
1SPRACD8–June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Integrating New Cameras With Video Input Port on DRA7xx SoCs

Application Report
SPRACD8–June 2019

Integrating New Cameras With Video Input Port on
DRA7xx SoCs

Nikhil Devshatwar

ABSTRACT
This application report describes how to integrate a new camera with the DRA7xx software ecosystem. It
documents all the software changes needed to bring up a new camera on a custom board using DRA7xx
running Processor SDK Linux automotive software.

Contents
1 Introduction ... 2
2 Video Input Port and Possible Video Sources ... 2
3 Kernel Changes to Integrate Camera Devices... 2

List of Figures

1 Possible Video Sources to be Interfaced With VIP.. 2
2 Block Diagram of Multichannel Video Source Integration .. 5
3 Block Diagram of LVDS Camera Integration... 6

List of Tables

1 Port Names ... 3

Trademarks
All trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD8

Introduction www.ti.com

2 SPRACD8–June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Integrating New Cameras With Video Input Port on DRA7xx SoCs

1 Introduction
The DRA7xxx family of System-on-Chips (SoCs) have Video Input Port (VIP) as one of the essential
module used for video capture in automotive use cases. The processor SDK supports a few cameras out
of the box on the DRA7xx EVMs, but depending on the customer need, different cameras need to be
integrated with the DRA7xx SoCs. Sometimes, the video that needs to be captured may not be directly
from a camera; it may be the output of an analog video decoder or an HDMI receiver as well.

The VIP driver supports different types of cameras:
• Parallel port cameras with discrete sync signals
• BT656 video with embedded sync signals
• 8-bit/16-bit YUV video
• 24-bit RGB video
• Multiple video sources time multiplexed embedded sync video

2 Video Input Port and Possible Video Sources

Figure 1. Possible Video Sources to be Interfaced With VIP

3 Kernel Changes to Integrate Camera Devices
The VIP driver is a V4L2 capture driver that registers /dev/videoX devices in userspace, which are used
for performing video capture via standard V4L2 API. The V4L2 specification allows for SoC driver to be
written independent of the camera/video source. There is one V4L2 driver for the VIP instance and each
camera device may have a separate V4L2 subdevice driver. The camera driver is responsible for
configuring the camera as described in the device node and implement some of the media bus operations.
Theses operations are often used by the VIP driver whenever the camera needs to perform specific tasks
(for example, start/stop camera, get/set fmt, and so forth).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD8
https://linuxtv.org/downloads/v4l-dvb-apis/

www.ti.com Kernel Changes to Integrate Camera Devices

3SPRACD8–June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Integrating New Cameras With Video Input Port on DRA7xx SoCs

3.1 V4L2 Endpoint Framework
Different camera/video sources have different configuration parameters when interfacing with the VIP
video ports. Common interfacing properties like Horizontal Sync (Hsync), Vertical Sync (Vsync), Pclk
polarities can be different across different devices. V4L2 endpoint, also known as v4l2_fwnode_endpoint,
describes these as part of the device tree definition. This makes the VIP driver generic enough to have no
dependency on the camera device. It also provides the flexibility to work with new cameras by doing
simple device tree modifications.

The following example showcases the DT entries of VIP device node and its usage when interfacing
different video sources.

3.1.1 VIP Device Definition

vip1 {
#address-cells = <1>;
#size-cells = <0>;
ports {

vin1a: port@1A {
reg = <0>;
#address-cells = <1>;

endpoint@0 {
remote-endpoint = <&cam1>;

};
};

vin2a: port@1A {
...

};
...

};
};

The above snippet describes the SoC VIP1 instance. It creates endpoint nodes for each of the video ports
available for that instance. By default, all the port nodes are empty, so it is not associated with any
cameras. Certain port nodes need to be populated when a new camera gets interfaced to that port. Both
endpoint nodes are cross referenced in the device tree.

Table 1 describes exact names of the ports (this also matches the Technical Reference Manual (TRM)
terminology) for each instance.

Table 1. Port Names

Endpoint Name VIP Instance Slice Port Name
vin1a VIP1 slice0 port A
vin1b VIP1 slice0 port B
vin2a VIP1 slice1 port A
vin2b VIP1 slice1 port B
vin3a VIP1 slice0 port A
vin3b VIP1 slice0 port B
vin4a VIP1 slice1 port A
vin4b VIP1 slice1 port B
vin5a VIP1 slice0 port A
vin6a VIP1 slice1 port A

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD8
https://www.kernel.org/doc/Documentation/devicetree/bindings/media/video-interfaces.txt
https://linuxtv.org/downloads/v4l-dvb-apis/kapi/v4l2-fwnode.html#c.v4l2_fwnode_endpoint

Kernel Changes to Integrate Camera Devices www.ti.com

4 SPRACD8–June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Integrating New Cameras With Video Input Port on DRA7xx SoCs

3.1.2 Camera Device Definition

ov10635@35{
compatible = "ovti,ov10633";
reg = <0x35>;
mux-gpios = <&pcf_hdmi 3 GPIO_ACTIVE_LOW>;
...
port {

cam1: endpoint {
remote-endpoint = <&vin1a>;
hsync-active = <1>;
vsync-active = <1>;
pclk-sample = <0>;
bus-width = <8>;

};
};

};

The above snippet describes the camera device. Standard properties about video interface can be
described with the endpoint device nodes itself. This minimizes the communication between the SoC
driver and the camera driver. This example describes:
• An 8-bit camera device connected to the vin1a port of the VIP device
• Hsync/Vsync signals are active HIGH
• Data needs to be sampled at falling edge of pixel clock.

3.2 Interfacing a Multichannel Video Source (TVP5158)
Most automotive use cases need to interface multiple cameras to the SoC. This can be achieved by
connecting multiple cameras to the different ports. The problem with this approach is that, for every
camera connected, at least 10 pads are used (assuming 8-bit interface). Most of the pads are muxed
between video ports and other interfaces like ethernet, audio, gpmc, and so forth. When connecting
multiple cameras this way, some of the functionality needs to be compromised. This can be avoided when
using multichannel capture; In that, multiple video sources are time multiplexed and sent via only one
video port. For example, TVP5158 is a TI analog video decoder chip that supports multiplexing. The VIP
parser is capable of de-multiplexing up to 16 different channels from one video port. This is done using
embedded sync BT656 protocol.

V4L2 framework does not support multichannel capture. There is no option to select a specific channel via
a video device. Also, the application might become complex when it has to handle all the channels
through the same video device. Current implementation of multichannel capture support for VIP driver
registers one video device per channel. For four channel capture, the driver registers /dev/video1,
/dev/video2, /dev/video3, /dev/video4. In this case, driver maps all the video devices to the same port and
each of them can be used independently. Another advantage with this approach is that this allows multiple
applications to handle each channel separately.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD8

www.ti.com Kernel Changes to Integrate Camera Devices

5SPRACD8–June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Integrating New Cameras With Video Input Port on DRA7xx SoCs

Figure 2 shows how the 4 channel capture is realized for the VIP and TVP5158 on DRA7xx-EVM.

Figure 2. Block Diagram of Multichannel Video Source Integration

3.3 Interfacing a Camera Over LVDS Serializer Deserializer
When the camera is physically located far from the SoC, the parallel port video cannot be sent longer
distances. For lossless reception, video data can be sent over linearly variable differential signaling
(LVDS) cable. This means the LVDS interface has to be much faster and the video data at camera and
SoC needs some way to serialized and deserialized, respectively.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD8

Kernel Changes to Integrate Camera Devices www.ti.com

6 SPRACD8–June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Integrating New Cameras With Video Input Port on DRA7xx SoCs

3.3.1 I2C Address Remapping
When connecting a LVDS camera, all remote Inter-Integrated Circuit (I2C) devices are not directly
connected. Serdes together acts as switch to forward the I2C messages back and forth. For this, each
remote device has an alias address that is used by the local I2C master to communicate with the remote
slave.

Figure 3 shows an example of interfacing LVDS camera and address translation.

Figure 3. Block Diagram of LVDS Camera Integration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD8

www.ti.com Kernel Changes to Integrate Camera Devices

7SPRACD8–June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Integrating New Cameras With Video Input Port on DRA7xx SoCs

3.3.2 Serializer/Deserializer Configuration
Each serializer/deserializer device is an I2C slave from the Linux perspective. For cameras, typically the
serializers will be on a remote I2C bus and the de-serializers will be on local I2C bus.

Note that along with the job of serialzing/de-serializing video data, most TI FPDLink3 devices have
General Purpose Input/Output (GPIO) capabilities to drive few GPIO lines. This is useful when a remotely
connected camera needs to toggle few power or Vsync lines through kernel driver

The following explains the device-tree bindings for describing the Serdes devices:

Texas instruments video serializer/de serializer
==
Required Properties:

- compatible: should be one of the following.
- "ti,ds90ub913aq": For TI FPDlink3 12bit video serializer
- "ti,ds90ub914aq": For TI FPDlink3 12bit video de serializer
- "ti,ds90uh925q": For TI FPDlink3 24bit video serializer
- "ti,ds90uh928q": For TI FPDlink3 24bit video de serializer

- reg: I2C slave address
This would be the alias adress for remote device. The CPU side
ser/des would address the remote device using this address.

Optional Properties:
- gpio-controller: Marks the device node as a gpio controller.
- #gpio-cells: Should be 1. The first cell is the GPIO number.
- ranges: This is the address translation table for mapping i2c devices

on the remote bus to the i2c address(alias) on parent bus.
The first entry in the ranges property has to of the corresponding
remote ser/des device.
For dynamic address mapping, keep the remote slave address as 0x0
The corresponding alias would be used if the remote slave doesn't
have an address already mapped.

- slave-mode: This property marks the ser/des as remote device.
For a device where 'slave-mode' property is absent, it is considered
as master device and 'ranges' and 'i2c-bus-num' properties are
compulsory.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD8

Kernel Changes to Integrate Camera Devices www.ti.com

8 SPRACD8–June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Integrating New Cameras With Video Input Port on DRA7xx SoCs

3.3.3 Serdes Device Definition
The following example demonstrates device node structure for a camera connected using FPDlink3
ser/des. Here, the deserializer and serializer are connected only via the LVDS link. The camera is
connected on the serializer I2C bus. The serializer and camera are not connected to the system I2C bus,
but it can be accessed from the system I2C bus. The deserializer maps each of the remote slave onto the
system I2C bus and acts as a bridge to transfer any messages addressed to the remote devices.

+-------+
|I2C bus|
+-------+

|
|0x60<real> +------------+
+-----------|Deserializer|0x60
| +------------+
| X
| X
| X <LVDS link>
| X
| X
| +----------+
| | Remote |
| | i2c bus |
| +----------+
| |
|0x74<alias> | +----------+
| <- - - - +------|Serializer| 0x58
| | +----------+
| |
|0x38<alias> | +---------+
| <- - - - +------|OV Camera| 0x30
| | +---------+
|
|

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD8

www.ti.com Kernel Changes to Integrate Camera Devices

9SPRACD8–June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Integrating New Cameras With Video Input Port on DRA7xx SoCs

The topology in the example above can be described in the device tree as shown below. Note that the
i2cbus here is a local I2C bus connected to the SoC. The lvds_des is just a virtual I2C bus representing
the I2C bus at the remote end. That is the reason why the camera is described under the virtual bus.

i2cbus {
lvds_des: deserializer@60 {

compatible = "ti,ds90ub914aq";
reg = <0x60>;
gpio-controller;
#gpio-cells=1;
i2c-bus-num = <5>;

};
};
&lvds_des {

ranges = <0x58 0x74>,
<0x38 0x30>;

lvds_ser: serializer@58 {
compatible = "ti,ds90ub913aq";
reg = <0x58>;
remote-device = <&lvds_des>;
gpio-controller;
#gpio-cells=1;
slave-mode;

};
lvds_cam: camera@30 {

compatible = "ov10635";
reg = <0x30>;
gpios = <&lvds_ser 0>;
/* power pin controlled by serializer local gpio */

};
};

Also, note that the range property decides the address mapping from one bus to other. Address referred
to as 0x74 on the remote bus will be aliased on address 0x58 on the local bus.

The advantage with this kind of device modeling is that the kernel driver controlling the camera need not
know about the aliases, serializer and de-serializer. Once the Serdes link is ready and aliases are setup,
the camera driver works independently without even noticing the I2C transactions getting rerouted. The
same driver works on a both cameras connected directly or connected through a Serdes pair.

3.4 Setting up Pinmux and IODELAY
Once the devices are defined in the device tree, it is important to configure the pinmux for the pads used
for the video port. To ensure timings on DRA7xx SoCs, it is recommended to perform IODELAY
configuration while in isolation in the first stage bootloader. Due to this, all the pinmux and IODELAY
configuration is handled in the u-boot. Kernel does not handle any pinmux or IODELAY settings for video
ports.

The following patch is an example of adding pinmux data to be configured in the u-boot. This adds entries
for using VIN1A pads in the muxmode 6, which connects the signals to the vin3a video port and adds
manual mode timing seed values for falling edge pclk.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD8

Kernel Changes to Integrate Camera Devices www.ti.com

10 SPRACD8–June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Integrating New Cameras With Video Input Port on DRA7xx SoCs

diff --git a/board/ti/dra7xx/mux_data.h b/board/ti/dra7xx/mux_data.h
index c2b557f..fcd07fd 100644
--- a/board/ti/dra7xx/mux_data.h
+++ b/board/ti/dra7xx/mux_data.h
@@ -538,6 +538,54 @@ const struct pad_conf_entry dra74x_core_padconf_array[] = {

{MCASP4_ACLKX, (M4 | PIN_INPUT_PULLUP)},/* mcasp4_aclkx.i2c4_sda */
{MCASP4_FSX, (M4 | PIN_INPUT_PULLUP)}, /* mcasp4_fsx.i2c4_scl */

+#ifdef CONFIG_TARGET_DRA7XX_EVM_VISION
+ { VIN1B_CLK1, (M6 | PIN_INPUT | MANUAL_MODE) }, /* vin1b_clk1.vin3a_clk0 */
+ { VIN1A_D16, (M6 | PIN_INPUT | MANUAL_MODE) }, /* vin1a_d16.vin3a_d0 */
+ { VIN1A_D17, (M6 | PIN_INPUT | MANUAL_MODE) }, /* vin1a_d17.vin3a_d1 */
+ { VIN1A_D18, (M6 | PIN_INPUT | MANUAL_MODE) }, /* vin1a_d18.vin3a_d2 */
+ { VIN1A_D19, (M6 | PIN_INPUT | MANUAL_MODE) }, /* vin1a_d19.vin3a_d3 */
+ { VIN1A_D20, (M6 | PIN_INPUT | MANUAL_MODE) }, /* vin1a_d20.vin3a_d4 */
+ { VIN1A_D21, (M6 | PIN_INPUT | MANUAL_MODE) }, /* vin1a_d21.vin3a_d5 */
+ { VIN1A_D22, (M6 | PIN_INPUT | MANUAL_MODE) }, /* vin1a_d22.vin3a_d6 */
+ { VIN1A_D23, (M6 | PIN_INPUT | MANUAL_MODE) }, /* vin1a_d23.vin3a_d7 */
+ { VIN2A_D22, (M5 | PIN_INPUT | MANUAL_MODE) }, /* vin2a_d22.vin3a_hsync0 */
+ { VIN2A_D23, (M5 | PIN_INPUT | MANUAL_MODE) }, /* vin2a_d23.vin3a_vsync0 */
+#endif

};

#ifdef CONFIG_IODELAY_RECALIBRATION
@@ -603,6 +651,53 @@ const struct iodelay_cfg_entry dra742_es1_1_iodelay_cfg_array[] = {

{0x0174, 1904, 1471}, /* CFG_GPMC_A17_IN */
{0x0188, 1690, 0}, /* CFG_GPMC_A18_OUT */
{0x0374, 0, 0}, /* CFG_GPMC_CS2_OUT */

+#ifdef CONFIG_TARGET_DRA7XX_EVM_VISION
+ { 0x0A2C, 0, 0 }, /* CFG_VIN1B_CLK1_IN : VIN3A_CLK0 - VIP2_MANUAL2 */
+ { 0x0930, 2805, 459 }, /* CFG_VIN1A_D16_IN : VIN3A_D0 - VIP2_MANUAL2 */
+ { 0x093C, 2904, 360 }, /* CFG_VIN1A_D17_IN : VIN3A_D1 - VIP2_MANUAL2 */
+ { 0x0948, 2857, 527 }, /* CFG_VIN1A_D18_IN : VIN3A_D2 - VIP2_MANUAL2 */
+ { 0x0954, 2861, 517 }, /* CFG_VIN1A_D19_IN : VIN3A_D3 - VIP2_MANUAL2 */
+ { 0x096C, 2855, 344 }, /* CFG_VIN1A_D20_IN : VIN3A_D4 - VIP2_MANUAL2 */
+ { 0x0978, 2908, 248 }, /* CFG_VIN1A_D21_IN : VIN3A_D5 - VIP2_MANUAL2 */
+ { 0x0984, 2843, 191 }, /* CFG_VIN1A_D22_IN : VIN3A_D6 - VIP2_MANUAL2 */
+ { 0x0990, 2683, 0 }, /* CFG_VIN1A_D23_IN : VIN3A_D7 - VIP2_MANUAL2 */
+ { 0x0AEC, 1606, 0 }, /* CFG_VIN2A_D22_IN : VIN3A_HSYNC0 - VIP2_MANUAL2 */
+ { 0x0AF8, 1673, 0 }, /* CFG_VIN2A_D23_IN : VIN3A_VSYNC0 - VIP2_MANUAL2 */
+#endif

};

const struct iodelay_cfg_entry dra742_es2_0_iodelay_cfg_array[] = {
@@ -667,6 +762,42 @@ const struct iodelay_cfg_entry dra742_es2_0_iodelay_cfg_array[] = {

{0x0174, 2533, 980}, /* CFG_GPMC_A17_IN */
{0x0188, 590, 0}, /* CFG_GPMC_A18_OUT */
{0x0374, 0, 0}, /* CFG_GPMC_CS2_OUT */

+#ifdef CONFIG_TARGET_DRA7XX_EVM_VISION
+ { 0x0930, 2244, 1202 }, /* CFG_VIN1A_D16_IN : VIN3A_D0 - VIP2_MANUAL2 */
+ { 0x093C, 2321, 1116 }, /* CFG_VIN1A_D17_IN : VIN3A_D1 - VIP2_MANUAL2 */
+ { 0x0948, 2280, 1288 }, /* CFG_VIN1A_D18_IN : VIN3A_D2 - VIP2_MANUAL2 */
+ { 0x0954, 2282, 1281 }, /* CFG_VIN1A_D19_IN : VIN3A_D3 - VIP2_MANUAL2 */
+ { 0x096C, 2284, 1090 }, /* CFG_VIN1A_D20_IN : VIN3A_D4 - VIP2_MANUAL2 */
+ { 0x0978, 2324, 1000 }, /* CFG_VIN1A_D21_IN : VIN3A_D5 - VIP2_MANUAL2 */
+ { 0x0984, 2278, 915 }, /* CFG_VIN1A_D22_IN : VIN3A_D6 - VIP2_MANUAL2 */
+ { 0x0990, 2423, 398 }, /* CFG_VIN1A_D23_IN : VIN3A_D7 - VIP2_MANUAL2 */
+ { 0x0A2C, 0, 0 }, /* CFG_VIN1B_CLK1_IN : VIN3A_CLK0 - VIP2_MANUAL2 */
+ { 0x0AEC, 1641, 0 }, /* CFG_VIN2A_D22_IN : VIN3A_HSYNC0 - VIP2_MANUAL2 */
+ { 0x0AF8, 1748, 0 }, /* CFG_VIN2A_D23_IN : VIN3A_VSYNC0 - VIP2_MANUAL2 */
+#endif

};

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD8

www.ti.com Kernel Changes to Integrate Camera Devices

11SPRACD8–June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Integrating New Cameras With Video Input Port on DRA7xx SoCs

3.4.1 Getting Pinmux and IODELAY Values
If you are starting with a new board design, see the PCT tool or Pinmux tool to select the right pinmux, IO-
sets for the video ports you wish to use.

For getting iodelay values for the specific silicon revision, see the device-specific data manual. For video
ports, depending on the whether the data needs to be parsed at rising edge of clock v/s falling edge,
different set of IODELAY values are required.

You can also use the IOdelay Python tool to easily generate IODELAY values for the video ports in
different formats.

3.5 Setting Up Board Muxes
Depending on the custom board designs, it is possible that the camera interfaces are multiplexed with
other peripheral IO and often controlled via board muxes with GPIOs acting as selection lines. Typical
camera drivers are written such that the GPIOs to be controlled are descibed with names in the device
tree. For example, reset-gpio=phandle or power-gpio=phandle. This makes sense if the device needs
fixed number of GPIOs. These are part of the camera and makes sense to be handled in the camera
driver. On the other hand, board muxes are not part of the camera, and the programming changes from
each board to the other. The board muxes were set in a generic way by handling a special property called
mux-gpios=list of phandles.

The following example demonstrates how the same TVP5158 device connected on different boards can
be described such that the generic driver can setup all the board muxes required for that instance.

--
arch/arm/boot/dts/dra7-evm.dts
--
&tvp_5158{

mux-gpios = <&pcf_hdmi 3 GPIO_ACTIVE_HIGH>, /*CAM_FPD_MUX_S0*/
<&pcf_jamr3_21 8 GPIO_ACTIVE_LOW>; /*SEL_TVP_FPD*/

};

--
arch/arm/boot/dts/dra72-evm-revc.dts
--
&tvp_5158{

mux-gpios = <&pcf_hdmi 2 GPIO_ACTIVE_LOW>, /*VIN2_S0*/
<&pcf_jamr3_21 8 GPIO_ACTIVE_LOW>, /*SEL_TVP_FPD*/
<&pcf_hdmi 6 GPIO_ACTIVE_HIGH>; /*VIN2_S2*/

};

--
arch/arm/boot/dts/dra76-evm.dts
--
&tvp_5158{

mux-gpios = <&pcf_jamr3_21 8 GPIO_ACTIVE_LOW>; /*SEL_TVP_FPD*/
};

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACD8
http://git.ti.com/glsdk/iodelay-config

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Integrating New Cameras With Video Input Port on DRA7xx SoCs
	1 Introduction
	2 Video Input Port and Possible Video Sources
	3 Kernel Changes to Integrate Camera Devices
	3.1 V4L2 Endpoint Framework
	3.1.1 VIP Device Definition
	3.1.2 Camera Device Definition

	3.2 Interfacing a Multichannel Video Source (TVP5158)
	3.3 Interfacing a Camera Over LVDS Serializer Deserializer
	3.3.1 I2C Address Remapping
	3.3.2 Serializer/Deserializer Configuration
	3.3.3 Serdes Device Definition

	3.4 Setting up Pinmux and IODELAY
	3.4.1 Getting Pinmux and IODELAY Values

	3.5 Setting Up Board Muxes

	Important Notice

