
1SPRACG2–May 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Sharing VPE Between VISIONSDK and PSDKLA

Application Report
SPRACG2–May 2018

Sharing VPE Between VISIONSDK and PSDKLA

Marvin Liang and Somnath Mukherjee

ABSTRACT
The video processing engine (VPE) is a hardware module in the Jacinto/TDA family of devices that mainly
provides deinterlace, scaler and color space conversion. Most of the ADAS customers use VPE to
process SD camera deinterlacing for RVC or SRV use cases. Typically, the development is based on TI
VISION SDK. Most infotainment customers use VPE to process the scaling or color space conversion for
played multimedia video. Typically, the development is based on TI PSDKLA.

Project collateral and source code discussed in this document can be downloaded from the following URL:
http://www.ti.com/lit/zip/spracg2.

Contents
1 VPE Share Problem in Current Use Cases .. 2
2 VPE Sharing Design... 3
3 VPE Sharing Implementation... 3
4 References ... 8

List of Figures

1 VPE Share Problem Between VISION SDK and PSDKLA .. 2
2 New VPE Sharing Concept .. 3
3 VPE Buffer Sharing Between SYSBIOS and Linux .. 5
4 VPE V4L2 Link Main Process Flowchart ... 6
5 2D SRV Chain With VPE V4L2 Link .. 7

List of Tables

Trademarks
All trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG2
http://www.ti.com/lit/zip/spracg2

VISION SDK subsystem

VIP Link
M4/BIOS

VPE Link
M4/BIOS

2D SRV Link
DSP/BIOS

Display Subsystem
A15/Linux

SRV

Gstreamer App
A15/User Mode

IPUMM/IVAHD
M4/BIOS

Codec Plugin

/dev/video0
VPE Driver
A15/Linux

VPE Plugin

Display Subsystem
A15/Linux

VIP Link
M4/BIOS

VPE Link
M4/BIOS

Display Subsystem
A15/LinuxRVC

Others Video App
A15/User Mode

VPE
Hardware

VPE Share Problem in Current Use Cases www.ti.com

2 SPRACG2–May 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Sharing VPE Between VISIONSDK and PSDKLA

1 VPE Share Problem in Current Use Cases
More customers are considering a system that supports infotainment features plus SRV in one single
Jacinto/TDA. Since only one Jacinto/TDA has one instance of VPE, there is a driver conflict for these use
cases. This application report provides an implementation to solve the driver conflict problem when
simultaneously sharing the VPE module with different SDKs.

Figure 1. VPE Share Problem Between VISION SDK and PSDKLA

Consider a system that supports these features as shown in Figure 1:
• RVC or SRV with SD cameras

For fast boot consideration, most customers choose VISION SDK framework for developing RVC or
SRV. VISION SDK designs with the Link and Chain concept are used to implement any use case.
When the SD camera frames (typically, YUV420) captured by VIP link, VIP sends the frames to the
VPE link for deinterlacing. The VPE link calls the driver based on the TI PDK, which is located in the
M4 core to configure the VPE hardware module to implement the deinterlacing, and then sends the
interlaced frames to next link.

• Multimedia player
By default, TI PSDKLA uses open source gstreamer framework for any multimedia player use case. TI
provides gstreamer plugins, for example ducatiH264, ducaitiMJPEG, ducatiVPE. These plugins can
work in gstreamer pipeline to process the multimedia file. For example, play a 720x480 H.264 video
and display it on a 1280x720 LCD. The gstreamer calls the ducatiH264 plugin to configure IPUMM on
the M4 core to communicate with IVAHD to decode the H.264 frames to YUV420. Then, it sends the
information to the VPE plugin, to upscaling, to 1280x720, which can be displayed on 1280x720 LCD
with full screen mode. The VPE plugin calls the TI Linux VPE V4L2 driver, which is located on the A15
core, to configure the VPE hardware module to implement the upscaling. Then, it sends the up scaled
frames to the next plugin.

If A and B use cases occur simultaneously, both cases will fail because one single VPE hardware instance
cannot be controlled or configured from both M4 and A15 cores. Actually, any other VPE share use case
that needs both the PDK driver on M4 and Linux driver on A15 will fail. For example, the VISION SDK
subsystem needs a CSC except when the SD camera requires the deinterlace; PSDKLA needs a CSC
also.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG2

VISION SDK subsystem

VIP Link
M4/BIOS

2D SRV Link
DSP/BIOS

Display Subsystem
A15/Linux

SRV

Gstreamer App
A15/User Mode

IPUMM/IVAHD
M4/BIOS

Codec Plugin

/dev/video0
VPE Driver
A15/Linux

VPE Plugin

Display Subsystem
A15/Linux

VIP Link
M4/BIOS

Display Subsystem
A15/LinuxRVC

Others Video App
A15/User Mode

VPE
Hardware

/dev/video0
VPE Driver
A15/Linux

VPE Link

/dev/video0
VPE Driver
A15/Linux

VPE Link

www.ti.com VPE Sharing Design

3SPRACG2–May 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Sharing VPE Between VISIONSDK and PSDKLA

A new mechanism is needed to share the VPE hardware module between VISION SDK and PSDKLA.

2 VPE Sharing Design

Figure 2. New VPE Sharing Concept

Sharing the VPE hardware requires that the driver can only be called in ONE core: M4 or A15. If the
gstreamer VPE plugin calls the M4-based VPE driver, the plugin needs more software effort to implement
the IPC communication and buffer sharing between SYSBIOS and Linux. The better way is redesigned: a
new VPE link in VISION SDK that includes these characteristics as shown in Figure 2.
• The new VPE link follows the VISION SDK Link and Chain framework.
• The new VPE link calls the A15-based Linux V4L2 driver to implement all VPE related features.
• All of the exchanged buffers between links are allocated from VISION SDK heap. These buffers should

be shared with SYSBIOS and Linux.

3 VPE Sharing Implementation

3.1 Construct DMABUF in Linux
The VISION SDK subsystem uses the TI SYSBIOS OS. The drivers that include VPE on M4 can access
the physical address directly. All of the buffers shared between VISION SDK links on the M4 core are
described by physical address. But, Linux has a different mechanism to access a buffer by driver.
DMABUF is a basic data structure or descriptor for a buffer in Linux that can share information between
the Linux drivers. The buffer that is allocated from the VISION SDK heap and shared with the Linux VPE
driver needs to be converted to a DMABUF file descriptor. These steps describe the construction of a
DMABUF fd that can be used for the Linux V4L2 driver according to the address of the VPE buffer in
VISION SDK heap:
1. Open the driver /dev/vmemexp that is the standard feature in TI K4.4.
2. Construct a DMABUF fd by system call DBUFIOC_EXPORT_VIRTMEM with the buffer’s virtual

address and size.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG2

VPE Sharing Implementation www.ti.com

4 SPRACG2–May 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Sharing VPE Between VISIONSDK and PSDKLA

3. Reference sample code:
Int32 A15VpeLink_drvOpen(A15VpeLink_ChObj *pChObj)
{

Int8 devname[20] = "/dev/video0";
vpe_params *vpe = &pChObj->vpePrm;

vpe->fd = open(devname, O_RDWR);
if(vpe->fd < 0)

pexit("Cant open %s\n", devname);

printf("vpe:%s open success!!!fd %d\n", devname,vpe->fd);
devBufFD = open("/dev/vmemexp", O_RDWR | O_CLOEXEC);

return vpe->fd;
}
static Int32 A15VpeLink_drvExportDmaBuf(void * vAddr, uint32_t size, uint32_t *fdBuf)
{

int retVal = -1;
struct dmabuf_vmem_export exp;
exp.vaddr = (unsigned long)vAddr;
exp.size = size;

if(devBufFD > 0)
{

/* Export as DMAbuf handle */
retVal = ioctl(devBufFD, DBUFIOC_EXPORT_VIRTMEM, &exp);
if(retVal == 0)
{

*fdBuf = exp.fd;
}
else
{

printf(" exportDmaBuf failed \n ");
}

}

return retVal;
}
Int32 A15VpeLink_drvConstructDmabuf(Int32 drm_fd,Int32 *handle_buf_dmafd,Int32
*handle_uv_buf_dmafd,Int32 *buf_dmafd,Int32 *uv_buf_dmafd,System_Buffer *pBuffer)
{

System_VideoFrameBuffer *pVideoBuf=NULL;
struct drm_prime_handle req;
UInt32 size_Y=0,size_UV=0;
Int8 ret;

pVideoBuf = (System_VideoFrameBuffer *)pBuffer->payload;
A15VpeLink_drvVideoFrameGetSize(&pVideoBuf->chInfo,&size_Y,&size_UV);

ret = A15VpeLink_drvExportDmaBuf(((UInt32)pVideoBuf->bufAddr[0], size_Y,&buf_dmafd);
if (ret) {

return ret;//failed
}

if(uv_buf_dmafd && size_UV)
{

ret = A15VpeLink_drvExportDmaBuf(((UInt32)pVideoBuf-
>bufAddr[1], size_UV,& uv_buf_dmafd);

if (ret) {
return ret;//failed

}
}

return SYSTEM_LINK_STATUS_SOK;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG2

VIP capture
BufferVIP capture

Buffer
VIP capture

BufferVIP capture
Buffer

VPE output
BufferVPE output

Buffer
VPE output

BufferVPE output
Buffer

/dev/dri/card0
DRM Driver
A15/Linux

VPE Link/A15/Linux
V4L2 Application

Y address

UV address

Index Physical Address Y Fd UV Fd

Index Physical Address Y Fd UV Fd

Index Physical Address Y Fd UV Fd

Index Physical Address Y Fd UV Fd

Output buffer map table

Index Physical Address Y Fd UV Fd

Index Physical Address Y Fd UV Fd

Index Physical Address Y Fd UV Fd

Index Physical Address Y Fd UV Fd

Input buffer map table

DDR/Vision SDK Heap

YUV420 planar video buffer

www.ti.com VPE Sharing Implementation

5SPRACG2–May 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Sharing VPE Between VISIONSDK and PSDKLA

3.2 VPE Buffer Sharing Between TI SYSBIOS and Linux
When the VPE V4L2 link is initialized, it allocates the output buffers from the VISION SDK heap. After
each buffer is allocated, it is constructed to a DMABUF with a corresponding file descriptor fd. An output
buffer mapping table has been created to record the relationship between this buffer’s physical address
and the DMABUF fd (see Figure 3).

When VPE gets the camera data or input buffer from the VIP link, it is constructed to a DMABUF with a
corresponding file descriptor fd. An Input buffer mapping table has been created to record the relationship
between this buffer’s physical address and the DMABUF fd (see Figure 3).

The YUV420 planar format buffer needs to be constructed to two DMABUF fd: one for Y vector and one
for UV vector. This is required by the VPE Linux driver.

This methodology is shown in Figure 3.

Figure 3. VPE Buffer Sharing Between SYSBIOS and Linux

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG2

Received
SYSTEM_CMD_NEW_DATA

From previous Link

Send
SYSTEM_CMD_NEW_D

ATA To next Link

Found it

Get fullbuffer from previous Link as input
buffer

Search Input Address-DMABUF mapping
table

Construct a DMABUF for this buffer
Update the mapping table

Return Input buffer to empty queue for pervious Link
Put output buffer to fullqueue as output buffer

N

Construct a DMABUF for this buffer
Update the mapping table

V4L2 Input QBUF

Found it

Search output Address-DMABUF mapping
table

N
Error Handling

V4L2 Input DQBUF

Stream On

V4L2 Output DQBUF

N
V4L2 stream On

Y

Y

Y

VPE Sharing Implementation www.ti.com

6 SPRACG2–May 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Sharing VPE Between VISIONSDK and PSDKLA

3.3 VPE V4L2 Link Main Processing

Figure 4 shows the main processing of the VPE V4L2 link. The important logic is when the data buffer is
received from the previous link, the buffer address of the VISION SDK heap has to be converted to
DMABUF. Only DMABUF can be used in V4L2 APIs of the VPE Linux driver. After the VPE V4L2 link gets
the DMABUF of the new generated data and before the link sends it to the next link, the DMABUF has to
be converted to the buffer address of VISION SDK heap.

Figure 4. VPE V4L2 Link Main Process Flowchart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG2

Capture

PCOut_IPU1_0_A15_0_3

IPCIn_A15_0_IPU1_0_3

Select_sv

V4L2_Vpe4

IPCOut_A15_0_DSP2_3

IPCIn_DSP2_A15_0_3

IPU1_O

DSP2

A15

PCOut_IPU1_0_A15_0_2

IPCIn_A15_0_IPU1_0_2

V4L2_Vpe3

IPCOut_A15_0_DSP2_2

IPCIn_DSP2_A15_0_2

PCOut_IPU1_0_A15_0_1

IPCIn_A15_0_IPU1_0_1

V4L2_Vpe2

IPCOut_A15_0_DSP2_1

IPCIn_DSP2_A15_0_1

PCOut_IPU1_0_A15_0_0

IPCIn_A15_0_IPU1_0_0

V4L2_Vpe1

IPCOut_A15_0_DSP2_0

IPCIn_DSP2_A15_0_0

Q3
Q2 Q0

Q1

Merge_sv
Q3

Q2

Q0
Q1

Sync_sv

Dup_sv

IPCOut_DSP2_A15_0_1 Alg_GeoAlign

IPCIn_A15_0_DSP2_5

InfoADAS_EP_sv2 Alg_Synthesis

Q0

Q2
Q0 Q1

IPCOut_DSP2_A15_0_0

IPCIn_A15_0_DSP2_4

InfoADAS_EP_sv1

Alg_PhotoAlign

Q1 Q0

Q2Q1

www.ti.com VPE Sharing Implementation

7SPRACG2–May 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Sharing VPE Between VISIONSDK and PSDKLA

3.4 VISION SDK 2D SRV chain with VPE V4L2 link
After the VPE V4L2 link is implemented, the 2D SRV chain in VISION SDK can be updated as shown in
Figure 5. The main difference between the original chain with the M4 driver VPE link and the new chain is
that the VPE V4L2 link located in A15. This chain requires the associated IPCIN and IPCOUT links to
convert the IPC message between M4 and A15.

NOTE: The IPCIN link in A15 automatically converts the physical address of the shared buffers to
the virtual address. There is a need for the physical address when constructing the DMABUF
file descriptor. You need to manually convert the buffer address (from the IPCIN link) from
the virtual address to the physical address by calling the VISION SDK API.

Figure 5. 2D SRV Chain With VPE V4L2 Link

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG2

References www.ti.com

8 SPRACG2–May 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Sharing VPE Between VISIONSDK and PSDKLA

4 References
• Video Processing Engine chapter of the DRA75x, DRA74x SoC for Automotive Infotainment Silicon

Revision 2.0, 1.1 Technical Reference Manual
• Exporting virtual memory as dmabuf

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG2
http://www.ti.com/lit/pdf/SPRUI30
http://www.ti.com/lit/pdf/SPRUI30
http://events17.linuxfoundation.org/sites/events/files/slides/ELC17-virtmem-exp_0.pdf

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Sharing VPE Between VISIONSDK and PSDKLA
	1 VPE Share Problem in Current Use Cases
	2 VPE Sharing Design
	3 VPE Sharing Implementation
	3.1 Construct DMABUF in Linux
	3.2 VPE Buffer Sharing Between TI SYSBIOS and Linux
	3.3 VPE V4L2 Link Main Processing
	3.4 VISION SDK 2D SRV chain with VPE V4L2 link

	4 References

	Important Notice

