regions as cacheable, write-
back and write-allocate normal memory.

Example:
void setDDRnonCacheable()
{

UInt64 i;
Mmu_DescriptorAttrs attrs;
Mmu_initDescAttrs(&attrs);

attrs.type = Mmu_DescriptorType_BLOCK; // BLOCK descriptor
attrs.shareable = 2; // sharerable
attrs.attrIndx = 1; // Non-cache, strongly ordered

// Mmu_setMAIR(1, 0x04);
for (i=0x80000000; i < 0xA0000000; i = i + 0x00200000)

Mmu_setSecondLevelDesc((Ptr)i, (UInt64)i, &attrs);
}

void setDDRcacheable()
{

UInt64 i;
Mmu_DescriptorAttrs attrs;
Mmu_initDescAttrs(&attrs);

attrs.type = Mmu_DescriptorType_BLOCK; // BLOCK descriptor
attrs.shareable = 2; // sharerable
attrs.attrIndx = 2; // Cached, normal memory

// Mmu_setMAIR(2, 0xFF);
for (i=0x80000000; i < 0xA0000000; i = i + 0x00200000)

Mmu_setSecondLevelDesc((Ptr)i, (UInt64)i, &attrs);
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Error Checking and Correction (ECC) www.ti.com

120 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

17.3 EMIF ECC Programming to Starterware Code Mapping
ADAS starterware gives example implementation of using EMIF ECC. The STW can be downloaded from
Here.

The basic starterware API are : <baseDir>\starterware_xx_xx_xx_xx\drivers\emif.c.

The example file are: <baseDir>\\ starterware_xx_xx_xx_xx \examples\ecc_app.

Table 82 maps the function to the programming sequence.

Table 82. Mapping of Starterware Functions to ECC Programming Steps

Programming Step Starterware Function
EMIF ECC example Main.c: emifEccTest()
STEP 1: Enable EMIF ECC by configuring This is taken care in GEL file or SBL
STEP 2: Set the address range for ECC operation emif.c: EMIFConfigECCInitECCParams()
STEP 3: Enable ECC on both ranges by writing to the
EMIF_ECC_CTRL_REG register

emif.c: EMIFConfigECCInitECCParams()
emif.c: EMIFConfigECCEnableEcc

STEP 4: Optional - Set the threshold for 1 bit error interrupt emif.c: EMIFConfigECCInitECCParams()
STEP 5: Optional – Clear the error status emif.c: EMIFConfigECCClrAllEccErrInfo()
STEP 6: Enable the interrupts emif.c: EMIFEnableIntr()
STEP 7: Initialize ECC enabled memory regions Main.c: emifEccConfig()

17.4 Careabouts of Using EMIF ECC
There are few restrictions that need to be taken into account while using EMIF ECC. This is due to non-
availability of read modify write support and silicon errata related to ECC.

17.4.1 Restrictions Due to Non-Availability of Read Modify Write ECC Support in EMIF
In normal mode, 7 bit ECC are computed for 32 bit word whereas in narrow mode, 6 bit ECC is computed
for 16bit word. Non availability of read-modify-write support in ECC means that when a ECC sub-quanta
(<32bit writes for normal and <16bit writes for narrow) writes happen to EMIF, the ECC does not get
computed properly as EMIF does not read back the whole 32/16 bit to compute the ECC for the non-
modified portion of the word. This results in below careabouts to be followed while programming.

17.4.1.1 Un-Cached CPU Access of EMIF
Any uncached CPU access to EMIF can result in sub-quanta EMIF writes if the datatype being chosen
does not match the ECC quanta size. Table 83 and Table 84 summarize the constraints.

Table 83. ECC Correctness for 32-Bit EMIF for Uncached CPU Data Writes

Memory/Core Byte Halfword Word Double
A15 Not OK Not OK OK OK
DSP Not OK Not OK OK OK
EVE Not OK Not OK OK OK
M4 Not OK Not OK OK OK

Table 84. ECC Correctness for 16-Bit EMIF for Uncached CPU Data Writes

Memory/Core Byte Halfword Word Double
A15 Not OK OK OK OK
DSP Not OK OK OK OK
EVE Not OK OK OK OK
M4 Not OK OK OK OK

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A
https://cdds.ext.ti.com/ematrix/common/TIemxNavigator.jsp?objectId=28670.42872.55010.46716

www.ti.com Error Checking and Correction (ECC)

121SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Apart from above, even unaligned writes should be avoided. Unaligned writes can be produced by
compiler even if datatypes corresponding to word or double is used. For details, see Section 17.4.2.

17.4.1.2 Cached CPU Access of EMIF
For cached CPU access to EMIF, the accesses are typically cache line aligned. Hence, the restriction of
RMW is not applicable. But there are some points that need to be considered for below cores:
• A15:

Cortex-A15 (ARMV7-A arch) cache architecture is complicated and has multiple features to support
performance and cache coherency.
If the cache is enabled (SCTLR.C set) and the memory page is configured for write-back, then read-
write-allocate (WB-RWA) is compatible with our 32-bit (or 16-bit) ECC quanta. Further the write
streaming (ACTLR bit 24) enhancement, bypassing write allocate, is also compatible with our 32-bit (or
16-bit) ECC.
So from software point of view, if user is using “normal” memory type with cache enabled and set in
Write back , read write allocate, A15 by design should not produce any sub-quanta writes
Other modes of cache can produce sub-quanta writes. They are summarized as below.
– If the cache is set as write though mode, this can produce sub-quanta writes.
– If MMU setting is strongly ordered or device type, this disables cache and it can produce sub-

quanta writes
• EVE:

Eve does not have data cache, it only has program cache. So the data access of EVE to the EMIF will
totally depend on the C datatype being used. If the C code does a byte or a half word access, this
violates the alignment constraint and ECC can be corrupted

17.4.1.3 Non CPU Access of EMIF Memory
DMA/Non CPU access to EMIF if not ECC quanta aligned can cause incorrect ECC computation. To avoid
this, the recommendation below should be followed:
• DMA start pointer should be 32bit aligned
• DMA size should be 32 bit aligned

There are multiple masters in TDA2x SoC that can issue DMA to EMIF. A non-comprehensive list is
given below:

• Masters where alignment can be made possible by system design software control:
– EDMA (DSP, EVE, SYSTEM)
– SDMA
– VIP
– VPE
– DSS

• Masters where alignment CANNOT be made possible by system design software control:
– GPU/BB2D
– MMC
– GMAC
– USB

For many of the above interface, it might not be possible to program the descriptor to always produce
aligned writes. This is because the DMA size is determined by the incoming packet length or pixel location
in frame that is not in user control.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Error Checking and Correction (ECC) www.ti.com

122 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

17.4.1.4 Debugger Access of EMIF via the Memory Browser/Watch Window
Debugger access of EMIF is mostly read. In case any write is done via debugger watch window or
memory browser, care should be taken similar to what is described in Section 17.4.1.1. Note that any
debug access does not go via the CPU normal path but via the debug path and the EMIF content may not
correlate with what CPU sees due to cache.

17.4.1.5 Software Breakpoints While Debugging
Software breakpoints are mostly supported by temporarily modifying the instruction and replacing the
opcode with a breakpoint opcode. Since the opcode are like 8 bit in many cases, it becomes unaligned
with ECC sub-quanta and can cause ECC errors while the breakpoint executes. Table 85 summarizes the
CPU and the impact for software breakpoints.

Table 85. ECC Correctness for Software Breakpoints on ECC Enabled Regions

Memory/Core Software Breakpoint
A15 Not OK
DSP Not OK
EVE Not OK
M4 Not OK

To overcome the above situations, the below approach is recommended:
• Keep ECC disabled in DEBUG mode
• Limit breakpoints to only HW breakpoints
• Keep the code section in ECC disabled region

17.4.2 Compiler Optimization
Compiler can optimize a C code to produce unaligned access even if the native datatype used in of word
size.

Example:
void
sub (int *a, int *b)
{
*b = (0xFFFF00FF & *b) | (*a & 0x0000FF00);
}

Produces the code below:
ldrb r3, [r0, #1] @ zero_extendqisi2
strb r3, [r1, #1]

To ensure that there is no byte or halfword access in the code, the below steps are recommended:
1. Screen the generated object code to check for any such byte/halfword store instruction

a. Example: For ARM Disassemble the final executable (<filename>.out) file with armdis and search
the output for STRB or STRH. The disassembler is part of the compiler release distribution.

2. Rewrite the C code to eliminate the usage of byte/halfword store instruction.
3. volatile Keyword will direct the compiler to use only 32-bit aligned access.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com Error Checking and Correction (ECC)

123SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

17.4.3 Restrictions Due to i882 Errata
As per the device specification of TDAx, EMIF had a mechanism of detecting illegal ECC sub-quanta
writes to EMIF and though an error response over the internal bus and raise and interrupt. Due to the
errata, this feature is not available.

For details, see i882 erratas: TDA2x SoC for Advanced Driver Assistance Systems (ADAS) Silicon
Revision 2.0, 1.x Silicon Errata and TDA2Ex SoC for Advanced Driver Assistance Systems (ADAS) Silicon
Revision 1.0 Silicon Errata.

The current workaround for , TDA2e and DRA72x SR1.0 is shown below:
1. Disable ECC, or
2. Enable ECC for desired ranges in EMIF1, and ensure that all DDR write accesses to EMIF1 (including

ECC protected or unprotected ranges) from all initiators are a multiple of quanta size and are quanta
aligned.

This bug is fixed in TDA2ex PG2.0 and in DRA72x with the restrictions shown in Table 86.

Table 86. Impact of EMIF ECC Errata i882 Hardware Fix

Parameter Software Meaning Before Fix After Fix
EMIF Error Response Error response from EMIF enables CPUs to

give aborts upon sub-quanta writes
No Yes

ERR_SYS and
WR_ECC_ERR_SYS are set in
EMIF_SYSTEM_OCP_INTERRUPT
_STATUS

Sub-quanta write related error response in
EMIF error registers

Yes Yes

ECC errors is generated ECC mismatch error in case of sub-quanta
writes

Only reads generate
errors

Only reads
generate errors

ConnID reported in
EMIF_OCP_ERROR_LOG register

Information about which master caused the
Sub-quanta error

Yes Yes

EMIF interrupt generated and
Interrupt checked on M4 via
crossbar id 105

Ability to route the EMIF error to CPU cores Yes Yes

After the fix, the feature of EMIF to send error response to a sub-quanta write over the internal bus to the
respective master will be depreciated. But other methods like interrupts and error flags being set will be
there and can be effectively used to find such illegal sub-quanta writes.

17.4.4 How to Find Who Caused the Unaligned Quanta Writes After the Interrupt
Assuming that the TDA2xx PG2.0 device is being used, an interrupt will be received from EMIF to a
configured core where the interrupt is routed (via CROSSBAR). Note that there is no EMIF address log
registered for this sub-quanta write.
1. Determine the reason of the interrupt by checking if WR_ECC_ERR_SYS is set in the

EMIF_SYSTEM_OCP_INTERRUPT_STATUS register and verify it is because of sub-quanta write.
2. Check the MCONID in the EMIF_OCP_ERROR_LOG and establish the source of the error.
3. The CONNID can help find the source of unaligned writes
4. Once the source is identified, use OCP watchpoint/MA watchpoint to check for sub-quanta writes
5. Other inaccurate way if the source of error is CPU is as below:

a. Route the EMIF interrupt to the same core. The call trace can give the locality of the code, which is
triggered by the sub-quanta write.

b. For CPU causing such sub-quanta writes, one can run a check on the object/disassembly file to
check for a store halfword or byte instruction.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A
http://www.ti.com/lit/pdf/SPRZ397
http://www.ti.com/lit/pdf/SPRZ397
http://www.ti.com/lit/pdf/SPRZ428
http://www.ti.com/lit/pdf/SPRZ428

Error Checking and Correction (ECC) www.ti.com

124 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

17.5 Impact of ECC on Performance
Enabling ECC on the EMIF and OCMC has minimal impact on the throughput. Table 87 through Table 89
show the impact of ECC for different EDMA transfers.

Table 87. System EDMA Operation Throughput

System EDMA Operation
Throughput (MB/s)

Without ECC Without ECC
OCMC → OCMC 4006.29 3996.68

DDR → DDR 3143.36 3141.14
DDR → OCMC 3436.32 3424.55
OCMC → DDR 3501.29 3496.4

Table 88. DSP EDMA Operation Throughput

DSP EDMA
Operation/Throughput (MBps)

Throughput (MB/s)
Without ECC With ECC

OCMC → OCMC 4011.109 3996.681
DDR → DDR 2843.383 2843.838

DDR → OCMC 2658.079 2653.847
OCMC → DDR 2662.326 2656.667

Table 89. EVE EDMA Operation Throughput

EVE EDMA
Operation/Throughput (MBps)

Throughput (MB/s)
Without ECC With ECC

OCMC → OCMC 4011.109 4011.109
DDR → DDR 2845.051 2844.444

DDR → OCMC 3144.558 3150.502
OCMC → DDR 3150.502 3156.469

The impact of ECC initialization time depends on the amount of space the software decides to make ECC
protected. Typically, CPU code and essential data structures are maintained in ECC enabled regions.

For example, if 256 MB of memory is used in ECC enabled region and the EDMA is used to initialize the
memory the time taken to initialize memory given a system EDMA throughput of 3.14 GBps is ~82 ms.
This time required can be hidden by a stage wise memory initialization to hide the initialization time.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Typical Kernel boot

up time is > 500 ms.

The initialization of

ECC memory

overheads can be

absorbed in this.

SBL is used to

initialize first ~10 MB

of ECC memory for

the OS kernel to

reside in. (~ 3 ms

overhead)

SBL

Kernel Boot up

Parallel

Initialization of

ECC memory

www.ti.com DDR3 Interleaved vs Non-Interleaved

125SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

18 DDR3 Interleaved vs Non-Interleaved

NOTE: This section is not valid for TDA2ex.

18.1 Interleaved versus Non-Interleaved Setup
TDA2xx supports two external memory controllers (EMIF). These EMIFs can be configured in interleaved
and non-interleaved modes. In the non-interleaved mode of EMIF operation, the internal banks of 32-bit
SDRAM can be accessed. In interleaved mode, the internal banks of two 32-bit SDRAMs can be
accessed. Interleaving is configured to occur at 128-byte, 256-byte, or 512-byte granularity. For example,
if 128-byte granularity interleaving is set it means the first 128-bytes are from EMIF1, the second 128-
bytes are from EMIF2, the third 128-bytes are from EMIF1, and so on. Interleaving is controlled by the
DMM_LISA_MAP registers, shown in Table 90.

Table 90. DMM_LISA_MAP_x

Bits Field Name Description Type Reset
31:24 SYS_ADDR DMM system section address MSB. R/W 0x0

23 RESERVED Reserved R 0x0
22:20 SYS_SIZE DMM system section size. R/W 0x0

0: 16-MiB section
1: 32-MiB section
2: 64-MiB section
3: 128-MiB section
4: 256-MiB section
5: 512-MiB section
6: 1-GiB section
7: 2-GiB section

19:18 SDRC_INTL SDRAM controller interleaving mode. R/W 0x0
0: No interleaving
1: 128-byte interleaving
2: 256-byte interleaving
3: 512-byte interleaving

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

DDR3 Interleaved vs Non-Interleaved www.ti.com

126 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 90. DMM_LISA_MAP_x (continued)
Bits Field Name Description Type Reset

17:16 SDRC_ADDRSPC SDRAM controller address space R/W 0x0
15:10 RESERVED Reserved R 0x0
9:8 SDRC_MAP SDRAM controller mapping. R/W 0x0

0: Unmapped
1: Mapped on SDRC 0 only (not interleaved).
2: Mapped on SDRC 1 only (not interleaved).
3: Mapped on SDRC 0 and SDRC 1 (interleaved). If this
setting is used, SYS_SIZE must at least be equal to 32-MiB.

7:0 SDRC_ADDR SDRAM controller address MSB. R/W 0x0

• The configuration used for non-interleaved DDR3 is as follows: (512-MB, Non-Interleaved) DDR3
running at 532 MHz.
Note that the value of the LISA map should be the same between the MA LISA map and the DMM Lisa
Map.

//MA_LISA_MAP_i
WR_MEM_32(0x482AF040, 0x80500100);
WR_MEM_32(0x482AF044, 0xA0500200);
//DMM_LISA_MAP_i
WR_MEM_32(0x4E000040, 0x80500100);
WR_MEM_32(0x4E000044, 0xA0500200);

• The configuration used for interleaved DDR3 is as follows: (1-GB, 128-Byte Interleaved) DDR3 running
at 532 MHz.
Note that the value of the LISA map should be the same between the MA LISA map and the DMM Lisa
Map.

//MA_LISA_MAP_i
WR_MEM_32(0x482AF040, 0x80640300);
WR_MEM_32(0x482AF044, 0x00000000);
//DMM_LISA_MAP_i
WR_MEM_32(0x4E000040, 0x80640300);
WR_MEM_32(0x4E000044, 0x00000000);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com DDR3 Interleaved vs Non-Interleaved

127SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

18.2 Impact of Interleaved vs Non-Interleaved DDR3 for a Single Initiator
The following bar graphs show the impact of the improvement in bandwidth of single transfer controller
System EDMA, DSP EDMA, and EVE EDMA for interleaved EMIF versus non-interleaved EMIF. The
interleaving leads to lesser DDR page opens and closes, which leads to improvement of the individual
EMIF performances. Because two EMIFs are used for any data transfer greater than 128 Bytes, the total
bandwidth available for the initiators also increases significantly. Note that in the following data (for the
interleaved case, especially), the total utilization of the available EMIF bandwidth is less as the system is
now initiator bottlenecked; that is, the initiator (EDMA TC) requests do not generate the fill of the EMIF
command FIFOs.

Figure 51. System EDMA Single Transfer Controller

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

DDR3 Interleaved vs Non-Interleaved www.ti.com

128 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Figure 52. DSP EDMA Single Transfer Controller

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com DDR3 Interleaved vs Non-Interleaved

129SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Figure 53. EVE EDMA Single Transfer Controller

18.3 Impact of Interleaved vs Non-Interleaved DDR3 for Multiple Initiators
To understand the total available DDR bandwidth of the system for the interleaved versus non-interleaved
mode of operation, it is required to have a multi-initiator test. In this synthetic test, the following initiators
are used for the interleaved versus non-interleaved case. The DSS reporting an Underflow error was used
as a reference point to know when the DDR bandwidth is maximized out in the system.

NOTE: In the current experiment for the non-interleaved case, the data is not routed through EMIF2
and the system is assumed to be a single, 32-bit DDR system.

Non-Interleaved initiators:
• IVAHD: Executing 1080p60 decode
• BB2D: Executing 1280x720 NV12 3 frame overlay
• DSP1 EDMA single TC
• DSS 3 VID + 1 GFX pipe: 2 VID pipes 720p ARGB8888, 1VID + 1 GFX RGB888

Interleaved initiators:
• IVAHD: Executing 1080p60 decode
• BB2D: Executing 1280x720 NV12 3 frame overlay
• DSP1 EDMA single TC
• DSS 3 VID + 1 GFX pipe: 2 VID pipes 720p ARGB8888, 1VID + 1 GFX RGB888
• DSP2 EDMA two TC
• System EDMA two TC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

L3
INSTR

32b

L3
CLK1

32b

Stat Coll
LAT9

Async
bridge

DEBUGSS

N N N

L3
CLK2

Stat Coll
LAT1-8

Stat Coll 0

EMIF1

DMM

128b

128b

EMIF2

128b

128b

64b

MPU

em
if2

_p
ro

be
em

if1
_p

ro
be

128b

m
a_

m
pu

_p
1_

pr
ob

e
m

a_
m

pu
_p

2_
pr

ob
e

Probe
Sync

Probe
Sync

128b

DDR3 Interleaved vs Non-Interleaved www.ti.com

130 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

The throughput is measured using statistic collectors available in the L3 at the EMIF1_probe and
EMIF2_probe as shown in Figure 54. The statistic collector registers are read every 100 µs for 5 seconds
and the bandwidth data is obtained by dividing the number of bytes transferred in 100 µs divided by
100 µs.

Figure 54. L3 STATCOLL EMIF1 and EMIF2 PROBE Mechanism

The ideal throughput for DDR3 running at 532 MHz is:
• For the non-Interleaved case, 532 MHz × 4 bytes × 2 = 4256 MB/s
• For the interleaved case, (Non-Interleaved value × 2) = 8512 MB/s

Table 91 shows that when the EMIF FIFOs are fully occupied then the system can expect a 10-15% boost
in performance by configuring the EMIFs in interleaved mode versus a non-interleaved mode.

Also note that this is a synthetic test to measure the maximized out EMIF throughput. When executing a
real system use-case, you can expect around 55-60% DDR utilization.

Table 91. Impact of Interleaved vs Non-Interleaved DDR3 for Multiple Initiators

Non-Interleaved (One 32-Bit Memory) Interleaved (Two 32-Bit Memory)

EMIF1
Bandwidth

EMIF2
Bandwidth

(No Traffic to
EMIF2) Total

EMIF1
Bandwidth

EMIF2
Bandwidth Total

Maximum Bandwidth (MB/s) 3121.60 NA 3121.60 3650.88 3642.88 7293.76
Average Bandwidth (MB/s) 2458.25 NA 2458.25 3035.51 3045.00 6080.51
Maximum DDR Utilization 73% NA 73% 86% 86% 86%
Average DDR Utilization 58% NA 58% 71% 72% 71%

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com DDR3 vs DDR2 Performance

131SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

19 DDR3 vs DDR2 Performance
The EMIF module provides connectivity between DDR2 or DDR3 types of memories and manages data
bus read/write accesses between external memories and device subsystems which have master access to
the L3_MAIN interconnect and DMA capability. EMIF supports JEDEC standard-compliant DDR2-SDRAM
and DDR3-SDRAM memory types.

Supported CAS latencies are:
• DDR3: 5, 6, 7, 8, 9, 10, and 11
• DDR2: 2, 3, 4, 5, 6, and 7

This section compares the performance of DDR2 and DDR3 for a single initiator (System EDMA) and
multiple initiators that try to simulate an actual use-case scenario.

The following configurations were used to test the DDR2 performance versus the DDR3 performance:
• DDR3 Configuration:

– MT41K128M16: 16 Meg × 16 × 8 banks DDR part
– Page size is 1024-cells. This makes the effective page size = 1024 × 16 bits × 2 = 32768 bits =

4096 Bytes = 4KB.
– Number of Banks = 8
– CAS Latency: 6 cycles
– DPLL Frequency set to 532 MHz and 400 MHz

• DDR2 Configuration:
– Page size is 1024-cells. This makes the effective page size = 1024 × 16 bits × 2 = 32768 bits =

4096 Bytes = 4KB.
– Number of Banks = 8
– CAS Latency: 6 cycles
– DPLL Frequency set to 400 MHz

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

DDR3 vs DDR2 Performance www.ti.com

132 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

19.1 Impact of DDR2 vs DDR3 for a Single Initiator
Figure 55 shows the impact on the bandwidth of single transfer controller System EDMA while using
DDR2 at 400 MHz, DDR3 at 532 MHz, and DDR3 at 400 MHz. As can be seen, the DDR2 gives better
efficiency than DDR3 at the same frequency of operation. This is mainly because the CAS latency of
DDR2 is lower than the CAS latency of DDR3.

DDR CAS Write Latency (Cycles) CAS Latency (Cycles)
DDR3 at 532 MHz 6 7
DDR3 at 400 MHz 6 7
DDR2 at 400 MHz NA 6

Figure 55. DDR2 versus DDR3 Performance and Efficiency for Single Initiator

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com DDR3 vs DDR2 Performance

133SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

19.2 Impact of DDR2 vs DDR3 for Multiple Initiators
To understand the total available DDR bandwidth of the system DDR2 versus DDR3, it is required to have
a multi-initiator test. In this synthetic test, the following initiators are used for DDR2 and DDR3. The DSS
reporting an Underflow error was used as a reference point to know when the DDR bandwidth is
maximized out in the system.

NOTE: In the current experiment, the EMIF is configured in non-interleaved and the system is
assumed to be a single 32-bit DDR system.

Non-Interleaved initiators:
• IVAHD: Executing 1080p60 decode
• BB2D: Executing 1280x720 NV12 3 frame overlay
• DSP1 EDMA single TC
• DSS 3 VID + 1 GFX pipe: 2 VID pipes 720p ARGB8888, 1VID + 1 GFX RGB888

Table 92. Impact of DDR3 versus DDR2 for Multiple Initiators

EMIF1 Bandwidth
DDR3 Non-Interleaved

(532 MHz)
DDR2 Non-Interleaved

(400 MHz)
DDR3 Non-Interleaved

(400 MHz)
Maximum Bandwidth (MB/s) 3121.60 2748.97 2288.32
Average Bandwidth (MB/s) 2458.25 2566.12 1734.47
Maximum DDR Utilization 73% 86% 72%
Average DDR Utilization 58% 80% 54%

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Boot Time Profile www.ti.com

134 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

20 Boot Time Profile
Boot-time, that is, the time taken by the system to show its "availability" since the power button was
pushed on, is becoming a key differentiator in the usability vector.

The definition of availability varies across the devices. For example:
• Appearance of home screen for devices containing a display, for example, cellphone or media player
• An audible tone / LED turning on or changing color for devices without display
• Appearance of shell prompt on development systems with console

In the current context, Boot time refers to time taken until the appearance of a Linux shell prompt.

Complete Boot time can be measured in two stages:
1. ROM Boot time profile
2. System Boot time profile

20.1 ROM Boot Time Profile
The time taken from ROM until booting the initial software (ISW) can be measured with probing signals. A
GPIO bit is toggled high in the initial software. The time difference between the PORZ signal and GPIO
signal is measured to get the boot time. This time measured includes ROM Boot time and the ISW loading
time. This procedure is repeated for different ISW image sizes.

NOTE: In case of QSPI, ROM copies the binary to SRAM and the ISW runs from SRAM. The
loading time varies based on the ISW image size.

Table 93. ROM Boot Time With Different Image Sizes

Image Size
13.1 KB 64 KB 128 KB 256 KB 480 KB

QSPI1 24 ms 63 ms 111 ms 207 ms 374 ms
QSPI4 16 ms 20 ms 25 ms 36 ms 55 ms

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com Boot Time Profile

135SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

20.2 System Boot Time Profile
System Boot time process consists of operations such as authentication, hashing, loading the binaries,
and so on. Execution time can be measured by placing timestamps at the start and end of these
operations. Auditing the timestamps helps in calculating actual time spent in processing. This procedure is
repeated for both GP and HS samples. The HS boot flow has a few extra steps of authentication over GP
flow.

The stages involved in booting are:
• ROM Code
• Public Protected Application (PPA) [Only in HS boot flow]
• Authenticate Initial Software (ISW)

– Hash Initial Software (ISW)
• 1st Initial Software (ISW)

– Load U-Boot
– Authenticate U-Boot [Only in HS boot flow]

• Hash U-Boot [Only in HS boot flow]
• U-Boot

– Load DTB
– Authenticate DTB [Only in HS boot flow]

• Hash DTB [Only in HS boot flow]
– Load Kernel
– Authenticate Kernel [Only in HS boot flow]

• Hash Kernel [Only in HS boot flow]
• Kernel

NOTE: In production boot flow, U-Boot is a single stage bootloader.

The boot time can vary based on the type of peripheral or memory device set by the SYSBOOT
configuration. The values measured here for QSPI.

The results were captured using the following binaries:
• PPA: 11.6 Kb
• ISW: 59.8 Kb
• U-Boot: 251.23 Kb
• Device Tree (DTB): 37.79 Kb
• Kernel: 4.81 Mb

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Boot Time Profile www.ti.com

136 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Table 94. System Boot Time Profile for GP and HS Samples for SYSBOOT Production

Operation

QSPI4 QSPI1
GP HS GP HS

Time
(ms)

Elapsed
(ms)

Time
(ms)

Elapsed
(ms)

Time
(ms)

Elapsed
(ms)

Time
(ms)

Elapsed
(ms)

PPA init 21.53 9.05 31.82 9.40
Authenticate ISW
cert 39.01 2.72 89.81 2.69

Hash ISW 39.04 2.69 89.81 2.68
1st ISW 19.84 434.82 41.61 536.29 20.17 434.84 92.38 536.32

Load Kernel 157.68 290.14 179.58 290.18 158.02 290.1 230.32 290.14
Load DTB 450.66 3.8 472.55 3.79 450.99 3.8 523.30 3.80
Authenticate
DTB 481.80 1.59 526.58 1.59

Hash DTB 481.80 0.70 532.56 0.71
Authenticate
Kernel 491.56 92.88 536.35 92.98

Hash Kernel 491.58 92.08 537.85 92.14
Start Kernel 804.72 – 923.00 – 805.13 – 973.80 –

Table 95. System Boot Time Profile for GP and HS Samples for SYSBOOT Development

Operation

QSPI4 QSPI1
GP HS GP HS

Time
(ms)

Elapsed
(ms)

Time
(ms)

Elapsed
(ms)

Time
(ms)

Elapsed
(ms)

Time
(ms)

Elapsed
(ms)

PPA init 21.52 9.06 31.82 8.94
Authenticate ISW
cert 38.84 2.69 89.26 2.70

Hash ISW 38.87 2.66 89.28 2.68
1st ISW 19.84 110.26 41.53 120.32 20.17 110.26 91.97 120.43

Load U-Boot 95.49 29.57 117.18 29.63 95.83 29.57 167.61 29.63
Authenticate
U-Boot 151.85 5.58 202.45 5.58

Hash U-
Boot 151.85 4.70 202.45 4.73

1st U-Boot 132.39 4848.88 164.15 4989.90 132.72 4850.54 214.67 4998.57
Load DTB 770.48 13.92 802.70 14.50 771.61 13.93 854.18 14.50
Load Kernel 790.71 889.55 823.48 890.22 792.16 889.54 874.97 890.23
Authenticate
DTB 2621.06 1.59 2659.48 1.60

Hash DTB 2621.06 0.71 2659.49 0.71
Authenticate
Kernel 2629.94 93.04 2668.39 92.96

Hash Kernel 2629.94 92.21 2668.40 92.24
Start Kernel 5331.59 – 5499.08 – 5333.7 – 5558.31 –

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com L3 Statistics Collector Programming Model

137SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

21 L3 Statistics Collector Programming Model
Following are APIs that are used to configure statistics collector, setup timer, and get statistics on regular
interval of 100 µs.
Initialize Statcoll: statCollectorInit();

void statCollectorInit()
{

gStatColState.stat0_filter_cnt = 0;
gStatColState.stat1_filter_cnt = 0;
gStatColState.stat2_filter_cnt = 0;
gStatColState.stat3_filter_cnt = 0;

}

Enable Statcoll and Read Statcoll registers:
/** \brief statCollectorControl

* Description: API to enable statcoll. Same API can be used to read the
* statcoll register values as well.
* Inputs:
* inst_name : Statcoll Instance Name. eg: STATCOL_EMIF_SYS,
* STATCOL_DSP1_MDMA etc. defined in STATCOL_ID enumeration.
* cur_stat_filter_cnt : This value is ignored when calling this function
* to enable the statcoll. When trying to read the statcoll
* this value is used to determine the filter number used.
* mode: Used to indicate whether the function is being called for reading
* or enabling the statcoll as defined by :
* #define ENABLE_MODE 0x0
* #define READ_STATUS_MODE 0x1
* Return : In the enable mode the function returns the filter number
* assigned. In the read mode the function * returns the value
* read (BW/Latency etc) from the statcoll registers.

*/
UInt32 statCollectorControl(UInt32 inst_name, UInt32 cur_stat_filter_cnt, UInt32 mode)
{

switch (inst_name)
{

case STATCOL_EMIF_SYS: cur_base_address = stat_coll0_base_address;
cur_event_mux_req = 0;
cur_event_mux_resp = 1;
if(mode == ENABLE_MODE) {gStatColState.stat0_filter_cnt = gStatColState.stat0_filter_cnt +

1;}
if(mode == ENABLE_MODE) {cur_stat_filter_cnt = gStatColState.stat0_filter_cnt;}
break;
case <NEXT_STATCOLL> :
...

}
if(mode == ENABLE_MODE)

{
if (cur_stat_filter_cnt > 4)
{

printf("We have exhausted filters/counters.....\n");
}
// Global Enable Stat Collector
wr_stat_reg(cur_base_address+0x8,0x1);

// Soft Enable Stat Collector
wr_stat_reg(cur_base_address+0xC,0x1);

wr_stat_reg(cur_base_address+0x18,0x5);
// Operation of Stat Collector / RespEvt => Packet
wr_stat_reg(cur_base_address+0x1C,0x5);

// Event Sel
wr_stat_reg(cur_base_address+0x20+4*(cur_stat_filter_cnt-1),cur_event_mux_req);

// Op is EventInfo

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

L3 Statistics Collector Programming Model www.ti.com

138 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

wr_stat_reg(cur_base_address+0x1FC+(0x158*(cur_stat_filter_cnt-1)),2);

// Event Info Sel Op -> packet length
wr_stat_reg(cur_base_address+0x1F8+(0x158*(cur_stat_filter_cnt-1)),0);

// Filter Global Enable
wr_stat_reg(cur_base_address+0xAC+(0x158*(cur_stat_filter_cnt-1)),0x1);

// Filter Enable
wr_stat_reg(cur_base_address+0xBC+(0x158*(cur_stat_filter_cnt-1)),0x1);

// Manual dump
wr_stat_reg(cur_base_address+0x54,0x1);
// use send register to reset counters

}
else
{

wr_stat_reg(cur_base_address+0xC,0x0);
cur_stat_filter_cnt = rd_stat_reg(cur_base_address+0x8C+((cur_stat_filter_cnt-1)*4));
wr_stat_reg(cur_base_address+0xC,0x1);

}
return cur_stat_filter_cnt;

}

Usage (Dummy code):
void main()
{

statCollectorInit();
counterIdISSNTR1 = statCollectorControl(STATCOL_ISS_NRT1, 0, ENABLE_MODE);
DMTIMER_prcmenable(TIMER_NUM);
DMTIMER_Start(TIMER_NUM);

// Dummy Read
statCollectorControl(STATCOL_ISS_NRT1, counterIdISSNTR2, READ_STATUS_MODE);

while(statCountIdx < TOTAL_COUNT)
{

while (DMTIMER_Read(TIMER_NUM) <= SYS_CLK_FREQ/10000) // for 100 us {;}
statCountISSNRT1[statCountIdx++] = statCollectorControl(STATCOL_ISS_NRT1, counterIdISSNTR1,

READ_STATUS_MODE);
DMTIMER_Stop(TIMER_NUM);
DMTIMER_Start(TIMER_NUM);

}
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

www.ti.com L3 Statistics Collector Programming Model

139SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

Timer APIs:
ReturnCode_t DMTIMER_Start (UWORD8 timer_num)
{

ReturnCode_t checkReturn = RET_OK;

/* Counter clear and auto reload enable */
if (timer_num < 1 || timer_num > 16)

return RET_FAIL;

switch(timer_num) {
case 1:

/* Clear the counter value */
WR_REG_32(TIMER1, DMTIMER__TCRR, 0x0);
/* Triggering the timer load */
WR_REG_32(TIMER1, DMTIMER__TTGR, 0x1);
/* Start timer and reload enable: bit[0] start,
bit[1] autoreload enable */
WR_REG_32(TIMER1, DMTIMER__TCLR, 0x1);
break;

case 2:
...

default:
checkReturn = RET_FAIL;
break;

}
return checkReturn;

}

ReturnCode_t DMTIMER_Stop(UWORD8 timer_num)
{

ReturnCode_t checkReturn = RET_OK;

/* Counter clear and auto reload enable */
if (timer_num < 1 || timer_num > 16)

return RET_FAIL;

switch(timer_num) {
case 1:

/* Bit[0]: 0, counter is frozen */
WR_REG_32(TIMER1, DMTIMER__TCLR, 0x0);
break;

case 2:
...

default:
checkReturn = RET_FAIL;
break;

}
return checkReturn;

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

Reference www.ti.com

140 SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

TDA2xx and TDA2ex Performance

UWORD32 DMTIMER_Read(UWORD8 timer_num)
{

volatile UWORD32 read_value = 0;

if (timer_num < 1 || timer_num > 16)
return RET_FAIL;

switch(timer_num) {
case 1:

read_value = RD_REG_32(TIMER1, DMTIMER__TCRR);
break;

case 2:
...

default:
read_value = 0;
break;

}
return read_value;

}

ReturnCode_t DMTIMER_prcmenable(UWORD8 timer_num)
{

ReturnCode_t checkReturn = RET_OK;

if (timer_num < 1 || timer_num > 16)
return RET_FAIL;

switch(timer_num) {
case 1:

checkReturn = (ReturnCode_t)prcm_enable_module(prcm_timer1);
break;

case 2:
...

default:
checkReturn = RET_FAIL;
break;

}
return checkReturn;

}

22 Reference
• TI Vision SDK, Optimized Vision Libraries for ADAS Systems
• TDA2x SoC for Advanced Driver Assistance Systems (ADAS) Silicon Revision 2.0, 1.x Silicon Errata
• TDA2Ex SoC for Advanced Driver Assistance Systems (ADAS) Silicon Revision 1.0 Silicon Errata

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A
http://www.ti.com/lit/pdf/SPRY260
http://www.ti.com/lit/pdf/SPRZ397
http://www.ti.com/lit/pdf/SPRZ428

www.ti.com Revision History

141SPRAC21A–June 2016–Revised June 2019
Submit Documentation Feedback

Copyright © 2016–2019, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (June 2016) to A Revision ... Page

• Update was made in Section 10.2.3... 82

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC21A

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	TDA2xx and TDA2ex Performance
	1 SoC Overview
	1.1 Introduction
	1.2 Acronyms and Definitions
	1.3 TDA2xx and TDA2ex System Interconnect
	1.4 Traffic Regulation Within the Interconnect
	1.4.1 Bandwidth Regulators
	1.4.2 Bandwidth Limiters
	1.4.3 Initiator Priority

	1.5 TDA2xx and TDA2ex Memory Subsystem
	1.5.1 Controller/PHY Timing Parameters
	1.5.2 Class of Service
	1.5.3 Prioritization Between DMM/SYS PORT or MPU Port to EMIF

	1.6 TDA2xx and TDA2ex Measurement Operating Frequencies
	1.7 System Instrumentation and Measurement Methodology
	1.7.1 GP Timers
	1.7.2 L3 Statistic Collectors

	2 Cortex-A15
	2.1 Level1 and Level2 Cache
	2.2 MMU
	2.3 Performance Control Mechanisms
	2.3.1 Cortex-A15 Knobs
	2.3.2 MMU Page Table Knobs

	2.4 Cortex-A15 CPU Read and Write Performance
	2.4.1 Cortex-A15 Functions
	2.4.2 Setup Limitations
	2.4.3 System Performance
	2.4.3.1 Cortex-A15 Stand-Alone Memory Read, Write, Copy
	2.4.3.2 Results

	3 System Enhanced Direct Memory Access (System EDMA)
	3.1 System EDMA Performance
	3.1.1 System EDMA Read and Write
	3.1.2 System EDMA Results

	3.2 System EDMA Observations

	4 DSP Subsystem EDMA
	4.1 DSP Subsystem EDMA Performance
	4.1.1 DSP Subsystem EDMA Read and Write
	4.1.2 DSP Subsystem EDMA Results

	4.2 DSP Subsystem EDMA Observations

	5 Embedded Vision Engine (EVE) Subsystem EDMA
	5.1 EVE EDMA Performance
	5.1.1 EVE EDMA Read and Write
	5.1.2 EVE EDMA Results

	5.2 EVE EDMA Observations

	6 DSP CPU
	6.1 DSP CPU Performance
	6.1.1 DSP CPU Read and Write
	6.1.2 Code Setup
	6.1.2.1 Pipeline Copy
	6.1.2.2 Pipeline Read
	6.1.2.3 Pipeline Write
	6.1.2.4 L2 Stride-Jmp Copy
	6.1.2.5 L2 Stride-Jmp Read
	6.1.2.6 L2 Stride-Jmp Write

	6.2 DSP CPU Observations
	6.3 Summary

	7 Cortex-M4 (IPU)
	7.1 Cortex-M4 CPU Performance
	7.1.1 Cortex-M4 CPU Read and Write
	7.1.2 Code Setup
	7.1.3 Cortex-M4 Functions
	7.1.4 Setup Limitations

	7.2 Cortex-M4 CPU Observations
	7.2.1 Cache Disable
	7.2.2 Cache Enable

	7.3 Summary

	8 USB IP
	8.1 Overview
	8.2 USB IP Performance
	8.2.1 Test Setup
	8.2.2 Results and Observations
	8.2.3 Summary

	9 PCIe IP
	9.1 Overview
	9.2 PCIe IP Performance
	9.2.1 Test Setup
	9.2.2 Results and Observations

	10 IVA-HD IP
	10.1 Overview
	10.2 H.264 Decoder
	10.2.1 Description
	10.2.2 Test Setup
	10.2.3 Test Results

	10.3 MJPEG Decoder
	10.3.1 Description
	10.3.2 Test Setup
	10.3.3 Test Results

	11 MMC IP
	11.1 MMC Read and Write Performance
	11.1.1 Test Description
	11.1.2 Test Results

	11.2 Summary

	12 SATA IP
	12.1 SATA Read and Write Performance
	12.1.1 Test Setup
	12.1.2 Observations
	12.1.2.1 RAW Performance
	12.1.2.2 SDK Performance

	12.2 Summary

	13 GMAC IP
	13.1 GMAC Receive/Transmit Performance
	13.1.1 Test Setup
	13.1.2 Test Description
	13.1.2.1 CPPI Buffer Descriptors

	13.1.3 Test Results
	13.1.3.1 Receive/Transmit Mode (see)
	13.1.3.2 Receive Only Mode (see)
	13.1.3.3 Transmit Only Mode (see)

	13.2 Summary

	14 GPMC IP
	14.1 GPMC Read and Write Performance
	14.1.1 Test Setup
	14.1.1.1 NAND Flash
	14.1.1.2 NOR Flash

	14.1.2 Test Description
	14.1.2.1 Asynchronous NAND Flash Read/Write Using CPU Prefetch Mode
	14.1.2.2 Asynchronous NOR Flash Single Read
	14.1.2.3 Asynchronous NOR Flash Page Read
	14.1.2.4 Asynchronous NOR Flash Single Write

	14.1.3 Test Results

	14.2 Summary

	15 QSPI IP
	15.1 QSPI Read and Write Performance
	15.1.1 Test Setup
	15.1.2 Test Results
	15.1.3 Analysis
	15.1.3.1 Theoretical Calculations
	15.1.3.2 % Efficiency

	15.2 QSPI XIP Code Execution Performance
	15.3 Summary

	16 Standard Benchmarks
	16.1 Dhrystone
	16.1.1 Cortex-A15 Tests and Results
	16.1.2 Cortex-M4 Tests and Results

	16.2 LMbench
	16.2.1 LMbench Bandwidth
	16.2.1.1 TDA2xx and TDA2ex Cortex-A15 LMbench Bandwidth Results
	16.2.1.2 TDA2xx and TDA2ex Cortex-M4 LMBench Bandwidth Results
	16.2.1.3 Analysis

	16.2.2 LMbench Latency
	16.2.2.1 TDA2xx and TDA2ex Cortex-A15 LMbench Latency Results
	16.2.2.2 TDA2xx and TDA2ex Cortex-M4 LMbench Latency Results
	16.2.2.3 Analysis

	16.3 STREAM
	16.3.1 TDA2xx and TDA2ex Cortex-A15 STREAM Benchmark Results
	16.3.2 TDA2xx and TDA2ex Cortex-M4 STREAM Benchmark Results

	17 Error Checking and Correction (ECC)
	17.1 OCMC ECC Programming
	17.2 EMIF ECC Programming
	17.3 EMIF ECC Programming to Starterware Code Mapping
	17.4 Careabouts of Using EMIF ECC
	17.4.1 Restrictions Due to Non-Availability of Read Modify Write ECC Support in EMIF
	17.4.1.1 Un-Cached CPU Access of EMIF
	17.4.1.2 Cached CPU Access of EMIF
	17.4.1.3 Non CPU Access of EMIF Memory
	17.4.1.4 Debugger Access of EMIF via the Memory Browser/Watch Window
	17.4.1.5 Software Breakpoints While Debugging

	17.4.2 Compiler Optimization
	17.4.3 Restrictions Due to i882 Errata
	17.4.4 How to Find Who Caused the Unaligned Quanta Writes After the Interrupt

	17.5 Impact of ECC on Performance

	18 DDR3 Interleaved vs Non-Interleaved
	18.1 Interleaved versus Non-Interleaved Setup
	18.2 Impact of Interleaved vs Non-Interleaved DDR3 for a Single Initiator
	18.3 Impact of Interleaved vs Non-Interleaved DDR3 for Multiple Initiators

	19 DDR3 vs DDR2 Performance
	19.1 Impact of DDR2 vs DDR3 for a Single Initiator
	19.2 Impact of DDR2 vs DDR3 for Multiple Initiators

	20 Boot Time Profile
	20.1 ROM Boot Time Profile
	20.2 System Boot Time Profile

	21 L3 Statistics Collector Programming Model
	22 Reference

	Revision History
	Important Notice

