
1SPRACG8–September 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Audio Post Processing Engine on Jacinto™ DRA7x Family of Devices

Application Report
SPRACG8–September 2018

Audio Post Processing Engine on Jacinto™ DRA7x Family
of Devices

Danny Jochelson and Stephen Molfetta

ABSTRACT
The automotive experience demands the tools for manufacturers to create high-quality audio for the
vehicle occupants, while also enabling those same occupants to customize audio settings for their desired
tastes. A myriad of audio input sources, including CD/DVD, radio, aux input, streaming music, Bluetooth®

audio, navigation, alerts, and other notifications, routed to multiple output playback zones necessitates an
audio subsystem tailored for the automotive audio market. TI’s Audio Post Processing Engine (APPE) on
Jacinto devices provides a common audio framework for automotive OEMs to enable this user
customization, while also allowing Tier 1 providers and OEMs to fine tune their audio for the best possible
out-of-the-box user experience. By implementing audio processing algorithms and routing within TI’s C66x
Digital Signal Processor (DSP) on Jacinto 6 DRA7x single chip solutions, automakers can reduce
hardware system cost and integration complexity. This same audio solution can also be leveraged across
multiple operating systems, such as QNX®, Linux®, and Android™. APPE provides real-time controls from
the High-Level Operating System (HLOS), allowing customers with limited DSP experience to leverage a
large suite of audio algorithms, including dynamic range compression, equalizers, mixers, and volume
controls. Automotive manufacturers can also easily add additional algorithms to further differentiate their
end platform.

Contents
1 Introduction ... 2
2 Audio Post Processing Architecture ... 4
3 Audio Post Processing Algorithms .. 8
4 Algorithm Expandibility .. 9
5 Typical Framework Routing Examples.. 9
6 Integration With High-Level Operating System... 11
7 Summary .. 12
8 References .. 12

List of Figures

1 Typical Infotainment Audio Inputs and Outputs.. 3
2 Audio Post Processing Engine (APPE) – High-Level System Architecture .. 5
3 APPE Default Internal Architecture.. 6
4 Audio Algorithm Interfaces Within APPE ... 9
5 Framework Example - Different Input Formats, Prompt/Chime Routing.. 10
6 Operating System Integration... 11

List of Tables

1 Typical Audio Inputs to Automotive Audio Subsystem.. 3
2 Audio Inputs to APPE ... 6
3 Algorithms Available for APPE Framework... 8

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG8

Introduction www.ti.com

2 SPRACG8–September 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Audio Post Processing Engine on Jacinto™ DRA7x Family of Devices

Trademarks
Jacinto, eXpressDSP are trademarks of Texas Instruments.
Arm, Cortex are registered trademarks of Arm Limited.
Blu-ray is a trademark of Blu-ray Disc Association.
Bluetooth is a registered trademark of Bluetooth SIG, Inc.
Android is a trademark of Google LLC.
Linux is a registered trademark of Linus Torvalds.
QNX is a registered trademark of QNX Software Systems Ltd. in certain jurisdications.
All other trademarks are the property of their respective owners.

1 Introduction

1.1 Automotive Consumer Needs
Decades ago, creating a car audio system was fairly straightforward. One audio source was played, and
everyone in the car listened to the same song, whether that source was radio, an 8-track tape, or a
compact disk. Audio speakers would have a single equalization preset, and the user would have a single
volume knob that would apply a basic gain to the audio. Today, automotive audio has a complicated list of
requirements, driven by customers’ expectations of their current media consumption in the home. More
specifically:
• Individual consumption of media – Multiple listening zones are more common, with one or two rear-

seat headphones added to the typical cabin audio configuration. Each of these listening zones needs
to be able to select from a multitude of media inputs. Some zones may want to listen to the same
media, or all the zones may want to listen to separate media.

• User sound customization – Automotive manufacturers tend to provide multiple presets for equalization
settings (for example, “Rock” mode, “Pop” mode) for cabin audio. In addition, rear-seat entertainment
systems need audio post processing like volume controls, bass/treble controls, balance/fade knobs,
and equalization settings.

• Multi-channel (> 2 channel) speaker outputs – Most car cabin speaker configurations now have at least
4 speakers, with 6-channel (5.1 audio) and 8-channel (7.1 audio) occurring as well. With these multi-
channel outputs, basic upmixing of standard stereo streams needs to be performed.

• Multi-channel media playback – While standard stereo audio inputs like Aux Line Input, CD’s, and
Radio still need to be supported, multi-channel audio from DVD, Blu-ray™, and HDMI inputs also need
to play back. These multi-channel inputs need to have a basic downmix to match the appropriate cabin
configuration.

• Vehicle-dependent audio settings – Some audio controls depend upon the current status of the
automobile. A common example is a speed-dependent volume control where the actual loudness of
the audio output is raised as the speed of the vehicle increases (due to the increased noise floor at
higher speeds).

• Multi-stream mixing – While multimedia is playing, some additional audio streams/notifications may
need to be mixed with the multimedia audio. This audio usually needs to be mixed into individual
channels (that is, not necessarily all of the outputs) within the vehicle.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG8

www.ti.com Introduction

3SPRACG8–September 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Audio Post Processing Engine on Jacinto™ DRA7x Family of Devices

Figure 1 shows a typical audio playback architecture for an automotive infotainment system today.

Figure 1. Typical Infotainment Audio Inputs and Outputs

Each source may vary in the number of audio channels as well as the audio sample rate. For example,
Audio CD content is recorded at 44.1 kHz, but most movie audio from DVD’s plays at 48 kHz. As audio
systems typically operate at a fixed sample rate to the speaker outputs, sample rate conversion is required
to match all input source rates to the output rate. Car systems also need to playback audio files to handle
events like navigation instructions, button presses, alerts, and other notifications. Table 1 summarizes
possible inputs to a car audio system. Note that not all of these audio streams would likely occur
simultaneously to the same audio output zone.

Table 1. Typical Audio Inputs to Automotive Audio Subsystem

Input Sources Typical Sampling Rate Typical Number of Input Channels
Music (CD Player) 44.1 kHz 2
Movies (DVD/Blu-ray™ Player) 48 kHz 6 or 8
HDMI 32 kHz, 44.1 kHz, 48 kHz 2 (required), 6 (optional) (1)

Bluetooth A2DP 44.1 kHz or 48 kHz (2) Up to 2
USB 44.1 kHz, 48 kHz, or 96 kHz 2 or 6
Radio 44.1 kHz 2
Aux Line Input 44.1 kHz or 48 kHz 2
Navigation 8 kHz - 48 kHz Up to 2
Button Presses 44.1 kHz or 48 kHz Up to 2
Notifications 44.1 kHz or 48 kHz Up to 2
Chimes 44.1 kHz or 48 kHz Up to 2

(1) Based on HDMI v1.4a.
(2) According to Advanced Audio Distribution Profile Specification, v1.0.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG8

Introduction www.ti.com

4 SPRACG8–September 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Audio Post Processing Engine on Jacinto™ DRA7x Family of Devices

(1) For more information on TI’s SYS/BIOS package, see the http://processors.wiki.ti.com/index.php/Category:SYSBIOS wiki.

1.2 Automotive Manufacturer Needs
While the end consumer needs control over basic audio routing and customization settings, the car
manufacturers (and their partners) need tuning controls to maximize the audio performance of their cabin
speakers. Speaker equalization is utilized to tune the output frequency response through the speakers and
compensate for the cabin acoustics. Crossover filtering for bass and mid/high speakers limits the
frequency range of the signal to what can be efficiently reproduced by the given speaker or driver type.
Since all speakers are not equidistant from the listener in a car, some speaker sounds need to be delayed
to allow the driver to hear the appropriate sound localization. Lastly, the dynamic range of the audio signal
needs to be limited before being sent to the amplifier and speaker to ensure that these do not saturate
and cause distortion.

2 Audio Post Processing Architecture
With heterogeneous multicore system-on-chips (SoCs) like Jacinto 6, a typical infotainment system can
run an HLOS such as QNX, Linux, or Android on the main processing unit and designate other CPUs, like
Digital Signal Processors (DSP), for specific applications like radio and audio post processing. TI’s Audio
Post Processing Engine (APPE) is a DSP-based software framework designed to fulfill the audio post-
processing needs of both the car customer and car manufacturer. It is provided in full source code in the
Processor SDK – Automotive Radio & Audio SDK and runs on the C66x DSP on Jacinto 6 using TI’s
Real-Time Operating System (RTOS), SYS/BIOS (1). This DSP-based audio architecture provides several
advantages:
• Leverages the efficiency of TI’s C66x DSP for complex audio and radio use-cases.
• Offloads processing on the HLOS to handle more applications simultaneously.
• Enables lower latency for radio, auxiliary inputs, or other audio sources compared to running through

the HLOS.
• Provides a single audio post processing solution that can then be leveraged across multiple projects

that can have different required operating systems.
• Provides a variety of DSP-optimized audio post processing algorithm libraries, which allow automotive

manufacturers to tune the audio characteristics in the vehicle and expose controls to common
functions for the consumer.

• Allows developers and manufacturers to differentiate their audio solutions (through their own
development or through 3rd parties by adding custom algorithms to the DSP).

• Allows usage of a single audio solution for early audio (prior to start of kernel boot) with minimal
dependencies on a particular HLOS.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG8
http://processors.wiki.ti.com/index.php/Category:SYSBIOS

Arm Cortex-A15 HLOS

C66x DSP
(SYS/BIOS)

Radio
McASP In

Audio
McASP In

AUX Line In

Radio
Demodulation

Audio
Post

Processing
Engine

Main
Audio
Driver

#1

Main
Audio
Driver

#2 Chime

Prompt 1

Prompt 2 Prompt 3

Zone
Record 1

Zone
Record 2

Zone
Record 3

Audio
Manager

Control Logic

Misc.
Drivers

Multi-Channel
Cabin Output

Rear
Seat HP1

Rear
Seat HP2

Network,
External
Storage

Unified
GUI

Radio
Front
End

ADC
Input

A
udio M

cA
S

P
 O

utput

Up to 8-channel
Cabin Audio

Stereo
HP1

Stereo
HP2

Control via IPC3
MessageQ

Audio
flow via RINGIO

www.ti.com Audio Post Processing Architecture

5SPRACG8–September 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Audio Post Processing Engine on Jacinto™ DRA7x Family of Devices

(2) For more information on the IPC3 package, see the IPC 3.x wiki and the IPC Users Guide wiki.

APPE is a flexible multi-input, multi-output audio processing and routing framework that is tightly coupled
with the host HLOS of choice. Audio inputs, or “sources”, can come from an assortment of applications
running on the various CPUs, including from the HLOS sound card interfaces (for example, two main
audio drivers, up to three prompts, and one chime), Software Defined Radio running concurrently on the
DSP, or directly through the input audio serial port into the DSP. Similarly, audio outputs, or “zones”, can
play out directly through the output serial port on the DSP or be sent to another application running on the
DSP or HLOS for further processing or system routing. Multiple output zones enables separate controls
and routing for cabin audio along with multiple rear-seat headphones. TI’s Audio Manager, an HLOS
library that is also provided in “Processor SDK – Automotive Radio & Audio”, exposes an API to allow a
host application running on the HLOS to easily and dynamically configure and control the APPE.

Figure 2 displays a typical system integrating APPE on Jacinto 6.

Figure 2. Audio Post Processing Engine (APPE) – High-Level System Architecture

All control for the Audio Post Processing Engine is done from the HLOS and is achieved via the
MessageQ interface, which is a part of TI’s Interprocessor Communication (IPC3) package (2). All audio
inputs and outputs for APPE are RingIO components. Also built upon the IPC3 package, the RingIO
component utilizes a single interface for seamless audio streaming either between processing cores or
within a single core. This software component sends both audio data and attributes via a single entity,
while also enabling automatic callback notifications to ensure audio buffers avoid underruns or overruns. If
the routings of the APPE need to be expanded (for example, additional inputs), more RingIO instances
can be created as the developer customizes their framework for their end system.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG8
http://processors.wiki.ti.com/index.php/IPC_3.x
http://processors.wiki.ti.com/index.php/IPC_Users_Guide

Audio Post Processing Engine

Zone PipeLine 0

MIX EQ BM DEL VOL DRC CHM

Right
HeadPhone

Left
HeadPhone

Cabin

Zone PipeLine 2

MIX DMIX VOL

Prompt 1
(from Arm A15)

Prompt 2
(from Arm A15)

Prompt 3
(from Arm A15)

Source 1
(from Arm A15)

Source 2
(from Arm A15)

Source 3
(DSP source - Radio)

Source Pipeline - Prompt 2

GC

Source Pipeline - Prompt 1

GC

Zone PipeLine 1

Source PipeLine 1

DEL GC SRC TONE UMIX

MIX DMIX VOL

PCM
Router

VOL EQ

Source 4
(DSP source ± Line Input)

EQVOL

EQ VOL

Source Pipeline - Prompt 3

EQVOLGC

Chime
(from Arm A15)

Z0a

Z0b

Z1

Z2

Source PipeLine 2

DEL GC SRC TONE UMIXVOL EQ

Source PipeLine 3

DEL GC SRC TONE UMIXVOL EQ

Source PipeLine 4

DEL GC SRC TONE UMIXVOL EQ

Cabin
Reference

Left Headphone
Reference

Right Headphone
Reference

CO

or

DEL

DEL

DEL

DMIX

.

.

Audio Post Processing Architecture www.ti.com

6 SPRACG8–September 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Audio Post Processing Engine on Jacinto™ DRA7x Family of Devices

The inputs to APPE can be separated into three categories: main audio sources, prompts, and chimes.
Table 2 describes the attributes of these input types.

Table 2. Audio Inputs to APPE

Input Type Description
Number of
Channels Input Sampling Rate

Main Audio Main entertainment audio intended to be
consumed by the user.

2, 4, 6 (5.1 Audio),
or 8 (7.1 Audio)

8 kHz, 11.025 kHz, 16 kHz, 22.05 kHz, 32
kHz, 44.1 kHz, 48 kHz, 96 kHz

Prompt Notifications and other auxiliary audio sources
that are intended to be mixed simultaneously
with the main audio in the cabin zone.

1 or 2 Same as output sampling rate (44.1 kHz
or 48 kHz)

Chime Alerts that need to be mixed with the other
streams after all processing is done for the
cabin zone.

1 Same as output sampling rate (44.1 kHz
or 48 kHz)

(3) The only time a zone accepts more than one main audio source is during a crossfade, when two main sources briefly are played
simultaneously through the zone while the crossfade is in progress.

APPE provides the flexibility to configure a variety of audio routing scenarios to meet the demands of the
automotive manufacturer. Through the PCM routing crossbar, any main audio source could be routed to
any or all zones at a given time. Each zone is able to play back a single main source at a time. (3)

Additionally, the main cabin zone can mix prompt and chime sources with this main audio source. Figure 3
shows more details for the default internal architecture of this framework.

(1) Red text - User run-time controls available.
(2) Black text - Control based on input and output audio attributes and routings.

Figure 3. APPE Default Internal Architecture

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG8

www.ti.com Audio Post Processing Architecture

7SPRACG8–September 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Audio Post Processing Engine on Jacinto™ DRA7x Family of Devices

(4) For more information on how algorithms are typically used and their functionality, see Table 3.
(5) For more details on all available audio algorithms for Audio Post Processing Engine, see Section 3.
(6) See “Z0a”, “Z1”, and “Z2” inputs to Zone pipeline in the figure, which routes two inputs to the zone for Mixer crossfading.
(7) Note that routing of a single source pipeline to all zones is supported on Linux/QNX, but not on Android.
(8) By default, APPE performs 24-bit processing (in 32-bit container), and converts to 16 bits at its output. The build flag can be used to

change APPE to send out the 32-bit container to the DAC.

The APPE consists of a processing thread that manages a collection of audio processing “pipelines”, with
each pipeline containing a sequence of audio processing algorithms. Many of the algorithms can be
controlled in real-time from the Audio Manager application, having the ability to query the status,
enable/disable processing, and set individual parameters. Some algorithms do not expose a control
interface but are automatically configured by the framework based on the desired output configuration and
input audio stream parameters. (4)

Audio pipelines are divided into three distinct types:
• Zone pipeline – Outputs of zone pipelines are tied to a particular output listening zone. A common case

would include a cabin zone (typically 4, 6, or 8 channels), plus 2 rear seat entertainment zones
(typically stereo outputs). Zone pipelines contain processing that is specific to the output listening zone.
Some common audio algorithms contained in Zone pipelines include listening volume controls
(including balance/fade), tone controls, and speaker limiters. (5) The number of channels that the
algorithms process is determined by the build-time output configuration for that zone.

• Source pipeline – Source pipelines handle all main audio inputs to APPE. The default configuration
contains four source pipelines: two inputs from Arm® audio cards, Software Defined Radio, and
auxiliary line input. Additional sources can be defined by the developer as necessary. Each of these
input sources would be the primary audio to which the user is listening and could potentially require
distinct audio processing. For example, separate volume controls and equalization settings could be
contained in separate source pipelines. The outputs of source pipelines can be individually routed to
any zone pipeline, and this routing can be changed in real-time via the Audio Manager application, with
optional automatic crossfading performed by the mixer at the start of each zone pipeline (6). A single
source pipeline could be routed to all three zones (7), or a separate source could be routed to each
zone pipeline. The zone pipeline can receive only one source pipeline output at a time, with the
exception being during a crossfade when transitioning between two input sources.

• Prompt pipeline – Prompt inputs, such as navigation, button presses, and other notifications, are sent
through these pipelines. They are similar to the source pipelines in that individual processing like
separate volume and equalizer settings could be applied to the prompt sources. The output of each
prompt pipeline is then routed to the cabin zone mixer for simultaneous mixing with the main audio
being routed to the cabin (see “Z0b” router in the diagram, which shows these three prompts routed to
cabin zone). The cabin mixer can then set the mixing levels for these monophonic or stereo prompts
into each of the output channels at the beginning of the zone pipeline. Thus, through control of the
cabin zone mixer, prompts can be routed to individual channels. For example, navigation audio could
be easily routed to the front two channels of the cabin, while another notification could be sent through
another prompt to the rear cabin channels.

On the output of each zone, in addition to being sent to the audio interface and then digital-to-analog
converters (DACs), a copy of the output of each zone is sent back to the Arm Cortex®-A15. For more
information, see “Cabin Reference”, “Left Headphone Reference”, and “Right Headphone Reference” in
Figure 3. This allows recording of the zone output, which is useful when testing or tuning individual
algorithms and pipelines. In addition, this provides a mechanism for any voice processing (echo
cancellation) done on the Arm Cortex-A15 to receive the audio sent to the speaker as a downlink echo
reference.

The APPE internal architecture diagram shown is the default software configuration. In addition to runtime
controls for audio algorithms and routing, the framework can be configured at build-time for the following:
• Number and types of pipelines
• Number and order of the algorithms in each pipeline
• Total number of output channels per zone output
• Total number of output zones
• APPE processing buffer sizes (for latency tuning)
• Output bit depth (8)

• Output sampling rate for APPE (for example, 44.1 kHz or 48 kHz) (startup time)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG8

Audio Post Processing Algorithms www.ti.com

8 SPRACG8–September 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Audio Post Processing Engine on Jacinto™ DRA7x Family of Devices

3 Audio Post Processing Algorithms
Audio processing algorithms are included in the Jacinto 6 Processor SDK – Automotive Radio & Audio
package for usage within the APPE framework. Table 3 summarizes the capabilities of each of these
algorithms.

Table 3. Algorithms Available for APPE Framework

Algorithm Label Usage Details

Runtime Control or
Automatic Framework

Control
Volume with
Loudness

VOL User volume control Includes master volume, per-channel
volume (fade/balance), and loudness
filtering

Runtime Control

User Equalizer EQ User shapes frequencies for their
preferences (for example, “rock”,
“pop” settings)

10-band equalization – second-order
peaking filters applied on all channels

Runtime Control

Speaker Equalizer EQ_MULTI Manufacturer tunes individual
speaker channels

10-band equalization for each
channel – second-order peaking
filters applied separately on each
channel

Runtime Control

Tone Control TONE User Bass/Mid/Treble settings Bass and treble shelf filters, mid
peaking filter

Runtime Control

Mixer MIX Automatically crossfade main
audio sources, simultaneously
mix in prompts into individual
channels

Set coefficients for mixing prompts
into each of its output channels
(cabin zone only)

Runtime Control (when
not playing)

Crossover filtering CO Manufacturer tunes crossover for
woofer vs. satellites

Separate bass frequencies into
woofer channel and higher
frequencies into the satellite
channels. Configurable filter types.

Runtime Control

Bass Management BM Manufacturer tunes crossover for
woofer vs. satellites with finer
tuning for bass/treble balance

Includes similar crossover filter as
crossover component, but adds
controls for bass/treble balance
before and after crossover.

Runtime Control

Delay DEL Manufacturer tunes spatial audio
image in vehicle

Per-channel speaker delay to control
audio “location” and align audio
amongst the speakers

Runtime Control

Chime component CHIME Automatically mix monophonic
chime audio into individual
channels

Set coefficients for mixing chime into
each of its output channels (cabin
zone only)

Runtime Control (when
not playing)

Dynamic Range
Compression

DRC Manufacturer tunes for better
listening in noisy car environment
and limit output to not saturate
the speakers or amplifier (1)

5-section DRC (gate, expansion,
constant, compression, and limiter
sections), configurable thresholds
and time constants

Runtime Control

Downmix Module DMIX Automatically dowmix higher-
channel inputs to lower-channel
output zones

Handles 8-ch, 6-ch, 4-ch inputs and
can convert to 6-ch, 4-ch, or 2-ch
output

Automatic

Upmix Module UMIX Automatically upmix lower-
channel inputs to higher-channel
output zones

Handles 2-ch input and can convert
to 4-ch or 6-ch (5.1 Audio), or 8-ch
(7.1 Audio) outputs

Automatic

Gain Control GC Automatically applies basic gain
on source inputs internally within
framework

Applies simple gain control. Used to
help ramp up beginning of playback
and ramp down at the end of
playback or in case of input
discontinuity.

Automatic

Synchronous
Sample Rate
Converter

SRC Automatically sample rate
converts to APPE’s output
sampling rate

Convert 8 kHz, 11.025 kHz, 16 kHz,
22.05 kHz, 32 kHz, 44.1 kHz, 48 kHz,
or 96 kHz to output APPE sampling
rate (for example, 44.1 kHz or 48
kHz)

Automatic

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG8

DSP

APPE

APP Interface (Zone)

APA Interface
Wrapper

Algorithm

APA Interface
Wrapper

Algorithm

APA Interface
Wrapper

Algorithm

APA Interface
Wrapper

Algorithm

APP Interface (Source)

APA Interface
Wrapper

Algorithm

APA Interface
Wrapper

Algorithm

APA Interface
Wrapper

Algorithm

APA Interface
Wrapper

Algorithm

www.ti.com Algorithm Expandibility

9SPRACG8–September 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Audio Post Processing Engine on Jacinto™ DRA7x Family of Devices

(9) For more information on xDAIS, see A Technical Overview of eXpressDSP-Compliant Algorithms for DSP Software Producers and
eXpressDSP Algorithm Standard – xDAIS Developer’s Kit and xDM.

(1) Either DRC or VOL module could be utilized to implement a speed-based volume control, as the HLOS can modify the runtime
controls based upon the vehicle’s speed.

4 Algorithm Expandibility
As a software framework, other algorithms can be easily integrated into the framework and initiated within
pipelines. For individual algorithms, TI’s eXpressDSP™ Algorithm Interoperability Standard (xDAIS) (9) is
utilized for the algorithms provided with the package (listed in Section 3). The xDAIS standard provides an
easy way to create/delete algorithm instances, expose basic apply calls, and control algorithm status
information. Each algorithm has a small Audio Processing Algorithm (APA) layer that allows algorithm
processing configurations to be adapted in real time. This APA layer provides a standard interface for
APPE to control individual algorithm parameters (for example, equalizer band gains and per-channel
volume controls) and retrieve algorithm status. The APA may also update the algorithm’s processing
based on dynamic audio stream parameters (for example, the number of channels that the algorithm
processes varies based on the current input/output audio stream parameters for that APPE pipeline). Each
pipeline then has a single Audio Processing Pipeline (APP) interface, which sequentially invokes the APA
calls for each algorithm within the pipeline.

Figure 4. Audio Algorithm Interfaces Within APPE

The Jacinto 6 Processor SDK – Automotive Radio & Audio package provides sample code for the xDAIS
and APA interfaces, thereby allowing easy integration of custom and/or 3rd party audio algorithms.

5 Typical Framework Routing Examples
This framework contains an extensive set of manual controls that can be initiated from the Audio Manager
application. As mentioned in Table 3, the framework also automatically configures some algorithms, based
upon the input audio source and the output zone configuration. The examples shown in Figure 5 highlight
the framework’s automatic runtime configuration.

Assuming the output Cabin zone is set at build-time to 6 output channels (5.1 audio) at 44.1 kHz, the main
audio source pipelines will be configured based upon the input audio. Assuming audio is played back from
the HLOS to the source pipeline #1, the audio driver on that processor will extract the audio information
(for example, number of channels, sampling rate) from the WAV header on the audio file and send this
information via RingIO. When the APPE receives this information, it automatically configures the pipelines
and algorithms.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG8
http://www.ti.com/lit/pdf/SPRA579
http://www.ti.com/tool/tmdxdaisxdm

Audio Post Processing Engine

Zone PipeLine 0

MIX EQ BM DEL VOL DRC CHM

Right
HeadPhone

Left
HeadPhone

Cabin

Zone PipeLine 2

MIX DMIX VOL

Prompt 1
(from Arm A15)

Prompt 2
(from Arm A15)

Prompt 3
(from Arm A15)

Source 1
(from Arm A15)

Source 2
(from Arm A15)

Source 3
(DSP source - Radio)

Source Pipeline - Prompt 2

GC

Source Pipeline - Prompt 1

GC

Zone PipeLine 1

Source PipeLine 1

DEL GC SRC TONE UMIX

MIX DMIX VOL

PCM
Router

VOL EQ

Source 4
(DSP source ± Line Input)

EQVOL

EQ VOL

Source Pipeline - Prompt 3

EQVOLGC

Chime
(from Arm A15)

Z0a

Z0b

Z1

Z2

Source PipeLine 2

DEL GC SRC TONE UMIXVOL EQ

Source PipeLine 3

DEL GC SRC TONE UMIXVOL EQ

Source PipeLine 4

DEL GC SRC TONE UMIXVOL EQ

Cabin
Reference

Left Headphone
Reference

Right Headphone
Reference

CO

or

DEL

DEL

DEL

DMIX

.

.

Example 1

Example 2

Example 3

Prompt Routing

Chime Routing

Typical Framework Routing Examples www.ti.com

10 SPRACG8–September 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Audio Post Processing Engine on Jacinto™ DRA7x Family of Devices

Figure 5 displays a few examples of this configurability.

Figure 5. Framework Example - Different Input Formats, Prompt/Chime Routing

In Example #1, a 96 kHz, stereo file is played to the Source Pipeline #1 (shown via the green arrows in
Figure 5). At the start of playback, the sample rate converter algorithm will be configured for conversion
from 96 kHz to 44.1 kHz. After the sample rate conversion, all algorithms in the source pipeline will
process the 44.1 kHz, stereo audio data. At the end of the source pipeline, the upmix algorithm will
convert the stereo stream to 6 channels. This allows the cabin zone pipeline to perform all of its
processing at 44.1 kHz on 6 channels of audio.

As a second example, a 48 kHz, 8-channel file is played to the Source Pipeline #1 (shown via the orange
arrows in Figure 5). At the start of playback, the sample rate converter algorithm will be configured to
convert the 8-channel audio from 48 kHz to 44.1 kHz. Thus, after the sample rate converter algorithm in
the source pipeline, the algorithms process the 44.1 kHz, 8-channel data. This audio data is sent to the
cabin zone pipeline. Toward the beginning of the zone pipeline, the downmix algorithm converts the 8-
channel audio data to 6-channel audio. This allows the remainder of the cabin zone pipeline to perform all
of its processing at 44.1 kHz on 6 channels of audio.

As a final example, if a 44.1 kHz, 6-channel audio file is played instead (shown via the grey arrow in
Figure 5), then all algorithm processing in the source and zone pipeline are configured for 44.1 kHz, 6-
channel audio data, while the sample rate converter, upmix, downmix algorithms are bypassed (since they
are unnecessary).

When prompts are played back from the HLOS, the audio is processed through their dedicated prompt
pipelines and sent to the cabin zone (Zone 0), and the mixer component mixes these into the individual
channels at the start of Zone 0 (see the red lines in Figure 5).

Lastly, the chime input is routed directly to the chime component for mixing (shown via the pink line in
Figure 5). The chime source is not routed to the start of the cabin zone because this ensures that cabin
volume setting for multimedia playback does not affect the chime levels. This helps ensure that chimes
are always reproduced at the same volume, and also minimizes the latency for these important audio
signals.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG8

DSP Firmware

RadioApp on HLOS

Radio Manager library

Radio Manager API

TCD Library

AFE_831x

RM Internal Threads

Platform library

DSP Manager library

DSP Manager API

DSPM Internal Thread

Other TCD

AFE TCD

Integrated C66x
DSP Application Radio

Demodulation
Engine (RDE)

APPE

Other Tuner

Input/Output
Adapter (IOA)

3

Audio Manager library

Audio Manager API

AMGR Internal Threads

Multimedia Framework (QNX/Linux/Android)

Main Audio
Drivers (S0, S1)

Input/Output
Adapter (IOA)

IPC3+RingIO

Supervisor Daemon

Hardware
Interface

Handler(s)
HMI (PC based)

Internal cbFxn

To output
McASP

Prompt Audio Drivers (P0, P1, P2),
Chime Audio Driver

APPE Zone
Record Drivers

Control

Data

Optional Control

Optional Data

4

2

1

1

From input
McASP

I2C

I2C

Record

www.ti.com Integration With High-Level Operating System

11SPRACG8–September 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Audio Post Processing Engine on Jacinto™ DRA7x Family of Devices

6 Integration With High-Level Operating System
TI’s Audio Manager Library, which provides the controls for APPE, is provided in the Jacinto 6 Processor
SDK – Automotive Radio & Audio package as part of an example application that can be run on QNX,
Linux, and Android. This application integrates the Audio Manager with two other related manager
libraries: a DSP Manager that is used for master DSP control and initialization, and a Radio Manager that
provides a similar API for TI’s Software Defined Radio stack. The application further integrates various
HMI layers to provide users convenient control through a command line interface or for an external GUI
communicating over a raw UART or TCP/IP socket. A supervisor provides a light glue between the HMI
and the various manager libraries, routing commands from the HMI to the appropriate manager, or for
relaying callback information from the manager back to the host HMI.

Figure 6. Operating System Integration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG8

Summary www.ti.com

12 SPRACG8–September 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Audio Post Processing Engine on Jacinto™ DRA7x Family of Devices

(10) For support on QNX, all playback of prompts and chimes is achieved by playing back PCM data from the Audio Manager instead.
Recording of Output Zones is also handled by the Audio Manager instead of using io-audio drivers.

Audio playback from the HLOS to APPE is achieved via drivers, included in the SDK, that create sound
cards on the HLOS and present a standard audio library interface to the developer. The interface for this
depends on the HLOS of choice:
• For Android, an APPE HAL is provided that allows streaming for main audio (S0, S1 cards), prompts

(P0, P1, and P2 cards), and a chime (C0 card). It also provides recording cards to record a copy of the
output of each APPE zone.

• For Linux, an ALSA I/O user space plugin is provided with similar playback and record cards as the
APPE HAL.

• For QNX, an io-audio dll is provided to enable multimedia audio playback (S0, S1 cards). (10)

The final rendering of APPE output has flexibility to either be sent directly to the audio serial port from the
DSP or back to the HLOS for playback out through the host OS’s audio stack. A copy of each zone’s
output audio can also be sent back to the HLOS for either recording or sending an echo reference to an
echo cancellation algorithm. APPE HAL and ALSA I/O plugin record cards can receive this audio output
on Android and Linux, respectively. These playback and capture options are default behavior but serve to
highlight that the audio inputs and outputs could be routed from or to any application with a RingIO
interface and is ultimately flexible enough to meet system requirements for a wide range of audio
architectures.

7 Summary
In order to serve the continuously growing needs in automotive audio, TI’s Audio Post Processing Engine
provides a robust processing framework to handle a multitude of audio inputs routed to multiple audio
output zones. Allowing individual media consumption with customized sound settings, the framework
enables multi-channel audio inputs and outputs that are extensively needed in today’s automotive market.
Offering a variety of audio algorithms, this framework provides tools to enable both user controls and
manufacturer tuning knobs. With an eye toward expandibility, customers can also differentiate their audio
solution with new algorithms. This framework offers audio routing targeted at automotive use cases, while
being highly integrated with typical High-Level Operating System audio frameworks in QNX, Linux, and
Android.

8 References

• Welcome to SYS/BIOS
• IPC 3.x wiki
• IPC Users Guide wiki
• eXpressDSP Algorithm Standard – xDAIS Developer’s Kit and xDM
• DRA75x/74x SoC for Automotive Infotainment Silicon Revision 2.0, 1.1 Technical Reference Manual
• DRA75x, DRA74x Infotainment Applications Processor Silicon Revision 2.0 Data Manual
• A Technical Overview of eXpressDSP-Compliant Algorithms for DSP Software Producers

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACG8
http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://processors.wiki.ti.com/index.php/IPC_3.x
http://processors.wiki.ti.com/index.php/IPC_Users_Guide
http://www.ti.com/tool/tmdxdaisxdm
http://www.ti.com/lit/pdf/SPRUI30
http://www.ti.com/lit/pdf/SPRS950
http://www.ti.com/lit/pdf/SPRA579

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Audio Post Processing Engine on Jacinto DRA7x Family of Devices
	1 Introduction
	1.1 Automotive Consumer Needs
	1.2 Automotive Manufacturer Needs

	2 Audio Post Processing Architecture
	3 Audio Post Processing Algorithms
	4 Algorithm Expandibility
	5 Typical Framework Routing Examples
	6 Integration With High-Level Operating System
	7 Summary
	8 References

	Important Notice

