
1SPRACD1–December 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Early CAN Response on DRA7xx

Application Report
SPRACD1–December 2018

Early CAN Response on DRA7xx

Venkateswara Rao Mandela

ABSTRACT
Responding to a CAN message in 50 ms from Power ON is a typical automotive usecase. This application
report shows the reception and the response time limits that can be met with existing software on
DRA7xx.

Contents
1 Problem Statement .......................................................................................................... 2
2 High Level Approach ........................................................................................................ 2
3 Replicating the Results...................................................................................................... 5
4 Testing Early CAN on EVM ................................................................................................ 6
5 Patch Description ............................................................................................................ 9
6 Further Optimizations ...................................................................................................... 10
7 Conclusion .................................................................................................................. 10
8 References .................................................................................................................. 10

List of Figures

1 Linux Normal Boot Flow .................................................................................................... 2
2 Linux Early Boot Flow ....................................................................................................... 3
3 Early CAN Breakdown ...................................................................................................... 3

List of Tables

1 CAN Startup Stages......................................................................................................... 4
2 Basic Benchmarking and Optimization ................................................................................... 9
3 QSPI Support for Early Boot ............................................................................................... 9
4 MLO Optimization for Early CAN .......................................................................................... 9
5 Display Boot Time Achieved.............................................................................................. 10
6 Display Boot Time Achieved .............................................................................................. 10

Trademarks
All trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD1


Problem Statement www.ti.com

2 SPRACD1–December 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Early CAN Response on DRA7xx

1 Problem Statement
Having the infotainment system respond to a CAN message in 50 ms from Power ON is a typical
automotive requirement. Normally this requirement is met using a small microcontroller that responds to
the CAN messages along side the main application processor. Meeting this requirement using only the TI
DRA7xx SOC eliminates the external microcontroller and saves cost for the customer.

This document demonstrates how a CAN message can be received on DRA7xx within 45 ms from Board
Power ON and the constraints on CAN software stack to be able to respond within 50 ms/100 ms.

Assuming that:
• CAN stack will be running on one of the M4(IPU) cores on Vayu.
• The customer system will be running Linux as the HLOS on A15.

The procedure described in this document is equally applicable to a customer system running Android.

1.1 Organization of the Document
The approach to the problem is described in Section 2. Section 3 shows how to replicate the results on a
DRA7x EVM. In Section 5, the patches used to perform benchmarking and optimization are listed. In
Section 6, further steps to reduce the boot time are listed.

2 High Level Approach
In the default SDK boot flow, M4 is loaded by Linux Kernel. As this takes around 2-3 seconds, the default
boot flow is not suitable for the early CAN usecase.

Figure 1. Linux Normal Boot Flow

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD1


www.ti.com High Level Approach

3SPRACD1–December 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Early CAN Response on DRA7xx

Instead, the early boot flow is used, where M4 is loaded from the bootloader instead of the kernel. In this
approach, the M4 core can be loaded in few tens of milli seconds.

Figure 2. Linux Early Boot Flow

Minimal board initialization is performed in MLO before loading the M4 core. Figure 3 shows the various
stages of execution before CAN response.

Figure 3. Early CAN Breakdown

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD1


High Level Approach www.ti.com

4 SPRACD1–December 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Early CAN Response on DRA7xx

Table 1. CAN Startup Stages

Stage
Stage
Name Processor Binary Explanation

T1 PMIC NA NA Time taken from the time the ECU is powered on to the time PMIC has ramped up all the power
rails and takes the SOC out of reset. This is board dependent.

T2 ROM
Init

A15 ROM Time taken by the ROM to do basic setup and initialize the boot media

T3 MLO
Read

A15 ROM Time to copy MLO from QSPI into OCMC memory

T4 MLO
Init

A15 MLO Time taken by MLO to initialize DDR, setup core voltages

T5 M4
Copy

A15 MLO Time taken by MLO to read M4 binary from QSPI and take M4 core out of reset.

T6 M4
Exec

M4 CAN Stack Time taken by M4 image to initialize and be ready to receive a CAN message

This document focuses on minimizing the generic components of this initialization sequence, for example,
T2, T3, T4 and T5. The remaining two components T1 (PMIC) and T6 (M4 Exec) are heavily dependent on
the final board design and the CAN stack, respectively.

The next few sections go into high level details on how each of these components were optimized.

2.1 ROM Init Time
DRA7xx boot ROM is described in detail in the Initialization chapter in the DRA75xP, DRA74xP,
DRA77xP, DRA76xP SoC for Automotive Infotainment Silicon Revision 1.0 Technical Reference Manual.
Out of the boot modes supported by the DRA7xx SOC, the DRA7xx EVM by default supports booting out
of the following persistent media:
• MMC/SD
• eMMC
• QSPI

Of these three boot media, MMC/SD and eMMC require a handshake as part of the initialization
sequence. This handshake also involves a compulsory timeout in order to handle parts from different
manufacturers. As a result, time taken by ROM to be ready to read from MMC/SD and eMMC is more
than 100 ms. This makes QSPI the only boot media that can be used for early CAN response on the
DRA7xx EVM.
A number for T2 is not provided as there is not have a way to measure T2 standalone on the EVM. Based
on estimations, T2 should be around 15 ms when booting from QSPI.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD1
http://www.ti.com/lit/pdf/SPRUI30
http://www.ti.com/lit/pdf/SPRUI30


www.ti.com High Level Approach

5SPRACD1–December 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Early CAN Response on DRA7xx

2.2 MLO Read
On DRA7xx, Boot ROM copies the first stage bootloader (MLO/SPL) from QSPI at a conservative speed
of 11 MBps. A 120 KB MLO binary takes around 11 ms to be copied from QSPI into OCMC. Usually this is
not an issue. However, in case of early CAN response, the 11 ms spent in copying MLO forms a
significant portion of the usecase time.
To reduce this copy time, a micro bootloader umlo is used (see Section 3.2.3). umlo is flashed at offset 0
in QSPI and the actual MLO at a 64 KB offset. ROM reads and executes umlo. As umlo is < 1 KB in size,
the data copy time for umlo is negligible. umlo first sets up the QSPI interface to the maximum speed
possible on DRA7xx (76.8 MHz interface clock, Quad Mode and Mode 0 operation). Then, umlo copies
the MLO to the execution address in OCMC and jumps to it.

With this change, the time taken from A15 to start executing a 120 KB MLO from PORz reduces from 24.5
ms to 19 ms, a saving of 5.5 ms. The 19 ms measured in this case is T2 + T3 as per the diagram shown
in Figure 3.

2.3 MLO Init
The first stage bootloader (MLO) delivered as part of the SDK performs initialization necessary for a wide
variety of usecases. As a result, the initialization time before MLO is ready to load the M4 core is high. To
reduce this initialization time, the following was done:
• Split the initialization into two portions:

– Initialization required for loading the M4 core.
– Initialization not required for loading the M4 core but required for the full boot.

• Optimized the initialization time required for loading the M4 core.
With these changes, the time spent in MLO initialization before loading the M4 core (T4) comes down to
5.6 ms.

2.4 M4 Read
Reading the M4 binary from QSPI is another major contributor to the boot time. compressing the binary
when flashing it to QSPI and uncompressing it after reading it into DDR reduced the read time. The choice
of the compression format depends on:
• The compression offered by the compressor on the host PC - This impacts the time to read the binary

from QSPI.
• The decompression speed on the target at the chosen CPU speed - This is an additional line item

compared to the loading the uncompressed binary.
After experiments with different compression formats, it was decided to use the lzo compression format
for M4 binary. With this change, the time to read the binary (T5) reduces to 4.05 ms.

In the next section, the steps to replicate the results on a TI EVM are described.

3 Replicating the Results

3.1 Hardware Requirements
• Linux PC running Ubuntu 14.04 LTS or any other version supported by Processor SDK Linux

Automotive.
• Micro-USB to USB cable for connecting EVM to the PC. This is used for transferring the binaries from

the PC to the board.
• Mini-USB to USB cable to displaying UART logs on the PC.
• An EVM of one of the Jacinto 6 family devices.

– These patches were tested on a Rev B J6 Eco EVM. The patches should work without modification
on all other J6 variant SOC's as well.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD1


Replicating the Results www.ti.com

6 SPRACD1–December 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Early CAN Response on DRA7xx

3.2 Software Requirements
This application report is intended for use with Processor SDK Linux Automotive 3.04 or later. The
patches described below apply on top of the U-Boot commit used in the SDK. To obtain the latest
Processor SDK Linux Automotive, go to:

http://processors.wiki.ti.com/index.php/Category:Processor_SDK_Linux_Automotive

Ensure that you:
• Have a working Processor SDK Linux Automotive 3.04 or later installed.
• Are able to build U-boot and kernel
• Are able to bring up the EVM with the U-Boot and Kernel images you have built.

3.2.1 u-boot-tools
The mkimage binary was used from the u-boot-tools package for wrapping binaries in the uImage
header. This package can be installed by running the following command:

host $ sudo apt-get install u-boot-tools

3.2.2 lzop
The lzop utility was used to compress the binaries with the LZO compression. This utility can be installed
by using the command.

host $ sudo apt-get install lzop

3.2.3 umlo
A micro MLO (umlo) was used to speed up the copying of MLO from QSPI into DRA7xx on-chip memory
(OCMC). You can obtain the source and prebuilt binary of umlo by cloning the following git repository:

$ git clone git://git.ti.com/glsdk/dra7xx-umlo.git

For more information on umlo, see the included README.md file.

4 Testing Early CAN on EVM

4.1 Patching and Building U-Boot
You can fetch the u-boot changes required for this document and build it using the following command.
Review 38746 patch revision 2 is the latest version of the patches as of this application report.

host $ cd u-boot/
host $ git fetch http://review.omapzoom.org/repo/u-boot refs/changes/46/38746/2
host $ git checkout FETCH_HEAD
host $ make dra7xx_evm_defconfig
host $ make

Copy MLO and u-boot.img from the build output into the FAT partition of the SD card.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD1
http://processors.wiki.ti.com/index.php/Category:Processor_SDK_Linux_Automotive
http://git.ti.com/glsdk/dra7xx-umlo/blobs/master/README.md


www.ti.com Testing Early CAN on EVM

7SPRACD1–December 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Early CAN Response on DRA7xx

4.2 Preparing the IPU Binary
The messageq_single.xem4 binary is used from the PSDKLA release for the testing. The binary can be
found in the lib/firmware folder of the target filesystem. The binary is about 120 KB in size, which is in
the ballpark of a minimal CAN stack size.
1. Strip the symbols from the binary to reduce the size. You might want to make a copy of the binary as

the original is overwritten.
host $ du -k messageq_single.xem4
4248 messageq_single.xem4
host $ /opt/ti-devkit/ti-cgt-arm_5.2.7/bin/armstrip -p messageq_single.xem4
host $ du -k messageq_single.xem4
120 messageq_single.xem4

2. Compress the binary using LZO compression.

host $ lzop -0 -c messageq_single.xem4 > messageq_single.xem4.lzo
host $ du -k messageq_single.xem4.lzo
68 messageq_single.xem4.lzo

3. Wrap the compressed binary in a uImage header. This is required for MLO to determine the amount of
data to be read.

host $ mkimage -d messageq_single.xem4.lzo messageq_single.xem4.lzo.uImage

4.3 Hardware Setup Instructions
1. Modify Switch settings on the EVM to the following - which places the EVM is SD boot mode.

SW2[7:0] 0000 0111
SW3[7:0] 0000 0001

SW5[9:0] 00 0001 0100

SW8[1:0] 11

2. Connect a USB cable from P2/USB1 to host PC. This is used for flashing the EVM using fastboot.
3. Connect a USB cable from the USB-UART adapter on the EVM to the host PC.

4.4 Flashing Instructions
1. Insert the SD card with MLO and U-Boot into the EVM. Place the EVM in SD boot mode. Reboot and

stop at the U-Boot prompt.

SW2[7:0] 0000 0111
SW3[7:0] 1000 0001

2. Run the following commands to clear any old env settings and reboot.

=> env default -f -a
=> env save

3. Stop again at the U-Boot prompt and enter the fastboot state using the following command:

=> fastboot 0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD1


Testing Early CAN on EVM www.ti.com

8 SPRACD1–December 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Early CAN Response on DRA7xx

4. Run the following commands on the host PC. These commands flash the QSPI with umlo, MLO, and
the remotecore binary. The rest of the binaries are not flashed as our intent is to demonstrate the
reduction in IPU1 load time.

host $ fastboot oem spi
host $ fastboot flash umlo umlo
host $ fastboot flash xloader MLO
host $ fastboot flash ipu1 messageq_single.xem4.lzo.uImage

5. Once the above commands are complete, change the SW2 setting as shown below. This places the
EVM in production QSPI4 boot mode. Reboot the EVM.

SW2[7:0] 0011 0111

Section 4.5 describes how to interpret the boot logs to obtain the IPU boot time.

4.5 Interpreting the Output
Below is a line by line break down of the logs printed from MLO. Line numbers are added for illustration in
the document.

Lines 1-2 are the standard SPL prints after the console has been initialized. As console initialization is
deferred until IPU1 is loaded, IPU1 is already running at this point.

01: U-Boot SPL 2016.05-00027-g12e5f53400 (Dec 06 2017 - 12:19:54)
02: DRA722-GP ES1.0

Lines 3-8 are debug prints from IPU1. The debug prints are usually stored in a trace buffer(DDR) and are
displayed by the kernel via the debugfs interface. The trace buffer is read and printed the first 1024
characters to the screen as an indication that IPU1 is executing.

03: [0][ 0.000] Watchdog enabled: TimerBase = 0x68824000 ...
04: [0][ 0.000] Watchdog enabled: TimerBase = 0x68826000 ...
05: [0][ 0.000] Watchdog_restore registered as a resume callback
06: [0][ 0.000] 18 Resource entries at 0x3000
07: [0][ 0.000] messageq_single.c:main: MultiProc id = 2
08:

Lines 9-13 provide timestamps at various phases of MLO execution in terms of the 32 KHz timer on the
SOC. An explanation of each of these points is provided in subsequent chapters.

09: rom_handoff_time is 619 ticks
10: board_init_entry_time is 761 ticks
11: mlo_init_done_time is 804 ticks
12: ipu1_start_time is 937 ticks
13: Entering Infinite loop

For now, the interest is only about ipu1_start_time, which indicates the time at which IPU1 has started
execution. This is 937 ticks of the 32 KHz timer or 28.6 ms (937/32.768 = 28.6). This 28.6 ms
measurement corresponds to T2 + T3 + T4 + T5 in Figure 3.

Section 5 describes the u-boot patches used for this purpose.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD1


www.ti.com Patch Description

9SPRACD1–December 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Early CAN Response on DRA7xx

5 Patch Description
The patches are in four sets.
• Basic benchmarking and optimization - These patches are reused from SPRAC82 and provide a

framework for benchmarking MLO execution and for flashing the binaries.

Table 2. Basic Benchmarking and Optimization

S.No URL Headline
1 http://review.omapzoom.org/38255 fastboot: update linux partition table
2 http://review.omapzoom.org/38729 fastboot: flash: add buffer overflow check for cmd
3 http://review.omapzoom.org/38730 fastboot: erase QSPI boot areas only when necessary
4 http://review.omapzoom.org/38258 fastboot: add more partitions to QSPI
5 http://review.omapzoom.org/38259 dra7xx: add functions for timestamping
6 http://review.omapzoom.org/38260 spl: dra7xx: timestamp various points in execution
7 http://review.omapzoom.org/38261 spl: dra7xx: propagate boot time measurements via dtb in single stage boot
8 http://review.omapzoom.org/38262 dra7xx_evm: minor change to config option
9 http://review.omapzoom.org/38263 dra7xx_evm: spl: disable env support

• QSPI Support for Early Boot - These patches add support for reading the remotecore binaries from a
specified offset in QSPI memory. They also update U-Boot for flashing the IPU binary into QSPI.

Table 3. QSPI Support for Early Boot

S.No URL Headline
10 http://review.omapzoom.org/38731 spl: dra7xx: early boot: refactor spl_load_cores
11 http://review.omapzoom.org/38732 spl: dra7xx: early boot: read remotecore binary from QSPI
12 http://review.omapzoom.org/38733 dra7xx: update spi partition table for ipu1 early boot
13 http://review.omapzoom.org/38734 config: dra7xx: enable late attach

• MLO Optimization for early CAN - These patches perform various optimizations to
– Reduce the time spent in MLO before loading the remotecores:

• Defering initialization not required for starting the remotecores
• Optimize operations that cannot be deferred

• Reduce the time spent in reading the remotecores from QSPI by using compressed binaries.

Table 4. MLO Optimization for Early CAN

S.No URL Headline
14 http://review.omapzoom.org/38735 spl: dra7xx: disable board detection
15 http://review.omapzoom.org/38736 config: dra7xx: do not clear malloc memory
16 http://review.omapzoom.org/38737 dra7xx: i2c: reduce sleeps in i2c initialization
17 http://review.omapzoom.org/38738 spl: dra7xx: defer console init to reduce ipu boot time
18 http://review.omapzoom.org/38739 spl: dra7xx: defer scaling unnecessary core voltages
19 http://review.omapzoom.org/38740 spl: dra7xx: early boot: do not clear unsed memory
20 http://review.omapzoom.org/38741 spl: dra7xx: support lzo compression for remotecore binaries
21 http://review.omapzoom.org/38742 config: dra7xx: enable compression for remotecore binaries
22 http://review.omapzoom.org/38743 spl: dra7xx: use dma to clear bss section

These patches have been tested on DRA74x and DRA72x platforms. When testing on other DRA7xx
platforms, revert the patch No. 14 in case of issues.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD1
http://review.omapzoom.org/38255
http://review.omapzoom.org/38729
http://review.omapzoom.org/38730
http://review.omapzoom.org/38258
http://review.omapzoom.org/38259
http://review.omapzoom.org/38260
http://review.omapzoom.org/38261
http://review.omapzoom.org/38262
http://review.omapzoom.org/38263
http://review.omapzoom.org/38731
http://review.omapzoom.org/38732
http://review.omapzoom.org/38733
http://review.omapzoom.org/38734
http://review.omapzoom.org/38735
http://review.omapzoom.org/38736
http://review.omapzoom.org/38737
http://review.omapzoom.org/38738
http://review.omapzoom.org/38739
http://review.omapzoom.org/38740
http://review.omapzoom.org/38741
http://review.omapzoom.org/38742
http://review.omapzoom.org/38743


Patch Description www.ti.com

10 SPRACD1–December 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Early CAN Response on DRA7xx

• Boot time display - These patches print the benchmarking information from various stages of the boot
to the serial terminal. This allows us immediate feedback instead booting the kernel to obtain the boot
numbers.

Table 5. Display Boot Time Achieved

S.No URL Headline
23 http://review.omapzoom.org/38744 spl: dra7xx: add code to print boot measurements
24 http://review.omapzoom.org/38745 spl: dra7xx: early boot: add function to print trace buffer
25 http://review.omapzoom.org/38670 spl: dra7xx: add an infinite loop function for debug
26 http://review.omapzoom.org/38746 spl: dra7xx: print boot times,traces and loop forever

5.1 Other tools
While developing the above patches, a peripheral boot was used to reduce the testing and benchmarking
time of MLO. The procedure is documented in Using Peripheral Boot and DFU for Rapid Development on
Jacinto 6 Devices

The following patch was also used for benchmarking code at a finer level to determine the time consumed
at a function call level.

Table 6. Display Boot Time Achieved

S.No URL Headline
1 http://review.omapzoom.org/38846 spl: dra7xx: finer benchmarking changes

6 Further Optimizations
Below is a list of more optimizations possible to reduce the load time even further:
• CAN message reception - The CAN peripheral can be configured to receive messages from the CAN

bus as soon as the IO delay configuration is complete. This operation can be done in MLO. CAN
peripheral has internal message memory where messages meeting the acceptance criteria can be
stored. Once the IPU is booted, it can read the messages from the CAN peripheral internal memory
and respond to them.

• ROM Execution time - Alternatively one can use GPMC NOR to start MLO in XIP fashion and save the
MLO Read time. However, the I/O delay recalibration code needs to run in isolation mode. As a result,
one can only run MLO in XIP mode only partially. MLO needs to be copied into OCMC before running
IO delay recalibration. However, GPMC NOR offers ~40 MBps throughput would reduce the MLO copy
time by at least 2 ms.

7 Conclusion
This document discusses how the M4 core on DRA7xx can be brought up within 29 ms from PORz. This
allows the M4 core to be ready to respond to a CAN message within 50 ms after allowing 20 ms PMIC
rampup and M4 execution time.

8 References
• DRA75xP, DRA74xP, DRA77xP, DRA76xP SoC for Automotive Infotainment Silicon Revision 1.0

Technical Reference Manual
• Using Peripheral Boot and DFU for Rapid Development on Jacinto 6 Devices

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD1
http://review.omapzoom.org/38744
http://review.omapzoom.org/38745
http://review.omapzoom.org/38670
http://review.omapzoom.org/38746
http://www.ti.com/lit/pdf/SPRAC33
http://www.ti.com/lit/pdf/SPRAC33
http://review.omapzoom.org/38846
http://www.ti.com/lit/pdf/SPRUI30
http://www.ti.com/lit/pdf/SPRUI30
http://www.ti.com/lit/pdf/SPRAC33


IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Early CAN Response on DRA7xx
	1 Problem Statement
	1.1 Organization of the Document

	2 High Level Approach
	2.1 ROM Init Time
	2.2 MLO Read
	2.3 MLO Init
	2.4 M4 Read

	3 Replicating the Results
	3.1 Hardware Requirements
	3.2 Software Requirements
	3.2.1 u-boot-tools
	3.2.2 lzop
	3.2.3 umlo


	4 Testing Early CAN on EVM
	4.1 Patching and Building U-Boot
	4.2 Preparing the IPU Binary
	4.3 Hardware Setup Instructions
	4.4 Flashing Instructions
	4.5 Interpreting the Output

	5 Patch Description
	5.1 Other tools

	6 Further Optimizations
	7 Conclusion
	8 References

	Important Notice



