
Client Side Telephony (CST)
Chip Software
User’s Guide

www.spiritDSP.com/CST

Literature Number: SPRU029A
March 2003

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the
time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
TI patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that third
party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. TI is not responsible or
liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2003, Texas Instruments Incorporated

vRead This First

Preface

Read This First

About This Manual

This user’s guide assists the user with programming the various components
from SPIRIT� Corp for the TMS320C54x platform. It provides instructions for
integrating these software components and implementating various telephony
devices based on TMS320C54x platform. All CST algorithims conform to the
TMS320 DSP Algorithm Standard, also known as XDAIS.

How to Use This Manual

The contents of the Client Side Telephony (CST) Chip Software User’s Guide
are as follows:

� Chapter 1, Introduction to Client Side Telephony (CST), is a brief over-
view of the Client Side Telephony (CST) Chip Software User’s Guide
(CST), abbreviations and terms used throughout this document, and im-
portant copyright information.

� Chapter 2, Getting Started, provides quick steps to allow the user to imme-
diately begin using a CST chip and its modes. Important notes concerning
SDK installation procedures are also provided.

� Chapter 3, Hardware Overview, provides an overview of the CST chip and
the C54CST EVM board, and its settings. A description of the UART inter-
face with the C54CST is provided, as well as instructions for adapting a
C54CST chip to user specific hardware.

� Chapter 4, Software Overview, is an overview of the Framework and Com-
ponents of CST Software parts. This chapter also describes the benefits
of using Flex mode to control CST chips.

� Chapter 5, Flex Application Development Guidelines, is a brief overview
on how to develop user-specific applications. The benefits of Flex mode
over Chipset is discussed.

� Chapter 6, CST Framework and API Overview, provides the user with
overviews and descriptions of the different CST Layers, services, their
API.

Notational Conventions

vi

� Chapter 7, CST Framework Components, provides detailed descriptions
of all CST framework components, their interface, and architecture.

� Chapter 8, C54CST Resources:
Registers Conventions, Memory, and MIPS, is a summary of important
information about C54CST chip resources and their use by CST
framework and algorithms.

� Chapter 9, AT Command Set Descriptions, provides the user with de-
scription of AT commands, syntax, shielded codes, and result tokens.

� Chapter 10, CST Host Utility, provides the user with requirements and set-
tings for running a CST host utility.

� Chapter 11, Product Installation Procedure, provides brief instructions on
installation of the CST SDK, setup of the CST host to communicate with
the C54CST EVM, and the setup of Windows� to communicate with the
C54CST as a generic modem.

� Chapter 12, Chipset Mode Testing and Troubleshooting, provides de-
scriptions of several test procedures available for troubleshooting and
testing functionality.

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Here is an example of a system prompt and a command that you might
enter:

C: csr -a /user/ti/simuboard/utilities

Information About Cautions and Warnings

viiRead This First

Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.

Related Documentation From Texas Instruments

Using the TMS320 DSP Algorithm Standard in a Static DSP System
(SPRA577)

TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)

TMS320 DSP Algorithm Standard API Reference (SPRU360)

Technical Overview of eXpressDSP-Compliant Algorithms for DSP Software
Producers (SPRA579)

The TMS320 DSP Algorithm Standard (SPRA581)

Achieving Zero Overhead with the TMS320 DSP Algorithm Standard IALG In-
terface (SPRA716)

Reference Framework 3: A Flexible, Multi-Channel/Algorithm, Static System
(SPRA793)

Reference Frameworks for eXpressDSP Software: API Reference
(SPRA147)

TMS320 DSP/BIOS User’s Guide, (SPRU423)

Related Documentation

viii

TMS320C5000 DSP/BIOS Application Programming Interface (API) Refer-
ence Guide (SPRU404)

Writing DSP/BIOS Device Drivers for Block I/O (SPRA802)

TMS320C54x Chip Support Library API Reference Guide, (SPRU420)

TMS320C54CST Client Side Telephony DSP (SPRS187)

TMS320VC5407 Bootloader Technical Reference (SPRA827)

Client Side Telephony (CST) Chipset Mode (SPRA859)

Client Side Telephony (CST) Chip Flex Mode Flex Examples Description
(SPRA862)

Related Documentation

Si3044 User Guide. 3.3 V ENHANCED GLOBAL DIRECT ACCESS AR-
RANGEMENT.  Silicon Laboratories, 2000. http://www.silabs.com/products

ITU-T Recommendation V.250. Serial asynchronous automatic dialing and
control, 07/97

ITU-T Recommendation V.253. Control of voice-related functions in a DCE
by an asynchronous DTE, 02/98

TMS320C54CST Evaluation Module. Technical Reference. Spectrum Digital,
Inc.

Using the Zero-Overhead model / Static memory example

Documentation for XDAIS Algorithms

Automatic Gain Control (AGC) Algorithm User’s Guide (SPRU631)

Caller ID (CID) Algorithm User’s Guide (SPRU632)

Comfort Noise Generator (CNG) Algorithm User’s Guide (SPRU633)

Echo Canceller (EC) Algorithm User’s Guide (SPRU634)

Voice Activity Detector (VAD) Algorithm User’s Guide (SPRU635)

ModemIntegrator Algorithm User’s Guide (SPRU636)

G726 Algorithm User’s Guide (SPRU637)

Universal Multifrequency Tone Detector (UMTD) Algorithm User’s Guide
(SPRU638)

Universal Multifrequency Tone Generator (UMTG) Algorithm User’s Guide
(SPRU639)

Trademarks

ixRead This First

Trademarks

TMS320� is the trademark of Texas Instruments.

“eXpressDSP Compliant” is a trademark of Texas Instruments.

SPIRIT CORP� is the tradmark of Spirit Corp.

HyperTerminal� is a trademark of Hilgraeve, Inc.

Windows, Windows 95/98/2000/NT/XP� are registered trademarks of Micro-
soft Corporation.

Procomm Plus� is a trademark of Datastorm Technologies, Inc.

Software Copyright

CST Software Copyright  2003, SPIRIT Technologies, Inc.

If You Need Assistance

x

If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/products/index.htm
DSP Solutions http://www.ti.com/dsp
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm
Microcontroller Home Page http://www.ti.com/sc/micro
Networking Home Page http://www.ti.com/sc/docs/network/nbuhomex.htm
Military Memory Products Home Page http://www.ti.com/sc/docs/military/product/memory/mem_1.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (972) 293-5050 Fax: (972) 293-5967
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
Microcontroller Hotline (281) 274-2370 Fax: (281) 274-4203 Email: micro@ti.com
Microcontroller Modem BBS (281) 274-3700 8-N-1
DSP Hotline Email: dsph@ti.com
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs
Networking Hotline Fax: (281) 274-4027

Email: TLANHOT@micro.ti.com

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32
Email: epic@ti.com

Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

If You Need Assistance

xiRead This First

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: dsph@ti.com Email: micro@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

For product price & availability questions, please contact your local Product
Information Center, or see www.ti.com/sc/support http://www.ti.com/sc/sup-
port for details.

For additional CST technical support, see the TI CST Home Page
(www.ti.com/telephonyclientside) or the TI Semiconductor KnowledgeBase
Home Page (www.ti.com/sc/knowledgebase).

If you have any problems with the Client Side Telephony software, please, read
first the list of Frequently Asked Questions at http://www.spiritDSP.com/CST.

You can also visit this web site to obtain the latest updates of CST software &
documentation.

Contents

xiii

Contents

1 Introduction to Client Side Telephony (CST) 1-1.
A brief overview of the Client Side Telephony (CST) Chip Software User’s Guide (CST), abbre-
viations and terms used throughout this document, and important copyright information.

1.1 CST Overview 1-2.
1.2 Abbreviations and Acronyms 1-4.
1.3 Legal Disclaimer 1-7.

2 Getting Started 2-1.
This chapter provides quick steps to allow the user to immediately begin using a CST chip and
its modes. Important notes concerning SDK installation procedures are also provided.

2.1 Overview 2-2.
2.2 Running a CST Solution: Standalone Chipset Mode 2-3.
2.3 Running a CST Solution: Flex Mode 2-5.

3 Hardware Overview 3-1.
This chapter provides an overview of the CST chip and the C54CST EVM board, and its set-
tings. A description of the UART interface with the C54CST is provided, as well as instructions
for adapting C54CSt chips to user specific hardware.

3.1 Introduction to the CST Chip 3-2.
3.2 Main Modes of CST Chip 3-4.
3.3 TMS320C54CST EVM Configuration 3-5.
3.4 UART Hardware Flow Control 3-6.
3.5 LED Indication 3-7.
3.6 Adapting the C54CST Chip for User-Specific Hardware 3-8.

4 Software Overview 4-1.
This chapter is an overview of the Framework and Components of CST Software parts. This
chapter also describes the benefits of using Flex mode to control CST chips..

4.1 Flex Mode Applications 4-2.
4.2 Framework Components 4-3.
4.3 Telephony Components 4-5.

4.3.1 Data Modem 4-6.
4.3.2 Voice Processing 4-6.
4.3.3 Telephony Signals Processing 4-7.

Contents

xiv

5 Flex Application Development Guidelines 5-1.
This chapter is a brief overview on how to develop user-specific applications. The benefits of
Flex mode over Chipset is discussed.

5.1 Chipset vs. Flex Mode 5-2.
5.2 AT Commands vs Alternative Interfaces 5-3.
5.3 Designing and Implementing Standard CST Applications 5-5.

5.3.1 Preliminary Application Design 5-6.
5.3.2 Detailed Application Design 5-8.
5.3.3 Implementation 5-10.
5.3.4 Chapter Summary 5-15.

5.4 Building and Loading Flex Applications 5-16.
5.4.1 Projects for Building Flex Applications 5-16.
5.4.2 CST Bootloader 5-18.

6 CST Framework and API Overview 6-1.
This chapter provides the user with overviews and descriptions of the different CST Layers, ser-
vices, their API.

6.1 Overview 6-2.
6.2 CST Framework Layers 6-3.

6.2.1 Action-Based Interface 6-6.
6.2.2 CST Commander Layer 6-7.
6.2.3 CST Service Layer 6-9.
6.2.4 Other CST Parts and Services 6-11.
6.2.5 CST Layers Summary 6-12.

6.3 Framework API 6-15.
6.3.1 Main CST Types 6-15.
6.3.2 S-Registers 6-16.
6.3.3 Call Tree 6-17.
6.3.4 Controlling CST Through Action Layer Interface 6-19.
6.3.5 Standard and Custom Atomic Commands 6-21.
6.3.6 Command Execution at Different CST Layers 6-22.
6.3.7 CST Action Interface Usage 6-24.
6.3.8 CST Dynamic Functions 6-26.

7 CST Framework Components 7-1.
This chapter provides detailed descriptions of all CST framework components, their interface,
and architecture.

7.1 CST Service Layer 7-2.
7.1.1 Files CSTService.c, CSTService.h 7-2.

7.2 CST Commander 7-16.
7.2.1 Files CSTSReg.c, CSTSReg.h 7-16.
7.2.2 Files CSTCommander.c, CSTCommander.h 7-26.
7.2.3 Files CSTAtomic.c, CSTAtomic.h 7-41.

Contents

xvContents

7.3 CST Action 7-47.
7.3.1 Unified CST Action Message 7-47.
7.3.2 CST Action Message Type Key 7-46.
7.3.3 CST Action Message Contents 7-47.
7.3.4 Brief Description of CST Action Function Interface 7-50.
7.3.5 Using CST Action Interface, Practical Aspects 7-52.

7.4 CST AT Parser 7-63.
7.4.1 AT Command Line Parser 7-63.
7.4.2 AT Command Execution 7-64.
7.4.3 Brief Description of AT Command Line Parser Interface 7-65.

7.5 Memory Management 7-66.
7.5.1 Overview 7-66.
7.5.2 Memory Manager Function Interface 7-67.
7.5.3 Possible Memory Configurations 7-68.
7.5.4 More About Algorithm Creation and Deletion 7-74.

7.6 Telephony Components Brief Specification 7-75.
7.6.1 Data Modem 7-76.
7.6.2 Voice Processing 7-88.
7.6.3 Telephony Signals Processing 7-100.
7.6.4 Telephony Components Summary 7-105.

7.7 CST Drivers 7-107.
7.7.1 Overview, Interface Functions and Function Call Diagram 7-107.
7.7.2 Peripheral Driver. Files CSTPeriph.h, EVM54CSTDrv.c, EVM54CSTDrv.h 7-117.
7.7.3 High-Level DAA Driver. Files DAADrv.c, DAADrv.h 7-122.
7.7.4 Brief Description of the Low-level I/O (LIO) Interface 7-126.
7.7.5 Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c 7-130
7.7.6 Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c 7-140.
7.7.7 Reloading Drivers 7-146.

8 C54CST Resources: Registers Conventions, Memory, and MIPS 8-1.
A summary of important information about C54CST chip resources and their use by CST frame-
work and algorithms.

8.1 Overview 8-2.
8.2 General Register Conventions 8-3.
8.3 Program and Data Address Space Memory Map 8-6.
8.4 DSP Resource Usage for Each Algorithm and Framework 8-10.

9 AT Command Set Descriptions 9-1.
This chapter provides the user with description of AT commands, syntax, shielded codes, and
results tokens.

9.1 AT Command Set Description 9-2.
9.2 AT Command Set Modes 9-3.

Contents

xvi

9.3 AT Command Syntax 9-6.
9.3.1 General AT Commands Conventions 9-6.
9.3.2 Types of Commands 9-7.
9.3.3 Basic Syntax Command Format 9-7.
9.3.4 S-Parameters Syntax 9-8.
9.3.5 Extended Syntax Commands 9-9.
9.3.6 Command Execution 9-12.

9.4 AT Commands 9-13.
9.4.1 General Commands 9-13.
9.4.2 Caller ID Related Commands 9-23.
9.4.3 Modem Related Commands 9-26.
9.4.4 Voice Mode Commands 9-34.
9.4.5 S-Registers 9-37.
9.4.6 S-Registers Controlling DAA 9-40.

9.5 Shielded Codes in Voice Mode 9-42.
9.6 AT Result Tokens 9-44.
9.7 AT Commands Summary 9-45.

10 CST Host Utility 10-1.
This chapter provides the user with requirements and settings for running a CST host utility.

10.1 Minimum System Requirements 10-2.
10.2 CST Host Settings 10-3.

10.2.1 COM Port Settings 10-4.
10.2.2 DAA International Settings 10-5.
10.2.3 Miscellaneous Settings 10-6.

10.3 Voice Playback and Record 10-7.
10.3.1 CST Host Audio File Format 10-8.
10.3.2 Application Sequence “Playback Greeting and Record” 10-9.

11 Product Installation Procedure 11-1.
This chapter provides brief instructions on installation of the CST SDK, setup of the CST host
to communicate with the C54CST EVM, and the setup of windows to communicate with the
C54CST as a generic modem.

11.1 Installing CST SDK 11-2.
11.2 Description of Product and Document Directory Tree 11-3.
11.3 Setting up CST Host 11-4.
11.4 Installing Modem Drivers for CST Chips in Windows� 11-5.

12 Chipset Mode Testing and Troubleshooting 12-1.
This chapter provides descriptions of several test procedures available for troubleshooting and
functionality.

12.1 Testing UART 12-2.
12.2 Testing DAA 12-4.
12.3 Troubleshooting Procedures 12-7.

Figures

xviiContents

Figures

3-1 CST Chip Overview 3-2.
3-2 General Hardware Setup of CST Chip 3-3.
4-1 CST Framework Diagram 4-3.
4-2 Data Modem Objects 4-6.
5-1 Generic CST Flex Application 5-14.
6-1 CST Framework Controlled via AT Command Parser 6-3.
6-2 CST Framework Controlled via CST Action Layer 6-4.
6-3 Control Layers Interaction 6-5.
6-4 CST Service Periodic Thread 6-10.
6-5 Schematic Diagram of CST Periodic Thread Call Tree 6-18.
6-6 Example of Command Execution at Different CST Layers 6-24.
6-7 Fragments of Modem Call Code 6-25.
7-1 CST Solution Data Path 7-76.
7-2 Modem Data Flow 7-79.
7-3 Modem Data Pump Operating Environment 7-81.
7-4 V.42 Operating Environment 7-86.
7-5 G726 and G711 Bitstream Format 7-91.
7-6 CST Drivers Function Call Diagram 7-107.
8-1 CST Solution Memory Map 8-8.
9-1 AT Parser State Diagram 9-3.
10-1 CST Host Settings Dialog 10-3.
10-2 COM Port Settings Dialog 10-4.
10-3 DAA Settings Dialog 10-5.
10-4 Voice Play/Record Buttons 10-7.
10-5 CST Host Processing Flow 10-7.
11-1 CST Documentation and Software Directory Tree 11-3.

Tables

xviii

Tables

1-1 Abbreviations and Acronyms 1-4.
3-1 UART Lines 3-6.
3-2 Indication LEDs Meaning 3-7.
5-1 CST Action Associations 5-6.
5-2 Standard Callback Function Messages 5-8.
5-3 Top-Level Interface Functions 5-10.
6-1 CST Actions 6-7.
7-1 CST Service message 7-3.
7-2 Set of CST Service Tasks 7-4.
7-3 Set of CST Service Message Types 7-5.
7-4 CST Service Message Summary 7-6.
7-5 CST Service Status 7-8.
7-6 Set of CST Service Message Result Codes 7-9.
7-7 List of xDAIS Algorithms 7-10.
7-8 CST Service Interface Functions 7-11.
7-9 S-Register Descriptor 7-16.
7-10 Set of Defined CST S-Registers 7-17.
7-11 CST Settings 7-21.
7-12 Brief Description of CST S-Registers Function Interface 7-24.
7-13 Simple Map Structure 7-24.
7-14 S-Register Request Descriptor 7-25.
7-15 CST Dynamic Functions 7-27.
7-16 CST Commander General Control Interface 7-37.
7-17 Set of CST Commander Modes 7-37.
7-18 Set of CST Commander External Message Events 7-38.
7-19 Brief Description of CST Commander Function 7-40.
7-20 Set of CST Commander Atomic Commands 7-41.
7-21 CST Commander Special Pauses 7-44.
7-22 Basic Predefined CST Commander Atomic Command Scripts 7-45.
7-23 Unified CST Action Message 7-47.
7-24 CST Action Message Type Key 7-47.
7-25 The tCSTConfigCommand Structure 7-48.
7-26 The tCSTStandardOperation Structure 7-48.
7-27 Set of CST Action Standard Operations 7-49.
7-28 CST Action Function Interface 7-50.
7-29 AT Command Descriptor 7-63.

Tables

xixContents

7-30 Some of the AT Parser Interface Functions 7-65.
7-31 Memory Manager Function Interface Types 7-67.
7-32 Basic Memory Configurations 7-68.
7-33 CST Memory Space Segment Structure 7-70.
7-34 CST BIOS Memory Space Segment Structure 7-73.
7-35 Data Flow Parameters 7-79.
7-36 Brief Description of CST S-Registers Function Interface 7-81.
7-37 Voice Controller Main Structure Definition 7-89.
7-38 Brief Description of Voice Controller Function Interface 7-90.
7-39 Structure Definition 7-97.
7-40 Detected CPT Signals 7-101.
7-41 CPTD Configurations 7-102.
7-42 Generated CPT Signals Parameters 7-103.
7-43 Relationship Between CST Algorithms, Service Tasks, Atomic Commands

and CST Actions 7-105.
7-44 CST DAA Interface Functions 7-108.
7-45 High-Level DAA Driver Functions 7-108.
7-46 CST UART Interface Functions 7-112.
7-47 Set of Peripheral Driver Commands 7-117.
7-48 Set of Events From the Peripheral Driver 7-119.
7-49 Peripheral Driver Function Interface 7-120.
7-50 Set of Standard Operations of High-Level DAA Driver 7-122.
7-51 High-level DAA Driver Commands to Compose Scripts 7-123.
7-52 Set of Commands of High-Level DAA Driver 7-123.
7-53 High-Level DAA Driver Function Interface 7-125.
7-54 LIO Function Table 7-127.
7-55 LIO Open Function Modes 7-128.
7-56 Multiple DAA Device Setup Structure 7-131.
7-57 DAA Device Setup Structure 7-132.
7-58 Initial DAA Device Registers Values 7-133.
7-59 Bit Fields of the Task Parameter 7-134.
7-60 DAA LIO Driver Commands 7-138.
7-61 DAA LIO Driver Parameter - Result Map 7-139.
7-62 DAA LIO Driver Register Write Structure 7-139.
7-63 UART Setup Function to Track Modem Escape Sequence Characters 7-140.
7-64 Default Setup Settings of the UART Driver 7-141.
7-65 UART LIO Driver Commands 7-144.
7-66 UART LIO Driver Parameter - Result Map 7-145.
8-1 DSP Registers Used by CST Solution 8-3.
8-2 CST RAM Areas Description 8-6.
8-3 CST Algorithms ROM/RAM Characteristics 8-10.
8-4 CST Algorithims MIPS Characteristics 8-11.
9-1 Definition of AT Parser Modes 9-5.
9-2 CST AT Commands Syntax Specifics 9-6.

Tables

xx

9-3 TE-ACK Signal Settings 9-24.
9-4 DT-AS Detector Parameters 9-24.
9-5 FSK Demodulator Settings 9-25.
9-6 Data Compression Subparameters 9-27.
9-7 V.42 Window Size Subparameters 9-30.
9-8 V.42 Frame Length Subparameters 9-31.
9-9 S-Registers Defined in CST-Solution 9-37.
9-10 DAA Registers Summary 9-40.
9-11 Country Specific DAA Register Settings 9-41.
9-12 CST AT Parser Voice Mode Shielded Codes Sent From DTE 9-42.
9-13 CST AT Parser Voice Mode Shielded Codes Sent to DTE 9-42.
9-14 CST AT Parser Result Tokens 9-44.
9-15 Summary of Standard V.250 Commands Supported by CST 9-45.
9-16 Summary of CST-Solution Proprietary AT Commands 9-47.
9-17 Summary of Commands by Categories 9-48.
10-1 CST Host Parameter Requirements 10-2.
12-1 Troubleshooting Procedures 12-7.

Notes, Cautions, and Warnings

xxiContents

Notes, Cautions, and Warnings

Legal Disclaimer 1-7.
Compiling Flex examples and Code Composer Studio 2-5.
Use of Word “Action” and AT Commands 9-7.
Running applications or demo examples on EVM boards 10-3.
Important notes for Code Composer Studio version 2.1 users 11-2.
Notice: TMS320C54CST chip and UART capabilities 11-5.
Troubleshooting and Testing 12-7.

1-1

Introduction to Client Side Telephony (CST)

This chapter provides a brief overview of the Client Side Telephony (CST) Chip
Software User’s Guide. It lists and explains abbreviations and terms used
throughout this document, and contains copyright information.

Topic Page

1.1 CST Overview 1-2.

1.2 Abbreviations and Acronyms 1-4.

1.3 Legal Disclaimer 1-7.

Chapter 1

CST Overview

 1-2

1.1 CST Overview

CST Software consists of several eXpressDSP compliant telephony compo-
nents and a special CST Framework, which ties them together and provides
unified access to each of them. CST Software was ROM’ed into
TMS320C54CST DSP chip from Texas Instruments.

There are two main modes of CST Chip operation – Chipset mode and Flex
mode:

� In Chipset mode, only CST software is running inside CST Chip, controlled
from outside via serial link by AT commands.

� In Flex mode, user code is running inside of CST Chip, controlling the CST
Software in ROM using several different control layers of CST Framework.

The following components are included in CST Software (as standalone
XDAIS algorithms):

� Data Modem (V.32bis/V.32, V.22bis/V.22, V.14, V.42, V.42bis)

� Voice processing (ADPCM G.726, G.711, G.168 Echo Canceller, VAD,
CNG and AGC)

� Telephony Signals Processing (DTMF, CPTD, CID)

Besides, CST algorithms portofolio can be extented via a set of very memory-
efficient CST Add-ons, supplied separately from CST chip:

� Fax G3 functionality (fax modem supporting V.17/V.29/V.27ter/V.21)
V.29 Fast Connect (for POS terminals)

� Standard vocoders (G.729AB – 8 kbps, G.723.1 – 5.3 and 6.3 kbps)

� SPIRIT-proprietary 1200 bps vocoder

There is also an integration shell (CST Framework), which consists of several
layers and forms very flexible and configurable framework. Each framework
layer has its own intermediate interface, with its own level of abstraction. CST
Framework consists of the following parts (supplied in open source code):

� AT Command Parser (Data and Voice commands, used mostly in Chipset
mode)

CST Overview

1-3Introduction to Client Side Telephony (CST)

� Several control layers (used in Flex mode only):

� CST Action layer (to give the user control over CST Solution as whole
through mapping all commands and messages to different CST sub-
layers; eliminates the need to use AT Parser)

� CST Commander layer (to give the user control over CST Solution
through set of special command sequences)

� CST Service layer (to provide data flow between different XDAIS com-
ponents and device drivers, and to give the user unified access to CST
XDAIS components through set of special messages)

� LIO- and CSL-compliant drivers and data flow controllers of UART and
DAA codecs

� Memory management and other system services

The Framework was organized to give the user maximal flexibility. To achieve
this, many Framework functions call one another via function pointers. This al-
lows the user to override these functions as well as driver routines. It is also
possible to create several instances of the framework.

The user can still directly use the standalone eXpressDSP compliant algo-
rithms regardless of the CST Framework or use the Framework partially.

Besides the CST Software, there is also a start up Bootloader and a core code
of DSP/BIOS ROM’ed into CST Chip.

Abbreviations and Acronyms

 1-4

1.2 Abbreviations and Acronyms

The following abbreviations are used in this document:

Table 1-1. Abbreviations and Acronyms

Name Description

ADC Analog-digital converter

ADPCM Adaptive differential pulse code modulation. A type of waveform coding implemented in
G.726 codec.

AFE Analog front end. Hardware and/or software parts that convert signal waveform to a stream
of samples. Delay introduces by buffering or hardware part in AFE may affect modem
operation.

AGC Automatic Gain Control

ALGRF XDAIS algorithm creation/deletion functions (ALGorithm instantiation for Reference
Frameworks). See also XDAIS, IALG and RF3.

BIOS Used interchangeably with DSP/BIOS, see DSP/BIOS

CID Caller ID

Chipset
Mode

Mode of CST Chip operation when it is controlled only externally, via AT commands sent
over serial link.

CNG Comfort noise generator

CPTD Call progress tone detector

CSL Chip support library- TI’s standard library to support on-chip hardware

CST Client side telephony, also means the CST Chip solution

CTS Clear-to-send. UART interface signal that indicates readiness to receive data in one
direction (see also RTS).

DAA Data access arrangement, hardware interface with telephone line

DAC Digital-analog converter

DARAM Dual access RAM

DCE Data communications equipment. Within the scope of this document it implies EITHER CST
chip when used in chipset mode receiving commands from external host, OR CST software
solution controlled by user-specific software inside CST chip.

DSP/BIOS TI’s Real Time OS for DSPs

Abbreviations and Acronyms

1-5Introduction to Client Side Telephony (CST)

Table 1-1. Abbreviations and Acronyms (Continued)

Name Description

DTE Data terminal equipment. Within the scope of this document it implies
EITHER a PC (or another host) sending commands to CST Chip via serial link, OR
user-specific software inside CST chip (flex application), sending commands to AT parser
via virtual UART,
OR software unit providing DTE functionality.

DTMF Dual-tone modulated frequency signal

EVM TMS320C54CST evaluation module supplied by spectrum digital.

FCS Frame check sequence

Flex Mode Mode of CST chip operation when it is controlled internally by a user program loaded into
internal or external memory of the CST Chip.

GSTN General switched telephone network

IALG Interface to define XDAIS algorithms’ memory requirements (see also XDAIS and ALGRF)

ISP Internet service provider

ISR Interrupt service routine

LIO “Low-level I/O” – TI’s standard for drivers interface

MAU Minimum addressable unit, whose size is usually equal to sizeof(char) in C.

MCU Micro-controller unit

PCM Pulse code modulation. This term means representation of a waveform by quantized digital
signal using linear or logarithmic laws, rather than a modulation technique

PSTN Public switched telephone network

RF3 Reference framework level 3. Includes into itself: XDAIS, ALGRF, DSP/BIOS

RTS Request-to-send. UART interface signal that indicates readiness to receive data in another
direction (see CTS).

SDK Software development kit

SWI DSP/BIOS software interrupt

TAM Telephone answering machine

UART Universal asynchronous receiver/transmitter, the chip which allows data exchange over
serial link

UMTD Universal multi-tone detector

Abbreviations and Acronyms

 1-6

Table 1-1. Abbreviations and Acronyms (Continued)

Name Description

VAD Voice activity detector

XDAIS eXpressDSPTM Algorithm standard (also known as TMS320 DSP Algorithm Standard).

NOTICE on DAA part number: Throughout the document, Silicon Lab’s DAA is referred to as Si3016 or
Si3021 chip. Here is the explanation of part names:

Si3016 Line-side DAA, directly connected to telephone line. External chip.

Si3021 DSP-side DAA, connected to line-side only via capacitors. This part is on-chip in C54CST
chip.

Si3044 Compound part name, denoting Si3016 and Si3021 together.

NOTICE on C54CST part number: TMS320C54CST chip is a current version of the chip, having CST bundle
V2.0 in ROM, also referred as CST2.
TMX320VC54CST chip is a previous version of the chip, having CST bundle V1.0 in ROM, also referred as
CST1.
Throughout the document, C54CST name refers to CST bundle V2.0, unless noted otherwise.

Legal Disclaimer

1-7Introduction to Client Side Telephony (CST)

1.3 Legal Disclaimer

Legal Disclaimer

The views, opinions and references expressed herein do not necessarily
state or reflect those of the companies cited in section 1.3. The
aforementioned companies in this User’s Guide are in no way affiliated
with SPIRIT CORP, or SPIRIT TECHNOLOGIES, INC.

2-1

 Getting Started

This chapter provides quick steps to allow the user to immediately begin using
a CST chip and its modes. Important notes concerning SDK installation proce-
dures are also provided.

Topic Page

2.1 Overview 2-2.

2.2 Running a CST Solution: Standalone Chipset Mode 2-3.

2.3 Running a CST Solution: Flex Mode 2-5.

Chapter 2

Overview

 2-2

2.1 Overview

There are two main modes of CST Chip operation:

� Flex mode

� Chipset mode

Please refer to section 3.2 for more information concerning these modes.

To learn how to control CST Chip in Flex mode and to write your own program
for TMS320C54CST using CST solution, read the following chapters:

� Chapter 3: Hardware Overview

� Chapter 5: Flex Application Development Guidelines

� Chapter 8: C54CST Resources: Register Conventions, Memory, and
MIPS

� CST Algorithm user guides found in Related Documentation from Texas
Instruments section of the Preface

� Client Side Telephony (CST) Chip Flex Mode Flex Examples Description
(SPRA862)

For instructions on learning to control CST Chip in Chipset mode, please con-
sult the following chapters:

� Chapter 9: AT Command Set Descriptions

� Chapter 10: CST Host Utility

� Chapter 12: Chipset Mode Testing & Troubleshooting

� Client Side Telephony (CST) Chipset Mode (SPRA859)

To get yourself quickly acquainted with the CST Software, we strongly recom-
mend trying out several examples described in the Client Side Telephony
(CST) Chip Flex Mode Flex Examples Description (SPRA682). The fast way
to run these applications using TMS320C54CST chip is to use
TMS320C54CST EVM. You can also use the code of these examples, located
in Src\FlexExamples\, to quickly create your own application for Flex
mode. It’s also recommended that you look through the supplied CST Frame-
work source code when learning the CST Framework components and other
CST internals.

For installation procedure, please refer to chapter 11, Product Installation
Procedure.

Running a CST Solution: Standalone Chipset Mode

2-3 Getting Started

2.2 Running a CST Solution: Standalone Chipset Mode

To run CST solution in standalone Chipset mode, the following steps should
be taken:

Step 1: Connect and set up TMS320C54CST EVM, connect its COM port to
one of PC’s COM ports (COM1 or COM2, for example), connect
EVM to telephone line and also to power supply, but do not power
it up yet.

Set jumpers on EVM as described in section 3.3.

Step 2: Start host terminal – specialized CSTHost\CSTHost.exe, or
general-purpose HYPERTERMINAL or PROCOMM
communication programs and open the COM port to which EVM is
connected. Set this port for 115200 bps, 8 bits of data, 1 stop bit, no
parity, Hardware flow-control.

If running CSTHost, open terminal window at File->CST
Terminal, and press Settings button. Choose COM port to
which EVM is connected, and press Configure Port button. Set
the port according to the settings mentioned above, and press OK.

Step 3: Turn on power for EVM.

Step 4: Type “AT” in the terminal window, to tell CST bootloader to switch into
Chipset mode, OR load a patch (if necessary) via
Settings->Load Patch in CSTHost.

Step 5: The LEDs should blink several times (which indicates that the CST
has successfully started in Chipset Mode) and the following greeting
should be output to the terminal window (if COM port was configured
correctly):

CST Bundle Rel 2.0
(c) SPIRIT CORP
Type AT$, AT$H or AT&V for help

Step 6: Type AT$<Enter> on the terminal – you should see help on the
available S registers and their settings.

Running a CST Solution: Standalone Chipset Mode

 2-4

Step 7: Type AT&V<Enter> on the terminal – you should see current
settings of CST.

Step 8: To test modem, type ATDTxxxx, where xxxx is the number you wish
to dial and connect. Once modem connects, it reports the rate at
which it connected.

Step 9: To test voice capabilities, press Play Greeting and Record
button on CST Host, and call the number to which EVM is connected
from another phone.

Step 10: If something does not work properly, you may need to tune DAA
properly for the standards of your country by pressing Settings,
DAA International settings (read more about this in
chapter 11), and also read Client Side Telephony (CST) Chipset
Mode (SPRA859).

Running a CST Solution: Flex Mode

2-5 Getting Started

2.3 Running a CST Solution: Flex Mode

Note: Compiling Flex examples and Code Composer Studio

Before taking these steps, please, read carefully installation procedure in chapter 11.
To correctly compile a Flex example, the include path in project file may require tun-
ing, and your Code Composer Studio may require a small update.

To run CST solution in user programmable Flex mode, the following steps
should be taken:

Step 1: Connect and set up TMS320C54CST EVM, connect its COM port to
one of PC’s COM ports (if COM port is needed in your Flex mode ap-
plication), connect EVM to telephone line and also to power supply,
but do not power it up yet. Set jumpers on EVM described in section
3.3.

Step 2: Turn on power for EVM.

Step 3: Start Code Composer Studio.

Step 4: Load GEL file EVM54CST.gel from Src\GEL

Step 5: Open appropriate project file in one of the folders:

� Src\FlexApp (for non-DSP/BIOS based applications)

or

� Src\FlexAppBIOS (for DSP/BIOS based apps).

The project files are:

� CSTFlexApp.pjt

or

� CSTFlexAppBIOS.pjt, respectively.

Copy one of the Flex examples from folder
Src\FlexExamples into either:

� Src\FlexApp

or

� Src\FlexAppBIOS

renaming it to main.c, in order to substitute the existing
main.c file.

Running a CST Solution: Flex Mode

 2-6

Step 6: Compile the application and load it to EVM.
If compilation fails, please, refer to chapter 11 on how to update CSL
files in Code Composer, and on how to tune project file include path.

Step 7: Run the Program – EVM LEDs should blink several times, which indi-
cates that the program loaded and initialized CST in Flex mode cor-
rectly.

Step 8: Call the number to which EVM is connected from another phone, and
test the application running in CST Chip (read CST Flex Mode Ap-
plication Note to learn more about Flex mode examples).

Step 9: If something does not work properly, you may need to tune DAA
properly for the standards of your country by pressing Settings,
DAA International settings (read more about this in chap-
ter), and also read Client Side Telephony (CST) Chip Flex Mode Flex
Examples Description (SPRA682).

3-1

Hardware Overview

This chapter gives hardware overview of CST chip and C54CST EVM board
and its settings. It also describes the UART interface of the C54CST.

Section 3.6 provides an overview and instructions for adapting a C54CST Chip
to User-Specific Hardware.

Topic Page

3.1 Introduction to the CST Chip 3-2.

3.2 Main Modes of the CST Chip 3-4.

3.3 TMS320C54CST EVM Configuration 3-5.

3.4 UART Hardware Flow Control 3-6.

3.5 LED Indication 3-7.

3.6 Adapting the C54CST Chip for User-Specific Hardware 3-8.

Chapter 3

Introduction to the CST Chip

 3-2

3.1 Introduction to the CST Chip

Texas Instrument’s TMS320C54CST is a generic C54x DSP with UART and
Digital DAA integrated into it. It has 40 kW of RAM and 128 kW of ROM. Client
Side Telephony software was developed by SPIRIT and ROM’ed into this DSP
by TI, thus making it a TMS320C54CST device (see Figure 3-1).

Figure 3-1. CST Chip Overview

TMS320C54CST chip

UART DAA

Internal
CST ROM
128 kW

C54x core

Host
(optional)

Analog
DAA

Internal
RAM

40 kW

User’s code
(optional)

The most generic hardware setup for CST Chip is shown in Figure 3-2.

On the telephone line side, CST Chip can be connected to the Analog DAA
chip from Silicon Laboratories, Si3016 (NOTE: CST chip can use any other
DAA or Codec; DAA driver in CST can be reloaded easily, see section 7.7.7.2).
This provides galvanic de-coupling with the telephone line, and DSP is con-
nected to Analog DAA chip via two capacitors only.

On the host interface side, CST chip is connected to PC or any MCU controller
via serial asynchronous port (RS232C). Host controls CST chip via AT
command set both in data modem mode and in voice mode (most of the
functions of CST Chip are controllable via AT commands).

CST Chip does not require any external RAM or other hardware to run CST
tasks. At the same time, it is possible to load additional code to control CST
chip into the internal RAM of TMS320C54CST, and use CST software in ROM
as a library of XDAIS objects, thus eliminating the need for the host controller.

Introduction to the CST Chip

3-3Hardware Overview

Figure 3-2. General Hardware Setup of CST Chip

C54CST
chip

Analog
DAA

Si3016
PSTN

Serial
linkTelephone

or
modem

PC
or

MCU

This document concentrates mostly on software aspects of 54CST chip. For
more information on hardware aspects read TMS320C54CST Client Side
Telephony DSP Data Manual, SPRS187.

Main Modes of CST Chip

 3-4

3.2 Main Modes of CST Chip

There are two main modes of CST Chip operation – Chipset mode and Flex
mode.

In Chipset mode, only CST software is running inside CST Chip, controlled
from outside via serial link by AT commands. In this mode, the CST chip can
be used as standard data modem with voice features, including duplex voice
transfer (all standard functionality of CST Software is accessible via AT com-
mands).

In Flex mode, user code is loaded into and running inside of CST chip, using
the CST Software in ROM as a library. This mode gives the user more flexible
access to different levels of CST software, and allows the user to build applica-
tions using only CST Chip, without need for any host controller.

There are several ways to switch into Chipset mode from CST Bootloader:

1) High to low transition on the INT1 pin within 30 CPU cycles after reset;

2) Sending two symbols (“AT”) via UART, at 115200 bps, shortly after reset.

3) Writing a “magic” number 0x45 to memory location 0x7E via HPI inter-
face.

Even while in Chipset mode, the User still has possibility to load Flex applica-
tion (user code) into RAM using special CST AT command (AT#DATA, see
section 9.4.1.29).

If DSP starts in Chipset mode, it immediately runs CST solution from internal
ROM. Otherwise, it starts in Flex mode, and tries to load user’s program
through one of the external interfaces.

More information on CST Bootloader is given in section 5.4.2 of this document
and the TMS320C54CST Bootloader Technical Reference Guide (SPRA827).

TMS320C54CST EVM Configuration

3-5Hardware Overview

3.3 TMS320C54CST EVM Configuration

To run Spectrum Digital’s EVM with TMS320C54CST processor, jumpers on
EVM should be set the following way (ON – pins 1 and 2 connected, OFF – pins
2 and 3 connected):

JP1 – OFF JP2 – OFF

JP3 – OFF JP4 – ON

JP5 – OFF JP6 – OFF

Initially EVM will start TMS320C54CST in Flex mode. Bootloader will run first,
and will be waiting for Flex application from several of external sources (see
section 5.4.2 for details).

To start TMS320C54CST in Chipset mode, just type “AT” symbols via terminal,
connected to EVM’s UART.

UART Hardware Flow Control

 3-6

3.4 UART Hardware Flow Control

TMS320C54CST chip has only 2 dedicated pins for UART – RX and TX, the
rest of UART lines have to use general purpose I/O lines of the chip, which are
combined with HPI pins.

The CST UART driver implies that these additional UART lines are connected
in the same way they are connected on EVM board (see the TMS320C54CST
Evaluation Module Technical Reference, Spectrum Digital, Inc.).

Table 3-1. UART Lines

UART Line External DSP Pin
Direction
(for DSP) Comments

DTR HD0 Input Controls CST behavior

RTS HD1 Input Used for HW flow control, tells CST that host is
ready to receive data

CTS HD2 Output Used for HW flow control, tells host that CST is
ready to receive data

DSR HD3 Output Not used by CST

DCD HD4 Output Reports modem online status

RI HD5 Output Reports RING event

If the user wants to connect UART lines to other pins or not to use these pins
at all, it is necessary to modify CST UART driver by reloading some or all of
its virtual methods in Flex mode (see section 7.7.7.2).

LED Indication

3-7Hardware Overview

3.5 LED Indication

C54CST chip uses its I/O Port #0 to output indication information about some
of the internal events. On Spectrum Digital’s EVM this port is connected to 4
LEDs, DS3 through DS6.

The meaning of this indication is described in Table 3-2:

Table 3-2. Indication LEDs Meaning

Data Bit #
in Port 0 EVM LED #

CST’s
LED # Meaning

0 DS3 LED0 Not enough MIPS for real-time operation

This LED is toggled every time a buffer in DAA driver or UART driver
overflows. Buffer overflow usually happens when some parts of the
code consume so many MIPS, that CST Framework consumes less
data from these buffers than it is supposed to, according to real-time
requirements (for example, 8000 samples per second from DAA).

1 DS4 LED1 Voice buffer underrun

Voice controller has a buffer, storing bitstream to be decoded and
played out in voice mode. This LED is toggled every time this buffer
underruns. This happens when Host does not send bitstream to be
played out fast enough, and this leads to interruptions in output voice
signal and sometimes even to incorrect decoding of further bitstream.

2 DS5 LED2 CTS (clear-to-send) circuit state

When CST’s UART driver receive buffer gets filled to ¾ of its size
(capacity), the driver turns OFF CTS circuit telling the Host to wait and
not send data. When the buffer frees up to ½ of its size, the driver turns
CTS circuit back ON.

3 DS6 LED3 DSP in IDLE mode (power saving)

When Power saving mode is enabled (via ATP command), this LED
is turned on when DSP enters IDLE mode, and turned off when DSP
leaves IDLE mode. This LED allows the user to estimate roughly how
loaded the DSP is MIPS-wise: the darker this LED is, the more time
DSP spends processing CST’s routines and less time it spends in
IDLE mode.

When Power saving mode is disabled, this LED should be off.

If the user needs to use I/O Port 0 for some other purposes, it is possible to
reload CST peripheral driver in Flex mode (see section 7.7.7.4), and remove
any indication code, which writes to Port #0.

Adapting the C54CST Chip for User-Specific Hardware

 3-8

3.6 Adapting the C54CST Chip for User-Specific Hardware

When going to User-specific hardware, CST software needs to be reconfi-
gured in order to fit the new hardware environment, in areas where it is different
from C54CST EVM.

This chapter gives only a brief overview of this topic, more information can be
found in other chapters of this document, and in appropriate application notes.

The following areas need to be taken into consideration:

1) DAA connection

a) Using external SiLab’s Si3021+Si3016 DAA
CST DAA driver already includes support for an external Si3021 DAA,
and also for multiple DAAs of this type. So the User can connect multi-
ple DAAs to CST (either each DAA to each McBSP (which is what the
CST DAA driver supports), or several DAAs to one McBSP – con-
nected in daisy chain (for what a new DAA driver required)), and use
the same driver to control them all. Read sections 7.7.5, 7.7.7.3 , and
7.7.7.5 for details.

b) Using another external DAA
CST DAA driver can be reloaded and reconfigured to support any oth-
er external DAA. Again, multiple DAAs can be connected to CST.
Read sections 7.7.7.3 and 7.7.7.5 for details.

2) UART connection

a) Reconfiguring UART control lines
User may want to redefine the pins, which are used as UART control
lines (CTS/RTS, DSR/DTR, DCD, RI). By default, GPIO pins
HD0-HD5 are used for this purpose. To do this, some of the UART
driver virtual functions need to be reloaded. Read section 7.7.7.2 for
details.

b) Using GPIO pins HD0-HD5 for other purposes
To configure CST UART driver not to use GPIO pins, see section
7.7.7.2.
However, CST framework writes couple of more times into GPIO reg-
ister during initialization.
This happens in functions CST_DSPInit() and TargetBoardI-
nit() (they both set GPIOCR to 0).
So, if you want CST not to touch GPIO registers even during initializa-
tion, you have to reload functions CST_DSPInit() and Target-
BoardInit().

Adapting the C54CST Chip for User-Specific Hardware

3-9Hardware Overview

c) Connecting with Host via UART
To connect host computer or Host CPU to C54CST via UART, it is not
required, although recommended, to use UART hardware flow control
lines. If flow control lines are not connected, the User needs to make
sure that 1) RTS line is tied to 1 (always high), so that CST would be
allowed to send data to Host; 2) Host never sends too much data to
CST chip, to prevent overflows of the internal UART buffer.
Also, C54CST’s UART is capable of operating at higher rates than
115200 bps (at least 16 times faster). This may be useful in some ap-
plications.

3) HPI connection

a) Connecting with Host CPU via HPI
Host CPU can control CST via HPI port only. CST Bootloader supports
booting from HPI. UART traffic (AT commands and data) can be redi-
rected from UART to HPI. To make this redirection, the UART driver
needs to be reloaded (see 7.7.7.1).
SPIRIT Corp. also is planning to provide a flex example on how to
switch CST into “HPI-controlled Chipset Mode”. Please, refer to the
CST support web site.

4) McBSP connection

a) Connecting TDM channels (T1/E1)
C54CST can process data coming from TDM channel just as it pro-
cesses data coming from DAA. In order to use CST framework in this
case, DAA driver needs to be reloaded, as described in section
7.7.7.3. To process several slots (PCM channels), multiple instances
of DAA driver and CST Framework should be created.

b) Connecting with Host CPU via McBSP
Host CPU can control CST via McBSP port only. CST Bootloader sup-
ports booting from McBSP. UART traffic (AT commands and data) can
be redirected from UART to McBSP. To make this redirection, the
UART driver needs to be reloaded (see 7.7.7.1).

5) LEDs control

a) CST Peripheral driver uses I/O Port #0 to output indication information
about some of the internal events using C54CST EVM LEDs. To con-
figure this indication differently, or to disable it, peripheral driver needs
to be reloaded, as described in section 7.7.7.4.

Adapting the C54CST Chip for User-Specific Hardware

 3-10

6) Adding driver for a new device

a) When adding a driver for a new device, the User can still benefit from
the reach functionality of CST framework, if that driver is added inline
with CST framework and driver concept.

Read sections 7.3.5.1 and 7.3.5.2 for details.

7) Using another clock for DSP

a) Clock Frequency
If on-chip DAA is not used, C54CST can run at any frequency, up to
120 MHz.

Internal DSP clock multiplier can be set by calling function
TargetBoardInit(…,int Multiplier,…) with appropriate
parameter.

By default, on C54CST EVM, this parameter is equal to 8, which sets
DSP clock to 118 MHz with 14.7456 MHz input clock.

To run C54CST EVM at 59 MHz, change this parameter to 4.

b) Clock jitter
If DSP clock is used to clock DAA (for on-chip DAA, this is the case),
clock jitter needs to be very small, in order to enable robust modem
operation. For this reason, it is recommended to use crystals without
internal PLL, because otherwise crystal’s internal PLL in combination
with DSP’s PLL leads to high jitter.

c) Memory wait states considerations
When DSP clock is higher than access time to external RAM/ROM,
accesses to external memory are done with one or several wait states.
This is done by programming a wait state register, SWWSR. CST pe-
ripheral driver does this in initialization function, that contains parame-
ter which specifies the amount of wait states for external memory -
TargetBoardInit(…,…,int ExtWaitStates).

By default, this parameter is equal to 2 wait states, which is applicable
for C54CST EVM with its 12 ns SRAM and when DSP is running at 118
MHz. If DSP is running at 59 MHz, this parameter should be equal to
1. For all port accesses (I/O), 7 wait states are set by TargetBoar-
dInit(), and if this needs to be changed, this function has to be re-
loaded/overridden (see section 7.7.7.4).

Adapting the C54CST Chip for User-Specific Hardware

3-11Hardware Overview

d) UART divisor considerations
On-chip UART is clocked from DSP clock. So, if DSP clock changes,
UART divisor needs to be changed to, to enable operation at standard
baud rate. For this purpose, UART driver has global parameters,
UartParams.baud and UartParams.clkInput. UART divisor is
set as multiple of these two values, DLAB=baud*clkInput. For ex-
ample, to set 115200 baud rate at 118 MHz DSP clock, these parame-
ters are baud=32 and clkInput=2.

8) Connecting to external SRAM

a) Since C54CST device has a lot of internal RAM and ROM, and both
RAM and ROM need to be visible in program and data space for CST
software to function normally, external memory is visible/accessible
only via certain address areas, as described in section 8.3. In order
to map external SRAM to these areas of visibility, some external ad-
dress decoding & page access logic is required. Look for a hardware
application note on this on CST support web site.

9) Connecting to external ROM/Flash and booting from it

a) Connection of external parallel Flash can be done in the similar way
as it is done on Spectrum Digital’s C54CST EVM (see schematics in
TMS320C54CST Evaluation Module Technical Reference, Spectrum
Digital, Inc.). Programming utility for C54CST EVM’s Flash is provided
as an example in CST SDK, at Utilities\Flex2Flash. Refer to
its readme file on how to use it.

b) Connection of other types of Flash and ROM chips is also possible.
Look for a hardware application note on this on CST support web site.

10) Adding new algorithm

a) Read section 7.3.5.2 for details.

b) Remember, that CST algorithms portfolio can be extended via a set
of very memory-efficient CST Add-ons, supplied separately from CST
chip: Fax G3, V.29FC, G.729AB, G.723.1, 1200 bps vocoder.

Some of these topics will also be covered in upcoming application notes.

4-1

Software Overview

This chapter explains the benefits of using the Flex mode to control a CST chip,
and gives an overview of two main CST software parts – CST Framework and
CST Telephony Components.

Topic Page

4.1 Flex Mode Applications 4-2.

4.2 Framework Components 4-3.

4.3 Telephony Components 4-5.

Chapter 4

Flex Mode Applications

 4-2

4.1 Flex Mode Applications

There are two main modes of CST chip operation:

� Chipset mode

� Flex mode

In Flex mode, user code is loaded into and running inside of CST Chip, using
the CST Software in ROM as a library.

As an alternative for AT commands, CST offers a unified top-level software in-
terface – the main interface for flex mode applications. The unified high-level
interface - also called CST Action interface – fully covers and extends func-
tionality of AT command approach used during serial connection of DCE and
DTE.

CST Action interface can only be used in flex mode. The easy-to-use API of-
fers a number of additional features and dramatically reduces program size
and development time.

To design most of Flex applications, only the basic knowledge of CST architec-
ture is required. This is why the document mostly attends to CST Action inter-
face and main CST types.

When using the high-level interface, the whole development process can be
considered as a couple of standard stages.

Typically, the first stage includes preliminary design of application logical struc-
ture.

The second stage is basically implementing the algorithm as a combination of
main and callback functions.

A standard flex application roughly corresponds to a set of AT-command -
based standard applications. Multichannel and multi-codec applications, as
well as those with non-standard data flow, are considered non-standard flex
applications.

Such non-standard applications can use auxiliary options of CST Framework,
but in some cases it may be reasonable not to use CST Framework at all and
get down to XDAIS libraries instead.

Note that CST SDK contains a broad range of examples on implementing dif-
ferent applications, which makes it even easier to create User-specific Flex ap-
plications.

Main guidelines on Flex application development are given in chapter 5, Flex
Application Development Guidelines. Brief specifications of main CST types
are given in section 6.3, Framework API Overview.

Framework Components

4-3Software Overview

4.2 Framework Components

All components of CST solution are tied together by a CST Framework, which
consists of several layers and forms very flexible and configurable framework.
Each framework layer has its own intermediate interface which allows DSP de-
velopers to work with the solution as a whole or get down to any level of ab-
straction most suitable for their purposes.

CST Framework includes:

� AT command parser (data and voice commands)

� CST Action control layer (to give the user control over CST solution as a
whole through mapping all commands and messages to different CST
sublayers)

� CST Commander control layer (to give the user control over CST solution
through a set of special command sequences)

� CST Service control layer (to provide data flow between different XDAIS
components and device drivers, and to give the user unified access to
CST XDAIS components through a set of special messages)

� LIO compliant drivers for UART and DAA codec.

� Memory management

� DSP/BIOS core

Figure 4-1. CST Framework Diagram

AT command parser layer

Commander layer

Service layer

xDAIS LIO

CSL

A
ction layer

ALGRF

Framework Components

 4-4

CST Framework has two alternative top layers and therefore, two alternative
top-level interfaces.

In Chipset mode, CST Framework interacts with host via AT commands. This
mode is used in Chipset mode and is configured as default.

However, the default status does not mean the preference of this interface for
user integration in flex mode because it enforces the user to imitate host termi-
nal, generate AT commands and decode responses, substitute a virtual UART
driver instead of existing one and so on.

As a rule, standard CST Flex applications are not oriented on additional host
terminals. If firmware under development does not require modem-oriented
AT commands, it is not recommended to use AT parser for a top-level inter-
face.

The alternative to AT command interface is action-based interface. The basic
concept of this method is to eliminate AT parser and unify access to CST con-
trol layers.

CST Framework is a multichannel framework. All sub-service structures are
grouped into a global structure. CST defines a global instance of this structure
to be used for single channel applications.

CST Framework is OS-agnostic, in other words it can run under DSP/BIOS or
other RTOS, or without it.

In non-RTOS environment, CST Framework is running as single thread ap-
plication. However, CST fully supports multi-threaded mode, and if multi-
threading capability is provided (if the user is using some kind of RTOS), CST
Framework can benefit from it, by calling most of CST algorithms in a high-
priority periodic process and posting low priority standard threads to run back-
ground tasks (such as V.42bis compression). If there is no multithreading in
User’s environment, CST Framework will still operate OK, but the User will
have to be more careful about evenness of MIPS load distribution.

For more flexibility, some important CST functions are called via pointers.

To learn more about CST Framework, please refer to chapter 5, Flex Applica-
tion Development Guidelines.

Telephony Components

4-5Software Overview

4.3 Telephony Components

The CST solution integrates libraries of data communication, telephony
signaling, and voice processing algorithms. All components of the solution are
eXpressDSP compliant and share a standardized interface. All of these ob-
jects and device drivers are linked together by the CTS framework that pro-
vides unified access to the algorithms and eliminates compatibility and access
issues.

The following algorithms are included in the CST solution:

� Modem algorithms

� V.32bis/V.22bis(up to 14.4 kbps)
� V.42 error correction

� Embedded V.42bis compression

� Modem integrator

� Embedded V.14 async-to-sync conversion

� Fax G3, supporting V.17/V.29/V.27ter/V.21 (up to 14.4 kbps) – as add-
on only1

� V.29 fast connect (for POS terminals) – as add-on only1

� Telephony algorithms

� UMTG/UMTD (Universal multifrequency tone generator/detector)

� DTMF generation/detection
� Call progress tone generation/detection

� Caller ID types 1 and 2

� Voice algorithms

� G.168 line echo cancellation
� G.726 ADPCM compression (16-40 kbps)

� Embedded G.711 PCM

� G.729AB vocoder (8 kbps) – as add-on only1

� G.723.1 vocoder (5.3 and 6.3 kbps) – as add-on only1

� SPIRIT-proprietary 1200 bps vocoder – as add-on only1

� Automatic Gain Control (AGC)
� Voice Activity Detection (VAD)
� Comfort Noise Generator (CNG)

1 This functionality can be added via a very memory-efficient CST Add-on, supplied separately from CST chip

Telephony Components

 4-6

4.3.1 Data Modem

Data modem consists of several components, each implemented as a sepa-
rate XDAIS object. These objects are modem data pump (unifies ITU-T
V.22/V.22bis/V.32/V.32bis and automode modem procedure), V.42 error
correction protocol with embedded V.42bis data compression protocol, and a
Modem Integrator object, which unifies access to all other modem algorithms
(unified parameters, sample and data flows, extended status, etc), and inter-
connects them inside of itself.

Data Modem Controller (hereafter referred to DMController) is an upper layer
that integrates Modem Integrator object into CST Framework.

Figure 4-2. Data Modem Objects

DMController

Modem Integrator

Data Pump
V.42 and
V.42bis

4.3.2 Voice Processing

Voice processing includes several components – waveform codec (PCM and
ADPCM), line echo canceller, Automatic Gain Control (AGC) controlled by
Voice Activity Detector (VAD), Comfort Noise Generator (CNG). All compo-
nents have simple interface and operate with 14-bit 8 kHz samples.

CST’s G726G711 component implements ITU-T G.726 adaptive differential
pulse code modulation (ADPCM) encoder and decoder of voice frequencies,
as well as G.711 logarithmic conversion. It supports A-law or µ-law conversion
to/from uniform (linear) PCM according to G.711; and compresses/decom-
presses linear samples to/from bitstream, based on selected compression
rate – 16, 24, 32 or 40 kbps, according to G.726

CST’s Line Echo Canceller (LEC) is used for cancellation of electric echo
introduced by telephone hybrid, and conforms to G.165 and G.168 ITU recom-
mendations. It includes double talk detector and nonlinear processor. User
can set the value of maximum echo path equal to 16, 32 or 64 msec.

CST’s Voice Activity Detector (VAD) detects the presence of speech in the sig-
nal. It has special adaptive algorithm to automatically adjust to the level of the

Telephony Components

4-7Software Overview

noise in the signal, in order to provide robust operation even in the noisy
speech. It has many user configurable parameters, allowing the algorithm to
optimally tune itself for a specific application. VAD also outputs several coeffi-
cients that characterize spectral envelope of the noise (when no speech is de-
tected), so that the regenerated noise would be similar to the original noise.

CST’s Comfort Noise Generator (CNG) generates noise, distributed either
uniformly or shaped according to the spectral envelope coefficients, which can
be passed to CNG as parameters.

CST’s Automatic Gain Control (AGC) is designed specifically to amplify voice
signal, which has very non-stationary amplitude envelope. It operates much
better in conjunction with VAD, which can tell AGC when there is no speech
in the signal, so that AGC would not adapt in these periods.

4.3.3 Telephony Signals Processing

Telephony signals processing includes several components – UMTD (detects
DTMF and CPT signals), UMTG (generates DTMF and CPT signals) and Cli-
ent side Caller ID. All components have simple interface and operate with
16-bit 8 kHz samples (they have wider input dynamic range than voice proc-
essing components, which operate with 14-bit samples only).

CST includes Universal Multifrequency Tone Detector (UMTD) for detecting
DTMF, Call Progress Tones (CPT) and many other telephony signals.

In brief, UMTD detector filters input samples, estimates spectrum of input sig-
nal, checks the cadences and pauses and makes the decision about presence
of signaling tone. UMTD can be easily configured to fit the specific standard
of any country.

CST’s DTMF Detector operates in compliance to ITU-T Q.24 Recommenda-
tion.

CST’s CPT detector supports a wide range of call progress tones fitting the
standards of most countries according to Q.35 recommendation and some
signals that do not fit into Q.35 recommendation. It is also possible to describe
custom call progress tones.

CST includes Universal Multifrequency Tone Generator (UMTG) for DTMF,
CPT and many other telephony signals generation. It can be set to generate
tones according to the standards of different countries (tones’ frequencies and
cadences are adjustable).

UMTG-based DTMF Generator operates in compliance to ITU-T Q.23 Recom-
mendation.

Telephony Components

 4-8

UMTG-based CPT generator produces output signals with cadences and fre-
quencies specified in UMTG settings.

CST’s Client Side Caller ID Includes Type I and Type II Caller ID signal
detection, compliant with standards of several providers and countries:
Bellcore GR-30-CORE, SR-TSV-002476; British Telecom SIN227 and
SIN242; ETSI ETS 300 659, ETS 300 778; Mercury Communications
MNR 19. Client side caller ID supports on call waiting operation and
parsing/converting the message into presentable format.

For more information see section 7.6, Telephony Components Brief
Specification.

5-1

Flex Application Development Guidelines

This chapter is design specifically to give a quick overview or quick start on de-
veloping a user-specific flex application, without overloading the User with lots
of specific information about CST framework and its components. We strongly
recommend to read this whole chapter before plunging into reading CST
framework API or into building your own flex application based on one of the
flex examples.

Section 5.1 explains the benefits of the Flex mode over Chipset mode for con-
trolling CST chip.

Section 5.2 elaborates a little bit more on this topic, explaining why AT com-
mands is not a convenient way to control modem- and voice-based applica-
tions when user code is inside the CST chip.

Section 5.3 describes three steps to build a user-specific flex application.

And finally, section 5.4 gives some specific details on how to actually compile
and load flex application.

Topic Page

5.1 Chipset vs. Flex Mode 5-2.

5.2 AT Commands vs. Alternative Interfaces 5-3.

5.3 Designing and Implementing Standard CST Applications 5-5. . .

5.4 Building and Loading Flex Applications 5-16.

Chapter 5

Chipset vs. Flex Mode

 5-2

5.1 Chipset vs. Flex Mode

CST is a multifunctional solution that can be used as an external modem chip,
as an embedded modem chip, or as a library of standalone XDAIS algorithms.
CST chip is a full-scale modem on a single crystal.

A CST chip can be connected to the serial port of a personal computer running
any terminal program. Using the default AT commands the user can test any
of the standard CST modes, including voice mode.

The user is not required to have any prior knowledge of ‘C54x architecture or
development tools in order to start using CST as an external modem chip.
However, this kind of firmware presumes a separate host processor con-
nected to CST via a serial port.

Software of the host processor should incorporate DTE interface of serial
asynchronous automatic dialing and control that includes data exchange via
serial port and flow control, algorithm for synchronization of AT commands,
data and shield codes (if required), AT commands coding and recognition.

Using CST as an embedded modem (i.e. flex mode) is somewhat similar to the
previous technique. Nearly each AT command corresponds to a CST API com-
mand (CST Action).

In this case the host processor can be absent or can perform entirely different
functions. Program interface is simpler and more reliable than data transfer via
serial port using AT commands.

The user is not required to have any knowledge of CST architecture, XDAIS
algorithms, etc. in order to start using CST API, but basic knowledge of ‘C54x
architecture and related development tools is needed.

It is also necessary to note that CST framework is a real time system, and
therefore, the user may need to obtain some knowledge on real-time OS, for
example TI’s DSP/BIOS.

In Flex mode, the user is able to utilize auxiliary features of CST, to modify pa-
rameters/functionality of various services and create non-standard applica-
tions. CST SDK (Software Development Kit) contains a large number of exam-
ples of CST usage in Flex mode.

Flex mode is also used to create patch-applications and to reconfigure CST
the way AT commands wouldn’t allow.

In the following chapters, we will review CST Flex mode exclusively.

AT Commands vs Alternative Interfaces

5-3Flex Application Development Guidelines

5.2 AT Commands vs Alternative Interfaces

DTE-DCE interface is logically implemented as a set of AT commands sent
by DTE to DCE (all commands and parameters are coded as lines of ASCII
characters) and DCE responses (the responses may be either verbal or nu-
meric).

Using the AT command interface (from hereafter, AT interface) allows to de-
sign equipment compatible with modems of different manufacturers, but this
is only true for the basic AT command set.

One should keep in mind that CST supports incomplete set of AT commands
and registers defined in V.250 standard, also providing additional features not
defined in scope of that standard.

The main problem of a classic DTE-DCE interface implementation is using the
same information channel (UART) for both data transfers and for control sig-
nals exchanging.

It is supposed that interpretation of data being exchanged is strictly related to
DCE state (off-line/on-line). This reduces flexibility of the interface significant-
ly. This disadvantage is due to the minimalist implementation of RS-232 inter-
face that is accepted as a standard.

However, certain modems (Comsphere from AT&T, DataLink from Penril) use
a separate physical port for control/diagnostic purposes. The problem be-
comes more aggravated when the amount of control data increases.

Sharing the UART channel results in a drastic complication of the exchange
protocol between DTE and DCE.

In general, simultaneous transfer of data and AT commands is impossible. An
attempt to do this can lead to a number of consequences, such as:

� Lack of flexibility, especially obvious in voice and Caller ID applications

� Inability to control things continuously, inability to control at arbitrary in-
stants

� Inability to distinguish between data and commands in certain situations,
for example, if connection with a remote modem is broken prematurely

� Necessity for parsing the incoming data stream to separate the additional
status/control information (in voice applications)

Implementation of a protocol for intense data and command transmission is
a complicated issue in itself.

AT Commands vs Alternative Interfaces

 5-4

As an alternative for AT commands, CST offers a unified top-level software in-
terface, referred to as CST Action interface, which fully covers and even ex-
tends functionality of the AT command approach used for serial connection be-
tween DCE and DTE.

CST Action interface can only be used in flex mode. The easy-to-use API of-
fers a number of additional features and dramatically reduces program size
and development time.

Advantages of the CST Action interface arise from separation of data and con-
trol channels, easy implementation of complicated operations (such as non-
standard connection establishment scripts), automatic control and synchro-
nization of processes being executed, etc.

Flex mode allows to exploit all additional features of CST, including multi-chan-
neling, and considerably simplifies debugging.

Applications oriented on AT interface are easily transferable to CST Action in-
terface, as most of basic AT commands are reflected to standard CST Actions.

CST SDK contains a broad range of examples on implementing different algo-
rithms, which makes it even easier to create Flex applications.

Designing and Implementing Standard CST Applications

5-5Flex Application Development Guidelines

5.3 Designing and Implementing Standard CST Applications

With CST it is easy to create applications for a broad range of tasks, such as:

� Embedded data transfer modems. Can be used in various remote sensors
and security systems that require transfer of compressed digital data over
phone lines

� Voice menu systems with remote control option

� Call centers and answering machines

� Internet appliances

Designing of the vast majority of Flex applications requires only the basic
knowledge of the CST architecture. The whole development process can be
divided into two important distinct stages.

The first stage includes preliminary design of application logical structure.

The second stage is basically implementing the application’s algorithm as a
combination of main and callback functions.

This chapter gives some recommendations on what we consider to be the opti-
mal techniques for designing standard Flex applications.

A standard flex application roughly corresponds to a set of AT-command -
based standard applications.

Multichannel and multi-codec applications, as well as those with non-standard
data flow, are considered non-standard flex applications. Such non-standard
applications can use auxiliary options of CST Framework, but in some cases
it may be reasonable not to use CST framework at all and get down to XDAIS
libraries instead.

Definition of a non-standard application is based on the fact that the non-stan-
dard application requires functionality beyond a unified high-level interface as
described below.

Designing and Implementing Standard CST Applications

 5-6

5.3.1 Preliminary Application Design

Any Flex application algorithm should be represented as a set of elementary
states, such as waiting for a ring, initializing the modem, waiting for a connec-
tion to be established, sending data, closing the connection, etc.

Each algorithmic state is usually associated with a single command (CST Ac-
tion) sent to CST via the unified high-level interface. If a state of the User’s al-
gorithm requires performing multiple CST Actions, that state should be broken
up into several elementary states, so that each state is only associated with
a single CST Action.

Normally, each CST Action is associated with a single AT command. The most
common CST Actions are listed below:

Table 5-1. CST Action Associations

CST Action
Similar

AT-command Note

Go off hook ATH1 Go off hook, run CPTD and DTMF detectors.

Run the Caller ID after a ring end - Usually runs automatically

Run the Caller ID after a line reversal - Usually runs automatically

Call a remote modem ATD Go off hook,
wait for a dial tone,
dial a number and run the modem in the originate
(calling) mode
 (unless the “;” dial modifier is included in the
number).

Answer a call from a remote modem ATA Go off hook and run the modem in the answer
(response) mode.

Dial and switch to the voice mode ATD
in voice mode

Go off hook,
wait for a dial tone,
dial a number,
wait for a ring back signal appearance and then
disappearance
 (only if the “@” dial modifier is included in the
number)
and enable voice mode

Answer and switch to the voice mode ATA
in voice mode

Go off hook and enable the voice mode (run Caller
ID Type 2)

While in the voice mode, enable voice
receiving procedures

AT#VRX Run the G.726/G.711 encoder and all signal
detectors (CPTD, DTMF).

Designing and Implementing Standard CST Applications

5-7Flex Application Development Guidelines

Table 5-1. CST Action Associations(Continued)

CST Action Note
Similar

AT-command

While in the voice mode, enable voice
sending procedures

AT#VTX Run the G.726/G.711 decoder and all signal
detectors (CPTD, DTMF).

While in the voice mode, enable both
the voice receiving and sending
procedures

AT#VRXTX Run the G.726/G.711 encoder, decoder and all signal
detectors (CPTD, DTMF).

While in the voice TX or RXTX
modes, disable the voice receiving
and sending procedures

<DLE><CAN> Turn off the G.726/G.711 encoder, decoder, keep the
signal detectors on (CPTD, DTMF and Caller ID).

Just make a call ATDxx; Go off hook, wait for a dial tone (if not disabled), and
dial a number

Shut down the current process
correctly

ATH Correctly stop the current task, then turn off all other
algorithms and go on hook.

Shut down the current process
immediately

ATH Turn off all algorithms, go on hook. Also used to
abort operation.

Send data - Feed data to one of the transmitting algorithms
(DTMF generator, modem, G.726/G.711 decoder)

It is necessary to note that the developer is not limited by the set of standard
commands or actions described above. It is possible to create new Actions for
specific needs.

Any such Action implies performing a sequence of elementary operations that
can be interrupted, by the user or automatically, at any given time, but cannot
be modified once it is initiated.

Normally, it takes some time to perform a CST Action; therefore, CST will ig-
nore a new Action command if the current one is still being performed. Thus,
developers should always be prepared for the system to reject sent command
or data. In this case, the rejected command/data should be re-sent after some
pause2.

It is necessary to emphasize that CST provides full control over execution of
telephony tasks and it automatically synchronizes commands/data being sent
from the user with the current states of the CST processes, allowing the user
to concentrate on the higher-level design of the application.

2 Modification of process settings occurs instantaneously. However, in most cases, process settings modification does not
influence the process that is running already, and is not considered a standalone CST Action.

Designing and Implementing Standard CST Applications

 5-8

The currently executed atomic command can be canceled by a special user’s
command or automatically (when it cannot be executed successfully). In the
latter case, all unprocessed data is lost.

5.3.2 Detailed Application Design

Most of the data, coming from inside CST to the application, is transmitted in
special egress messages. The function that receives these messages is to be
provided by the developer. CST calls a function from CST services whenev-
er it is necessary. Therefore, in order to implement a proprietary application,
the developer needs to create only two functions:

1) Main function. This function contains the main logic of the application. Nor-
mally, the main function is implemented as a finite state machine. In each
of the states the function may possibly send data/commands to CST and
transit to a new state. Besides the state machine, the main function should
also call a standard CST process routine, which carries out the internal
CST processes.

2) Callback function. This function receives and processes messages com-
ing from the CST process routine and addressed to the application3.

The callback function receives messages from various CST services. The list
of standard messages follows:

Table 5-2. Standard Callback Function Messages

Message Type Description

Event detected by a peripheral Attached data contains a peripheral driver message, such as: ring
message, end of ring message, line reversal message.

Caller ID Attached data contains a Caller ID result code (success or error code,
such as time-out, invalid state, wrong check sum, illegal length,
unknown type)

Detected DTMF symbol Attached data contains a DTMF symbol

Detected call progress tone Attached data contains a CPTD tone, such as: dial tone, (fast) busy tone,
ring back tone and end of detected tone

Informs that modem just connected

Informs that modem just disconnected

Informs that voice just disconnected Voice data receiving and transmitting has stopped but the system is still
off-hook

3 Note that sending commands/data to CST Framework via unified high-level interface does not perform any immediate
actions and never leads to immediate calling of the user’s callback function.

Designing and Implementing Standard CST Applications

5-9Flex Application Development Guidelines

Table 5-2. Standard Callback Function Messages(Continued)

Message Type Description

Voice data Attached data is an array of voice data bytes

Modem data Attached data is an array of modem data bytes

Auto turnoff request Attached data characterizes the reason for turnoff request (which may
be one of the following: Call Progress Tone Detection time-out, busy
detection, modem disconnection, failure to create an XDAIS algorithm)

Tick message Attached data is the number of DAA codec samples elapsed since the
last tick message

The callback function is a suitable place to make transitions between the states
of the main program’s state machine. This is due to some of the state transi-
tions being caused by messages that CST sends to the application. It is recom-
mended to place some of the state transition code to the callback function.

The developer should first outline the application’s logical structure and find
the elementary states and actions of the application. This includes finding the
correct sequence of state-to-state transitions and transition conditions. This
is the preliminary development stage.

Once the preliminary design stage has been completed, the developer may
turn his or her attention to CST and start developing the actual application. The
implementation of the application mainly consists of creating the application’s
main function and the callback function.

Both functions will work according to a previously designed application state
machine. The main function will send commands/actions to CST in the ap-
propriate states and transit between some of the application states. The call-
back function will receive and handle messages coming from CST and per-
form the rest of transitions between the application states.

Implementing a CST application, however, is not limited only to creation of the
code that sends commands to CST, receives messages from CST and han-
dles the application state machine. It may be necessary to add a custom sig-
nal-processing algorithm or use one of the CST algorithms directly, bypassing
the CST framework. It may be necessary to modify the behavior of CST, work
with additional and different hardware, etc.

This all is still about developing a CST application, although it may involve con-
siderably more effort than just creating the two functions as described above
and the application may no longer be considered as a standard CST Flex ap-
plication.

Designing and Implementing Standard CST Applications

 5-10

What CST offers to the user is a convenient global state machine that can be
used to unify a number of telephony algorithms and routines. Anything beyond
the standard CST functionality will require the appropriate changes to be made
in CST and the application.

5.3.3 Implementation

The second stage of flex application design process is implementation of the
application’s algorithm as a combination of the main and callback functions.
Most standard CST applications do not require re-configuring CST services.

In this case, it is feasible to implement the above functions by means of the
unified top-level interface provided by the CST Action Layer. The unified top-
level interface allows access to the lower layers and, if necessary, are control-
lable.

The unified top-level interface provided by CST Action layer is represented by
three functions:

Table 5-3. Top-Level Interface Functions

Name Functionality

CSTAction_Init CST initialization (does not include hardware init)

CSTAction_Process Function to be called periodically

CSTAction CST action execution. Sends a command or portion of data, and reads/
writes to configuration registers (S-registers)

The unified action-based interface is both BIOS- and single-thread ready. It
also supports multiple channels. However, to support multichannel I/O some
virtual functions in CST Framework have to be reloaded.

A generic single-threaded flex application, as well as a BIOS application, will
be similar to this code example:

#include ”AppropriatePath\Framework\CSTChannel.h”

#include ”AppropriatePath\Framework\CSTAction.h”

//Select single-thread or DSP/BIOS-based application

#define BIOS_APPLICATION 1

 typedef enum {

 as_STATE_1,

 as_STATE_2,

 ...

Designing and Implementing Standard CST Applications

5-11Flex Application Development Guidelines

 } tApplicationState;

 tApplicationState ApplicationState;

 //Prevent improper compilation

#if !BIOS_APPLICATION

 asm(”__sys_memory .usect \”.sysmem\”,0”);

#endif //!BIOS_APPLICATION

 asm(”__STACK_BEGINNING .usect \”.stack\”,0”);

bool MyCallback (tCSTChannel* pChannel,

 tCSTExternalMsgEvent CSTExternalMsgEvent,int Data,int16 *pData)

{

 switch (CSTExternalMsgEvent)

 {

 ...

 ApplicationState=as_STATE_4;

 }

 return 1;

}

void MyPeriodicThread ()

{

 CSTAction_Process (&Ch0);

 //////////////////

 //USER’S CODE...//

 //////////////////

 switch (ApplicationState)

 {

 ...

 }

}

void MyInitialization ()

{

 //////////////////

 //USER’S CODE...//

 //////////////////

}

#define EVM54CST_118MHZ_MULT 8

void main ()

Designing and Implementing Standard CST Applications

 5-12

{

 ////////////////////////////////

 ////STANDARD INITIALIZATION:////

 ////////////////////////////////

#if !BIOS_APPLICATION

 //Processor boot init.

 CST_DSPInit ();

#else

 initBiosConst();

#endif //BIOS_APPLICATION

 //CST internal data sections init.

 CST_bssInit ();

 //Particular board init.

 //You may need to change this according to your board specification

 //if it is different from standard EVM C54CST board

 TargetBoardInit (

 BIOS_APPLICATION, // BIOS flag

 EVM54CST_118MHZ_MULT, // internal PLL multiplier for external clock

 2); // Wait states for external memory

 //CST Framework init.

 CSTAction_Init (&Ch0,BIOS_APPLICATION,MyCallback);

 //Initialize CSL

 CSL_init();

 //Particular peripheral init.

 //You may need to change this according to your UART and codecs

 //if they are different from ’C54CST on-chip UART and DAA

 TargetPeriphInit (BIOS_APPLICATION,1);

 #if !BIOS_APPLICATION

 //Now it is safe to enable interrupts

 asm (” rsbx INTM”);

 #endif //BIOS_APPLICATION

 //Perform user’s specific initialization

 MyInitialization ();

 //////////////////////////

 ////MAIN LOCAL LOOP...////

 //////////////////////////

Designing and Implementing Standard CST Applications

5-13Flex Application Development Guidelines

 #if !BIOS_APPLICATION

 while (1)

 {

 MyPeriodicThread ();

 }

 #endif //BIOS_APPLICATION

}

The user’s code downloaded to the CST chip must contain a new function
main(). This function should perform all required hardware and software init-
ializations and periodically call the CST periodic function CSTAction_Pro-
cess().

In chipset mode, the CST framework does not use DSP/BIOS functionality,
however, the DSP/BIOS core is available in the ROM and it may be used in
DSP/BIOS based applications.

In DSP/BIOS based applications, the user should periodically post an SWI that
runs the CSTAction_Process() function. An example of doing this is con-
tained in the file BIOS\CSTBIOS.c (this is a supplementary file for making
single-channel applications for DSP/BIOS). The function BIOSDAAData-
CallBack() posts the SWI periodically (once per a certain amount of input
DAA samples).

Thus, only MyInitialization(), MyCallback() and MyPeriodic-
Thread() functions are to be extended by the user (only these three routines
are overridden in all CST Flex application examples in the SDK package).

Figure 5-1 represents a generic CST flex application.

Designing and Implementing Standard CST Applications

 5-14

Figure 5-1. Generic CST Flex Application

Standard initialization
CSTAction_Init()

Run periodic thread

User’s callback
procedure

Send command
or data actions
CSTAction(...)

CST calls back
user to pass
a message

If needed

Access
non-standard

peripheral

Access standard
CST peripheral

Unified high-level interface

If needed

Main state machine
 switch (application state)

 {
 ...
 }

C
S

T
 services

Call directly or via SWI
Process passed info

 switch (message)
 {
 ...

Change
application state

if needed
 }

CST periph. drivers
- UART
- DAA/Codec

CST controls
 - run new script
 - inject new data
 - change config. regs

Low priority tasks
(modem and
voice only)

CST periodic process
 - local state machines
 - xDAIS algos
 - drivers (DAA, UART)

CSTAction_Process()

Once the initialization is complete, interrupts should be enabled.

This moment marks the beginning of the main loop of the application. The main
loop must periodically call the function CSTAction_Process(). It can be
called as rarely as every 5 ms, but it is highly recommended to call it at least
several times more frequently.

Designing and Implementing Standard CST Applications

5-15Flex Application Development Guidelines

The function CSTAction_Process() runs all internal processes inside CST
and calls back the user’s message processing function. CSTAction_Pro-
cess() is a high priority thread function. Usage of DSP/BIOS allows adding
several auxiliary low-priority threads to utilize the processor resources more
efficiently. It is also possible to allocate a separate auxiliary threads for low-
priority modem and voice tasks (for example, for vocoders with large process-
ing frame size, such as G.723.1, G.729, etc.), and user’s control functions.

Three SWI’s are defined in the file FlexAppBIOS\CSTFlexAppBIOS.cdb.
The periodic thread corresponding to MyPeriodicThread() is to be in-
voked via the high priority SWI. The other two are modem and voice low priority
SWI’s.

Many of flex applications can be based on standard easy-to-read examples
included in the SDK to demonstrate certain capabilities of the CST algorithms.
Any CST flex application can run either under BIOS or in a single-threaded pro-
cess.

5.3.4 Chapter Summary

� CST features a unified top-level interface that provides a unified bi-direc-
tional stream of commands and data.

� CST features a set of predefined top-level actions to solve standard te-
lephony tasks.

� CST features a global state machine for solving the standard telephony
tasks, and a number of independent system services.

� CST provides a reliable control over the process being executed. This
eliminates the need for the user to code additional logic that synchronizes
execution of standard telephony operations.

� Development of a standard CST application may be treated as develop-
ment of the main and callback functions. The main function usually serves
as the primary state machine for the application’s logic and it transfers
user’s data to CST algorithms. The callback function serves to process
messages sent by CST algorithms and contain data or control information
on state of the process being executed.

� CST allows developing both single-threaded and multi-threaded applica-
tions using DSP/BIOS.

� Some multichannel, multicodec, and other non-standard applications re-
quire reconfiguration of some CST services. CST provides support for
that, however in some cases it may be reasonable not to use CST Action
Layer but get down to lower layers, even to XDAIS layer.

Building and Loading Flex Applications

 5-16

5.4 Building and Loading Flex Applications

This chapter gives some specific information on how to build a flex application,
and load it to CST chip.

If compilation fails, please, refer to chapter 11, Production Installation
Procedure, for instructions on updating CSL files in Code Composer, and on
how to tune project file include path.

5.4.1 Projects for Building Flex Applications

All available flex examples are made in the same manner. As it mentioned in
section 5.3, there is a suggested scheme for building a standard flex applica-
tion, single- or multithreaded. There are a few functions prepared for the devel-
oper to be completed according to the task in hand.

There are two standard project files for building any of the offered flex applica-
tion examples.

One is for single-threaded applications that will run without DSP/BIOS and the
other one is for multi-threaded applications that will run under DSP/BIOS.
Each of the two projects is already setup and tuned.

The developer only needs to create the main application C file (the project ex-
pects it to be main.c) or take the existing flex application example, put it into
the directory with the project file and build the project. Of course, if there are
extra files need to be included into the project, the project file may be altered.

The main files for the flex application examples are contained in the directory
FlexExamples.

5.4.1.1 Project for Single-Threaded Applications

A standard project for single-threaded flex applications consists of five files:

CSTFlexApp.pjt The project file for Code Composer Studio version 2.0 or higher

CSTFlexApp.cmd The linker command file

Main.c The main source code file of the flex application

ROM\CSTRom.s54 The CST ROM reference file

ROM\rts_ext.lib TI’s Runtime Library (the version which was used to build CST)

The linker command file (CSTFlexApp.cmd) specifies locations and sizes of
the application’s code and data sections. This file also contains sizes of the
heap and stack.

To accommodate the developer needs, the linker command file may be modi-
fied.

Building and Loading Flex Applications

5-17Flex Application Development Guidelines

After the project has been built, the produced out-file can be converted to a
binary image to be loaded into the CST chip via the serial port (if a JTAG is not
available).

To do this, run the file hexCST.bat, which will first obtain a hex file by running
the utility hex500.exe, and then a binary image by running the utility hexto-
bin.exe.

hexCST.bat The batch file, which runs hex500.exe, and then hextobin.exe

hex.cmd The command file for hex500.exe

hextobin.exe ASCII to BINARY file conversion utility

The project file, linker command file, batch file and conversion utility reside in
the directory FlexApp.

5.4.1.2 Project for Multi-Threaded Applications

A standard project for multi-threaded flex applications consists of the following
files:

CSTFlexAppBIOS.pjt The project file for Code Composer Studio version 2.0 or higher

CSTFlexAppBIOS.cmd The linker command file

CSTFlexAppBIOS.cdb The DSP/BIOS configuration file, preset for CST

Main.c The main source code file of the flex application

BIOS\CSTBIOS.c The DSP/BIOS support file

BIOS\BIOSmemman.c The CST wrapper for the DSP/BIOS memory manager

ROM\CSTRom.s54 The CST ROM reference file, includes references to DSP/BIOS components in
ROM

ROM\rts_ext.lib TI’s Runtime Library (the version which was used to build CST)

The DSP/BIOS configuration file (CSTFlexAppBIOS.cdb) specifies loca-
tions and sizes of the application’s code and data sections. This file also con-
tains sizes of the heap and stack.

To accommodate the developer needs, the DSP/BIOS configuration file may
be modified (see TMS320 DSP/BIOS User’s Guide (SPRU423B)).

After the project has been built, the produced out-file can be converted to a
binary image to be loaded into the CST chip via the serial port (if a JTAG is not
available).

To do this, run the file hexCST_BIOS.bat, which will first obtain a hex file by
running the utility hex500.exe, and then a binary image by running the utility
hextobin.exe.

Building and Loading Flex Applications

 5-18

hexCST_BIOS.bat The batch file, which runs hex500.exe, and then hextobin.exe

hex_BIOS.cmd The command file for hex500.exe

hextobin.exe ASCII to BINARY file conversion utility

The project file, linker command file, DSP/BIOS configuration file, batch file
and conversion utility reside in the directory FlexAppBIOS.

5.4.2 CST Bootloader

The CST bootloader is used to transfer code from an external source into inter-
nal or external memory following power-up.

The bootloader provides a variety of ways to download code to accommodate
different system requirements. This includes multiple types of both parallel bus
and serial port boot modes, UART boot mode, bootloading through the HPI,
and a special 54CST chipset boot mode. Bootloading in both 8-bit byte and
16-bit word modes are supported. To determine which boot mode to use, the
bootloader uses various control signals including interrupts, BIO, and XF.

The following is a list of different boot modes implemented by the bootloader,
as well as a summary of their functional operation:

� 54CST Chipset Boot Mode

This mode is used to start the 54CST device in the CST chipset mode.
Upon detection of this mode, the bootloader automatically passes the con-
trol to the 54CST chipset application. No code is copied in this mode.
There are several ways to switch into the Chipset mode from the CST
Bootloader:

1) High to low transition on the INT1 pin within 30 CPU cycles after reset;

2) Sending two symbols (“AT”) via UART, at 115200 bps, shortly after re-
set.

3) Writing a “magic” number 0x45 to memory location 0x7E via HPI in-
terface.

Even while in the Chipset mode, the user still has the possibility to load a
Flex application (user code) into RAM using a special CST AT command
(AT#DATA, see section 9.4.1.29).

� Host Port Interface (HPI) Boot Mode

The code to be executed is loaded into on-chip memory by an external
host processor via the Host Port Interface. Code execution begins once
the execution address loading is completed.

Building and Loading Flex Applications

5-19Flex Application Development Guidelines

� Parallel Boot Modes (8-bit and 16-bit supported)

The bootloader reads the boot table from data space via the external par-
allel interface bus. The boot table contains the code sections to be loaded,
the destination locations for each of the code sections, the execution ad-
dress once loading is completed, and other configuration information.

� Standard Serial Port Boot Modes (8-bit and 16-bit supported)

The bootloader receives the boot table from one of the multi-channel buff-
ered serial ports (McBSP) operating in standard mode, and loads the code
according to the information specified in the boot table. McBSP0 supports
16-bit serial receive mode. McBSP1 supports 8-bit serial receive mode.

� UART Boot Mode (8-bit supported)

The bootloader receives the boot table from the on-chip UART and loads
the code according to the information specified in the boot table. Below are
the UART settings used:

� 8 data bits

� No Parity bit,

� 1 Stop Bit,

� No flow control

� 8-Bit Serial EEPROM Boot Mode

The bootloader receives the boot table from a serial EEPROM connected
to McBSP1 operating in clockstop mode, and loads the code according to
the information specified in the boot table.

� I/O Boot Mode (8-bit and 16-bit supported)

The bootloader reads the boot table from I/O port 0h via the external paral-
lel interface bus employing an asynchronous handshake protocol using
the XF and BIO pins. This allows data transfers to be performed at a rate
dictated by the external device.

The bootloader also offers the following additional features:

� Reprogrammable Software Wait State Register

In the parallel and I/O boot modes, the bootloader reconfigures the soft-
ware wait state register based on a value read from the boot table during
the bootload.

� Reprogrammable Bank Switching Control Register

In the parallel and I/O boot modes, the bootloader reconfigures the bank
switching control register based on a value read from the boot table during
the bootload.

Building and Loading Flex Applications

 5-20

� Multiple-Section Boot

The 54CST bootloader is capable of loading multiple separate code sec-
tions. These sections are not required to occupy a continuous memory
space as in some previous C54x bootloaders.

For more information on CST bootloader, please, refer to TMS320C54CST
Bootloader Technical Reference document (SPRA827).

6-1

CST Framework and API Overview

This chapter provides the user with overviews and descriptions of the different
CST layers, services, their API.

Topic Page

6.1 Overview 6-2.

6.2 CST Framework Layers 6-3.

6.3 Framework API 6-15.

Chapter 6

Overview

 6-2

6.1 Overview

Besides standalone XDAIS algorithms, CST offers a hierarchy of services to
the user.

Generally, the CST services can be divided into two groups:

� Basic, low-level, services:

� CST Service layer

� S-registers

� high-level DAA driver, peripheral driver, low-level DAA and UART driv-
ers, interrupt and memory management subsystems

� Advanced, high-level, services:

� AT Parser

� CST Action

� CST Commander layers.

The AT Parser is not used in standard flex applications.

The purpose of the CST Commander layer is executing a complex process
represented as a script, containing a sequence of commands, where each
command corresponds to an elementary operation to carry out. The CST
Commander interacts with the CST Service layer.

The CST Action layer supplements the CST Commander but it provides
virtually no additional functionality.

The CST Service layer is the foundation of CST. Its interface is similar to CST
Action layer but more XDAIS oriented.

The user can skip the advanced, high-level, services and instead work with the
basic, low-level, services directly.

CST Framework Layers

6-3CST Framework and API Overview

6.2 CST Framework Layers

CST Framework has two alternative top layers and therefore, two alternative
top-level interfaces.

In Chipset mode, CST Framework interacts with host via AT commands. This
mode is used in chipset mode and is configured as default. General view of
the CST Framework structure in initial configuration is shown in Figure 6-1.

Figure 6-1. CST Framework Controlled via AT Command Parser

CST solution

CST Service

Modem intergator

Modem
V.32bis/V.22bis

DTMF Det/Gen

CPTD Det/Gen

CallerID

Echo canceller
G.168

ADPCM
G.726/G.711

VAD/AGC/CNG

Error correction
V.42

Compression
V.42bis

AT Parser

CST commnander

UART driver

DAA driver

USER

S-registers

UART based
high-level control

Bootloader

Other services
(unused in

chipset mode)

AT result
tokens, data

AT commands,
data

However, the default status does not mean the preference of this interface for
user integration in Flex mode because it enforces the user to imitate a host ter-
minal, generate AT commands and decode responses, substitute a virtual
UART driver instead of existing one and so on.

Usually, standard CST Flex applications are not oriented on additional host ter-
minals. If the developed firmware does not require modem-oriented AT com-
mands, it is not recommended to use the AT parser as the top-level interface.

An alternative to the AT command interface is the Action-based interface. The
basic concept of this method is to eliminate the AT parser and unify access to
sublayers.

CST Framework Layers

 6-4

Figure 6-2. CST Framework Controlled via CST Action Layer

CST solutions

CST Service

Modem intergator

Modem
V.32bis/V.22bis

DTMF Det/Gen

CPTD Det/Gen

CallerID

Echo canceller
G.165

ADPCM
G.726/G.711

VAD/AGC/CNG

Error correction
V.42

Compression
V.42bis

CST Action

CST Commander

UART driver

DAA driver

User’s on-chip code

S-registers
DSP/BIOS

core

The action interface is based on interfaces of sublayers without essential mod-
ifications. The action interface allows the user to begin integration into the CST
Framework.

CST Framework Layers

6-5CST Framework and API Overview

Figure 6-3. Control Layers Interaction

CST Service

Telephony
components

AT parser

CST Commander

UART driver

DAA driver

messages

script

USER

C
S

T
 A

ction

S-
Regs

script
data

Voice
components

Modem
components

data

messages

CST incorporates a wide range of services. The CST Framework provides:

1) Interrupt management

2) Own and BIOS memory management

3) LIO compliant UART and DAA codec drivers, high-level DAA driver and
peripheral driver (CST Service Layer)

4) A service that manages XDAIS object instances (XDAIS layer, CST Ser-
vice layer)

5) A service that ties XDAIS layer with the drivers (CST Service layer)

6) A service to control and reconfigure processes on XDAIS layer (CST Ser-
vice layer)

7) A service for unified digital data and control data flows organization (CST
Service layer)

8) A service for automatic consecutive execution of standard operations
needed for the telephony routines (CST Commander layer)

9) A service to handle CST Service messages (CST Commander layer) and
to redirect message information upward (to AT parser or CST Action layer
and then to the user)

CST Framework Layers

 6-6

10) A service for external user’s control (CST Commander layer, AT parser,
optional for Flex mode)

11) An implementation of CST Commander and UART interconnection (AT
parser, optional for Flex mode)

12) AT command parser (optional for Flex mode)

13) A high-level service providing a unified interface for the user to access
CST data and transfer commands (CST Action layer)

When controlling the solution from an external controller via a serial port, the
AT Parser is considered to be the most convenient, though simplified, control
tool. Standard AT commands provide control over all CST solution compo-
nents.

6.2.1 Action-Based Interface

The Action-based interface is an alternative to the AT parser to control the CST
solution. It is a unified interface between the whole CST and the CST user ap-
plication. The CST Action layer unifies all CST services being split to several
sublayers in order to offer the user the most powerful and easy way for fast
integration into the CST Framework. The CST Action layer interface is more
convenient than AT commands and, unlike the AT command interface, it does
not restrain the user from the direct access to other CST modules.

As it has been mentioned above, the CST Action layer is represented by the
three functions: CSTAction_Init(), CSTAction_Process(), and
CSTAction().

The function CSTAction_Init() is used for initialization of the interface.
The function CSTAction_Process() runs the internal CST processes, and
is to be called periodically. The function CSTAction() is used for unified com-
mand/data delivery to CST services.

CSTAction performs actions of three types:

CST Framework Layers

6-7CST Framework and API Overview

Table 6-1. CST Actions

CST Action Description

Configure CST settings This action results in reading or writing of a given system
parameter mapped to one of the S registers (note that DAA
registers, which are also mapped to the S registers, can’t be set
by the CSTAction() function).

The action of this type will be executed immediately.

Run one standard (typical) telephony
operation

This action results in preparing to execute a script consisting of a
sequence of elementary operations called atomic commands. No
immediate action is performed.

The CST Commander later executes the atomic commands.

Transfer CST Service message Generally used for data transfer.

Therefore, the CST Action layer integrates elements of the three modules: the
S registers (configuring options), the CST Commander layer (running algo-
rithms successively), and the CST Service layer (transferring data).

6.2.2 CST Commander Layer

The middle CST layer - the CST Commander layer - is intended to perform
sequences of elementary operations and handling the internal state machine.
In general, the CST Commander provides interaction between the user and
the CST Service control layer by decoding user’s instructions into separate
atomic commands and transferring sequences of corresponding messages to
the CST Service layer. This allows controlling the CST solution as a single ob-
ject through standard and custom command scripts. The CST Commander
contains a set of predefined standard command scripts, which cover most of
standard operations needed for the telephony applications.

The CST Commander layer is an extendible layer that allows adding new func-
tionality at any time, without having to change internal CST code.

At any given moment, the CST Commander focuses on execution of a single
atomic command, which is active at the moment. If the command is executed
successfully, the next command of the script becomes active.

CST Framework Layers

 6-8

The main atomic commands are as follows:

� Send a message to the CST Service that will immediately turn off all active
algorithms

� Send a command to CST peripheral driver

� Sustain a pause

� Wait for appearance of a call progress tone

� Wait for disappearance or absence of a call progress tone

� Dial a telephone number stored in a string

� Send a message to the CST Service that will turn on the modem

� Send a message to the CST Service that will turn on stand alone voice loop
(run echo canceller and activate voice path)

� Send a message to the CST Service that will turn on the voice pumping
in rx or tx direction

� Send a message to the CST Service that will turn off the voice pumping
in rx or tx direction

� Wait for the modem to establish a connection

� Send a message to the CST Service that will turn on the Caller ID

� Send a message to the CST Service that will turn on an algorithm. No algo-
rithm specific parameters are included in the message. Used to run DTMF
or CPTD detector.

� Correctly terminate the current task (usually it’s used to disconnect the
modem).

� Write to an S-register

� Several system commands

� Several special AT parser oriented commands

The CST Commander layer knows how to perform each command, what to do
in abnormal situations, including task cancellation. The ultimate purpose of the
Commander layer is interaction with the CST Service layer.

When developing a non-standard flex application, the developer can create
new custom atomic commands and scripts.

CST Framework Layers

6-9CST Framework and API Overview

In general, the CST Commander layer performs the following operations:

1) It processes the current atomic command of the current script

2) If the current command requires sending of a message to the CST Service
layer, it attempts to deliver that message to the Service layer, until the Ser-
vice layer will be able to accept it or until the task is aborted

3) It processes messages from the CST Service layer, which contain data
and control information

4) It also provides a service to handle CST Service messages and to redirect
message information upward (to the AT Parser or CST Action layer and
then to the user).

There are two important things to point out about the CST Commander:

1) The CST Commander does not support data transfers from the user to
CST Service layer.

2) The user can skip both the AT Parser or CST Action layer and start working
with the CST Commander directly, since the CST Commander does not
depend on these layers.

6.2.3 CST Service Layer

The CST Service layer is the lowest control layer of the solution. It performs
foreground processing by running XDAIS algorithms. Internally, the Service
layer ties separate XDAIS objects, analog and digital data flows and control
commands together. The CST Service and CST Commander layers interact
with each other by dedicated messages. This allows controlling specific ob-
jects within the CST solution via unified interface, which also has some error
protection capabilities.

Almost all control and data information between the CST Service and its user
(the CST Commander) is carried by dedicated CST Service messages. A CST
Service message is a multifunctional information packet. It can contain broad-
cast and dedicated control command, and data bytes. In case when a mes-
sage is sent to the Service layer, it is actually a request, which the service can
either accept or reject. At any time the Service layer can be executing only one
request. The message being sent from the service is to inform the higher layer
or submit a new portion of data. These messages are put into a small queue
that allows keeping several messages issued from different tasks.

CST Framework Layers

 6-10

Figure 6-4. CST Service Periodic Thread

CST Service periodic thread
CSTServiceProcess()

DAA has
accumulated
10 samples

End

No

DAA codec I/O and voice tasks
Post or call low priority voice task

CSTServiceProcessIOandVoice()

Yes

Other active algorithms
Post or call low priority modem task

CSTServiceProcessCommonAlgos()

Call periodic functions of
peripheral drivers

CSTFxns.pPeriphProcess()

Process pending message
CSTFxns.pProcessMessage()

Egress messages

Egress messages

Egress messages

Callback higher level
CSTFxns.pCSTUserOperation()

Ingress message
User’s storage

Try to send a message
to CST Service

CSTSendServiceMessage()

Ingress message
Service storage

New message

H
ig

h
er layer

(C
S

T
 C

o
m

m
an

d
er)

H
ig

h
er layer

(C
S

T
 A

ctio
n

, U
ser)

Small
message

queue

There is no
pending message

CST Framework Layers

6-11CST Framework and API Overview

The CST Service layer is the foundation of CST. Its main periodic function is
CSTServiceProcess(), which is called directly from CSTAction_Pro-
cess(). This function must be called from a high-priority periodical thread.
The maximum allowed interval between the calls is 5 ms (e.g. a call once per
40 samples at 8KHz sampling rate), but it is recommended to call it several
times more often. The CST Service control layer is synchronized with the DAA
codec operating at 8 KHz, and, normally, the CSTServiceProcess() peri-
odic function runs the internal processes if there are at least 10 new samples
(which corresponds to 1.25 ms), but if there are fewer samples the function will
do no processing. In multithreaded applications, CSTAction_Process()
may be called from the user’s periodic thread. In the file BIOS\CSTBIOS.c
a high-priority SWI is periodically posted in a special procedure called from the
DAA interrupt callback. This SWI calls the function CSTAction_Process().

Similarly to the CST Commander, the user can work with the CST Service layer
directly, skipping the AT Parser, CST Action and CST Commander layers. This
is possible because the CST Service layer does not strongly depend on these
layers.

If all of the above control layers lack the needed functionality for a specific task
and a direct control over the CST objects is required, the XDAIS layer can be
used directly. This layer includes a set of eXpressDSP compliant objects and
standard XDAIS oriented framework (ALGRF) for correct operations with the
objects.

CST Framework is a multichannel framework; therefore, all services are multi-
channel as well.

6.2.4 Other CST Parts and Services

Besides the AT-command parser, CST Action, CST Commander, CST Service
and XDAIS layers, there are other parts in CST, namely: the S-registers ser-
vice, high-level DAA driver, peripheral driver, low-level DAA codec and UART
drivers.

The CST Framework supports a well-known modem S-registers interface. The
S-registers can be thought of as object properties. The S-register service
maps major CST configuration variables to the index-addressable parameter
list. That means that each S-register can be assigned to an existing 16-bit vari-
able. Writing or reading an S-register will result in writing or reading the vari-
able associated with the S-register. Each S-register is referenced by its num-
ber. When developing a non-standard Flex application, the developer can de-
fine his/her own S-registers.

Additionally, for convenience, all DAA hardware registers are mapped to S reg-
isters starting from S register #100, so the user can configure DAA internation-
al and other settings via S registers.

CST Framework Layers

 6-12

A more detailed specification of S-registers can be found in sections 7.2.1.1,
9.4.5 and 9.4.6.

The high-level DAA driver is dedicated to perform the hardware-independent
portion of DAA operations such as going off- and on-hook, dialing a digit (in the
pulse mode), detecting rings and line reversals and more. The hardware inde-
pendence is achieved by indirectly calling the low-level DAA driver functions
through a well-defined LIO interface and the fact that the DAA hardware regis-
ter numbers and values aren’t hard-coded. This is why it has been possible to
make a large portion of the entire DAA driver hardware-independent. When
using a different DAA device or codec, the high-level DAA driver is not a sub-
ject to change.

For detailed information about the high-level DAA driver see section 7.7.3.

The peripheral driver is used to perform the hardware-specific initialization of
CST and handling the hardware specific for the EVM54CST (LED signaling).
The driver also overrides methods of the high-level DAA driver to extend them
with hardware specific functionality.

For detailed information about the peripheral driver see section 7.7.2.

The low-level DAA and UART drivers give the CST and user access to the ap-
propriate devices. The drivers export their functions through the unified LIO
interface. The interface makes it possible to integrate drivers for new devices,
override driver methods and alter their functionality, even at run time.

For detailed information about the low-level DAA and UART drivers see sec-
tions 7.7.5 and 7.7.6. The LIO interface is described in 7.7.4.

6.2.5 CST Layers Summary

CST Framework consists of the following parts:

� AT command parser (data and voice commands, used in chipset mode)

� Several control layers (used in Flex mode):

� CST Action layer (to give the user control over CST solution as whole
through mapping all commands and messages to different CST sub-
layers; eliminates the need to use the AT parser)

� CST Commander layer (to give the user control over CST solution
through a set of special command scripts)

� CST Service layer (to provide data flow between different XDAIS com-
ponents and device drivers, and to give the user unified access to CST
XDAIS components through a set of special messages)

CST Framework Layers

6-13CST Framework and API Overview

� High-level DAA driver (to perform the hardware-independent portion of
DAA operations)

� Memory management subsystem

� Interrupt management subsystem

� Peripheral driver (responsible for low-level, hardware-specific initializa-
tion of CST)

� Low-level (LIO) DAA and UART device drivers

CST will use DSP/BIOS functions for handling interrupts, memory allocation
and scheduling threads of different priorities if a Flex application is compiled
for DSP/BIOS.

CST Service Layer

The low CST layer (CST Service layer) performs foreground processing by
running XDAIS algorithms. The CST Service layer and the higher layer (the
CST Commander layers) interact with each other by dedicated messages.

CST Commander Layer

The middle CST layer is intended to perform sequences of elementary opera-
tions and handling the internal state machine. In any time the CST Command-
er layer can be executing a single command of a script. The CST Commander
knows how to perform each command, what to do in abnormal situations, in-
cluding task cancellation. The purpose of the Commander layer is to interact
with the CST Service layer.

AT Parser

An additional part of the CST Framework is the UART interconnection. It in-
cludes AT command parser and all related tasks such as modem escape se-
quence tracking (<pause> +++ <pause>), voice shielded (DLE) code process-
ing, data flow organization, etc. The CST AT parser is a simplified service with
reduced functionality. The AT parser and the high-level control functions repre-
sent an example of the user integration. The AT parser (as well as the Action
layer) does not have any especially useful logic. Only the AT parser is aware
of UART, it is the only layer using it.

CST Framework Layers

 6-14

CST Action Layer

The high-level CST Action layer represents a unified interface between the
whole CST and the CST user application. The main interface function of the
Action layer is CSTAction(). This layer does not add new functionality and
only unifies the CST Service and CST Commander layer interfaces. The layer
is an alternative to the AT command parser and UART interface. All data and
commands to CST are sent through a CST Action unified message. All data
and control information from CST is transferred through the only callback func-
tion (except for the modem and caller ID tasks). The CST Action layer is a very
small service, and it is a good example of working directly with the CST Com-
mander and CST Service layers.

Framework API

6-15CST Framework and API Overview

6.3 Framework API

6.3.1 Main CST Types

Main CST types:

Type Name Description

tCSTAction Unified CST Action message (the main structure of CST Action interface).
The message is a variant record, whose actual content depends on the
message type. See 7.3.1.

tCSTActionType CST Action message type (the type key). Selects the actual type of the CST
Action message content. See 7.3.2.

tCSTStandardOperationType Set of CST Action standard operations. Most operations correspond to
standard AT commands, such as ATA, ATD etc. See 7.3.3.2.

tSRegDefinition Set of defined CST S-registers. The S-registers configure CST settings
and serve for

� XDAIS parameters setting (e.g. voice or modem speed)
� services parameters setting (e.g. voice gain, pause duration’s)
� Various system parameters and controls

See 7.2.1.1.

tCSTExternalMsgEvent Set of CST Action (CST Commander) external event messages to be sent
to the user’s callback function. Either the AT parser or the user’s flex
application should receive and process such event messages. See
7.2.2.4.

tCSTAtomicCommand Set of CST Commander atomic commands. These commands, when put
together in a sequence, compose a script. Standard scripts correspond to
CST Action standard operations. See 7.2.3.1.

tCSTServiceMessage CST Service message structure (the main structure of CST Service
interface). It is used for both messages addressed to CST Service and
messages originating from CST. See 7.1.1.2

tCSTMessageResult Set of CST Service (and CST Action) message result codes. Contains
results of processing a message by the CST Service (or CST Action). See
7.1.1.7.

tCSTFxns CST dynamic functions. They allow the user to extend functionality of CST
services for non-standard Flex applications. All global dynamic functions
are grouped in the structure CSTFxns. See 7.2.2.1.

tCSTChannel A structure that keeps individual channel data. One such structure is
defined in CST: tCSTChannel Ch0. In multichannel applications there
will be a number of such structures.

Framework API

 6-16

Most services keep their variables (data) in separate structures. These struc-
tures are grouped together into a global structure tCSTChannel (defined in
CSTChannel.h).

Therefore, data of the services is individual for each channel instance. CST
defines a global variable Ch0 to be used for single channel applications (file
CSTChannel.c). At the same time, S-registers, DAA and UART drivers also
have channel dependent data structures for each channel instance.

Nevertheless, there is also some global data common for all channels. It in-
cludes dynamic function structure, S-register descriptors, algorithm initial pa-
rameters (except for those mapped on S-registers), DAA and UART drivers’
global data. This means that CST Framework can’t be used for several differ-
ent applications running simultaneously on the same CPU, however, it is per-
fectly fine to have a single multi-channel flex application.

6.3.2 S-Registers

CST defines several dozens of S-registers (enum tSRegDefinition de-
fined in CSTSReg.h). Most of them may be split into the following semantic
groups:

� Registers specifying dial operation (srd_LONG_DIAL_DELAY,
srd_DTMF_TONE_DURATION, srd_DEFAULT_DIAL_MODE and sev-
eral temporary registers for dial modifiers)

� Registers for modem settings (srd_V42, srd_V42BIS, srd_MO-
DEM_GAIN, srd_FAST_CONNECT, srd_DESIRED_MODEM_SPEED,
srd_TIME_BEFORE_FORCED_HANGUP and AT parser oriented register
srd_ESCAPE_PROMPT_DELAY)

� Registers for voice settings (srd_VOICE_GAIN, srd_ECAN,
srd_VOICE_BPS, srd_VAD, srd_AGC, srd_DLECHAR)

� Registers for other settings (srd_INPUT_GAIN, srd_CID_MODE)

� Registers controlling AT parser behavior

� System indication registers (srd_STATISTICS_FLAGS, srd_AVAIL-
ABLE_ALGOS, srd_AVAILABLE_MEMORY,
srd_STACK_FREE_SIZE, srd_PEAK_MIPS, srd_INPUT_POWER)

When developing a non-standard application, the developer can add new S-
registers. As it has been mentioned earlier, all channel instances have a com-
mon list of S-registers, but the values are individual. Most of S-registers are
assigned to variables in tCSTChannel structure. New S-registers can be
linked to memory that is reserved for user in array tCSTChannel.aUser-
ReservedWords.

Framework API

6-17CST Framework and API Overview

S-registers with numbers exceeding 100 are treated as physical peripheral
registers (CST maps Si3021 DAA registers to S-registers 100…119). User
should not access these registers via CST Action interface.

For more information about S-registers, read section 7.1.1.

6.3.3 Call Tree

All CST algorithms run in a high-priority periodic process. The entry point of
the periodic thread is defined as CSTAction_Process(). In multi-threaded
mode, the CST Service control layer posts a couple of low priority threads. The
user should not manually post them. During periodic thread execution, a num-
ber of internal CST routines are to be called and in between them the user’s
callback function is invoked. For more flexibility, some important CST functions
are called via pointers. Once initialized, the pointers never change. This allows
the user to redefine the virtual CST functions and, thus, alter or add functional-
ity of various services.

Most of the pointers for virtual/dynamic functions are defined in the global
structure CSTFxns (of the tCSTFxns type, declared and defined in CSTCom-
mander.h, CSTCommander.c). See sections 6.3.8 and 7.2.2.1.

A schematic diagram of the periodic thread call tree is shown in Figure 6-5.

Framework API

 6-18

Figure 6-5. Schematic Diagram of CST Periodic Thread Call Tree

User periodically calls

CSTAction_Process()
which is alias for

CSTServiceProcess()

CSTServiceProcessBuffer()
call active xDAIS algorithms

CSTAction_UserOperation()

Is there at least
10 available IO samples in

DAA buffer?

CSTCommander()
srcipt processor

CSTServiceSendMessage()

if needed

CSTServiceProcessMessage()
xDAIS object creation,

data transfer

EVMPeriphDriver()if needed

CSTAction_ServiceFeedBack()

CSTFeedBackMsgFunc()

CSTServiceGetMessage()

EVMPeriphProcess()

User’s callback
function

DAAProcess()

DAAPeriphDrive()

User

Framework API

6-19CST Framework and API Overview

The key functions are painted in gray. Dotted arrows represent dynamic func-
tion calls, e.g. the functions are called through the CSTFxns pointers. The Ac-
tion, Commander, Service control layers, high-level DAA driver and the periph-
eral driver are presented by the following functions:

� CSTAction_Process(), CSTAction_UserOperation() and CSTAction_Ser-
viceFeedBack() belong to the CST Action control layer.

� CSTCommander() and CSTFeedBackMsgFunc() belong to the CST
Commander layer.

� CSTServiceProcess(), CSTServiceProcessBuffer(), CSTServiceSend-
Message(), CSTServiceProcessMessage(),CSTServiceGetMessage()
belong to the CST Service control layer

� EVMPeriphProcess(), DAAProcess(), EVMPeriphDriver(), DAAPeriph-
Drive() belong to the peripheral and high-level DAA drivers.

The functions CSTServiceSendMessage(), EVMPeriphDriver() and CSTAc-
tion() (the last one is never called in the periodic thread) implement main con-
trol for respective layers. A call to any of these functions may initiate a process,
which will take some time to complete. Therefore, a subsequent call to the
function may not always be accepted, as there may still be an ongoing process
that hasn’t finished yet. If a service cannot accept a user request, the user
should repeat the request during (or after) next periodic thread iteration.

For more information concerning this topic, please read about The Main Peri-
odic High-Priority Thread Function in 7.1.1.9.

6.3.4 Controlling CST Through Action Layer Interface

The CST Action control layer unifies access to the three services: S-registers,
CST Commander and CST Service control layers. To access any of these ser-
vices, a CST Action message should be sent to the CST Action layer with the
function CSTAction(). There are four message type keys defined (enum
tCSTActionType defined in CSTAction.h): cat_SET_REGISTER,
cat_GET_REGISTER, cat_STANDARD_OPERATION and cat_CSTSER-
VICE_MESSAGE. Therefore, depending on the type of the message, the func-
tion CSTAction() will do one of the following: read/write an S-register, run
a script (a sequence of atomic commands) or send a message directly to the
CST Service layer (usually used to transfer data).

The CST Action can run both standard and custom user-defined scripts.

The set of standard scripts is defined by the enum tCSTStandardOpera-
tionType (file CSTAction.h). Each of the set elements corresponds to a
standard script. The standard scripts may be split into the following semantic
groups (the parenthesis contain the applicable set elements):

Framework API

 6-20

� Scripts for standard modem operations (sot_TURNON_MODEM_CALL_X,
sot_TURNON_MODEM_ANS)

� Scripts for standard voice operations (sot_TURNON_VOICE_CALL_X,
sot_TURNON_VOICE_ANS, sot_TURNON_VOICE_RXDATA,
sot_TURNON_VOICE_TXDATA, sot_TURNON_VOICE_RXTXDATA,
sot_TURNOFF_VOICE_DATA)

� Scripts for standard caller ID operations (sot_CID_AFTER_RINGEND,
sot_CID_AFTER_LINE_REVERSAL)

� Scripts for standard simple telephone operations (sot_OFF_HOOK,
sot_JUST_CALL_X)

� Scripts for task termination (sot_SOFT_TURNOFF_ALL, sot_TURN-
OFF_ALL)

Other standard scripts are sot_CSTSERVICE_TURNOFF_ALL, sot_CUS-
TOM_ATOMIC_CHAIN_X and sot_SET_DIAL_STRING_X.

All of the identifiers with the postfix ‘_X’ need an additional parameter (a dial
number string or the user-defined sequence of atomic commands, e.g. a user-
defined script). The additional parameter is also stored in the CST Action mes-
sage.

The internal CST processes, some of which may have been initiated by CST
Action messages, will eventually send event and data messages into the
user’s callback function. The Action based layer takes part in transferring
these messages.

The CST Action layer redirects the CST Commander’s feedback messages
to the user’s callback function.

The layer also sends periodic timer messages to the user’s callback. Addition-
ally, the CST Action layer defines a dedicated modem callback function to be
able to get the received data from the modem and pass the data as a message
to the user’s callback function. This is a default configuration. However, it is
recommended to use another modem callback function for intensive modem
data transmission, because the CST Action interface does not allow the user
to reject the received data. If the user can’t take the data, the data will be lost.

All these messages, which will be sent to the user’s callback, are defined in
enum tCSTExternalMsgEvent (file CSTCommander.h).

The feedback messages for the user’s callback may be split into the following
semantic groups:

Framework API

6-21CST Framework and API Overview

� Messages with received information (eme_PERIPH_DATA,
eme_DTMF_DATA, eme_CPTD_DATA, eme_VOICE_DATA,
eme_MODEM_DATA, eme_CID_DATA)

� Event messages (eme_TICK, eme_MODEM_CONNECT, eme_MO-
DEM_DISCONNECT, eme_VOICE_DISCONNECT)

� System data messages

Strictly speaking, the above lists are not exact. Even though the message
eme_CID_DATA should carry CID data, it does not. The reason for this is the
amount of CID data (which may exceed the size of the feedback message) and
their formatting. Therefore, the data is not attached to the message and other
functions should be used to read the CID data. The message eme_TICK does
not carry any data except the time (measured in 8KHz samples) since the last
eme_TICK message. Because of that and the fact that this message is period-
ic (the period is related to the time between subsequent calls to CSTAc-
tion_Process() or, what is the same, to CSTServiceProcess()), it may
be treated as an event message.

6.3.5 Standard and Custom Atomic Commands

The CST Commander control layer is designed to process complex scripts.
Each script is a sequence of atomic commands (see standard scripts in CSTA-
tomic.c). CST predefines approximately thirty atomic commands (enum
tCSTAtomicCommand defined in CSTAtomic.h), which may be split into the
following semantic groups:

� Commands to turn on an algorithm and activate a Service task
(cac_TURNON_VOICE_LOOP, cac_TURNON_VOICE_DATA_X,
cac_TURNON_MODEM, cac_TURNON_CID_X, cac_TURNON_SIM-
PLE_X)

� Commands to turn off one or several algorithms and deactivate one or
several Service tasks (cac_TURNOFF_ALL, cac_TURN-
OFF_VOICE_DATA_X, cac_SOFT_STOP_TASK)

� Conditional/unconditional pauses (cac_PAUSE_X,
cac_WAIT_CPTD_APPEARANCE_XX, cac_WAIT_CPTD_DISAPPEAR-
ANCE_X, cac_MODEM_CONNECT_WAIT)

� Commands for standard telephone operations (cac_PERIPH_SIM-
PLE_X, cac_DIALING)

� A number of system commands

� A number of AT parser oriented commands

Framework API

 6-22

Every script must end with a cac_NONE command. All of the identifiers with
the postfix ‘_X’ expect an additional parameter placed in the next word. All of
the identifiers with the postfix ‘_XX’ expect two additional parameters placed
in the next two words (again, see standard scripts in CSTAtomic.c).

The developer can alter the behavior of the standard commands and add new
ones by extending the CSTCommander() function (see section 7.4.2).

6.3.6 Command Execution at Different CST Layers

Let us consider processing of a basic command which dials the phone number
“532” and establishes a modem connection. In Chipset mode, this is initiated
by the ATDT532 command; in Flex mode it is initiated by CST Action message,
passed via the CSTAction(&Ch0, &Action) function, with the Action
message equal to:

� Action.ActionType = cat_STANDARD_OPERATION;

� Action.Action.CSTStandardOperation.OperationType =
sot_TURNON_MODEM_CALL_X;

� Action.Action.CSTStandardOperation.aData[0..3] =
“532”; // pseudo-code

This message results in processing of a script in the CST Commander. The
script is contained in the array aTurnOnModemCall[], which is selected by
the value sot_TURNON_MODEM_CALL_X (see this and other standard scripts
in CSTAtomic.c). Following is the script with some commands being omitted:

 const tCSTAtomicCommand aTurnOnModemCall[]=

 {

 //Make sure that CST Service has no task

 cac_TURNOFF_ALL,

 //Send to peripheral driver (DAA) a command.

 //Second word denotes the command type, ”go off hook”.

 cac_PERIPH_SIMPLE_X,

 (tCSTAtomicCommand) pdc_OFF_HOOK,

 //Turn on CPTD (rx) algorithm. This command performs

 initializing an algorithm,

 // which does not require parameter specification

 //Second word contains the algorithm (task) ID in CST

 Service.

Framework API

6-23CST Framework and API Overview

 cac_TURNON_SIMPLE_X,

 (tCSTAtomicCommand) cstst_CPTD,

 //Wait for dial tone detection.

 //Second word specifies the tone type.

 //Third word contains the pause value. If the value is

 in the range of

 // 0 .. than csp_SPECIAL_PAUSE_AMOUNT-1, it is

 treated as an index in

 // aCSTSpecialPauses array (the array of programmable

 pause values).

 cac_WAIT_CPTD_APPEARANCE_XX,

 (tCSTAtomicCommand) ICPTDDET_DIAL,

 (tCSTAtomicCommand) csp_CPTD_DIALTONE_TIMEOUT,

 //Dial number. It takes number string from

 aDialNumber.

 cac_DIALING,

 //Turn on modem task. It takes several init.

 parameters from S-registers

 cac_TURNON_MODEM,

 //Wait until modem connection established

 cac_MODEM_CONNECT_WAIT,

 //End of script (atomic command chain) end. Must end

 each script.

 cac_NONE

 };

The CST Commander processes each of these atomic commands. Some of
the commands transform to messages to the CST Service, some of the com-
mands transform to the peripheral driver commands, and some of them just
modify S-registers.

In turn, the CST Service messages are processed by the CST Service layer,
which results in running the XDAIS telephony algorithms/objects.

Considering the opposite direction of message flow, result codes from the pe-
ripheral drivers and XDAIS objects are processed by either CST Service or
CST Commander, which leads to some change in their state, such as moving
to next atomic command.

The process described above is shown in Figure 6-6

Framework API

 6-24

Figure 6-6. Example of Command Execution at Different CST Layers

Input Data

ATDT532

AT-Cmds

Level

Commander Service XDAS Obj DAA DrvAction

cat_STANDARD_OPERATION
(sot_TURNON_MODEM_CALL_X,

”532”)

Tim
e

cac_TURNOFF_ALL

cac_PERIPH_SIMPLE_X
(pdc_OFF_HOOK)

cac_MODEM_CONNECT_WAIT

cac_TURNON_MODEM

cac_DIALING

cac_WAIT_CPTD_APPEARANCE_XX
(ICPTDDET_DIAL)

cac_TURNON_SIMPLE_X
(cstst_CPTD)

cac_NONE

OR

cstst_TURNOFF_ALL
call *_delete() methods

for all objs

go off
hookpdc_OFF_HOOK

cstst_CPTD(cse_ON) CPTDDET_create(...)

CPTDDET_detect(pInput)
until DIALTONE detected

cstst_CPTD(ICPTDDET_DIAL)

cstst_DTMF(cse_DATA,5)

cstst_DTMF(cse_DATA,3)

cstst_DTMF(cse_DATA,2)

DTMFGEN_create(...)

DTMFGEN_tone(5,...)

DTMFGEN_flush(pOutput)
output

samples

DTMFGEN_tone(3,...)

DTMFGEN_flush(pOutput)

input
samples

output
samples

DTMFGEN_tone(2,...)

DTMFGEN_flush(pOutput)
output

samples

DTMFGEN_delete(...)

CONNECT

cstst_MODEM(cse_ON,...) DMCtrl_create(...)

 DMCtrl_io(pInput,pOutput)

<-Connection
Established

input/output
samples

cstst_MODEM(cse_ON)eme_MODEM_CONNECT

Output Data

cstst_MODEM(cse_DATA,pData)

eme_MODEM_DATA(Count,pData)

cat_CSTSERVICE_MESSAGE
(cstst_MODEM,cse_DATA,...)OR

DMCtrl_injectData(pData)

User callback function

Symbols Action Messages Atomic Commands Service Messages Function calls

Once again, either AT commands (usually, in Chipset mode) or CST Actions
(in Flex mode) are used. These are the two mutually exclusive ways to control
the CST solution.

6.3.7 CST Action Interface Usage

As it has been said earlier, the CST SDK contains a number of flex application
examples. All the examples are designed in a similar manner and propose to
implement the user’s code by filling bodies of the three functions: MyIni-
tialization(), MyCallback() and MyPeriodicThread().

For example, a modem flex application can be implemented by putting several
relatively standard pieces of code into the functions mentioned above:

Framework API

6-25CST Framework and API Overview

Figure 6-7. Fragments of Modem Call Code

void MyPeriodicThread()
{
 CSTAction_Process(&Ch0);

 ...

 //Try to run modem task
 if (DoStandardOperation(
 sot_TURNON_MODEM_CALL_X,”532”))
 {
 //The process has been run
 ...
 }

 ...
}

O
rig

in
ate call: d

ial n
u

m
b

er
”532” an

d
 ru

n
 m

o
d

em

bool MyCallback(tCSTChannel* pChannel,
 tCSTExternalMsgEvent CSTExternalMsgEvent,
 int Data,int16 *pData)
{
 switch (CSTExternalMsgEvent)
 {

 ...

 case eme_MODEM_CONNECT:
 //Connection established!
 //Prepare empty data message
 ...
 break;
 }
}

W
ait fo

r co
n

n
ect m

essag
e

bool MyCallback(tCSTChannel* pChannel,
 tCSTExternalMsgEvent CSTExternalMsgEvent,
 int Data,int16 *pData)
{
 switch (CSTExternalMsgEvent)
 {

 ...

 case eme_AUTOTURNOFF_ALL:
 case eme_MODEM_DISCONNECT:
 //Task terminated
 ...
 break;
 }
}

B
e read

y fo
r ab

o
rt m

essag
e

void MyPeriodicThread()
{
 CSTAction_Process(&Ch0);

 ...

 //Try to send data
 pTxData+=SendModemData(pTxData,DataLength);

 //If all data has been transmitted,
 //let’s disconnect.

 ...

}

Tran
sm

it d
ata

bool MyCallback(tCSTChannel* pChannel,
 tCSTExternalMsgEvent CSTExternalMsgEvent,
 int Data,int16 *pData)
{
 switch (CSTExternalMsgEvent)
 {

 ...

 case eme_MODEM_DATA:
 //Store data from pData[0 .. Data-1]
 ...
 break;
 }
}

R
eceive d

ata

A
ccu

rate sto
p

 th
e p

ro
cess

an
d

 h
an

g
 u

p

void MyPeriodicThread()
{
 CSTAction_Process(&Ch0);

 ...

 //Try to turnoff modem task
 if (DoStandardOperation(
 sot_SOFT_TURNOFF_ALL,0))
 {
 //The process ceases
 ...
 }

 ...
}

A
ll w

e need is done

Do all we need while connected

D
isconnect occurred

Framework API

 6-26

The picture represents several pieces of code of the functions MyCall-
back() and MyPeriodicThread(), corresponding to the standard tasks
highlighted in gray. Both unlisted static subroutines DoStandardOpera-
tion()and SendModemData(), which are used in several of the flex ap-
plication examples in the CST SDK, call the CSTAction() function with a
filled CST Action message. The message type is cat_STANDARD_OPERA-
TION and cat_CSTSERVICE_MESSAGE respectively (for more details see
7.3.2). However, it is important to note that there may be an additional callback
mechanism (direct call from the data modem controller, see 7.6.1) for intensive
modem data transfers in ARQ mode, because the CST Action interface does
not allow the user to reject the received data. If the user is unable to take the
data, the data will be lost.

6.3.8 CST Dynamic Functions

For more flexibility, several important CST functions are called through point-
ers. Once initialized, the pointers never change. Most of the pointers to dynam-
ic functions (e.g. functions to be called through pointers) reside in the global
structure CSTFxns (of tCSTFxns type, declared and defined in CSTCom-
mander.h, CSTCommander.c). However, several dynamic functions are de-
fined directly in XDAIS algorithm parameters or peripheral drivers (modem
callbacks and voice controller callbacks). Besides, several high-level interface
functions are never called directly inside CST, and thus, the developer can
create his/her own implementation of the top level CST methods based on the
open source code. The full list of dynamic functions is given below:

� Functions to be invoked in CST Flex mode:

� Dynamic functions to manage CST services

� The main callback function CSTFxns.pCSTExternalMsgEv-
ent.

� High-level functions at CST Action, Commander and Service lay-
ers (CSTFxns.pCSTUserOperation, CSTFxns.pCSTFeed-
BackMsgFunc and CSTFxns.pProcessMessage respective-
ly). Overriding the functions allows to add or modify atomic com-
mands execution; DAA input/output sample processing (run a
new external algorithm); add/or modify processing of CST Ser-
vice messages (in both directions). Thus, the three dynamic
methods provide a standard way to run and control an external al-
gorithm.

� Peripheral driver functions (CSTFxns.pPeriphProcess,
CSTFxns.pPeriphDriver). Overriding these functions allows
quick adaptation of CST Framework and user application to spe-
cific target platform.

Framework API

6-27CST Framework and API Overview

� Low-level drivers methods. The methods of the low-level UART
and DAA drivers are also accessible through pointers and may be
changed to make CST work with hardware different from the de-
fault CST hardware (e.g. internal UART and DAA, EVM54CST).

� Multithread-related functions (CSTFxns.pVControllerPost,
CSTFxns.pVControllerProcess, CSTFxns.pLowPriori-
tyModem, DMControllerSubfxns.pPreemptionControl,
BIOSDAADataCallBack()). Multithreaded applications need
to override these routines. An example of this for DSP/BIOS is giv-
en in file BIOS\CSTBIOS.c.

� Other functions (CSTFxns.pVControllerSelectVocoder,
DMControllerSubfxns.pTransferData). These methods
allow adding an external vocoder and correctly getting intensive
data flow from a remote modem.

� Top-level CST methods called by user only (CSTAction(), CSTAc-
tion_Process() or CSTServiceProcess()).

� Functions intended for AT Parser (Chipset mode).

7-1

CST Framework Components

This chapter gives detailed description of each of the CST Framework compo-
nents, their interface and architecture.

First three sections describe CST control layers.

Section 7.4 describes AT parser implementation.

Section 7.5 describes the SPIRIT proprietary memory manager, used in CST
by default, and how to reload this manager with user-specific (from DSP/BIOS
or other).

Section 7.6 gives an overview of XDAIS components and describes modem
and voice controllers.

Section 7.7 describes CST drivers and how to reload existing/add new drivers
to CST.

Topic Page

7.1 CST Service Layer 7-2.

7.2 CST Commander 7-16.

7.3 CST Action 7-47.

7.4 CST AT Parser 7-63.

7.5 Memory Management 7-66.

7.6 Telephony Components Brief Specification 7-75.

7.7 CST Drivers 7-107.

Chapter 7

Files CSTSReg.c, CSTSReg.h

 7-2

7.1 CST Service Layer

7.1.1 Files CSTSReg.c, CSTSReg.h

7.1.1.1 Exchanging Messages With CST Service Layer

The lowest CST layer (the CST Service layer) performs foreground processing
by running XDAIS algorithms. The CST Service and a higher control layer
(normally, the CST Commander layer) interact with each other by dedicated
messages.

In case when a message is sent to the Service layer, it is actually a request,
which the service can either accept or reject. At any time the Service layer can
be executing only one request. If the service cannot execute a new request
message immediately (e.g. there is a pending process) it keeps the message
as delayed. If there is already a delayed message, the new message request
will be rejected without any effect. That means, “Try again later”. The same
behavior is correct for data messages. Therefore, the CST Service layer
provides a protection logic that guards the correct order of command
execution. As an exception, there is the only message that can discard another
delayed message, terminate the pending process and turn off all algorithms,
i.e. reset the CST Service layer to idle state.

The message being sent from the service is to inform the higher layer or submit
a new portion of data. These messages are put into a small queue that allows
keeping several messages issued from different tasks. However, sending
messages from the service is not the only way to transfer data. For some
intensive data flows, a direct connection between an XDAIS algorithm and a
client can be used (in CST Framework, it is the case with the Modem
Controller).

Files CSTService.c, CSTService.h

7-3 CST Framework Components

7.1.1.2 CST Service Message

Description Almost all control and data information between the CST Service and its user
(the CST Commander) is carried by dedicated CST Service messages. A CST
Service message is a multifunctional information packet. It can contain
broadcast and dedicated control command, and data bytes.

Structure typedef struct tCSTServiceMessage {

Table 7-1. CST Service message

Field Type Field Name Description

tCSTServiceTask Task Destination/source task or special broadcast command (see
7.1.1.3)

bool IsItTxTask Selects receiver/transmitter if needed

tCSTSubEvent SubEvent Determines type of the message (see 7.1.1.4)

int16 DataLength If SubEvent is equal to cse_DATA, this field sets the data
length

int16 aData[] If SubEvent is equal to cse_DATA, this array contains the
data.

If SubEvent is equal to cse_ON, this array may contain task
dependent initialization parameters

} tCSTServiceMessage;

Type tCSTServiceMessage is defined in CSTService.h.

7.1.1.3 Set of CST Service Tasks

Description The type tCSTServiceTask is used to denote a destination task if the
message is sent from outside (ingress message) the CST Service, or a source
task if the message is sent from the CST Service (egress message). A value
of the type tCSTServiceTask is a task ID. Following are the task IDs used
in CST:

Enum Definition typedef enum tCSTServiceTask {

Files CSTService.c, CSTService.h

 7-4

Table 7-2. Set of CST Service Tasks

Name Value Description

cstst_NOTASK 0 Symbolizes a void message, serving for empty message return by
CSTServiceGetMessage(). This message can be sent to the service
and it will be accepted, but it will have no effect. (see 7.1.1.9)

If CSTServiceStatus.ActiveTxTask is equal to cstst_NOTASK,
there is no active tx task. (see 7.1.1.6)

cstst_PERIPH 1 A message with this task ID can be sent from the service only. aData[0]
contains an event detected by the peripheral hardware. (see 7.7.2.3)

cstst_TURNOFF_ALL 2 When sent to the service, a message with this task ID is addressed to all
algorithms and it is intended to turn them off. All other fields in the
message structure are ignored. The message with this command will be
executed immediately.

When sent from the service (upon message processing failure), a
message with this task ID reports that an algorithm could not be created.
Upon receiving of the message from the CST Service it is suggested to
terminate all active processes.

cstst_CID 3 Caller ID

cstst_CPTD 4 Call Progress Tone Detector (as well as generator)

cstst_DTMF 5 Dial Tone Modulated Frequency

cstst_MODEM 6 Data Modem

cstst_VOICE_LOOP 7 Handset – DAA full duplex loop (Handset is not present in CST chip, but
the User may want to add it as an external codec, and that’s why CST
reserves some support for it). Voice loop and echo canceller (if enabled
via S register settings) are activated.

cstst_VOICE_DATA 8 Voice data link

cstst_PARAM_DATA 9 Special system task for loading external flex application image (data) into
CST chip. User should never use it

} tCSTServiceTask;

Type tCSTServiceTask is defined in CSTService.h.

Files CSTService.c, CSTService.h

7-5 CST Framework Components

7.1.1.4 Set of CST Service Message Types

Description The CST Service message type determines the message meaning and tells
how to treat other message fields. Depending on the direction (ingress or
egress), the type values have different meanings. Standard type values are
described in Table 7-3:

Enum Definition typedef enum tCSTSubEvent {

Table 7-3. Set of CST Service Message Types

Name Value Description

cse_ON 0 For ingress case (e.g. for messages being sent to the CST Service) this is
a command to turn on a task. For egress case (e.g. for messages being from
the CST Service) this is a special notification, e.g. modem just connected

cse_OFF 1 For ingress case this is a command to turn off a task. For egress case this
is a special notification, e.g. modem just disconnected

cse_DATA 2 Defines a data packet (used in both directions). This message is usually
used in CST Action interface to carry user’s data. For cstst_DTMF task it
automatically creates and destroys the appropriate DTMF (UMTG) instance.

cse_OTHEREVENTS 3 Reserved

} tCSTSubEvent;

Type tCSTSubEvent is defined in CSTService.h.

Files CSTService.c, CSTService.h

 7-6

7.1.1.5 CST Service Message Summary

Table 7-4 summarizes the CST Service message content. Notice, the mean-
ing of some fields depends on the content of preceding fields.

Table 7-4. CST Service Message Summary

CST Service Message Fields Direction Content Meaning

Task

IsItTx-
Task (is it
for TX or

RX Task?) SubEvent aData[0]
aData[1..

DataLength-1]

cstst_NOTASK - - - - - Empty message

cstst_PERIPH -

(There is
only Rx)

cse_DATA value - egress Event from peripheral
driver

cstst_TURNOFF_
ALL

- - - - ingress Immediately turn off all
algorithms

- value - egress Request failed

cstst_CID -

(There is
only RX)

cse_ON mode - ingress Turn on caller ID
reception

cse_OFF - - Turn off caller ID
reception

cse_DATA Error code or
a repeat

dummy code

- egress Received caller ID data

cstst_CPTD False

(There is
only RX)

cse_ON - - ingress Turn on CPTD

cse_OFF - - Turn off CPTD

cse_DATA value values
(unusual)

egress Detected CPT

cstst_DTMF True

(TX)

cse_DATA DTMF symbols and durations ingress Turn on DTMF generator,
generate DTMF symbols,
turn off DTMF generator

False

(RX)

cse_ON - - ingress Turn on DTMF detector

cse_OFF - - ingress Turn off DTMF detector

Files CSTService.c, CSTService.h

7-7 CST Framework Components

Table 7-4. CST Service Message Summary (Continued)

CST Service Message Fields Content MeaningDirection

Task
aData[1..

DataLength-1]aData[0]SubEvent

IsItTx-
Task (is it
for TX or

RX Task?)

cse_DATA value values
(unusual)

egress Detected DTMF
symbol(s)

cstst_MODEM -

(Both)

cse_ON initialization parameters ingress Turn on modem

cse_OFF - - Turn off modem

cse_DATA data A number of tx. data bytes

cse_ON - - egress Modem just connected
(handshake succeeded)

cse_OFF - - Modem just disconnected

cstst_VOICE_
LOOP

- cse_ON echo
canceller

mode

- ingress Turn on voice loop

cse_OFF - - Turn off voice loop

cstst_VOICE_
DATA

True (TX) cse_ON BPS - ingress Turn on voice tx path

False
(RX)

BPS - Turn on voice rx path

True (TX) cse_OFF - - Turn off voice tx path

True (RX) - - Turn off voice rx path

True (TX) cse_DATA data A number of tx data bytes

False
(RX)

cse_OFF - - egress Both rx and tx paths
turned off

False
(RX)

cse_DATA data A number of rx data bytes

Files CSTService.c, CSTService.h

 7-8

7.1.1.6 CST Service Status

Description The CST Service layer has an internal status, which is used by the service itself
and can be used by outsiders.

typedef struct tCSTServiceStatus {

Table 7-5. CST Service Status

Field Type Field Name Description

tCSTServiceTask ActiveTxTask Current transmitting task (see 7.1.1.3)

tCSTMessageResult MessageResult Status/result code for the last message (see 7.1.1.7).
This is a runtime information about message
performing.

int TxMessageCounter Amount of egress messages waiting in the queue for
delivery

bool IsRxDataOverflow Flag signaling that the egress message queue
overflowed (at least once)

char DLEChar Value of the common DLE character (shield code),
mapped to S46 (see 7.2.1.1)

int InputGain Attenuator for input samples from the DAA. Permitted
range is [0 .. 30], which corresponds to a negative gain
of 0 .. –30dBm. Mapped to S31 (see 7.2.1.1)

int InputPower Averaged level of DAA input, dBm. Mapped to S65
(see 7.2.1.1)

bool IsTxMessageInUse Used in DSP/BIOS (multi-threaded) mode for correct
egress message handling

bool IsPendingLowPriority
Task

Protects low priority tasks from premature destruction.
To be set/reset externally (see CSTBIOS.c).

bool IsProcessMsgNeeded Forces CST Service to process a message upon
completion of a low priority procedure, which helps to
terminate active CST algorithms and processes safely.

} tCSTServiceStatus;

Type tCSTServiceStatus is defined in CSTService.h.

Files CSTService.c, CSTService.h

7-9 CST Framework Components

7.1.1.7 Set of CST Service Message Result Codes

Description The set of CST Service message result codes inform about CST Service
availability for new message and, if the last message has been executed, the
result characterizes the effect of the message. The CST Service message
result type is used both as runtime CST Service message status and as an
immediate result of high-level CST Action (see Table 7-6).

Enum Definition typedef enum tCSTMessageResult {

Table 7-6. Set of CST Service Message Result Codes

Name Value Description

cmr_EXECUTING 0 The message (or high-level action) is in progress. Other messages, except
“turn off all”, will not be accepted.

cmr_REJECT 1 The last message (or high-level action) has been rejected for some reason,
e.g. the destination task is inactive

cmr_RESULTOK 2 The last message (or high-level action) has been successfully processed

cmr_FAIL 3 The last message has failed, e.g. an algorithm could not be created

cmr_TRY_AGAIN 4 There is already a high-level action being processed at the moment, which
does not allow accepting a new message. This result is used in CST Action
layer only (see 7.3.4.2).

} tCSTMessageResult;

Type tCSTMessageResult is defined in CSTService.h.

7.1.1.8 CST XDAIS Algorithms

All CST algorithms are eXpressDSP compliant (to learn about XDAIS, read
Using the TMS320 DSP Algorithm Standard in a Static DSP System
(SPRA577).

Most of pointers to CST algorithms are defined in the tCSTService substruc-
ture. (see the file CSTService.h). Pointers to G.726/G.729, VAD and AGC
instances are allocated in a separate structure tVControllerStr. Being
complex standalone tasks, the modem and voice modules are implemented
as separate controllers outside the file CSTService.c, but only the voice
controller has a separate instance structure because it integrates several algo-
rithms, while the modem controller manages only one algorithm, Modem Inte-
grator, which in turn embeds a modem data pump and V.42/V.42bis algo-
rithms.

Files CSTService.c, CSTService.h

 7-10

Table 7-7. List of XDAIS Algorithms

Name Allocation and Description

UMTG_Handle pDTMFGenHandle DTMF generator. tCSTService structure, defined in
CSTService.h

UMTD_Handle pDTMFDetHandle DTMF detector. tCSTService structure, defined in
CSTService.h

UMTD_Handle pCPTDDetHandle Call Progress Tone Detector. tCSTService structure, defined
in CSTService.h

UMTG_Handle pCPTDGenHandle Call Progress Tone Generator. tCSTService structure,
defined in CSTService.h

CID_Handle pCIDHandle Caller ID detector/receiver. tCSTService structure, defined in
CSTService.h

EC_Handle pECHandle Echo canceller. tCSTService structure, defined in
CSTService.h

MODINT_Handle pMODINTHandle Modem Integrator (data pump, V.42 and V.42bis are
embedded). DMController.c, tCSTService structure,
defined in CSTService.h

void *pVocoder Voice G.726/G.711. VController.c, tVControllerStr
structure, defined in VController.h

AGC_Handle pAGC Automatic Gain Control. tVControllerStr structure, defined
in VController.h

CNG_Handle pCNG Comfort Noise Generator. tVControllerStr structure,
defined in VController.h

VAD_Handle pVAD Voice Activity Detector. tVControllerStr structure, defined
in VController.h

Files CSTService.c, CSTService.h

7-11 CST Framework Components

7.1.1.9 Brief Description of CSTService Function Interface

The most part of CST Service layer is implemented in the files CSTService.c
and CSTService.h. The main interface functions are the following:

Table 7-8. CST Service Interface Functions

Name Functionality

CSTServiceInit() CST Service layer initialization

CSTServiceProcessIOandVoice() Called from CSTServiceProcessBuffer(). Reads/writes a
number of DAA and potentially handset I/O samples through the
data controllers. Runs voice algorithms and routes DAA and
potentially handset samples flows.

CSTServiceProcessCommonAlgos() Called from CSTServiceProcessBuffer().

Runs all other (non-voice) active XDAIS algorithms. Performs
single-byte oriented data exchanges via CST Service messages

CSTServiceProcess() The main periodic high-priority thread function.
CSTServiceProcess()is self-synchronizing relative to DAA
interrupt. The function should be periodically called at least once
each 5 milliseconds.

CSTServiceProcessBuffer() A subroutine for CSTServiceProcess(). It runs all processes
for a timeframe of 10 I/O samples from the DAA.

CSTServiceSendMessage() Attempts to send a new message to the Service tasks. The false
result means that the previous message has not been delivered
yet

CSTServiceGetMessage() Returns a new message from service tasks. If there are no new
messages, the method returns a message with the task ID
cstst_NOTASK

CSTServiceProcessMessage() Main function for ingress message processing. Attempts to
process a pending message obtained by
CSTSendServiceMessage(). Called by
CSTSendServiceMessage() and
CSTServiceProcessBuffer() through the pointer
CSTFxns.pProcessMessage.

CSTServiceProcessMessageLow() Special Message Execution In Low Priority Task. Called from a
low priority task and attempts to execute a pending data
message obtained by CSTSendServiceMessage().

Initialization The CST Service layer initialization

Function void CSTServiceInit(tCSTChannel* pChannel);

Files CSTService.c, CSTService.h

 7-12

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value None

DAA/Handset I/O, Voice Operations

Called from CSTServiceProcess(). Reads/writes a number of DAA and
potentially handset IO samples. Runs voice algorithms and routes DAA and
potentially handset samples flows.

Function void CSTServiceProcessIOandVoice(tCSTChannel* pChannel,int

*pInput,int *pOutput);

Parameter(s)

pChannel Pointer to a global CST channel structure

pInput Pointer to a buffer of 10 input samples to be read from AFE and
processed (modified) by the voice (if active). The voice (if active)
includes the echo canceller and G.726/G.711 encoder/decoder

pOutput Pointer to a buffer of 10 output samples (from the previous iteration)
to be written to AFE. After writing, the sample buffer is reset to zero
and regenerated by the voice encoder (if active)

Return Value None

Running PSTN Oriented Algorithms

Runs all other (non-voice) active XDAIS algorithms. Performs single-byte ori-
ented data exhanges via CST Service messages.

Function void CSTServiceProcessCommonAlgos(tCSTChannel*

pChannel,int *pInput,int *pOutput);

Parameter(s)

pChannel Pointer to a global CST channel structure

pInput Pointer to a buffer of 10 valid input samples to be processed by
standard PSTN algorithms, which are DTMF, CPTD, Caller ID and
Data Modem.

pOutput Pointer to a buffer of 10 valid output samples to be updated by
those algorithms

Return Value None

Files CSTService.c, CSTService.h

7-13 CST Framework Components

The Main Periodic High-Priority Thread Function

The function CSTServiceProcess()is self-synchronizing relative to DAA
samples. The function should be periodically called at least once each 5 milli-
seconds. When called, it drives several different processes that can be split
into the following three semantic groups: drivers (low-level DAA driver, periph-
eral driver and high-level DAA driver), algorithm oriented operations and high-
level control operations. In order to achieve the maximum flexibility, many
functions are called through pointers. The main operation, which CSTServi-
ceProcess() performs, is processing a number of DAA I/O samples by run-
ning all active XDAIS algorithms. The synchronization between various CST
modules is achieved via a simple messaging mechanism that represents an
intermediate interface between the CST Service layer and the CST Com-
mander layer (see section 7.1.1.2).

As it is shown in Figure 6-5, CSTServiceProcess()calls back a dedicated
function (the CSTAction_UserOperation() function in the figure called
through the pointer CSTFxns.pCSTUserOperation) that should perform
user-defined control operations and manage data flows (from the CST Service
layer’s point of view, the user is AT parser/CST Action and CST Commander
layers).

The CSTFxns.pCSTUserOperation function processes UART data (not
shown on the picture since CST may not use UART in the Flex mode; by de-
fault, the function processes UART data only in the Chipset mode), processes
messaged data from XDAIS objects (the function CSTFeedBack-
MsgFunc()in Figure 6-5) and runs the CST Commander scripts. Figure 6-5
represents final call tree for standard Flex mode application.

In the Chipset mode CST is controlled by AT commands, and in the Flex mode
it is also possible to control the CST Framework operations and data flows
through the DTE emulation. This means that a flex application can be con-
trolled by the AT commands. However, it is strongly recommended not to
use the DTE emulation. The user can control the CST Framework legally
through the several CST interface layers. In both cases (DTE emulation and
legal CST control), the user can modify CST behavior by creating his/her own
implementation of some CST methods.

Function void CSTServiceProcess(tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value None

Files CSTService.c, CSTService.h

 7-14

Subroutine Called From CSTServiceProcess()

This routine runs all processes for a block of 10 (INPUT_OUTPUT_LENGTH)
I/O samples from the DAA.

Function void CSTServiceProcessBuffer(tCSTChannel* pChannel,int

*pInput,int *pOutput);

Parameter(s)

pChannel Pointer to a global CST channel structure

pInput Pointer to a buffer of 10 valid input samples to be processed by
standard PSTN algorithms, which are DTMF, CPTD, Caller ID and
Data Modem.

pOutput Pointer to a buffer of 10 valid output samples to be generated by
one of those algorithms

Return Value None

Sending Messages to CST Service

CSTSendServiceMessage() attempts to send a new message to the Service
tasks. The false result means that the previous message has not been deliv-
ered yet.

Function bool CSTServiceSendMessage(tCSTChannel*

pChannel,tCSTServiceMessage Message);

Parameter(s)

pChannel Pointer to a global CST channel structure

Message Universal CST Service message (see 7.1.1.1)

Return Value Acceptance flag. The false result means that the message has not been
accepted and needs to be sent again.

Files CSTService.c, CSTService.h

7-15 CST Framework Components

Receiving Messages from CST Service

Returns a new message from the Service tasks. If there are no new messages,
the function returns a message with the task ID equal to cstst_NOTASK.

Function tCSTServiceMessage CSTServiceGetMessage(tCSTChannel*

pChannel);

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value Universal CST Service message (see 7.1.1.1). Outgoing messages are queued
in a small FIFO queue. If there are no messages, an empty message with the
task ID equal to cstst_NOTASK is returned.

Main Routine for Service Message Processing

Attempts to process a pending message obtained by CSTSendServiceMes-
sage().

Function void CSTServiceProcessMessage(tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value None

Message Processing in Low-Priority Threads

Attempts to execute a pending data message obtained by CSTSendServi-
ceMessage(). Called from a low priority thread function.

Function void CSTServiceProcessMessageLow(tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value None

Files CSTSReg.c, CSTSReg.h

 7-16

7.2 CST Commander

7.2.1 Files CSTSReg.c, CSTSReg.h

7.2.1.1 Set of S-Registers and Their Implementation

The CST Framework supports a well-known modem S-registers interface. The
S-registers can be thought of as object properties. The S-register service
maps major CST configuration variables to the index-addressable parameter
list. That means that each S-register can be assigned to an existing 16-bit vari-
able. Writing or reading an S-register will result in writing or reading the vari-
able associated with the S-register. Each S-register is referenced by its num-
ber. (see Table 7-10 and Table 9-9).

The CST Framework provides a set of S-registers that can be extended by the
developer. The CST Framework can operate with several arrays of S-register
descriptors (see Table 7-9). Each array should be provided with a handle of
the type tSimpleMap and registered by a dedicated function (see
Table 7-13).

The main array with S-register descriptors is located in the file CSTSReg.c,
its name is aInternalSRegAlias[].

Each S-register’s descriptor has a pointer to a physical variable, in which S-
register’s contents is stored. Most of these variables are located in the struc-
ture tCSTSettings (see 7.2.1.2).

typedef struct tInternalSRegAlias {

Table 7-9. S-Register Descriptor

Field Type Field Name Description

int RegNumber Unique number of the S-register

int* pValue Pointer to a physical variable, in which the contents of the S register is
stored

char* pHint Pointer to a help string for this register being printed by the AT parser
upon request

} tInternalSRegAlias;

Type tInternalSRegAlias is defined in CSTSReg.h.

Enum Definition typedef enum tSRegDefinition {

Files CSTSReg.c, CSTSReg.h

7-17 CST Framework Components

Table 7-10. Set of Defined CST S-Registers

No Name/Alias Points to Variable Description

-4 srd_IS_VOICE_RINGBACK_
SKIP
CSTCommanderPrivate.IsV
oiceRingbackSkip

Internal temporary S-register – skips ring back signal
appearance/disappearance detection. Default value 1.
(Set automatically before a new script runs, reset by the ‘@’ dial
modifier).

-3 srd_CALL_WITHOUT_MODEM
CSTCommanderPrivate.IsC
allWithoutModem

Internal temporary S-register – skips modem algorithm creation.
Default value 0.
(Reset automatically before a new script runs, set by the ‘;’ dial
modifier).

-2 srd_CURRENT_DIAL_MODE
CSTCommanderPrivate.IsP
ulseMode

Internal temporary S-register – Current Dialing Mode:
0 - tone mode, 1 – pulse mode. Automatically set to the value of
srd_DEFAULT_DIAL_MODE S-register before a new script runs.

-1 srd_IS_ORIGINATOR
CSTCommanderPrivate.IsO
riginator

Internal temporary S-register to select whether it is an originating
modem or not.

(0) none
CSTSettings.S0

Automatic Answer; does not affect CST behavior

3 none
CSTSettings.S3

Command Line Termination Character <CR>
By default, equal to 13.

4 none
CSTSettings.S4

Response Formatting Character <LF>
By default, equal to 10.

5 none
CSTSettings.S5

Command Line Editing Character, backspace <BS>
By default, equal to 8.

6 none
aCSTSpecialPauses[csp_M
ODEM_START_PAUSE]
.Duration

Pause Before Blind Dialing, in seconds
In CST this register contains the duration of the delay inserted after
going off-hook and before any other action. By default, equal to 1
sec.

(7) none
CSTSettings.S7

Connection Completion Timeout, in seconds
If a modem can’t establish a connection for the period of this
timeout. CST will stop connecting and will go on hook. By default,
equal to 60 sec.

Notes: 1) A register number in parenthesis means that the corresponding register is implemented only for compatibility and
its value does not affect CST behavior. S-registers with negative numbers are not printed out in help list, and are
not accessible via standard ATS command.

2) Some S-registers (labeled with Note 2) are referencing variables, which are not multichannel and are global for
the whole CST. All other variables are multichannel and should be accessed via Channel structure tCSTChan-
nel (see section 6.3.1).

Files CSTSReg.c, CSTSReg.h

 7-18

Table 7-10. Set of Defined CST S-Registers (Continued)

No DescriptionName/Alias Points to Variable

8 srd_LONG_DIAL_DELAY
aCSTSpecialPauses[csp_L
ONG_DIAL_PAUSE]
.Duration

Comma Dial Modifier pause duration, in seconds
Dialing string may contain the comma character, which sustains a
pause in dialing for the specified amount of seconds. By default,
equal to 2 sec.

(10) none
CSTSettings.S10

Automatic Disconnect Delay; does not affect CST behavior

11 srd_DTMF_TONE_DURATION
CSTSettings.DtmfToneDur
ation

DTMF tone/space duration, msec.
The duration of a DTMF tone and the pause between the DTMF
tones. By default, equal to 80.

12 srd_ESCAPE_PROMPT_DELAY
CSTSettings.EscapePromp
tDelay

Guard pause before and after ‘+++’ (escape sequence) in 1/8th of
msec
Escape sequence is guarded with 2 periods of inactivity, when DTE
should not send anything to DCE. If these periods exist before and
after ‘+++’ sequence, the AT Parser will consider the incoming
sequence as Escape Sequence, and will switch to the Modem
Online Command Mode. By default, equal to 8000 (1 sec).

26 srd_V42
CSTSettings.IsV42

Boolean flag enabling V.42 mode (when disabled, V.14 mode is
used). See section 9.4.3.10 for details. By default, equal to 1.

27 srd_V42BIS
CSTSettings.IsV42bis

V.42bis compression selection. Bit 0 enables V.42bis compressor,
bit 1 enables V.42bis decompressor. See section 9.4.3.11 for
details. By default, equal to 3.

28 srd_MODEM_GAIN
CSTSettings.ModemGain

Modem output signal attenuation in decibels (0..17 dB), treated as
negative value. See section 9.4.3.13 for details. By default, equal
to 9.

29 srd_FAST_CONNECT
CSTSettings.IsFastConne
ct

Enables the fast connect mode. See section 9.4.3.15 for details. By
default, equal to 0.

30 srd_VOICE_GAIN
VController.VoiceGain

Output voice signal attenuation in decibels (0..30 dB), treated as
negative value. See section 9.4.4.2 for details. By default, equal to
0.

31 srd_INPUT_GAIN
CSTService.CSTServiceSt
atus.InputGain

Common input signal attenuation in decibels (0..30 dB), treated as
negative value. Used only in Voice mode. See section 9.4.4.2 for
details. By default, equal to 0.

Notes: 1) A register number in parenthesis means that the corresponding register is implemented only for compatibility and
its value does not affect CST behavior. S-registers with negative numbers are not printed out in help list, and are
not accessible via standard ATS command.

2) Some S-registers (labeled with Note 2) are referencing variables, which are not multichannel and are global for
the whole CST. All other variables are multichannel and should be accessed via Channel structure tCSTChan-
nel (see section 6.3.1).

Files CSTSReg.c, CSTSReg.h

7-19 CST Framework Components

Table 7-10. Set of Defined CST S-Registers (Continued)

No DescriptionName/Alias Points to Variable

37 srd_DESIRED_MODEM_SPEED
CSTSettings.MaxModemRat
eBc

The maximum desired modem rate. See section 9.4.3.14 for
details.
0,1 – Automodem; 2 – V.22 1200; … 8 – V.32bis 14400.
By default, equal to 0.

38 srd_TIME_BEFORE_FORCED_
HANGUP
CSTSettings.ModemForced
HangUpDelay

An extra pause before V.42 session completion, in seconds. The
modem waits this amount of time before V.42 connection is
terminated, in order to flush data from internal buffers. By default,
equal to 2.

40 srd_DEFAULT_DIAL_MODE
CSTSettings.DialingMode

Default dialing mode: 0 - tone mode, 1 – pulse mode;
Used when dialing string does not contain explicit dialing mode
modifier. See sections 9.4.1.13 and 9.4.1.21 for details. By default,
equal to 0.

41 srd_ECAN
CSTSettings.EchoCancell
erMode

Line echo canceller mode:
0 – EC off; 1 – EC on without NLP; 2 – EC on with NLP. By default,
equal to 1.

42 srd_VOICE_BPS
CSTSettings.VoiceBitPer
Sample

Voice Bit Per Second rate. Can be 2, 3, 4, 5 or 8, which
corresponds to rates 16, 24, 32 and 40 kbps for G.726 and 64 kbps
for G.711. See section 9.4.4.2 for details. By default, equal to 8.

43 srd_CID_MODE
CSTSettings.CIDEnabling
Mode

Caller ID mode. Selects: 1 – formatted CID, 2 - unformatted CID
information printing; 0 - disables it. See section 9.4.2.4 for details.
By default, equal to 1.

44 srd_VAD
CSTSettings.VADEnabled

Enables VAD in voice mode. By default, equal to 1.

45 srd_AGC
CSTSettings.AGCEnabled

Enables AGC in voice mode. By default, equal to 1.

46 srd_DLECHAR
CSTService.CSTServiceSt
atus.DLEChar

Shield code value. By default, equal to 0x10 (<DLE>).

47 srd_CID_CRCERROR_BEHAVI
OR
CSTSettings.CIDErrorBeh
avior

Enable Caller ID report even if data have been received with
incorrect CRC. By default, equal to 0.

Notes: 1) A register number in parenthesis means that the corresponding register is implemented only for compatibility and
its value does not affect CST behavior. S-registers with negative numbers are not printed out in help list, and are
not accessible via standard ATS command.

2) Some S-registers (labeled with Note 2) are referencing variables, which are not multichannel and are global for
the whole CST. All other variables are multichannel and should be accessed via Channel structure tCSTChan-
nel (see section 6.3.1).

Files CSTSReg.c, CSTSReg.h

 7-20

Table 7-10. Set of Defined CST S-Registers (Continued)

No DescriptionName/Alias Points to Variable

50 srd_AT_ECHO_MODE
CSTSettings.IsEchoMode

Boolean flag to enable AT Parser echo. See section 9.4.1.7 for
details.

51 srd_AT_AUTOBAUD
CSTSettings.IsAutoBaudO
n

Enables automatic adjustment of the UART baud rate. By default,
equal to 1 (auto baud enabled). The UART driver performs auto
baud detection only during AT command input, based on “AT”
characters.

60 srd_STATISTICS_FLAGS
CSTStatistics.Flags
Note2

Statistics enable flags. Bit 0 enables MIPS measurement, bit 1
enables heap free size measurement, and bit 2 enables stack free
size measurement. By default, equal to 7 (all flags enabled).

61 srd_AVAILABLE_ALGOS
CSTStatistics.Available
Algos Note2

Contains a number of currently active (created) XDAIS algorithms.
Read only.

62 srd_AVAILABLE_MEMORY
CSTStatistics.Available
Memory Note2

Contains free heap size in words. Read only.

63 srd_STACK_FREE_SIZE
CSTStatistics.StackFree
Size Note2

Contains free stack size in words. Read only.

64 srd_PEAK_MIPS
CSTStatistics.PeakMIPS
Note2

Peak MIPS tracked since last reset (averaged on 4 msec block).
Writing to this register a zero value resets it.

65 srd_INPUT_POWER
CSTService.CSTServiceSt
atus.InputPower

Contains average value of input signal power, in dBm. Read only.

70 srd_CHANNEL
CSTCurrentChannel Note2

Active channel number. Not used.

} tSRegDefinition;

Notes: 1) A register number in parenthesis means that the corresponding register is implemented only for compatibility and
its value does not affect CST behavior. S-registers with negative numbers are not printed out in help list, and are
not accessible via standard ATS command.

2) Some S-registers (labeled with Note 2) are referencing variables, which are not multichannel and are global for
the whole CST. All other variables are multichannel and should be accessed via Channel structure tCSTChan-
nel (see section 6.3.1).

Files CSTSReg.c, CSTSReg.h

7-21 CST Framework Components

Type tSRegDefinition is defined in CSTSReg.h.

The CST Framework does not provide boundary check when writing to S-reg-
ister. S-registers with number greater than 100 are treated as physical hard-
ware DAA registers (in CST Framework, they are mapped to Si3021 DAA reg-
isters) and are redirected (mapped) to the CST Peripheral module, and then
to the DAA Driver. The user should not access these registers via CST Action
interface, because in this interface reading/writing an S register is done imme-
diately by accessing a variable in the DSP memory, which is not possible for
SiLab’s DAA registers.

7.2.1.2 CST Settings

CST (particularly the CST Commander) holds global settings for such tasks
as voice, modem etc. The user can directly modify the settings and is responsi-
ble for correctness of this modification. Some of these settings are to be
passed as parameters during algorithm initialization or to be used internally,
e.g. for dialing. The settings are also accessible through AT commands, and
most of them are accessible via S-registers (see Table 7-11).

Structure typedef struct tCSTSettings {

Table 7-11. CST Settings

Field Type Field Name S-Reg Description

int S3 S3 Command Line Termination Character <CR>
By default, equal to 13.

int S4 S4 Response Formatting Character <LF>
By default, equal to 10.

int S5 S5 Command Line Editing Character, backspace <BS>
By default, equal to 8.

int S0 S0 Automatic Answer; does not affect CST behavior

int S7 S7 Connection Completion Timeout, in seconds
If a modem can’t establish a connection for the period
of this timeout. CST will stop connecting and will go
on hook. By default, equal to 60 sec.

int S10 S10 Automatic Disconnect Delay; does not affect CST
behavior

int DCEResponseMode - AT Parser: Corresponds to the command ATV:
1-verbose result code, 0-numeric. See 9.4.1.22 for
details. By default, equal to 1.

int ResultCodeSupression - AT Parser: Corresponds to the ATQ command:
1-supress result code. See 9.4.1.14 for details. By
default, equal to 0.

Files CSTSReg.c, CSTSReg.h

 7-22

Table 7-11. CST Settings (Continued)

Field Type DescriptionS-RegField Name

int ResultCodeSelection - AT Parser: Corresponds to the ATX command. See
9.4.1.21 for details. By default, equal to 4.

int DTRbehaviour - DTR (108/2) line control. See 9.4.1.2 for details. By
default, equal to 2.

int RSDbehaviour - RSD (109) line control. See 9.4.1.1 for details. By
default, equal to 1.

tDialingMode DialingMode S40 Default dialing mode: 0 - tone mode, 1 - pulse mode;
Used when dialing string does not contain explicit
dialing mode modifier. See sections 9.4.1.13 and
9.4.1.21 for details. By default, equal to 0.

int IsEchoMode S50 Boolean flag to enable AT Parser echo. See section
9.4.1.7 for details.

int IsAutoBaudOn S51 Enables automatic adjustment of the UART baud rate.
By default, equal to 1 (auto baud enabled).

char* ManufacturerInfo - Corresponds to ATI: manufacturer information
returned by ATI.

int EscapePromptDelay S12 Guard pause before and after ’+++’ (escape
sequence) in 1/8th of msec
Escape sequence is guarded with 2 periods of
inactivity, when DTE should not send anything to
DCE. If these periods exist before and after ’+++’
sequence, the AT Parser will consider the incoming
sequence as Escape Sequence, and will switch to the
Modem Online Command Mode. By default, equal to
8000 (1 sec).

int MaxModemRate - The maximum desired modem rate. Can be 1200,
2400, 4800, 7200, 9600, 12000, 14400. By default,
equal to 14400. Changes along with MaxModemRateB
variable.

int MaxModemRateB S37 Changes along with MaxModemRate variable.

int ModemGain S28 Modem output signal attenuation in decibels (0..17
dB), treated as negative value. See section 9.4.3.13
for details. By default, equal to 9.

int IsV42 S26 Boolean flag enabling V.42 mode (when disabled,
V.14 mode is used). See section 9.4.3.10 for details.
By default, equal to 1.

int IsV42bis S27 V.42bis compression selection. Bit 0 enables V.42bis
compressor, bit 1 enables V.42bis decompressor. See
section 9.4.3.11 for details. By default, equal to 3.

Files CSTSReg.c, CSTSReg.h

7-23 CST Framework Components

Table 7-11. CST Settings (Continued)

Field Type DescriptionS-RegField Name

int IsFastConnect S29 Enables the fast connect mode. See section 9.4.3.15
for details. By default, equal to 0.

tECMode EchoCancellerMode S41 Line echo canceller mode:
0 - EC off; 1 - EC on without NLP; 2 - EC on with
NLP. By default, equal to 1.

int DtmfToneDuration S11 DTMF tone/space duration, msec.
The duration of a DTMF tone and the pause between
the DTMF tones. By default, equal to 80.

int ModemForcedHangUpDelay S38 An extra pause before V.42 session completion, in
seconds. The modem waits this amount of time before
V.42 connection is terminated, in order to flush data
from internal buffers. By default, equal to 2.

int VoiceBitPerSample S42 Voice Bit Per Second rate. Can be 2, 3, 4, 5 or 8,
which corresponds to rates 16, 24, 32 and 40 kbps for
G.726 and 64 kbps for G.711. See section 9.4.4.3 for
details. By default, equal to 8.

tCIDEnablingMode CIDEnablingMode S43 Caller ID mode. Selects: 1 - formatted CID, 2 -
unformatted CID information printing; 0 - disables it.
See section 9.4.2.4 for details. By default, equal to 1.

int CIDErrorBehavior S47 Enable Caller ID report even if data have been
received with incorrect CRC. By default, equal to 0.

char aDialNumber[] - Current dial number ASCII string for cac_DIALING
(see). Allowed symbols are digits and characters ‘#’,
‘*’, ‘P’ (pulse dialing), ‘T’ (tone dialing), ‘W’ (wait for
dial tone), ‘,’ (long pause), ‘/’ (short pause), ‘!’ (flash),
‘R’ (response/answer mode), ‘;’ (don’t initiate modem),
‘@’ (wait for ring back appearance and
disappearance).

int VADEnabled S44 Enables VAD in voice mode. By default, equal to 1.

int AGCEnabled S45 Enables AGC in voice mode. By default, equal to 1.

} tCSTSettings;

Type tCSTSettings is defined in CSTSReg.h.

Files CSTSReg.c, CSTSReg.h

 7-24

7.2.1.3 Brief Description of CSTSReg Function Interface

Table 7-12. Brief Description of CST S-Registers Function Interface

Name Functionality

SregistersInit() Default S-register initialization

SregistersAdd() Adds an array of S-register descriptors (see Table 7-9)

SregisterSet() Attempts to set an S-register

SregisterGet() Attempts to read an S-register

SregistersFind() Searches for an S-register

Initialization

Default S-register intialization

Function void SRegistersInit(tCSTChannel* pChannel);

Parameter(s) pChannel Pointer to a global CST channel structure

Return Value None

Add New S-register Array

Adds an array of S-register descriptors.

Function void SRegistersAdd(tCSTChannel* pChannel,const tSimpleMap

*pSReg);

Parameter(s) pChannel Pointer to a global CST channel structure
pSReg Pointer to a handler, containing a pointer to the array of

S-register descriptors (see Table 7-13 and Table 7-9)

Return Value None

typedef struct tSimpleMap {

Table 7-13. Simple Map Structure

Field Type Field Name Description

const void * mpMap Pointer to a map/array of units, which have some fixed size
and can be indexed by an integer. Type “void” is because this
structure is universally used with maps/arrays of different type

size_t mUnitSize Size of a single unit in the map

int mLength Total number of units in the map

} tSimpleMap;

Type tSimpleMap is defined in CSTstd.h.

Files CSTSReg.c, CSTSReg.h

7-25 CST Framework Components

Set S-Register Attempts to set an S-register.

Function bool SRegisterSet(tCSTChannel* pChannel,tSRegRequest

*pSRegRequest)

Parameter(s)

pChannel Pointer to a global CST channel structure

pSRegRequest Pointer to a request structure

Structure typedef struct tSRegRequest {

Table 7-14. S-Register Request Descriptor

Field Type Field Name Description

int RegNumber S-register number

int BitNumber Selects bit to be read or written. If the bit number is negative,
the whole register is to be read or written.

int16 Value 16-bit value, if bit number is negative, or one bit value in MSB
if bit number is positive

} tSRegRequest;

Type tSRegRequest is defined in CSTSReg.h.

Return Value Completion flag. The false result means that it is necessary to call this function
again to push the process (this may happen when writing to peripheral
registers). The function does not return false if the S-register does not exist.

Read S-Register

Attempts to read an S-register (“Attempts” because some of the register’s val-
ues, such as DAA-mapped S registers, may not be read immediately, and that
is why the user should call this function several times until it returns “true” and
the value can be read).

Function bool SRegisterGet(tCSTChannel* pChannel,tSRegRequest

*pSRegRequest);

Parameter(s)

pChannel Pointer to a global CST channel structure

pSRegRequest Pointer to a request structure (see Table 7-14)

Return Value Completion flag. The false result means that it is necessary to call this function
again to push the process (this may happen when reading from peripheral
registers). The function does not return false if the S-register does not exist.
The read value is returned in the request structure.

Files CSTCommander.c, CSTCommander.h

 7-26

Search for S-Register

Searches for an S-register.

Function tInternalSRegAlias* SRegistersFind (tCSTChannel*

pChannel,int RegNumber);

Parameter(s)

pChannel Pointer to a global CST channel structure

RegNumber Number of the S-register to be searched

Return Value Pointer to the descriptor of the S-register or zero if the register does not exist.

7.2.2 Files CSTCommander.c, CSTCommander.h

7.2.2.1 CST Dynamic Functions

To make the CST Framework configuration more convenient and to allow max-
imum re-use of the code in ROM, some important functions are called through
pointers.

All these pointers to dynamic functions are grouped together in the following
global structure CSTFxns:

Structure typedef struct tCSTFxns {

Files CSTCommander.c, CSTCommander.h

7-27 CST Framework Components

Table 7-15. CST Dynamic Functions

Params Type Params Name Description

void (*)
(tCSTChannel* pChan-
nel,
int16 *pIn,
int16 *pOut,
int AmountOf8KHzSam-
ples)

pCSTUserOperation User’s (overridden by the AT Parser or CST Action
layers) callback function called from the CST
Service. Desired area to make extra operations with
I/O samples, time measurement and all control
operations that are beyond the CST Service (e.g.
user-defined control operations and data flow
management)

In the Chipset mode, the default value is
CSTUserOperation(). In the Flex mode, the
default value is CSTAction_UserOperation().
In the Chipset mode, this function interconnects the
CST Service with UART stream being treated as AT
commands and data stream.

void (*)
(tCSTChannel* pChan-
nel)

pCSTServiceFeedBack The routine is called from CSTUserOperation()
or CSTAction_UserOperation(). It gets a new
message from the CST Service and calls
pCSTFeedBackMsgFunc method to process the
message.

In the Chipset mode, the default value is
ATParser_CSTServiceFeedBack(). In the
Flex mode, the default value is
CSTAction_ServiceFeedBack().

void (*)
(tCSTChannel* pChan-
nel,
tCSTServiceMessage
*pMessage)

pCSTFeedBackMsgFunc A good heritable method intended to process CST
Service egress messages.

Called from ATParser_CSTServiceFeedBack()
in the Chipset mode and from
CSTAction_ServiceFeedBack() in the Flex
mode.

The default value is CSTFeedBackMsgFunc().

void (*)
(tCSTChannel* pChan-
nel,
int AmountOf8KHzSam-
ples)

pCSTUserMonitor The routine is called from CSTUserOperation()
and can be used for additional control monitoring.
The parameter is a time stamp in 8KHz samples,
which is the time passed since last call to this
function.

The default value is CSTUserMonitor(). Unused
in Flex mode.

Files CSTCommander.c, CSTCommander.h

 7-28

Table 7-15. CST Dynamic Functions (Continued)

Params Type DescriptionParams Name

bool (*)
(tCSTChannel* pChan-
nel,
tCSTExternalMsgEvent
CSTExternalMsgEvent,
int Data,
int16 *pData)

pCSTExternalMsgEvent The routine is usually called from
CSTFeedBackMsgFunc() to pass obtained data to
the client (to AT parser in the Chipset mode and to
the user in the Flex mode).

In the Chipset mode, the default value is
CSTExternalMsgEvent(). In the Flex mode it
has to be initialized by the user’s callback function.

tCSTPeriphEvent (*)
(tCSTChannel* pChan-
nel,
int AmountOf8KHzSam-
ples)

pPeriphProcess The routine is called from the CST Service and
should perform all hardware related background
operations.

The default value after CST Service initialization is
DAAPeriphProcess(), however, EVM board
specific initialization overloads it to
EVMPeriphProcess().

long (*)
(tCSTChannel* pChan-
nel,
tPeriphDriverCommand
Command,
int Param1,
int Param2)

pPeriphDriver Attempts to perform a hardware-related operation.

The default value after CST Service initialization is
DAAPeriphDriver(), however, EVM board
specific initialization overloads it to
EVMPeriphDriver().

void (*)
(tCSTChannel* pChan-
nel)

pCSTGlobalReset Reset the whole CST solution (called upon the ATZ
command in the Chipset mode) – “soft restart”.

The default value is CSTGlobalReset().

The user may want to overload this method in order
to control exactly how CST restarts, for example, to
keep pre-loaded patch code at software reset.

void (*)
(tCSTChannel* pChan-
nel,
char Data)

pUARTRxMonitor Inform a client (AT parser) about a new byte
obtained from UART.

In the Chipset mode, the default value is
UARTRxMonitor(), which keeps a track of modem
escape character sequences. In the Flex mode, the
default value is CSTAction_UARTRxMonitor(),
which does nothing.

void (*)
(tCSTChannel* pChan-
nel)

pProcessMessage CST Service message processing.

The default value is
CSTServiceProcessMessage()

Files CSTCommander.c, CSTCommander.h

7-29 CST Framework Components

Table 7-15. CST Dynamic Functions (Continued)

Params Type DescriptionParams Name

void (*)
(tCSTChannel* pChan-
nel)

pLowPriorityModem Called from CST Service to post a low priority
modem thread function. Used in multi-threaded
applications only.

The default value is NULL (undefined). In
DSP/BIOS-oriented applications, it should be
initialized with a real function address (see
CSTBIOS.c)

void (*)
(tCSTChannel* pChan-
nel,
int16 *pIn,
int16 *pOut,
int Count)

pVControllerHigh
PriorityProcess

High priority voice processing method.

The default value is
VControllerHighPriorityProcess ().

void (*)
(tCSTChannel* pChan-
nel,
int param)

pVControllerSelect
Vocoder

Vocoder selection function.

The default value is
VControllerSelectVocoder()

void (*)
(tCSTChannel* pChan-
nel)

pVControllerProcess Low priority voice processing method.

The default value is VControllerProcess().

In DSP/BIOS-oriented applications, it can be
reinitialized with another function (see CSTBIOS.c)

} tCSTFxns;

Type tCSTFxns is defined in CSTCommander.h.

See also memory management dynamic functions defined in section 7.5 and
sections devoted to the low-level drivers: 7.7.4, 7.7.7, and 7.7.7.3 in general.

Files CSTCommander.c, CSTCommander.h

 7-30

Callback Function Called From CST Service

User’s (overridden by the AT Parser or CST Action layers) callback function
being called from the CST Service. This is a good place to make extra opera-
tions with I/O samples, time measurement and all control operations that are
beyond the CST Service (e.g. user-defined control operations and data flow
management)

In the Chipset mode, the default value is CSTUserOperation(). In the Flex
mode, the default value is CSTAction_UserOperation(). In the Chipset
mode, this function interconnects the CST Service with UART stream being
treated as AT commands and data stream.

Function void (*pCSTUserOperation)

(tCSTChannel* pChannel,

 int16 *pIn,

 int16 *pOut,

 int AmountOf8KHzSamples)

Parameter(s) pChannel Pointer to a global CST channel structure
pIn Pointer to a buffer of valid input samples
pOut Pointer to a buffer of valid output samples
AmountOf8KhzSamples Amount of samples in the buffers

Return Value None

Getting Egress Message From CST Service Message

The routine is called from CSTUserOperation() or CSTAction_UserOp-
eration(). It gets a new message from the CST Service and calls
pCSTFeedBackMsgFunc method to process the message.

In the Chipset mode, the default value is ATParser_CSTServiceFeed-
Back(). In the Flex mode, the default value is CSTAction_Service-
FeedBack().

Function void (*pCSTServiceFeedBack)

(tCSTChannel* pChannel)

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value None

Files CSTCommander.c, CSTCommander.h

7-31 CST Framework Components

Processing CST Service Egress Message

A good heritable method intended to process CST Service egress messages.
Called from ATParser_CSTServiceFeedBack() in the Chipset mode and
from CSTAction_ServiceFeedBack() in the Flex mode.

The default value is CSTFeedBackMsgFunc().

Function void (*pCSTFeedBackMsgFunc)

(tCSTChannel* pChannel,

 tCSTServiceMessage *pMessage)

Parameter(s)

pChannel Pointer to a global CST channel structure

pMessage The message from the CST Service

Return Value None

Additional Monitor Function

The routine is called from CSTUserOperation() and can be used for addi-
tional control monitoring. The parameter is a time stamp in 8KHz samples,
which is the time passed since last call to this function.

The default value is CSTUserMonitor(). Not used in Flex mode.

Function void (*pCSTUserMonitor)

(tCSTChannel* pChannel,

 int AmountOf8KHzSamples)

Parameter(s)

pChannel Pointer to a global CST channel structure

AmountOf8KhzSamples A time stamp in 8KHz samples that informs the
time passed since last call

Return Value None

Files CSTCommander.c, CSTCommander.h

 7-32

User’s Callback Function to Process CST Commander Messages

The routine is usually called from CSTFeedBackMsgFunc() to pass obtained
data to the client (to AT Parser in the Chipset mode and to the user in the Flex
mode).

In the Chipset mode, the default value is CSTExternalMsgEvent(). In the
Flex mode it has to be initialized by the user’s callback function.

Function bool (*pCSTExternalMsgEvent)

(tCSTChannel* pChannel,

 tCSTExternalMsgEvent CSTExternalMsgEvent,

 int Data,

 int16 *pData)

Parameter(s) pChannel Pointer to a global CST channel structure
CSTExternalMsgEvent Event info (see 7.2.2.4)
Data Depending on the event, it can be data byte or length of data

bytes in pData buffer or nothing
pData Depending on the event, it can be data buffer or nothing

Return Value The false value means that the message event needs to be repeated again.
The false value cancels a possible switch to another atomic command script
caused by the corresponding CST Service message and sends a special
repeat event USER_REPEAT_DATA to itself. This is also used in the AT Parser
to output the Caller ID message information in parts.

Peripheral Background Periodic Function

The routine is called from the CST Service and should perform all hardware
related background operations.

The default value after CST Service initialization is DAAPeriphProcess(),
however, EVM board specific initialization overloads it to EVMPeriphPro-
cess().

Function tCSTPeriphEvent (*pPeriphProcess)

(tCSTChannel* pChannel,

 int AmountOf8KHzSamples)

Parameter(s)

pChannel Pointer to a global CST channel structure

AmountOf8KhzSamples Time stamp in 8KHz samples that informs the
time passed since last call

Return Value A peripheral event (see 7.7.2.3)

Files CSTCommander.c, CSTCommander.h

7-33 CST Framework Components

Peripheral Driver Command Function

Attempts to perform a hardware-related operation.

The default value after CST Service initialization is DAAPeriphDriver(),
however, EVM board specific initialization overloads it to EVMPeriphDriv-
er().

Function long (*pPeriphDriver)

(tCSTChannel* pChannel,

 tPeriphDriverCommand Command,

 int Param1,

 int Param2)

Parameter(s) pChannel Pointer to a global CST channel structure
Command Peripheral command (see 7.7.2.2)
Param1 First auxiliary parameter for the command
Param2 Second auxiliary parameter for the command

Return Value Result of the command execution. Zero means that the command has not yet
finished executing (the user has to send the command again to push the
process). Nonzero result means that the execution has completed. For
example, when the user sends pdc_PULSE_GEN command to dial a digit in
pulse mode, the driver will return zero until the dialing of this digit is completed.

If the command is to read a DAA hardware register (pdc_READ_REG), the re-
turned 32-bit integer value will contain the result of the execution in the high
word and the read register value in the low word. If the high and low words are
equal to zero, the register has not been read yet. Otherwise, the high word be-
comes non-zero and low word contains the register value.

CST Framework Reset Function

Reset the whole CST solution (called upon the ATZ command in the Chipset
mode) – “soft restart”.

The default value is CSTGlobalReset().

The user may want to overload this method in order to control exactly how CST
restarts, for example, to keep pre-loaded patch code at software reset.

Function void (*pCSTGlobalReset)

(tCSTChannel* pChannel)

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value None

Files CSTCommander.c, CSTCommander.h

 7-34

UART Byte Monitor Function

Inform a client (AT Parser) about a new byte obtained from UART.

In the Chipset mode, the default value is UARTRxMonitor(), which keeps a
track of modem escape character sequences. In the Flex mode, the default
value is CSTAction_UARTRxMonitor(), which does nothing.

Function void (*pUARTRxMonitor)

(tCSTChannel* pChannel,

 char Data)

Parameter(s)

pChannel Pointer to a global CST channel structure

Data UART byte

Return Value None

Note: This function informs AT Parser of the bytes that are received right away,
before putting these bytes into a buffer, so that in case data is stuck in the buffer
(when modems are in retrain mode, for example), escape sequence (“+++”
with guard periods) could still be received and processed by AT Parser.

At the same time, the AT Parser aksks the UART driver to perform auto-baud
detection if the AT Parser is in the Command Mode.

Processing CST Service Ingress Messages

Processes messages coming to the CST Service.

The default value is CSTServiceProcessMessage()

Function void (*pProcessMessage)

(tCSTChannel* pChannel)

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value None

Files CSTCommander.c, CSTCommander.h

7-35 CST Framework Components

Posting Low Priority Modem Thread

Called from CST Service to post a low priority modem thread function. Used
in multi-threaded applications only.

The default value is NULL (undefined). In DSP/BIOS-oriented applications, it
should be initialized with a real function address (see CSTBIOS.c)

Function void (*pLowPriorityModem)

(tCSTChannel* pChannel)

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value None

High Priority Voice Processsing Function

The default value is VControllerHighPriorityProcess().

For more details on this function, read section 7.6.2.2.

Function void (*pVControllerHighPriorityProcess)

(tCSTChannel* pChannel,

 int16 *pIn,

 int16 *pOut,

 int Count)

Parameter(s)

pChannel Pointer to a global CST channel structure

pIn Pointer to a buffer of valid input samples

pOut Pointer to a buffer of valid output samples

Count Amount of samples in the buffers

Return Value None

Files CSTCommander.c, CSTCommander.h

 7-36

Vocoder Selection Function

The default value is VControllerSelectVocoder()

For more details on this function, read section 7.6.2.2.

Function void (*pVControllerSelectVocoder)

(tCSTChannel* pChannel,

 int param)

Parameter(s)

pChannel Pointer to a global CST channel structure

param Bit Per Sample

Return Value None

Low Priority Voice Processing Function

The default value is VControllerProcess().

In DSP/BIOS-oriented applications, it can be reinitialized with another function
(see CSTBIOS.c)

For more details on this function, read section 7.6.2.2.

Function void (*pVControllerProcess)

(tCSTChannel* pChannel)

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value None

Files CSTCommander.c, CSTCommander.h

7-37 CST Framework Components

7.2.2.2 Main Control Fields of CST Commander

The CST Commander control interface consists of several important fields,
which determine the state of the CST Framework.

typedef struct tCSTCommanderGeneral {

Table 7-16. CST Commander General Control Interface

Field Type Field Name Description

tCSTAtomicCommand* pCSTAtomicCommand Pointer to the current atomic command (see 7.2.3.1).
Zero means that there is no command currently being
executed.

tCSTCommandMode CommandMode The CST Commander mode (see 7.2.2.3 mostly used
by the AT-command parser. The CST Commander has
an atomic command to change this field.

int CLSMode The AT Parser’s mode. The CST Commander never
reads this field internally, but can reset it when
CommandMode becomes ccm_STANDARD_COMMAND.
Nevertheless CLSMode is included in the structure as an
important CST Framework variable.

} tCSTCommanderGeneral;

Type tCSTCommanderGeneral is defined in CSTCommander.h.

7.2.2.3 Set of CST Commander Modes

One of the CST Commander’s control fields, CommandMode, defines the glob-
al state of the CST Framework as a whole. This state is mostly used by the AT
command parser. Possible command modes are listed in the following table.

Enum Definition typedef enum tCSTCommandMode {

Table 7-17. Set of CST Commander Modes

Value Name Description

0 ccm_STANDARD_
COMMAND

Standard command mode. CST Framework is neither pumping data
nor connecting. AT Parser recognizes and accepts standard AT
commands only

1 ccm_ONLINE_
COMMAND_MODE

CST Framework is in online command mode. Modem stays connected
to the line, while the user has the possibility to enter AT commands

2 ccm_VOICE_MODE CST Framework is in voice command mode. Voice AT commands are
permitted

3 ccm_ANYKEY_BREAK_
MODEM

Modem connection establishment is in progress. Any incoming byte
from UART causes break of connection and switches the framework
back to standard command mode

Files CSTCommander.c, CSTCommander.h

 7-38

Table 7-17. Set of CST Commander Modes (Continued)

Value DescriptionName

4 ccm_ANY-
KEY_BREAK_VOICE

Voice connection in progress. Any incoming byte from UART causes
break of connection and switches the framework back to standard
command mode

5 ccm_MODEM_DATA CST Framework is pumping modem data

6 ccm_VOICE_DATA CST Framework is pumping voice data.
Note that this mode disables auto turnoff upon busy detection. Thus, ’voice data’
command state affects not only AT Parser behavior, but CST Commander as
well.

7 ccm_PARAM_DATA Special system mode for loading external flex application image (data) into CST
chip

} tCSTCommandMode;

Type tCSTCommandMode is defined in CSTCommander.h.

CST command mode field can be viewed as a shared interface between the
CST Commander layer and AT Parser (in Flex mode it is used too). It repre-
sents three main CST Framework modes: standard command, connecting
and voice/modem data transfer.

7.2.2.4 CST Commander Extended Message Events

Upon message reception from the CST Service, the CST Commander pro-
cesses this message itself and partially converts the information into another
kind of messages to be passed to the CST Commander user (AT Parser in the
Chipset mode). Some message events contain an additional data byte or data
array. (see section 7.1.1.2)

Enum Definition typedef enum tCSTExternalMsgEvent {

Table 7-18. Set of CST Commander External Message Events

Value Name Description

0 eme_NONE No event

1 eme_PERIPH_DATA Event detected by the peripheral driver. Attached data contains peripheral
driver message (see 7.7.2.3)

2 eme_CID_DATA Caller ID result code. Attached data contains Caller ID result code (see
sections 7.6.2.3 and 9.4.2.4)

3 eme_DTMF_DATA Recognized DTMF symbol. Attached data contains DTMF symbol

Files CSTCommander.c, CSTCommander.h

7-39 CST Framework Components

Table 7-18. Set of CST Commander External Message Events (Continued)

Value DescriptionName

4 eme_CPTD_DATA Detected Call Progress Tone. Attached data contains CPTD tone.

5 eme_MODEM_
CONNECT

Informs that the modem just connected (no attached data)

6 eme_MODEM_
DISCONNECT

Informs that the modem just disconnected (no attached data)

7 eme_VOICE_
DISCONNECT

Informs that voice just disconnected (i.e. turned off in both directions, no
attached data)

8 eme_VOICE_DATA Voice data. Attached data is an array of voice data bytes (in each 16-bit
word only lower 8 bits are used)

9 eme_PARAM_DATA Special system message for loading external flex application image (data)
into CST chip. It just echoes back loaded bytes

10 eme_PARAM_DATA_
TURN

Special system message informing the AT parser that loading of external
flex application is over

11 eme_AUTOTURNOFF_
ALL

CST Commander message event being generated upon auto switch to the
aTurnOffAll script (see 7.2.3.2). Attached data is a unique ID indicating
the reason for turnoff request (belongs to atk_CPTD_TIMEOUT,
atk_BUSY, atk_MODEMDISCONNECT, atk_ALGCREATE_FAIL).
User can cancel (refuse) turning off by returning false (zero).

12 eme_MODEM_DATA Modem data. Attached array is modem data bytes (in each 16-bit word
only lower 8 bits are used). This event is used by CST Action layer only.
Note that it is not very suitable way for intensive data reception in ARQ
mode. (see section 7.6.1)

13 eme_TICK Tick message (used by CST Action layer only). Attached data contains
number of processed DAA codec samples since last eme_TICK.

} tCSTExternalMsgEvent;

Type tCSTExternalMsgEvent is defined in CSTCommander.h.

Files CSTCommander.c, CSTCommander.h

 7-40

7.2.2.5 Brief Description of CST Commander Function Interface

Table 7-19. Brief Description of CST Commander Function

Name Functionality

CSTCommanderInit() CST Commander initialization

CSTCommanderSoftReset() Reset some runtime varriables

CSTCommander() The main CST Commander function

Initialization CST Commander initialization

Function void CSTCommanderInit (tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value None

Reset Runtime Variables

Reset some runtime varriables to be ready to start a new script of atomic com-
mands.

Function void CSTCommanderSoftReset (tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value None

Files CSTAtomic.c, CSTAtomic.h

7-41 CST Framework Components

The Main CST Commander Function

The purpose of the function is to execute the current atomic command being
pointed to by the pCSTAtomicCommand pointer (see 7.2.2.2). To be more pre-
cise, this function kind of “attempts” to execute an atomic command, until it
succeeds, because there may be some other pending tasks/commands to be
completed, or because execution of an atomic command takes time.

The function is inherited by the AT Parser.

Function void CSTCommander (tCSTChannel* pChannel,int

AmountOf8KHzSamples);

Parameter(s)

pChannel Pointer to a global CST channel structure

AmountOf8KHzSamples Time stamp in 8KHz samples that indicates the time
passed since last call

Return Value None

7.2.3 Files CSTAtomic.c, CSTAtomic.h

7.2.3.1 CST Commander Atomic Commands

The CST Commander is always attempting to perform a control operation, an
atomic command. After the current command has been executed, the CST
Commander increments pCSTAtomicCommand pointer (see 7.2.2.2) to se-
lect the next atomic command in a script, which is a sequence of atomic com-
mands. There is a couple of exceptions: the cac_NONE command stops the
script execution and must be the last command in the script; the cac_DIAL-
ING command may temporarily interrupt execution of the script, where it has
been encountered, and force the CST Commander to start execution of anoth-
er script, which must not contain another cac_DIALING command. Some
commands require an extra word or two as their parameters.

Enum Definition typedef enum tCSTAtomicCommand {

Table 7-20. Set of CST Commander Atomic Commands

Value Name Description

0 cac_NONE Marks the end of an atomic command script. If there is an
interrupted script, it is resumed. Otherwise, if there’s no interrupted
script, further atomic command execution is stopped by setting
pCSTAtomicCommand to zero.

1 cac_TURNOFF_ALL Sends a cstst_TURNOFF_ALL message to the CST Service that
will immediately turn off all active algorithms (see the
cstst_TURNOFF_ALL message). (see section 7.1.1.3)

Files CSTAtomic.c, CSTAtomic.h

 7-42

Table 7-20. Set of CST Commander Atomic Commands (Continued)

Value DescriptionName

2 cac_PERIPH_SIMPLE_X Executes a peripheral driver command (see 7.7.2.1), the command
is passed as a parameter in the next word. The next atomic
command will be processed only after successful execution of this
peripheral command.

3 cac_PAUSE_X Sustains a pause, whose duration is passed as a parameter in the
next word. If the parameter is less than
csp_SPECIAL_PAUSE_AMOUNT, it is treated as an index into the
aCSTSpecialPauses array that contains real pause duration
values and scales (seeTable 7-21). Otherwise, the parameter
contains immediate pause value in milliseconds.

4 cac_SET_COMMAND_
MODE_X

Sets CommandMode to a new value (see 7.2.2.3), passed as a
parameter in the next word.

5 cac_WAIT_CPTD_
APPEARANCE_XX

Waits for appearance of a Call Progress Tone signal, whose type is
passed as a parameter in the next word. Detection timeout is
passed in the second parameter, having the same format as
cac_PAUSE_X. Waiting for a call progress tone should be done
after CPTD object is created using the cac_TURNON_SIMPLE_X
command.

6 cac_WAIT_CPTD_
DISAPPEARANCE_X

Waits for disappearance or absence of a call progress tone signal,
whose type is passed as a parameter in the next word.

7 cac_TURNON_VOICE_
LOOP

Sends a cstst_VOICE_LOOP message to the CST Service to turn
on a stand alone voice loop (enable echo canceller and Caller ID
for ’on call waiting’ mode) (see 7.1.1.3 and 7.1.1.5).

8 cac_TURNON_VOICE_
DATA_X

Sends a cstst_VOICE_DATA message to the CST Service to turn
on the voice pumping in direction, defined by a parameter in the
next word (the parameter is a value of IsItTxTask field/ (see
7.1.1.5)

9 cac_TURNOFF_VOICE_
DATA_X

Sends a cstst_VOICE_DATA message to the CST Service to turn
off the voice pumping in direction, defined by a parameter in the
next word (the parameter is a value of IsItTxTask field, (see
7.1.1.5).

10 cac_LOAD_PARAM_DATA_
LOOP

Special system command to start loading an external flex
application image (data) into the CST chip

11 cac_LOAD_PARAM_DATA Special system command for loading an external flex application
image (data) into the CST chip

12 cac_DIALING Dials a complete telephone number, defined by ASCII string in the
aDialNumber field (see 7.2.1.2).

Files CSTAtomic.c, CSTAtomic.h

7-43 CST Framework Components

Table 7-20. Set of CST Commander Atomic Commands (Continued)

Value DescriptionName

13 cac_TURNON_MODEM Sends a cstst_MODEM message to CST Service to turn on the
modem (see 7.1.1.3 and 7.1.1.5)

14 cac_MODEM_CONNECT_
WAIT

Waits for a modem connection. The next atomic command will be
accepted only after the modem has established a connection.

15 cac_TURNON_CID_X Sends a message to the CST Service to turn on the Caller ID in a
mode, defined by a parameter in the next word. The parameter is
of tCIDStdSeq type and selects a scenario of expected Caller ID.

16 cac_TURNON_SIMPLE_X Sends a message to the CST Service to turn on an algorithm (see
7.1.1.3), defined by a parameter in the next word. No algorithm
specific parameters are included in the message. Used to start
running DTMF and CPTD detectors.

17 cac_SOFT_STOP_TASK Correctly terminates the current task. If the current algorithm is a
modem, it calls the MODINT_disconnect method (see section
7.6.1).

18 cac_OPERA-
TIVE_WRITE_SREG_XX

Sets an S-register, whose number is specified as a parameter in
the next word, to a value, specified by another parameter in the
second word.

19 cac_BRANCH_IF_SREG_XX Skips a number of words/commands in the script (the number is
passed as a parameter in the next word) if the value of an
S-register (specified by a parameter in the second word) is
nonzero.

22 cac_RESET Resets the whole CST solution (called upon the command ATZ) –
“soft restart”. The pointer pCSTGlobalReset points to the
function to be called
(by default, it points to CSTGlobalReset()).

NOTE: All the following commands are meaningful only for the AT Parser. The CST Commander is not aware
of them.

20 cac_READ_S_REG Reads an S-register

21 cac_WRITE_S_REG Writes an S-register

23 cac_PRINT_RESPONSE Prints a final response

24 cac_PRINTING_INTER-
NAL_SREG_ALIAS_START

Starts printing an S-registers table (AT$)

25 cac_PRINTING_
INTERNAL_SREG_ALIAS

Continues printing the S-registers table

26 cac_PRINTING_CMD_START Starts printing the AT commands list (AT$H)

Files CSTAtomic.c, CSTAtomic.h

 7-44

Table 7-20. Set of CST Commander Atomic Commands (Continued)

Value DescriptionName

27 cac_PRINTING_CMD Continues printing the AT commands list

28 cac_PRINTING_SET-
TINGS_START

Starts printing the current settings of the AT commands (AT&V)

29 cac_PRINTING_SETTINGS Continues printing the current settings of the AT commands

} tCSTAtomicCommand;

Type tCSTAtomicCommand is defined in CSTAtomic.h.

The CST Commander supports 12 (csp_SPECIAL_PAUSE_AMOUNT) differ-
ent special pauses, which are set in the tSpecPauseDescr aCSTSpe-
cialPauses[csp_SPECIAL_PAUSE_AMOUNT] array. Each record of the
array contains two fields: time duration and time scale in milliseconds.

Enum Definition typedef enum tCSTSpecialPauses {

Table 7-21. CST Commander Special Pauses

Value Name Description

0 csp_LONG_DIAL_PAUSE Pause for the comma ‘,’ character in a dial number, in
seconds. The default value is 2 sec

1 csp_SHORT_DIAL_PAUSE Pause for the slash ‘/’ character in a dial number, in
milliseconds. The default value is 125 ms

2 csp_MODEM_START_PAUSE Pause before the modem calls/answers and a voice call
starts. The default value 1 sec

3 csp_FLASH_ONHOOK_
PAUSE

Pause duration for the on hook state during the flash
procedure. The default value is 300 ms

4 csp_FLASH_OFFHOOK_
PAUSE

Pause duration for the off hook state during the flash
procedure.
The default value is 0 ms

5 csp_CPTD_DIALTONE_
TIMEOUT

Timeout for dial tone detection. Timeout results in the
abortion of the current process.
The default value is 10 sec

6 csp_CPTD_RINGBACK_
TIMEOUT

Timeout for ringback detection. Timeout results in the
abortion of the current process.
Default value is 60 sec

Files CSTAtomic.c, CSTAtomic.h

7-45 CST Framework Components

Table 7-21. CST Commander Special Pauses (Continued)

Value DescriptionName

7-1 1 cps_FREE_PAUSE_1 -
cps_FREE_PAUSE_5

Reserved for the User

12 csp_SPECIAL_PAUSE_
AMOUNT

Amount of special pauses in aCSTSpecialPauses array.

} tCSTSpecialPauses;

Type tCSTSpecialPauses is defined in CSTCommander.h.

7.2.3.2 Basic Predefined CST Commander Atomic Command Scripts

The CST Commander layer contains a big set of predefined atomic command
scripts that allow the user to perform standard telephone operations easily.
The relevant subset follows:

Table 7-22. Basic Predefined CST Commander Atomic Command Scripts

Name Functionality

aOffHook Go off hook, run the CPTD and DTMF detectors, don’t run the Caller ID (to run
the Caller ID, use special scripts, described below). Corresponds to the ATH1
command.

aCIDAfterRingEnd Run the Caller ID after a ring end

aCIDAfterLineReversal Run the Caller ID after a line reversal

aTurnOnModemCall Go off hook, wait for a dial tone, dial the number and run the modem in the
originating (calling) mode. The semicolon ‘;’ dial modifier disables running the
modem after the number has been dialed. Corresponds to the ATD command.

aTurnOnModemAns Go off hook and run the modem in the answer (called) mode. Corresponds to
the ATA command.

aTurnOnVoiceCall Go off hook, wait for a dial tone, dial the number, wait for a ring back signal
appearance/disappearance (only if the ‘@’ dial modifier found) and run the
voice pump (echo canceller and Caller ID). Corresponds to the ATD command
in the voice mode.

aTurnOnVoiceAns Go off hook and run the voice pump (echo canceller and Caller ID).
Corresponds to the ATA command in the voice mode.

aTurnOnVoiceRxData Run the G.726/G.711 encoder and all signal detectors (CPTD, DTMF).
Corresponds to the AT#VRX command.

Files CSTAtomic.c, CSTAtomic.h

 7-46

Table 7-22. Basic Predefined CST Commander Atomic Command Scripts (Continued)

Name Functionality

aTurnOnVoiceTxData Run the G.726/G.711 decoder and all signal detectors (CPTD, DTMF).
Corresponds to the AT#VTX command.

aTurnOnVoiceRxTxData Run the G.726/G.711 encoder, decoder and all signal detectors (CPTD,
DTMF). Corresponds to the AT#VRXTX command.

aTurnOffVoiceData Turn off the G.726/G.711 encoder, decoder, do not turn off signal detectors
(CPTD, DTMF). Corresponds to the <DLE><3> sequence in the AT-parser
stream.

aJustCall Go off hook, wait for a dial tone, dial the number. Corresponds to the ATDxx;
command

aSoftTurnOffAll Correctly stop the current task, then turn off all other algorithms and go on
hook. Corresponds to the ATH command.

aTurnOffAll Turn off all algorithms, go on hook. Corresponds to the ATH command. Also
used for abort operation.

aCSTServiceTurnOffAll Turn off all algorithms without going on hook.

The predefined atomic scripts are defined in CSTAtomic.c.

CST Action Message Type Key

7-47 CST Framework Components

7.3 CST Action

7.3.1 Unified CST Action Message

A CST Action message combines several interface messages and commands
into a single packet.

Structure typedef struct tCSTAction {

Table 7-23. Unified CST Action Message

Field Type Field Name Description

tCSTActionType ActionType CST Action type key (see 7.3.2)

union Action{

tCSTConfigCommand CSTConfigCommand Corresponds to cat_CONFIG_COMMAND. To
configure CST settings. The CST Action message
of this type will be executed immediately (see
7.3.3.1

tCSTStandard
Operation

CSTStandard
Operation

Corresponds to cat_STANDARD_OPERATION. To
run one standard (typical) operation which belongs
to tCSTStandardOperationType (see 7.3.3.2)

tCSTServiceMessage CSTServiceMessage Corresponds to cat_CSTSERVICE_MESSAGE. To
transfer CST Service message (see 7.1.1.2)
directly via CSTSendServiceMessage() method
(see 7.1.1.9)

}

} tCSTAction;

Type tCSTAction is defined in CSTAction.h.

7.3.2 CST Action Message Type Key

The key type selects the actual type of the CST Action message content.

Enum Definition typedef enum tCSTActionType {

Table 7-24. CST Action Message Type Key

Value Name Description

0 cat_SET_REGISTER Indicates that the rest of the Action message is described by
the CSTConfigCommand structure (see 7.3.3.1).

1 cat_GET_REGISTER Indicates that the rest of the Action message is described by
the CSTConfigCommand structure (see 7.3.3.1).

CST Action Message Contents

 7-48

Table 7-24. CST Action Message Type Key (Continued)

Value DescriptionName

2 cat_STANDARD_OPERATION Indicates that the rest of the Action message is described by
the CSTStandardOperation structure (see 7.3.3.2).

3 cat_CSTSERVICE_MESSAGE Indicates that the rest of the Action message is described by
the CSTServiceMessage structure (see 7.1.1.2).

} tCSTActionType;

Type tCSTActionType is defined in CSTAction.h.

7.3.3 CST Action Message Contents

7.3.3.1 Configuration Commands

Corresponds to cat_SET_REGISTER and cat_GET_REGISTER types, used
to set and get CST settings through the S-registers. The CST Action message
of this type will be executed immediately.

Structure typedef struct tCSTConfigCommand {

Table 7-25. The tCSTConfigCommand Structure

Field Type Field Name Description

int InternalSReg S-register number to be read/set

int Value Retrieved value/New value to be set

} tCSTConfigCommand;

Type tCSTConfigCommand is defined in CSTAction.h.

7.3.3.2 Standard Commands

Correspond to cat_STANDARD_OPERATION, used to run one standard (typi-
cal) operation of the type tCSTStandardOperationType. This action is in-
tended to run or configure an atomic command script.

Structure typedef struct tCSTStandardOperation {

Table 7-26. The tCSTStandardOperation Structure

Field Type Field Name Description

tCSTStandardOperationType OperationType Select the operation type (see Table 7-27)

uint8 aData[] Attached data depending on the standard
operation

CST Action Message Contents

7-49 CST Framework Components

} tCSTStandardOperation;

Type tCSTStandardOperation is defined in CSTAction.h.

Enum Definition typedef tCSTStandardOperationType {

Table 7-27. Set of CST Action Standard Operations

Value Name Description

0 sot_OFF_HOOK Corresponds to the aOffHook script (see 7.2.3.2 for this
and all remaining values of Table 7-27)

1 sot_CID_AFTER_RINGEND Corresponds to the aCIDAfterRingEnd script

2 sot_CID_AFTER_LINE_
REVERSAL

Corresponds to the aCIDAfterLineReversal script

3 sot_TURNON_MODEM_CALL_X Corresponds to the aTurnOnModemCall script. The aData
field should contain the dialing number

4 sot_TURNON_MODEM_ANS Corresponds to the aTurnOnModemAns script

5 sot_TURNON_VOICE_CALL_X Corresponds to the aTurnOnVoiceCall script. The aData
field should contain the dialing number

6 sot_TURNON_VOICE_ANS Corresponds to the aTurnOnVoiceAns script

7 sot_TURNON_VOICE_RXDATA Corresponds to the aTurnOnVoiceRxData script

8 sot_TURNON_VOICE_TXDATA Corresponds to the aTurnOnVoiceTxData script

9 sot_TURNON_VOICE_
RXTXDATA

Corresponds to the aTurnOnVoiceRxTxData script

10 sot_TURNOFF_VOICE_DATA Corresponds to the aTurnOffVoiceData script

11 sot_JUST_CALL_X Corresponds to the aJustCall script

11 sot_SOFT_TURNOFF_ALL Corresponds to the aSoftTurnOffAll script

12 sot_TURNOFF_ALL Corresponds to the aTurnOffAll script

13 sot_CSTSERVICE_TURN-
OFF_ALL

Corresponds to the aCSTServiceTurnOffAll script

14 sot_CUSTOM_ATOM-
IC_CHAIN_X

Custom atomic command script. The script is coded directly
in the aData field

15 sot_SET_DIAL_STRING_X Just set a new dialing number being given via aData field.
This operation (if accepted) is executed immediately

} tCSTStandardOperationType;

Type tCSTStandardOperationType is defined in CSTAction.h.

Brief Description of CST Action Function Interface

 7-50

7.3.4 Brief Description of CST Action Function Interface

Table 7-28. CST Action Function Interface

Name Functionality

CSTAction_Init() Standard CST initialization (does not inlude any hardware initialization)

CSTAction() CST Action execution

CSTAction_Process() The main high-priority thread function. Should be called periodically

7.3.4.1 CST Initialization

CST initialization (does not inlude hardware init). This function performs a re-
quired set of operations to correctly initialize the CST Service , CST Com-
mander and CST Action layers. The full CST initialization can be done as fol-
lows:

TargetBoardInit

CSTAction_Init

TargetPeriphInit

Function void CSTAction_Init

(tCSTChannel* pChannel,

 bool IsBIOSUsed,

 bool (*pUserCallback) (tCSTChannel* pChannel,

 tCSTExternalMsgEvent CSTExternalMsgEvent,

 int Data,

 int16 *pData));

Parameter(s)

pChannel Pointer to a global CST channel structure

IsBIOSUsed Single threaded/multi-threaded (DSP/BIOS) mode
selection

pUserCallback The user callback function to be called by the CST
Framework. The function performs transfer of data and
control information from the CST Commander (see
description of the pCSTExternalMsgEvent function in
section 7.2.2.1). The CST Action, however, may also
transfer modem data from the CST Service through this
function. The function should normally return true.

Return Value None

Brief Description of CST Action Function Interface

7-51 CST Framework Components

7.3.4.2 CST Action Execution

The main interface function of the Action layer is CSTAction(). Similarly to
the CST Service message, the CST Action message can be accepted or re-
jected. The configuration command (cat_CONFIG_COMMAND) is to be accept-
ed immediately. The standard operation (cat_STANDARD_OPERATION) is
accepted, if there is no other pending operation. Acceptance of the standard
operation usually starts a process, which will not allow accepting the next com-
mand or a direct CST Service message being passed, until the process is
done.

The message cat_CSTSERVICE_MESSAGE means an attempt to send a
message directly to the CST Service, bypassing the command layer. For ex-
ample, it can be a data message. If the CST Service refused the message due
to another message being processed at the moment, cmr_TRY_AGAIN result
would be returned.

Function tCSTMessageResult CSTAction(tCSTChannel*

pChannel,tCSTAction *pAction);

Parameter(s)

pChannel Pointer to a global CST channel structure

pAction Pointer to a CST Action message (see 7.3.1)

Return Value Immediate result (see 7.1.1.7). In case of cat_GET_REGISTER key type, the
result is S-register value.

7.3.4.3 Main High-priority Thread

The main high-priority thread routine (periodically called function). It is self-
synchronized with respect to DAA interrupts. In fact, it just calls CSTService-
Process() function (see 7.1.1.9). The routine should be periodically called
at least once each 5 milliseconds, but it is strongly recommended to call it sev-
eral times more often.

Function inline void CSTAction_Process (tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value None

Using CST Action Interface, Practical Aspects

 7-52

7.3.5 Using CST Action Interface, Practical Aspects

7.3.5.1 Standard Applications

This chapter illustrates use of the CST Action interface by a set of practical ex-
amples. Section 6.3.7 has illustrated implementation of an algorithm making
a modem call, sending and receiving data and disconnecting. The implement-
ed algorithm includes the following subtasks:

� Originating a call: dialing a number (say, 532) and running the modem
This operation is similar to ATD532 command and implies going off hook,
sustaining a pause, waiting for dial tone, dialing the number, detecting
busy tones, turning on the modem and waiting for connection establish-
ment. The whole process can be run as follows:

� Starting the process
The following code should a be part of the function MyPeriodic-
Thread(). It sets all necessary Action fields, sends the Action mes-
sage and checks whether the message has been accepted. If the
message was rejected, the operation should be repeated again.

tCSTAction Action;

Action.ActionType = cat_STANDARD_OPERATION;

Action.Action.CSTStandardOperation.OperationType = sot_TUR-

NON_MODEM_CALL_X;

Action.Action.CSTStandardOperation.aData[0] = ’5’;

Action.Action.CSTStandardOperation.aData[1] = ’3’;

Action.Action.CSTStandardOperation.aData[2] = ’2’;

Action.Action.CSTStandardOperation.aData[3] = 0;

if (CSTAction (&Ch0,&Action) == cmr_TRY_AGAIN)

 //Repeat again!

else

 //Process has started. Wait for connect.

� Waiting for the connection
The following code should be a part of the function MyCall-
Back()(CSTExternalMsgEvent is a parameter of the function).
The function analyzes the message from the CST Service and sees if
the message is a connect or disconnect/termination event. Note that
this code should remain active even after the connection establish-
ment.

Using CST Action Interface, Practical Aspects

7-53 CST Framework Components

if (CSTExternalMsgEvent == eme_MODEM_CONNECT)
 //Modem successfully connected!

if ((CSTExternalMsgEvent == eme_AUTOTURNOFF_ALL) ||
 (CSTExternalMsgEvent == eme_MODEM_DISCONNECT))
 //Connection failed. All operations aborted

� Preparing a static CST Action message for data sending
The following code should be a part of the function MyPeriodic-
Thread(). It initializes a data message to be filled by transmitted
data.

static tCSTAction DataAction;

DataAction.ActionType = cat_CSTSERVICE_MESSAGE;

DataAction.Action.CSTServiceMessage.Task = cstst_MODEM;

DataAction.Action.CSTServiceMessage.IsItTxTask = 1;

DataAction.Action.CSTServiceMessage.SubEvent = cse_DATA;

DataAction.Action.CSTServiceMessage.DataLength = 0; //empty

//Now we are ready to send and receive data

� Sending and receiving data
Now that the connection has been established and we are ready to send
and receive data. Here it is assumed that the user has data to be sent and
expects data to be received. Just in this particular example, data will be
sent byte by byte.

� Sending a data byte
The following code should be a part of the function MyPeriodic-
Thread(). It fills the data message and tries to transfer current con-
tent into CST. If the message was accepted, all contained data has
been copied into CST local memory and is being sent. This means that
the DataAction variable can be filled again by next data.

tCSTMessageResult ActionResult;

if (DataAction.Action.CSTServiceMessage.DataLength < CST_MAXDA-
TALENGTH)
 DataAction.Action.CSTServiceMessage.aData[

 DataAction.Action.CSTServiceMessage.DataLength++] = <next
byte to be sent>;

ActionResult = CSTAction (&Ch0,&DataAction);

if ((ActionResult == cmr_RESULTOK) || (ActionResult == cmr_EX-

ECUTING))
 DataAction.Action.CSTServiceMessage.DataLength = 0;
 //Send next data byte

Using CST Action Interface, Practical Aspects

 7-54

� Receiving data bytes
The following code should be a part of the function MyCallBack()
(CSTExternalMsgEvent, pData and Data are parameters of
the function). The CST Action interface forces the user to take all re-
ceived data. To be able to take the received data partially, use a direct
callback from the modem integrator (see 7.6.1).

int DataCount = Data;

if (CSTExternalMsgEvent == eme_MODEM_DATA)

 while (DataCount--)

 <pointer to a static buffer>++ = *pData++;

� Disconnecting
Having sent and received all data, the modem should terminate the con-
nection. This operation is similar to the ATH command and it implies a soft
modem disconnection and going on hook. The whole process can be exe-
cuted as follows:

� Accurate disconnection
The following code should be a part of the function MyPeriodic-
Thread(). It sets all necessary Action fields, sends the Action mes-
sage and checks whether the message has been accepted.

tCSTAction Action;

Action.ActionType = cat_STANDARD_OPERATION;
Action.Action.CSTStandardOperation.OperationType = sot_SOFT_TURN-

OFF_ALL;

if (CSTAction (&Ch0,&Action) == cmr_TRY_AGAIN)
 //Repeat again!
else

 //Go to initial state and expect eme_MODEM_DISCONNECT or
 //eme_AUTOTURNOFF_ALL events

� Going to the initial state
The modem has started disconnecting. However, the process may
take a while depending on V.42 activity and the value of the
srd_TIME_BEFORE_FORCED_HANGUP S-register. So, there may be
a delay between disconnection initiation and actually going to the ini-
tial state.

It is important to note again, that there may be an additional callback mecha-
nism (direct call from the data modem controller, see 7.6.1) for intensive mo-
dem data transfers in ARQ mode, because the CST Action interface does not
allow the user to reject the received data. If the user is unable to take the data,
the data will be lost.

Using CST Action Interface, Practical Aspects

7-55 CST Framework Components

The following example illustrates a simple voice mail:

� Initial state
It is a default on-hook state. Upon detection of a number of consecutive
rings, the voice mail should be activated.

� Waiting for a ring
The following code should be a part of the function MyCallBack()
(CSTExternalMsgEvent and Data are parameters of the func-
tion). It analyzes the message from the CST Service and sees if it’s a
peripheral event message for ring (or, for example, ring end) event.

if (CSTExternalMsgEvent == eme_PERIPH_DATA) && (Data ==

cpe_RING)

 //If nobody takes the handset for a while (e.g. for three

rings)

 //go off hook and run voice mail

� Going off hook
The following code should be a part of the function MyPeriodic-
Thread(). It sets all necessary Action fields, sends the Action mes-
sage and checks whether the message was accepted.

tCSTAction Action;

Action.ActionType = cat_STANDARD_OPERATION;

Action.Action.CSTStandardOperation.OperationType =

ms_GO_OFF_HOOK;

if (CSTAction (&Ch0,&Action) == cmr_TRY_AGAIN)

 //Repeat again!

else

 //Run voice mail

� Running voice mail (playing the greeting)
Now we are going to play a greeting stored in external memory.

� Selecting a coder4

The following code should be a part of the function
MyPeriodicThread(). Prior to activation of the voice path, let’s
select the G.726 waveform coder at 16K rate (economical bit rate).
The resulting bit per sample rate is equal to 2.

4 All CST algorithms and integration services can be configured before initialization. Most important parameters are
channel-dependent, in other words each channel (in case of multichannel application and several instances of CST
Framework) contains its own set of settings mapped to S-registers. All other parameters are stored in global
channel-independent structures, in other words they are applicable for all channels, and can be modified directly.

Using CST Action Interface, Practical Aspects

 7-56

tCSTAction Action;

Action.ActionType = cat_SET_REGISTER;

Action.Action.CSTConfigCommand.InternalSReg = srd_VOICE_BPS;

Action.Action.CSTConfigCommand.Value = 2;

CSTAction (&Ch0,&Action);

//Ok, let’s run playback

� Running the G.726 decoder and related services
The following code should be part of MyPeriodicThread() func-
tion. It sets all necessary Action fields, sends the Action message and
checks whether the message was accepted. If the message was re-
jected, the operation should be repeated next time.

tCSTAction Action;

Action.ActionType = cat_STANDARD_OPERATION;

Action.Action.CSTStandardOperation.OperationType = sot_TUR-

NON_VOICE_TXDATA;

if (CSTAction (&Ch0,&Action) == cmr_TRY_AGAIN)

 //Repeat again!

else

 //Voice tx. path activated. Prepare a static message for

data sending

� Preparing a static CST Action message for data sending
The following code is a part of the function MyPeriodicThread(). It
initializes a data message to be filled by data to be sent.

static tCSTAction DataAction;

DataAction.ActionType = cat_CSTSERVICE_MESSAGE;

DataAction.Action.CSTServiceMessage.Task = cstst_VOICE_DATA

DataAction.Action.CSTServiceMessage.IsItTxTask = 1;

DataAction.Action.CSTServiceMessage.SubEvent = cse_DATA;

DataAction.Action.CSTServiceMessage.DataLength = 0; //empty

//Now we are ready to send voice data

� Playing the greeting
Now we are ready to send voice data. Just in this particular example, data
will be sent sent byte by byte.

Using CST Action Interface, Practical Aspects

7-57 CST Framework Components

� Sending a data byte
The following code should be a part of the function MyPeriodic-
Thread(). It fills the data message and tries to transfer the current
contents into CST. If the message is accepted, all contained data will
be copied into CST local memory and it will be sent. This means that
the DataAction variable can be filled again by the next portion of
data.

tCSTMessageResult ActionResult;

if ((DataAction.Action.CSTServiceMessage.DataLength <

CST_MAXDATALENGTH))

 DataAction.Action.CSTServiceMessage.aData[

 DataAction.Action.CSTServiceMessage.DataLength++] = <next

byte to be sent>;

ActionResult = CSTAction (&Ch0,&DataAction);

if ((ActionResult == cmr_RESULTOK) || (ActionResult ==

cmr_EXECUTING))

 DataAction.Action.CSTServiceMessage.DataLength = 0;

 //Send next data byte

 //If greeting has been played, stop playing

� Auto hang up control
The following code should be a part of the function MyCallBack()
(CSTExternalMsgEvent is a parameter of the function). It ana-
lyzes the message from the CST Service by looking for an auto turnoff
event (auto hang up). It will happen if the abonent hangs up. Note that
this code should be active during both greeting playback and mes-
sage recording.

if (CSTExternalMsgEvent == eme_AUTOTURNOFF_ALL)

 //Connect fail. All operations aborted

� Stopping the playback
The following code should be a part of the function MyPeriodic-
Thread(). It sets all necessary Action fields, sends the Action mes-
sage and checks whether the message was accepted. If the message
is rejected, the operation should be repeated again.

tCSTAction Action;

Action.ActionType = cat_STANDARD_OPERATION;

Using CST Action Interface, Practical Aspects

 7-58

Action.Action.CSTStandardOperation.OperationType = sot_TURN-

OFF_VOICE_DATA;

if (CSTAction (&Ch0,&Action) == cmr_TRY_AGAIN)

 //Repeat it again!

else

 //Let’s start recording

� Recording a voice message
Now we are going to record the incoming voice. Recording can be stopped
manually or automatically upon busy tone detection.

� Running the G.726 encoder and related services
The following code should be a part of the function MyPeriodic-
Thread(). It sets all necessary Action fields, sends the Action mes-
sage and checks whether the message was accepted. If the message
is rejected, the operation should be repeated again.

tCSTAction Action;

Action.ActionType = cat_STANDARD_OPERATION;

Action.Action.CSTStandardOperation.OperationType = sot_TUR-

NON_VOICE_RXDATA;

if (CSTAction (&Ch0,&Action) == cmr_TRY_AGAIN)

 //Repeat it again!

else

 //Voice rx path activated. Let’s catch voice data!

� Receiving data bytes
The following code should be a part of the function MyCallBack()
(CSTExternalMsgEvent, pData and data are parameters of
the function). The user should store all passed data. Unlike the mo-
dem, voice throughput is known and data is passed in chunks of even
size.

int DataCount = Data;

if (CSTExternalMsgEvent == eme_VOICE_DATA)

 while (DataCount--)

 <pointer to a static buffer>++ = *pData++;

//If max allowed time elapsed, stop message record

Using CST Action Interface, Practical Aspects

7-59 CST Framework Components

� Stopping recording and going on hook
The following code should be a part of the function MyPeriodic-
Thread(). It sets all necessary Action fields, sends the Action mes-
sage and checks whether the message was accepted. If the message
is rejected, the operation should be repeated again.

tCSTAction Action;

Action.ActionType = cat_STANDARD_OPERATION;

Action.Action.CSTStandardOperation.OperationType = sot_TURN-

OFF_ALL;

if (CSTAction (&Ch0,&Action) == cmr_TRY_AGAIN)

 //Repeat it again!

else

 //All operations will be stopped

� Going to the initial state
The process will stop shortly and the voice mail device will go on hook.

7.3.5.2 Non-Standard Applications

In a non-standard application the user may need to add his/her own algo-
rithms, change the behavior of certain CST Services and so on. As it has been
mentioned in section 6.3.8 and section 7.2.2.1 , CST provides a set of dynamic
functions to be overridden by the user if necessary. Some typical reasons for
the dynamic function overloading are listed below:

Adding New Algorithms

The user can add his/her own algorithm and run it together with standard CST
algorithms. In most cases it is enough to overload the function CSTAc-
tion_UserOperation() that allows the user to process I/O samples from
the DAA.

void MyUserOperation(tCSTChannel* pChannel, int16* pIn,int16
*pOut,int AmountOf8KHzSamples)
{
 CSTAction_UserOperation (pChannel,pIn,pOut,AmountOf8KHzSamples);
 ...
 <My algorithm I/O processing> (pIn,pOut,AmountOf8KHzSamples);

}

In MyInitialization() the user should include the following code:

CSTFxns.pCSTUserOperation = MyUserOperation;

Using CST Action Interface, Practical Aspects

 7-60

Running Several Audio Channels

The CST framework is multichannel-ready, though implementation of a multi-
channel application involves some adjustments in the CST framework. Since
TMS320C54CST contains only one on-chip DAA, a number of external co-
decs may be connected to McBSP0 and McBSP2 or to the other peripherals
(HPI, GPIO etc). There can be various input/output techniques. To connect the
user’s I/O stream to the CST framework, the following steps should be taken:

� Reload hardware drivers
If you want to use the existing DAA and add to this additional DAAs (or co-
decs) or want to use other than the Silicon Lab’s DAA peripherals, you will
need to reload the DAA driver and the peripheral driver. The same applies
to the UART driver. It will need to be reloaded if there will be additional
UARTs used or some other peripherals will replace the UART. For more
information on CST drivers and reloading them read section 7.7, specifi-
cally subsection 7.7.7.

� Create and initialize additional CST channels
To create an additional CST channel structure, define a structure of the
type tCSTChannel or allocate memory dynamically by calling the
memory manager allocation function as follows:

pCh1 = (tCSTChannel*) CSTMemManager.allocate(CST_DE-

FAULT_MEM_SPACE, sizeof(tCSTChannel), 1);

To initialize the additional CST channel, use the following function CSTAc-
tion_Init_ForExtraChannel(). Note that this initialization should
be done after initialization of the channel 0 (Ch0).

void CSTAction_Init_ForExtraChannel (tCSTChannel* pChannel)

{

 CSTAction_InitForSingleThread (pChannel, 0, CSTFxns.pCSTExter-

nalMsgEvent);

 pChannel->CSTService.IsModemPreemption = Ch0.CSTService.IsMo-

demPreemption;

}

� Overload dynamic and overloadable functions if need be
create your own CSTServiceProcess() and CSTServiceProcess-
Buffer() functions. A new function, combined of these two functions,
may look like this:

void MyCSTServiceProcess (tCSTChannel* pChannel)

Using CST Action Interface, Practical Aspects

7-61 CST Framework Components

{

 int AmountOf8KHzSamples;

 // Process only if enough samples accumulated

 AmountOf8KHzSamples = DAAAvail (pChannel->DAAChanHandle);

 while (AmountOf8KHzSamples>=INPUT_OUTPUT_LENGTH)

 {

 AmountOf8KHzSamples-=INPUT_OUTPUT_LENGTH;

 {

 tCSTService* pCSTService = &pChannel->CSTService;

 tCSTPeriphEvent PeriphEvent;

 // Get the new portion of analog input samples

 // and put the previous portion of output samples

 memcpy (aInput, pCSTService->aOutput, INPUT_OUTPUT_LENGTH);

 DAAReadWrite (pChannel->DAAChanHandle, aInput, INPUT_OUT-

PUT_LENGTH);

 CSTServiceProcessIOandVoice (pChannel, aInput,pCSTSer-

vice->aOutput);

 CSTServiceProcessCommonAlgos (pChannel, aInput,pCSTSer-

vice->aOutput);

 CSTFxns.pCSTUserOperation (pChannel, aInput,pCSTSer-

vice->aOutput,INPUT_OUTPUT_LENGTH);

 PeriphEvent=CSTFxns.pPeriphProcess (pChannel, INPUT_OUT-

PUT_LENGTH);

 if (PeriphEvent!=cpe_NONE)

 CSTServicePriv_PutDataIntoMessage (pChannel, cstst_PER-

IPH,PeriphEvent);

 CSTFxns.pProcessMessage(pChannel);

 }

 }

 if (pChannel->CSTService.CSTServiceStatus.IsProcessMsgNeeded)

 {

 CSTFxns.pProcessMessage (pChannel);

 pChannel->CSTService.CSTServiceStatus.IsProcessMsgNeeded=0;

 }

}

The above is mostly a copy of the original CST Service functions CSTSer-
viceProcess() and CSTServiceProcessBuffer(). If you need to
modify voice and other CST Service algorithm processing, you may do this
here, as this is the place, where the CST Service processing functions are

Using CST Action Interface, Practical Aspects

 7-62

called.
Note that if you want to use a custom CSTServiceProcess(), like the
above, the original functions CSTAction_Process() and CSTServi-
ceProcess()must not be called anymore in the application.

� BIOS
Modify the functions DMControllerLowPriorityModemSWI() and
VCtrlLowPriorityProcessSWI() (see BIOS\CSTBIOS.c and
BIOS\CSTBIOS.h). The functions must be made multichannel.

Running Several Modem Channels

The technique is the same as for voice channels. However, V.32bis usage lim-
its the maximum local loop delay (a delay, in which transmitted sample ap-
pears as near echo at the input of a modem). Therefore, the user should make
the local loop delay as short as possible. Finally, the user should measure the
local loop delay and update the corresponding parameter in the modem initiali-
zation structure (see section 7.6.1). If V.42bis is used and the modem is run-
ning in single thread (which is not recommended), the user should overload
the function called by the DMControllerSubfxns.pIsRealtimeShort-
age pointer. (See section 7.6.1)

An example Flex application that works with two modems is described in sec-
tion 7.7.7.5.

AT Command Line Parser

7-63 CST Framework Components

7.4 CST AT Parser

The AT Commands parser is partially supplied in open source code in C lan-
guage. It is located in the folder CST\Src\Framework in the files ATPar-
ser.c, ATExtended.c, CSTSReg.c (see 7.1.1).

The AT parser can be considered as an example of controlling the CST Frame-
work through the CST Commander, although it usually should not be used in
standard Flex applications. The AT parser consists of the AT command line
parser, small UART controller and an integrator of these parts with the CST
Commander layer, CST service layer and peripherals.

The AT parser is an extendable service that allows the user to add his own AT
commands and S-registers, and modify the application’s behavior, but such
operations are not described and it is suggested not to reconfigure the AT pas-
er interior without a real need.

It has been mentioned that the AT parser is not used together with CST Action
layer. Therefore using AT commands is uncommon for typical Flex applica-
tions.

7.4.1 AT Command Line Parser

The AT parser keeps AT command strings in a list of arrays of dedicated des-
criptors of the type tATParameter.

Structure typedef struct tATParameter {

Table 7-29. AT Command Descriptor

Field Type Field Name Description

int ast A unique ID of the type tATStringType combined with flags defined in
ast_XXX constants, which defines the type of the AT command and its
properties. This ID is used as reference in additional tables, which describe
when the AT command is applicable and associated with it CST
Commander atomic command script (see 7.2.3.1).

char* string AT command sub-string (the “AT” prefix is omitted)

int* pParameter Pointer to an integer parameter that can be set (or read) by the command.
NULL means absence of integer variable.

If the ast field includes the bit-attribute ast_LIST set (e.g. (ast & ast_LIST)
!= 0), then the address is treated as the address of an array of integer
parameters. Amount of the parameters in the array is stored in the array’s
very first element. The union d defines the allowed values of the
parameter(s).

union d {}:

AT Command Execution

 7-64

Table 7-29. AT Command Descriptor (Continued)

Field Type DescriptionField Name

int limits Defines the boundary values of the integer parameter. The upper 8 bits
define the maximum value; the lower 8 bits define the minimum value. If the
value of the upper bits is the same as the value of the lower bits, it is the
default value

int* range Defines the values range of the integer parameter. This pointer points to an
array containing a number of subranges. For example, the array {3, 2,5, 8,8,
10,12} of integers would define a range, which is a union of 3 subranges:
2…5, 8…8 and 10…12. E.g. the resulting range would include the values:
2, 3, 4, 5, 8, 10, 11 and 12.
Note, the field range is used only if (ast & ast_RANGE) != 0. Otherwise the
field limits is used.

} tATParameter;

Type tATParameter is defined in ATParser.h.

The user can add his/her own arrays of the AT command descriptors, but can-
not modify the existing ones. Thus, the AT parser is not fully extendable. All
extended arrays of AT command descriptors are treated as always applicable
regardless of CommandMode (see 7.2.2.3). Besides, the AT parser does not
support any mechanism for external linkage of reference tables and cannot
automatically run a user’s process associated with an AT command. Thus,
adding a new AT command is not a trivial operation in general, however, it is
easy to add AT commands that just set or read some variables.

The AT parser is active and can consume ASCII characters when the function
IsUARTtoATParserReady() returns a nonzero result. It means that an
ASCII character can be passed to the function ATAddCharToCmdLine() to
be added to the end of the current line. When the end of line character / car-
riage return character is entered, line parsing and command processing start.

7.4.2 AT Command Execution

Each AT command can start execution of only one atomic command script.
The script is selected by the ast field of the AT command descriptor (see
7.4.1).

The AT parser extends the main CST commander function (see 7.2.2.5) in or-
der to change execution of some existing atomic commands and to add proc-
essing of a number of new ones not supported by the CST commander layer.
In the code it is implemented in the function AT_CSTCommander(), which in-
herits the CST commander main function. The function AT_CSTCommand-

Brief Description of AT Command Line Parser Interface

7-65 CST Framework Components

er() is called from the function CSTUserOperation(), which, in turn, is
called through the pointer CSTFxns.pCSTUserOperation. To print execu-
tion result token, the cac_NONE termination atomic command is used (see
7.2.3.1), whose processing is different when using the AT parser.

7.4.3 Brief Description of AT Command Line Parser Interface

Table 7-30. Some of the AT Parser Interface Functions

Name Functionality

CSTATParserInit() AT parser initialization

CSTATParserAdd() Add an array of new AT command descriptors

AT_CSTCommander() Inherited CSTCommander() method. It redefines execution of some atomic
commands and adds several new ones (see 7.2.2.5).

7.4.3.1 AT Parser Initialization

Initializes the AT parser.

Function void CSTATParserInit (tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value None

7.4.3.2 Adding New AT Commands

Adds new AT commands. The examples of this procedure can be found in the
AT parser’s source code files, ATParser.c and ATExtended.c. The main
function for the CST Chipset mode (see the file ROM\main.c) adds extended
AT commands to the standard set.

Function void CSTATParserAdd

(tCSTChannel* pChannel, const tSimpleMap*

pExtendedATCommands);

Parameter(s)

pChannel Pointer to a global CST channel structure

pExtendedATCommands A pointer to a handler, initialized with an address
of the new AT command table being added, total
number of commands in the table, and size of a
single command (see Table 7-13).

Return Value None

Overview

 7-66

7.5 Memory Management

7.5.1 Overview

The CST Framework provides a memory manager that can be used by both
the framework itself and the user. The memory manager functions are accessi-
ble through pointers, which makes it possible to reload the original memory
manager functions by the DSP/BIOS memory manager functions or other
user-defined memory management functions.

The memory management subsystem in the CST Framework has the follow-
ing features:

� The memory management functions can be reloaded as they’re accessed
in the framework indirectly through a set of dedicated pointers. This makes
it possible to use the DSP/BIOS memory management functions or user-
defined memory manager functions.

� The available heap memory size can be estimated.

� The user may change the default heap size and location.

� The user may define several separate memory segments/heaps mapped
to physically different RAMs (e.g. DSP internal DARAM and external data
RAM).

Creating and deleting XDAIS algorithms, which is done by the functions
ALGRF_create() and ALGRF_delete(), involves calling the memory
manager functions through the pointers (see also 7.5.4).

The C standard functions malloc(), calloc(), free() and realloc()
are redefined in the CST memory manager so that they also call the actual
memory manager functions through the pointers.

Thus, all memory allocation in CST is carried out by the memory manager,
whose functions are accessible through the dedicated pointers.

Memory Manager Function Interface

7-67 CST Framework Components

7.5.2 Memory Manager Function Interface

The memory management functions are accessible through the pointers in the
structure tCSTMemManager CSTMemManager (see malloc.h).

typedef struct {

Table 7-31. Memory Manager Function Interface Types

Type Name Description

void* (*)(IALG_MemSpace, size_t,
size_t)

allocate Virtual function to allocate
memory

void (*)(IALG_MemSpace, void*,
size_t)

free Virtual function to free memory

size_t (*)() getAvailableMemory Virtual function to estimate free
memory size

} tCSTMemManager;

7.5.2.1 Memory Allocation

This memory allocation function returns a pointer to an aligned memory block
(according to the alignment parameter, its size and memory space).

Function void* (*allocate) (IALG_MemSpace space,

 size_t alignment,

 size_t size);

Parameter(s)

space Memory space, where allocated block should be placed.
Available memory spaces types are defined in file
CST\Framework\XDAS\ialg.h. The default CST
memory space is CST_DEFAULT_MEM_SPACE, which is
equal to IALG_DARAM0. This corresponds to the DSP
internal DARAM (see 8.3).

alignment Memory block alignment in MAUs.

size Size of allocated block is in MAUs.

Return Value Address of allocated memory block or NULL on failure.

7.5.2.2 Memory Deallocation

This function is invoked to free a memory block that has been previously allo-
cated by the allocate() function, defined in .

Function void (*free) (IALG_MemSpace space,

void *memory,

size_t size);

Possible Memory Configurations

 7-68

Parameter(s)

space Memory space, where allocated block should be placed. Available
memory spaces types are defined in file
CST\Framework\XDAS\ialg.h. The default CST memory space
is CST_DEFAULT_MEM_SPACE, which is equal to IALG_DARAM0.
This corresponds to the DSP internal DARAM (see 8.2).

memory The address of a previously allocated memory block.

size Size of the allocated block is in MAUs.
The value of this parameter is not required by default. The
parameter is used mainly to make the function interface close to
that of DSP/BIOS’ MEM_free().

Return Value None

7.5.2.3 Free Memory Size Estimation

This function is used to get an estimate of the free memory.

Function size_t (*getAvailableMemory)();

Parameter(s) None

Return Value Returns an estimate of free heap memory in MAUs. The returned value is a
sum of the free sizes of all heaps (there may be several heaps, up to 6). Note
that in multithreaded applications this value can’t be relied on. That’s because
the current thread may be preemted by another thread, which, in turn, may
change the memory allocation state.

7.5.3 Possible Memory Configurations

There are 3 basic memory configurations supported by the CST solution. In
any of these configurations, the user has to make sure that the size of memory
available for CST algorithms satisfies requirements listed in Table 8-4. Other-
wise, some functionality may become unavailable.

Table 7-32. Basic Memory Configurations

Configuration Initialization Usage Restrictions

CST Memory Manager Used by All

CST code

User code

CST
memory
manager

RAM

� Preset heap table with available
memory segments, if needed

� Init the CST memory manager
CSTMemManagerInit()

See 7.5.3.1

� ROMed functions:
malloc()
calloc()
realloc()
free()
ALGRF_create()
ALGRF_delete()

Possible Memory Configurations

7-69 CST Framework Components

Table 7-32. Basic Memory Configurations (Continued)

User Memory Manager Used by All

CST code

User code

User
memory
manager

RAM

� Perform initialization of user-defined
memory manager

� Redefine dynamic methods in
CSTMemManager to redirect alloca-
tion requests

� Disable CST Memory Manager

See 7.5.3.2

� ROMed functions:
malloc()
calloc()
realloc()
free()
ALGRF_create()
ALGRF_delete()

� Any proprietary user
functions

DSP/BIOS Memory Manager Used by All

CST code

User code

DSP/BIOS
memory
manager

RAM

� Preset heap table with available
memory segments, if needed

� Redefine dynamic methods in
CSTMemManager to redirect alloca-
tion requests

� Disable CST Memory Manager

See 7.5.3.3

ROMed functions:
malloc()
calloc()
realloc()
free()
ALGRF_create()
ALGRF_delete()
MEM_alloc()
MEM_free()
MEM_stat()

7.5.3.1 Using CST Memory Manager

The CST memory manager is used by CST in the Chipset mode. This same
memory manager can still be used in the flex mode for both CST Framework
and a user’s Flex application. The CST memory manager is normally used in
a non-BIOS environment. In the DSP/BIOS environment, the DSP/BIOS
memory manager should be used (see 7.5.3.3)

In a standard Flex application, which uses the CST Action layer, the heap loca-
tion and size is set up automatically. The function CSTAction_Init() (see
CSTAction.h) initializes the very first entry in the array tCSTMemSpace
CSTMemSpace[6] (see malloc.h, Table 7-33) with the base address of the
heap and its size. The memory manager uses this array to find the memory
that is used for the heap. The address and size of the standard heap become
available at link time. A linker command file should specify the location and
size of the heap. See the example project and linker command files for stan-
dard single-threaded Flex applications (more info on this can be found in
5.4.1). If your application needs different location and/or size of the heap, the
linker command file may be adjusted appropriately.

Possible Memory Configurations

 7-70

Creating Second Heap

If your application needs to use two different heaps, for example, one heap is
located in the DSP internal DARAM, while the other is located in the external
data RAM connected to the DSP, you must initialize the next entry in the array
tCSTMemSpace CSTMemSpace[6] manually. That is, the function CSTAc-
tion_Init() will initialize CSTMemSpace[0] for the first heap (whose ad-
dress and size would be specified in the linker command file). The user will ini-
tialize CSTMemSpace[1] for the second heap. This initialization should be
done before the call to the function CSTAction_Init() because this func-
tion calls the CST memory manager initialization function, CSTMemManager-
Init().

typedef struct {

Table 7-33. CST Memory Space Segment Structure

Type Name Description

void* base Base address of a contiguous memory segment

size_t size Size of the memory segment in MAUs

IALG_MemSpace space Space descriptor (see XDAIS core file CST\Frame-
work\XDAS\ialg.h for options). The default CST memory
space is CST_DEFAULT_MEM_SPACE, which is equal to
IALG_DARAM0. This corresponds to the DSP internal DARAM
(see section 8.2).

The external memory may be denoted as IALG_EXTERNAL.

} tCSTMemSpace;

Type tCSTMemSpace is defined in malloc.h.

Hence, a portion of the Flex application initialization code will look something
like this instead of a single call to CSTAction_Init():

CSTMemSpace[1].base = (void*) 0xA000; // external data
memory starts at 0xA000

CSTMemSpace[1].size = 0x2000; // external data memory size
is 0x2000

CSTMemSpace[1].space = IALG_EXTERNAL; // denotes external
data memory

CSTAction_Init (&Ch0, 0, MyCallback);

Possible Memory Configurations

7-71 CST Framework Components

7.5.3.2 Using User-Defined Memory Manager

To use a user-defined instead of the CST memory manager, just a few simple
steps should be taken:

� Initialization of the user-defined memory manager

� Reloading of the pointers to the memory manager functions (see 7.5.2)

� Clearing of the array CSTMemSpace[6] to prevent the CST memory man-
ager from any heap initializations

Therefore, a portion of the Flex application initialization code will look some-
thing like this instead of a single call to CSTAction_Init():

MyMemManagerInit(...); // Init the user-defined memory
manager

CSTMemManager.allocate = MyMemManagerAllocate; // reload
functions

CSTMemManager.free = MyMemManagerFree;

CSTMemManager.getAvailableMemory = MyMemManagerGetAvaila-
bleMemory;

memset (&CSTMemSpace[0], 0, sizeof(CSTMemSpace)); // dis-
able CST memory manager

CSTAction_Init (&Ch0, 0, MyCallback);

7.5.3.3 Using DSP/BIOS Memory Manager

To use the DSP/BIOS memory manager with CST, the user should take the
following steps:

� Reload the pointers to the memory manager functions

� Clear the array CSTMemSpace[6] to prevent the CST memory manager
from any heap initializations

In a standard Flex application, which uses the CST Action layer, the heap loca-
tion and size is defined in a DSP/BIOS configuration file. The heap is created
in a data memory section and assigned the heap identifier label, _SEG0 that
will be used when calling the DSP/BIOS memory manager functions MEM_al-
loc(), MEM_free() and MEM_stat() (see TMS320C5000 DSP/BIOS Ap-
plication Programming Interface (API) Ref Guide (SPRU404)). During the init-
ialization of the Flex application, the function CSTAction_Init() (see
CSTAction.h) reloads the pointers to the new memory manager functions
and stores the address of the heap identifier SEG0 for later use.

The address and size of the heap become available at link time when the DSP/
BIOS configuration file is compiled. See the example project and configuration
files for standard multi-threaded Flex applications (more info on this can be
found in section 5.4.1). If your application needs different location and/or size
of the heap, the DSP/BIOS configuration file may be adjusted appropriately.

Possible Memory Configurations

 7-72

Wrapper Functions

During initialization, the function CSTAction_Init() invokes the function
CSTBIOSMemManInit(), which makes the pointers to point to the wrapper
functions CSTBIOSAllocate(), CSTBIOSFree() and CSTBIOSGetA-
vailableMemory() (see the files BIOS\CSTBIOSmemman.c and
BIOS\CSTBIOSmemman.h). The wrapper functions eventually call the DSP/
BIOS memory manager functions to allocate, free and count memory.

These wrapper functions initially were introduced to solve the following two
problems:

� Preemption of the DSP/BIOS memory management functions

� Need to keep/remember the size of each allocated block for MEM_free()

The first problem arises because the DSP/BIOS memory manager functions
are to be called from DSP/BIOS tasks only and they may cause a task/context
switch. This is undesirable for CST because the CST Service, which is to be
run in a high-priority SWI, dynamically allocates memory for XDAIS algorithms
and some data.

The second problem, which is much less severe, required rewriting portions
of the code that could call the standard C free() function or the CST memory
manager function CSTMemManager.free() with just a pointer to the allo-
cated block but not the block size.

The preemption problem was solved by disabling the software interrupts
(SWIs) before calling the functions MEM_alloc(), MEM_free() and reenab-
ling them afterwards. The wrapper functions took care of this disabling and en-
abling of SWIs. It was not long before the CST release when this problem was
solved on the DSP/BIOS side. The DSP/BIOS introduced two new functions:
MEM_register_lock() and MEM_register_unlock(), which are spe-
cific for the C54CST chip. The functions let the DSP/BIOS memory manager
know which functions to call to prevent context switching during memory allo-
catioin/deallocation processes. The function CSTBIOSMemManInit() sets
SWI_disable() and SWI_enable() (see TMS320C5000 DSP/BIOS Ap-
plication Programming Interface (API) Ref Guide (SPRU404)) functions as
such lock/unlock functions.

The allocated block size problem was solved by allocating larger memory
blocks than requested and storing the size in this additionally allocated
memory. This is the second purpose of the wrapper functions. This modifica-
tion enabled to call the standard C function free() without the size. However,
the CST Framework was modified as well to call the memory manager function
CSTMemManager.free() with the correct size.

Possible Memory Configurations

7-73 CST Framework Components

To learn more about the wrapper functions, see the files BIOS\CSTBIOSmem-
man.c and BIOS\CSTBIOSmemman.h.

Creating Second Heap

It is possible to have two heaps, if your application must use two different
heaps. For example, one heap is located in the DSP internal DARAM, while
the other is located in the external data RAM connected to the DSP. You must
create an additional heap in the DSP/BIOS configuration file and assign it the
heap identifier label, _SEG1 that will be used when calling the DSP/BIOS
memory manager functions MEM_alloc(), MEM_free() and MEM_stat().
Having done this, the user will also need to let the wrapper functions know
about this second heap. This is done by modifying the array tCSTBIOSMem-
Space CSTBIOSMemSpace[6] (see BIOS\CSTBIOSmemman.c,
Table 7-34). The very first entry in this array (index 0) is initialized by the func-
tion CSTAction_Init() and it corresponds to the heap in the DSP internal
DARAM. The next entry should be initialized by the user prior to calling the
function CSTAction_Init().

typedef struct {

Table 7-34. CST BIOS Memory Space Segment Structure

Type Name Description

Int* psegid Pointer to a DSP/BIOS heap segment ID.

IALG_MemSpace mSpace Space descriptor (see XDAIS core file CST\Frame-
work\XDAS\ialg.h for options). The default CST memory
space is CST_DEFAULT_MEM_SPACE, which is equal to
IALG_DARAM0. This corresponds to the DSP internal DARAM
(see section 8.3).

The external memory may be denoted as IALG_EXTERNAL.

} tCSTBIOSMemSpace;

Type tCSTBIOSMemSpace is defined in BIOS\BIOSmemman.h.

Therefore, a portion of the Flex application initialization code will look some-
thing like this instead of a single call to CSTAction_Init():

CSTBIOSMemSpace[1].psegid = &SEG1; // external data memory
heap

CSTBIOSMemSpace[1].mSpace = IALG_EXTERNAL; // denotes ex-
ternal data memory

CSTAction_Init (&Ch0, 1, MyCallback);

More About Algorithm Creation and Deletion

 7-74

7.5.4 More About Algorithm Creation and Deletion

The CST Framework includes XDAIS algorithm creation/deletion functions,
also known as ALGRF library (ALGorithm instantiation for Reference Frame-
works), having the following features:

� The following ALGRF functions are in CST ROM:
ALGRF_create(),
ALGRF_delete()

� The ALGRF functions in CST ROM do not support scratch memory (if the
scratch support is required, the user can use the functions from the files
ALGRF\algrf_creScratchSupport.c & algrf_delScratchSupport.c).

� The creation function ALGRF_create() uses a stack-based memTab[]
array, in order to avoid heap fragmentation, and thus it is limited to only 16
memory records during algorithm creation (parameter ALGRF_MAX-
MEMRECS is equal to 16 in ROM). So, an algorithm should not request
more than 16 memory records.

� CST Framework accesses the ALGRF functions only via stub-functions
ALG_create_wrapper() and ALG_delete_wrapper(). The functions
CSTStatisticsOnCreateAlg() and CSTStatisticsOnDeleteAlg() are called
from those stub-functions upon successful algorithm creation and upon al-
gorithm deletion, for collecting statistics on the amount of existing algo-
rithms.

� Statistics report supports up to 20 algorithms existing simultaneously

To find out more about algorithm creation and deletion, IALG and ALFGRF,
please read Reference Frameworks for eXpressDSP Software: API Refer-
ence (SPRA147).

Telephony Components Brief Specification

7-75 CST Framework Components

7.6 Telephony Components Brief Specification

The following components are included in CST software:

� Data Modem (V.32bis/V.32, V.22bis/V.22, V.14, V.42, V.42bis)
� G.726/G.711 encoder/decoder
� G.168 Echo Canceller
� VAD, CNG and AGC
� UMTD (DTMF and CPTD) detector/generator
� CID receiver

Detailed description for each of the software components can be found in the
corresponding documentation (User Guides and Product Annotations for spe-
cific components). This chapter gives only a brief overview of these compo-
nents.

Besides, CST algorithms portofolio can be extented via a set of very memory-
efficient CST Add-ons, sold separately from CST chip:

� Fax G3 (V.17/V.29/V.27ter/V.21) and V.29FastConnect (for POS-term.)

� Standard vocoders (G.729AB abd G.723.1) and SPIRIT-proprietary 1200
bps vocoder

Description of these CST add-ons is beyond the scope of this document.

The interconnection of XDAIS algorithms inside the CST Service layer is
shown in Figure 7-1.

Data Modem

 7-76

Figure 7-1. CST Solution Data Path

HPF
to remove DC

DAA Codec

DTMF Gen

CPTG

DTMF Det

CPTD

VAD

G.726 Enc

G.711 Enc

Messager

Packer

Echo Canc.
G.168

AGC

One
of

One
ofCST Solution

Data Path

Adaptation

Phone
Line

User User

One
ofExt. vocoder

CID

Data Modem

One
of

UMTD

UMTG

Decoder

G.711 Dec

CNG

One
of

Ext. vocoder

G.726 Dec Unpacker

Encoder

The user can control the way components are connected inside the CST
framework and what components are currently active via AT commands or, in
flex mode, via messages to one of CST control layers.

7.6.1 Data Modem

The data modem consists of several components, each implemented as a
separate XDAIS object. These objects are modem data pump (MDP), V.42 er-
ror correction protocol with embedded V.42bis data compression protocol and
a Modem Integrator object, which unifies access to all other modem algorithms
(unified parameters, sample and data flows, extended status, etc), and inter-
connects them inside of itself.

The data modem controller (from hereof, DMController) is the upper layer that
integrates the modem integrator object into the CST framework.

In brief, the modem integrator performs the following operations and has the
following features:

Data Modem

7-77 CST Framework Components

� Implicitly creates all required XDAIS objects and performs their prelimi-
nary linking to each other. Depending on parameters, one of the three con-
figurations is available: MDP + V.14 only, MDP + V.14/V.42 and MDP +
V.14/V.42/V.42bis.

� Modem data pump auto rate and retrain control

� V.14 based asynchronous-to-synchronous conversion

� V.14/V.42 switch, connect and disconnect condition report

� V.42bis can be configured both in the symmetric (standard) mode and in
the asymmetric mode

� Both single- and two-threaded mode support

� Fast connect capability

� Unified data flow, unified status

During the initialization, the user can configure the following important param-
eters of this object:

� General options:

� Single threaded/multithreaded (preemption) mode

� Answering or originating mode

� A few callback functions for data transfers, preemption control (op-
tional) and real-time control (optional)

� Data pump related options:

� Fast connect mode

� AFE delay (to produce correct V.32bis start up timing).

� Output transmit level (can also be adjusted via S-register S28 or via
AT command AT%L in chipset mode, see section 9.4.3.13).

� Maximum supported round trip delay in milliseconds (influences the
amount of memory reserved for far echo bulk delay). In most cases the
round trip delay does not exceed 100 ms. The amount of memory re-
served for the far echo bulk delay buffer is calculated as follows: Sup-
ported_Far_Echo_Delay_ms*2.4. For example, for 100 ms, 240
words are required.
However, for satellite connections the far echo delay may reach up 2
sec, and in such cases this parameter has to be set appropriately.
The round trip delay can also be adjusted in the chipset mode, by the
command AT+ARTD (see section 9.4.3.12).

� Speedup and slowdown initiation permission

Data Modem

 7-78

� V.42 related options:

� Heap size (for storing received and sent packets)

� Window size (number of stored last sent data packets)

� System timeouts

� 32bit FCS

� V.42bis related options

� Dictionary size

� Maximum string length

� Compressor and decompressor enabling/disabling

When the fast connect is enabled (can be set via S-register S29 or by the AT
command AT#F, see section 9.4.3.15), the modem will not transmit nor will it
wait for the answer tone (2100 Hz tone in the beginning of modem connection),
and training time for V.32bis/V.32 modem echo canceller will be reduced to
minimum (0.5 sec).

It is important to emphasize that the Modem Integrator supersedes the Data
Pump/V.42/V.42bis interfaces, therefore, the user should interact with the Mo-
dem Integrator only.

The Data Modem Controller (DMController) finally integrates the modem into
the CST framework. Since receiving compressed data may result in decom-
pression of a large portion of data bytes, a special callback mechanism is used
to transfer the received data to the user. Error correction also affects receiving
the data since it may introduce some irregularity because of data rerequests.

Data Modem

7-79 CST Framework Components

7.6.1.1 Data Flow

The data modem can run in two modes: single-threaded and multi-threaded
mode. The multithreaded mode makes it possible to move the compression
procedures into a dedicated low-priority thread. The data flow is shown in
Figure 7-2.

Figure 7-2. Modem Data Flow

Modem Integrator

Data Pump

Codec

Optional DC

filter

Digital layer
V.14,

 V.42 with V.42bis

Control logic

Data bits

S
am

ples

D
ata M

odem
 controller

Synchronous flow

Asynchronous flow

xDAIS object

C
S

T
 S

ervice
layer

Data

Commands
Status

Inject data in
low priority

task

M
essages

Pass data via callback

U
ser

Data

As it has been mentioned, the modem passes the decoded data through a call-
back function. Besides this data callback function, there are two other (option-
al) callback functions to be implemented by user.

typedef struct IMODINT_ClientSubfxns {

Table 7-35. Data Flow Parameters

Params Type Params Name Description

Int (*)

(XDAS_Void* pClient,
Int instanceID,
XDAS_UInt8* pBuffer,
Int count)

pTransferData Passes the decoded data from the remote
modem. It is the only mandatory function to be
implemented by the user. To set the address of
called function, use the function
DMController_setTransferDataFunc().

Data Modem

 7-80

Table 7-35. Data Flow Parameters(Continued)

Params Type DescriptionParams Name

XDAS_Bool (*)

(XDAS_Void* pClient,
Int instanceID, XDAS_Bool
isPermitted)

pPreemption
Control

Requests to temporarily disable or reenable
possible switching to the high-priority thread. It
protects critical operations inside V.42/V.42bis
modules. This method is invoked in multithread
mode only, assuming V.42 is active.

XDAS_Bool (*)

(XDAS_Void* pClient,
Int instanceID)

pIsRealtime
Shortage

Asks if the V.42bis compression/decompression
should be continued for the next byte. This
function is intended to prevent missing real-time. It
is invoked in the single-threaded mode only.
However it does not guarantee that burst
activation of V.42bis would not cause real-time
loss. This is because of big time slices in V.42bis
iterations.

} IMODINT_ClientSubfxns;

Type IMODINT_ClientSubfxns is defined in imodint.h.

Data Modem

7-81 CST Framework Components

7.6.1.2 Brief Description of Data Modem Contrroller Interface (File DMController.c)

Table 7-36. Brief Description of CST S-Registers Function Interface

Name Functionality

DMController_create Creates a Modem Integrator instance (including all related algorithms)

DMController_delete Delete a Modem Integrator instance (and all related algorithms)

DMController_io Process a number of I/O samples (high-priority thread function)

DMController_
setTransferDataFunc

Set user’s callback function to pull received data

DMController_injectData Push a portion of the user’s data into the modem

Creation Creates a modem instance

Function bool DMController_create(tCSTChannel* pChannel,

 Int MaxSpeed,

 Int TxLevel,

 bool IsOriginator,

 bool IsV42,

 int IsV42bis,

 bool isFastConnect);

Parameter(s)

pChannel Pointer to a global CST channel structure

MaxSpeed Maximum permitted speed (BPS)

TxLevel Output signal amplitude in absolute units

IsOriginator Originator/answerer mode

IsV42 Enable V.42

IsV42bis Enable V.42bis:

 0 – V.42bis disabled

 1 – enable compressor only

 2 – enable decompressor only

 3 – enable both compressor and decompressor

isFastConnect Reduce the connection time

Return Value Success/fail result

Deletion Deletes a modem instance

Data Modem

 7-82

Function void DMController_delete(tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value None

Modem Process Function

Processes a number of I/O samples (high-priority thread function)

Function void DMController_io(tCSTChannel* pChannel,

 int16 *pIn,

 int16 *pOut,

 int Count);

Parameter(s)

pChannel Pointer to a global CST channel structure

pIn Pointer to a buffer of valid input samples

pOut Pointer to a buffer of valid output samples

Count Amount of samples in the buffers

Return Value None

Set Callback Function to Pull Received Data

Sets the user’s callback function to pull the received data

Function void DMController_setTransferDataFunc(tCSTChannel*

pChannel,

 Int (*pTransferData)

(XDAS_Void* pClient,int,XDAS_UInt8*,Int));

Parameter(s)

pChannel Pointer to a global CST channel structure

pTransferData Address of the user’s callback function

Return Value None

Push Data Push a portion of the user’s data into the modem

Data Modem

7-83 CST Framework Components

Function int DMController_injectData(tCSTChannel* pChannel,

 uint8 *pData,

 int Count);

Parameter(s)

pChannel Pointer to a global CST channel structure

pData Pointer to the data buffer

Count Total number of data bytes

Return Value Number of taken bytes

7.6.1.3 V.32/V.32bis and V.22/V.22bis Data Pump

The modem data pump is implemented according to the ITU-T recommenda-
tions V.32bis/V.32 and V.22bis/V.22, and supports all their features and op-
tions, including retrain, rate renegotiation request and automodem for inter-
operability. It is a member of a family of SPIRIT complete fax/data modem data
pumps, and includes unified implementation of these protocols.

It has a simple interface and can be easily connected to an analog line (8 kHz
16-bit samples) and to an HDLC client (e.g. V.42/V.42bis). The interface is fully
compatible with other SPIRIT data pumps and HDLC clients.

In brief, the V.22bis/V.32bis module performs the following operations:

� Processing of a number of samples from ADC and generation of new sam-
ples to be output to DAC

� Sending and receiving data bits through callback functions to the high-lev-
el client (modem integrator)

� Accepting and executing a number of control commands

� Reporting status and informing the client about status changes

Figure 7-3 represents typical V.22bis/V.32bis modem data pump operating
environment.

Data Modem

 7-84

Figure 7-3. Modem Data Pump Operating Environment

Modem data
pump

AFE samples
digital
data

status and control
information

Controller
(protocol switch, status

control, retrain initiation etc)

ADC/DAC,
optional DC filter

Digital layer
(V.14, V.42 etc) bitstream

bytes and
flow

control

UART driver
or user

After the initialization, the user can send a command (in Flex Mode) to the data
pump, telling at what maximum rate the pump may try to connect with a remote
modem. The maximum rate can also be selected by the ATB<0-8> command
(see section 9.4.3.14).

The Modem Integrator encapsulates and integrates the V.32/V.32bis,
V.22/V.22bis and the data pump objects inside itself. Thus, when using the Mo-
dem Integrator, the user should not interact with the pump directly. All interac-
tion should be done through the Modem Integrator interface.

7.6.1.4 Asynchronous to Synchronous Data Conversion, V.14

This protocol is implemented inside the Modem Integrator object. When the
V.42 protocol is disabled or fails to connect with a remote counterpart, the Mo-
dem Integrator uses the protocol V.14 instead to provide conversion from
asynchronous data flow from serial port to synchronous data flow, required by
the modem data pump.

The V.14 protocol can be forced by setting the S-register srd_V42 to zero (see
7.2.2.1) or by issuing the command AT\N0 (see section 9.4.3.10).

If the V.42 operation is enabled (see 7.6.1.5) but the remote modem does not
support V.42 or the V.42 handshake falls throuhg, the modem falls to the V.14
asynchronous mode anyway.

The Modem Integrator implements and integrates the V.14 protocol. There are
no means to access V.14 functions directly.

Data Modem

7-85 CST Framework Components

7.6.1.5 Error Correction, V.42

The CST’s V.42 component implements an ITU-T V.42 compliant HDLC client
and provides an error correction protocol between a software-emulated unbuf-
fered DTE and a V-series duplex data pump.

The Modem Integrator incorporates into itself the data pump and it also repre-
sents the DTE. Thus, when using the Modem Integrator, the user should not
interact with the V.42 instance directly.

In brief, the V.42 module features the following functions and properties:

� Embedding the V.42bis compression/decompression module (see
Figure 7-4 below)

� Getting the byte stream from the DTE (the Modem Integrator);

� Compressing it by the internally linked V.42bis module;

� Packing the bytes into frames;

� Converting the frames into the bit stream ready to be transmitted by the
synchronous DCE (the modem data pump);

� Resending the frames (within the frame buffer) on demand, providing flow
control, error correction and stream integrity;

� Receiving the bit stream from the synchronous DCE and converting it into
frames;

� Parsing the frames and unpacking them into bytes;

� Decompressing the bytes by the internally linked V.42bis module;

� Sending the byte stream to the DTE.

The Modem Integrator interconnects the V.42 module to the data pump and
an analog of a DTE driver (see Figure 7-4). As it has been mentioned above,
the user can optionally disable the V.42 module in whole or in part.

Data Modem

 7-86

Figure 7-4. V.42 Operating Environment

Modem Integrator

V.42 module

DCE

(data pump)

DTE driver UART

Codec

V.42bis compression module

V.42bis decompression module

GSTN

Remote Terminal

V.42 compatible modem

CST Framework

Local Terminal

V.42/V.42bis

During initialization, the user has to tell the V.42 module how much memory
to use for its internal heap (which is mostly used for storing received and sent
packets so that V.42 could resend them upon a request). Normally, the V.42
has to store at least 15 sent packets (this number is a changeable parameter),
each 133 bytes long. There are several other buffers that the V.42 has to store
as well. Typically, the V.42 needs around 1.5 kW of dynamic memory (1 kW
minimum) for its internal heap (this is a changeable parameter), plus about 0.8
kW for the V.42 object itself.

This internal heap memory size can also be set by sending the command
AT+EHEAP to the AT parser (see section 9.4.3.9). The greater the size of this
heap is, the more efficiently the V.42 module will do the error correction.

Some of the AT commands related to V.42 operations are introduced only for
compatibility reasons with the V.250 standard (see ITU-T Recommendation
V.250. Serial asynchronous automatic dialing and control, 07/97), but do not
actually affect anything. These commands are: +EB, +ER, +ES, +ESR (see
sections 9.4.3.2 through 9.4.3.6).

The V.42 protocol is enabled by setting the srd_V42 S-register to a non-zero
value (see 7.2.1.1) or by issuing the command AT\N1 (see section 9.4.3.10).

Data Modem

7-87 CST Framework Components

7.6.1.6 Data Compression V.42bis

The CST’s V.42bis component is integrated into the V.42 module and imple-
ments an ITU-T V.42bis compliant data compression/decompression func-
tions and is designed to operate with an HDLC client, such as V.42.

In brief, the V.42bis module performs the following operations:

� Compressing (or decompressing) bytes to/from bit stream with code-
words;

� Accepting and processing special control primitives like C_INIT and
C_FLUSH.

The V.42bis module is already connected to V.42 module as shown in
Figure 7-4.

The CST’s V.42 module can use the V.42bis component in several modes:
completely disabled, compression for TX only, decompression for RX only,
and both compression and decompression. Note that some modems do not
correctly support the asymmetric mode.

These modes can be selected by setting the S-register srd_V42BIS (see
7.2.1.1) or by the command AT%C<0-3> (see section 9.4.3.11) or by the com-
mand +DS (see 9.4.3.1).

AT%C0 No compression/decompression; V.42bis disabled

AT%C1 Only compresses transmitted data

AT%C2 Only decompresses received data

AT%C3 Both compression and decompression enabled

During initialization, it’s possible to set the dictionary size for V.42bis. There’s
a parameter for that. The greater the size of the dictionary is, the more efficient-
ly V.42bis can compress the data.

In the Chipset Mode, this parameter is equal to 512, and it is impossible to
make the size greater. This is due to the memory organization in the Chipset
Mode, which initially has been configured with 16KW DARAM in mind. As it
turned out, the C54CST chip got 40KW of internal DARAM, so the above limi-
tation holds only for the unchanged chipset CST application. It is possible to
initialize V.42bis in the Flex Mode with a greater dictionary size (or load a spe-
cial patching flex application that will reconfigure CST chipset application), and
thus make the compression more efficient. For each direction (for compres-
sion or decompression), the memory size needed for the dictionary is calcu-
lated as Dictionary_Size*3+256 words.

Voice Processing

 7-88

Disabling V.42bis saves about 2.6 kW of memory during modem connection,
and it is even recommended to disable V.42bis, if higher level protocols have
their own compression enabled, or if low-compressible data is to be trans-
ferred.

7.6.2 Voice Processing

Voice processing includes several components – waveform codec (PCM and
ADPCM), line echo canceller, Automatic Gain Control (AGC) controlled by
Voice Activity Detector (VAD), Comfort Noise Generator (CNG). All compo-
nents have simple interfaces and operate with 14-bit 8 kHz samples.

The CST Solution also has a simple voice controller, partially supplied in open
source code, which provides voice bit stream packing/unpacking, continuous
voice play-out and ADPCM encoder/decoder creation/deletion.

The CST Service layer includes the voice controller for easy connection of
XDAIS algorithms for voice processing. The voice controller performs data
flow/exchange control (to/from the CST Service layer).

All of the CST voice controller functions are contained in the file VControl-
ler.c. In the AT parser, voice commands become accessible only in the voice
mode, which is turned on by the command AT#CLS=8. The command AT#VRX
starts recording a signal from the telephone line, the command AT#VTX starts
playing-out a signal to the line, and the command AT#VRXTX starts duplex
voice exchange (see section 9.4.4 for details). The voice bitstream, trans-
ferred between the host and CST chip via the serial link, consists of bits packed
into bytes. Control events (such as “stop play-out”, or “DTMF Digit 7 detected”,
or “BUSY signal detected”) are transferred as special shielded codes (see sec-
tion 9.5 for details) inside this bytes stream.

The LPC coefficients and other parameters for the Comfort Noise Generator
(CNG packets) are transferred along with with PCM/ADPCM packets,
shielded with corresponding DLE symbols. This is applicable for the Flex
Mode too.

7.6.2.1 Files VController.c, VController.h

Voice Controller Main Structure Definition

The voice controller has an internal structure, which contains the controller’s
current state and can be useful for outsiders.

typedef struct tVControllerStr {

Voice Processing

7-89 CST Framework Components

Table 7-37. Voice Controller Main Structure Definition

Field Type Field Name Description

void* pUserData Pointer to user’s data.

bool IsCoder This flag shows voice encoder availability.

bool IsDecoder This flag shows voice decoder availability.

int BPS This field stores the vocoder’s bit rate.

tCSTFIFO UARTIngressData Circular buffer (FIFO) to store ingress packed voice samples
(from UART or HPI).

tCSTFIFO VoiceIngressData Circular buffer (FIFO) to store ingress voice samples.

tCSTFIFO VoiceEgressData Circular buffer (FIFO) to store egress voice samples.

void* pVocoder Pointer to vocoder object instance.

AGC_Handle pAGC Automatic gain control object handle.

CNG_Handle pCNG Comfort noise generator object handle.

VAD_Handle pVAD Voice activity detector object handle.

tVocoderFxns* pVocoderFxns Pointer to virtual function table, containing pointers to vocoder
create, delete, encode, decode wrapper functions.

tDLEParser DLEParser DLE parser structure.

eVCtrlDLE LastDLE Last DLE symbol processed by the voice controller.

int [CNG_
PARAM_LEN]

CNGParamBuffer Buffer for receiving CNG parameters

int CNGParamIndex Temporary variable to store current position in CNG
parameters buffer while receiving CNG parameters.

int LPCStrSize Calculated size of CNG parameters to receive.

bool CNGParamsReady This flag is set when CNG parameters received.

int LPCOrder Current order (amount) of LPC coefficients. This value is used
only when VAD is enabled.

int VoiceGain Output voice gain.

} tVControllerStr;

Type tVControllerStr is defined in VController.h.

Voice Processing

 7-90

7.6.2.2 Brief Description of Voice Controller Function Interface

The most of the CST voice controller is implemented in the files VControl-
ler.c and VController.h. The main interface functions are the following:

Table 7-38. Brief Description of Voice Controller Function Interface

Name Functionality

VcontrollerInit() Voice controller initialization.

VcontrollerInjectData() Tries to put ingress packed voice data into the dedicated
circular buffer (FIFO).

VcontrollerProcess() Performs voice encoding and decoding.

In single-threaded mode is called from
VcontrollerHighPriorityProcess(). In case of
two-threaded mode should be called in a software interrupt
(SWI), which is to be posted from a hardware interrupt
(HWI/ISR).

VcontrollerDeleteRx() Deletes voice-encoding path.

VcontrollerDeleteTx() Deletes voice-decoding path.

VcontrollerCreateRx() Creates voice-encoding path.

VcontrollerCreateTx() Creates voice-decoding path.

VcontrollerIsVoiceData() Verifies if a vocoder instance is created.

VcontrollerHighPriorityProcess() This functions should be called from a high-priority thread. It
stores voice samples to the ingress circular buffer (FIFO) and
gets decoded voice samples from the egress voice circular
buffer (FIFO).

VcontrollerSelectVocoder() Default function for selecting a vocoder. Sets the pointer to the
virtual function table to point to the G726 and G711 vocoder
wrapper functions.

VcontrollerAllocBuffers() Tries to allocate memory for the circular buffers. Should be
called from the vocoder’s virtual create function.

VcontrollerFreeBuffers() Deallocates memory previously allocated for the circular
buffers.

Should be called from the vocoder’s virtual delete function.

VControllerGetAndSendLPC() This function gets CNG parameters and send them as a byte
array.

Initialization Initialization of the voice controller

Voice Processing

7-91 CST Framework Components

Function void VControllerInit(struct tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a channel structure.

Return Value None

Packed Voice Data Reception

Receives ingress packed voice data and places it to the vocoder’s buffer. The
format of the bit stream for vocoders G726 and G711 is as follows:

Figure 7-5. G726 and G711 Bitstream Format

vocoder
bitstream

<DLE> ’n’ count of LPC coefs noise magnitude LPC coefs
vocoder

bitstream
vocoder

bitstream
vocoder

bitstream

Each vocoder (any kind of PCM coder) frame, as well as a “noise” (CNG)
frame, covers the same time interval.

G.726 bitstream is composed of packed ADPCM results (minimum 120 dibits
per frame, maximum 120 pentabits per frame, i.e. from 30 to 75 bytes per
frame, depending on the vocoder’s bitrate).

G.711 bitstream is composed of encoded PCM bytes (120 bytes per frame).

The structure of a CNG frame is shown in the above figure.

Function int VcontrollerInjectData

(tCSTChannel* pChannel,

 uint8 *pData,

 int Count);

Parameter(s)

pChannel Pointer to a channel structure.

pData Pointer to a byte array, containing packed voice data.

Count Amount of samples in array pointed by pData.

Return Value Function returns the number of data bytes it has taken from the array.

Voice Processing

 7-92

High Priority Processing

This function should be called from a high priority thread. It stores voice sam-
ples to ingress circular buffer and gets decoded voice samples from the egress
voice circular buffer. In the single-threaded mode it calls the function Vcon-
trollerProcess() to process samples, in case of two-threaded mode it
should post a software interrupt (SWI) for background processing.

Function void VcontrollerHighPriorityProcess

(tCSTChannel* pChannel,

 int16 *pInput,

 int16 *pOutput,

 int Count);

Parameter(s)

pChannel Pointer to a channel structure.

pInput Pointer to an array of input voice samples.

pOutput Pointer to an array for output voice samples.

Count Amount of samples in each array.

Return Value None

Low Priority Processing

This function is called from the function VcontrollerHighPriorityPro-
cess() directly (in single-threaded mode) or posted from it via SWI (in two-
threaded mode). It executes virtual wrapper functions for voice encoding and
decoding when available.

Function void VControllerProcess (tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a channel structure.

Return Value None

Voice Processing

7-93 CST Framework Components

Vocoder Selection

This function is used to select a vocoder. By default it selects G726 and G711
coders. When adding extra vocoders, the user should override this function
and set tVControllerStr.pVocoderFxns pointer to its own vocoder’s
wrapper functions structure.

Function void VControllerSelectVocoder (tCSTChannel* pChannel,int

param);

Parameter(s)

pChannel Pointer to a channel structure.

param This parameter is used to select a vocoder.

Return Value None

Transferring Compressed Voice Samples to CST Service Layer

This function transfers data from the vocoder to the CST Service layer. It per-
forms DLE stuffing and noise frames marking by using DLE symbols.

Function void VcontrollerTransferVoiceData

(tCSTChannel* pChannel,

 uint8 *pData,

 int Count,

 tVCtrlDLE Type);

Parameter(s)

pChannel Pointer to a channel structure.

pData Pointer to byte array.

Count Size of byte array.

Type The type of transmitted samples (voice data or noise
parameters).

Return Value None

Voice Processing

 7-94

Sending CNG Parameters

This function retrieves LPC coefficients from the VAD object and sends them
using the function VControllerGetAndSendLPC(). The Gain parameter
is used to correct the noise magnitude.

Function void VControllerGetAndSendLPC (tCSTChannel* pChannel,int

Gain);

Parameter(s)

pChannel Pointer to a channel structure.

Gain Current AGC gain coefficient.

Return Value None

Buffers Allocation for Vocoder

This function is used to allocate memory for buffers to be used by a vocoder
for samples/bitstream buffering.

It also handles exception conditions.

Function bool VcontrollerAllocBuffers

(tCSTChannel* pChannel,

 int IngressUARTSize,

 int IngressVoiceSize,

 int EgressVoiceSize);

Parameter(s)

pChannel Pointer to a channel structure.

IngressUARTSize Size of the buffer for packed voice data.

IngressVoiceSize Size of the buffer for ingress voice samples.

EgressVoiceSize Size of the buffer for egress voice samples.

Return Value Returns nonzero value when all buffers are allocated successfully.

Voice Processing

7-95 CST Framework Components

Buffers Deallocation for Vocoder

This function is used to free the memory allocated for buffers, used by a vocod-
er for samples/bitstream buffering.

Function void VControllerFreeBuffers (tCSTChannel* pChannel,

 int IngressUARTSize,

 int IngressVoiceSize,

 int EgressVoiceSize);

Parameter(s)

pChannel Pointer to a channel structure.

IngressUARTSize Size of the buffer for packed voice data.

IngressVoiceSize Size of the buffer for received voice samples.

EgressVoiceSize Size of the buffer for transmitted voice samples.

Return Value None

Voice Encoder Creation

This function tries to create vocoder encoder path in case it has not been
created earlier.

Function bool VControllerCreateRx (tCSTChannel* pChannel,int

CoderBPS);

Parameter(s)

pChannel Pointer to a channel structure.

CoderBPS Bitrate.

Return Value Returns nonzero value when the voice encoder is created and ready for use.

Voice Decoder Creation

This function tries to create vocoder decoder path in case it has not been
created earlier.

Function bool VControllerCreateTx (tCSTChannel* pChannel,int

DecoderBPS);

Parameter(s) pChannel Pointer to a channel structure.
DecoderBPS Bitrate.

Return Value Returns nonzero value when the voice decoder is created ready for use.

Voice Processing

 7-96

Voice Encoder Deletion

This function deletes the vocoder instance if the decoder is marked as unused.
Otherwise it just marks the encoder as unused.

It also deletes the VAD and AGC instances, if they have been created earlier.

Function void VControllerDeleteRx (tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a channel structure.

Return Value None

Voice Decoder Deletion

This function deletes the vocoder instance if the encoder is marked as unused.
Otherwise it just marks the decoder as unused.

It also deletes the CNG instance, if it has been created earlier.

Function void VControllerDeleteTx (tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a channel structure.

Return Value None

Voice Processing

7-97 CST Framework Components

7.6.2.3 Wrapper Functions

The user may change all wrapper function pointers in case he/she wants to use
different coders (for example, G.723 or G.729 vocoder).

typedef struct tVocoderFxns {

Table 7-39. Structure Definition

Return Value Function Name First Parameter Type Description

void* *pfCreate tCSTChannel* Creates vocoder object instance

int *pfEncode tCSTChannel* Voice encoding function

int *pfDecode tCSTChannel* Voice decoding function

void *pfDelete tCSTChannel* Vocoder instance deletion function

} tVocoderFxns;

Wrapper for Creation Function

This wrapper function should call the function VControllerAllocBuf-
fers()to allocate memory for circular buffers.

It can allocate an additional memory block for private use (tVControl-
lerStr.pUserData can store a pointer to this block).

Having allocated the buffers, the function may finally create a vocoder object
instance.

Function void* (*pfCreate)(tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a channel structure.

Return Value Vocoder handle (successful creation) or NULL (failure).

Voice Processing

 7-98

Wrapper for Deletion Function

This wrapper function should call the function VControllerFreeBuffers
to free memory allocated for the circular buffers. It should also free all allocated
additional memory blocks (if any). And finally, it should delete the vocoder ob-
ject instance.

Function void (*pfDelete)(tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a channel structure.

Return Value None

Wrapper for Encoding Function

This wrapper function should wait until the needed amount of samples is avail-
able for processing in the ingress voice buffer. When there’s enough samples,
it should process the samples and send packed voice data using the function
VControllerTransferVoiceData().

Function int (*pfEncode)(tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a channel structure.

Return Value Not used now.

Wrapper for Decoding Function

This wrapper function should wait until the needed amount of packed samples
is available and until the voice egress buffer has enough space to receive an
unpacked voice frame. When there’s enough samples and space, the function
should process the samples and store the output to the voice egress buffer.

Function int (*pfDecode)(tCSTChannel* pChannel);

Parameter(s)

pChannel Pointer to a channel structure.

Return Value Not used now.

Voice Processing

7-99 CST Framework Components

7.6.2.4 ADPCM/PCM Encoder/Decoder G.726/G.711

The CST’s G726G711 component implements the ITU-T G.726 adaptive dif-
ferential pulse code modulation (ADPCM) encoder and decoder of voice fre-
quencies, as well as G.711 logarithmic conversion.

In brief, the G726G711 module performs the following operations:

� Optional converting of an A-law or µ-law PCM input signal to uniform (lin-
ear) PCM or vice versa according to G.711;

� Optional compressesing/decompressesing of linear samples to/from bit-
stream, based on the selected bit rate – 16, 24, 32 or 40 kbps, according
to G.726

This algorithm is designed to process a signal sample by sample, not in the
frame-based manner. However, its external interface allows to process sam-
ples by blocks of any length.

The user can either use only G.711, or only G.726, or both of these algorithms
to process the voice signal.

The bitstream may contain 2 to 8 bits per sample. The voice controller does
packing of these bits into bytes as well as it does unpacking.

Compression ratio can be selected by the command AT#VBS<2,3,4,5,8>
(see section 9.4.4.3), which chooses 16, 24, 32, 40 kbps G.726 or 64 kbps
PCM µ-law respectively.

7.6.2.5 Echo Canceller G.168

The CST’s Line Echo Canceller (LEC) is used for cancellation of the electric
echo created by the telephone hybrid. The LEC conforms to the G.165 and
G.168 ITU recommendations. It includes a double talk detector and a nonlin-
ear processor. The user can set the value of the maximum echo path equal to
16 or 32 msec.

For correct operation of the LEC, the input samples should be linear PCM sam-
ples with absolute values less than 8159 (this is the maximum value for linear
samples after µ-law expansion). The CST Service performs the scaling need-
ed for LEC automatically.

The echo canceller can be enabled/disabled in the CST Framework voice path
by the command AT#VEC (see section 9.4.4.1).

Telephony Signals Processing

 7-100

7.6.2.6 VAD, CNG and AGC

The CST’s voice activity detector (VAD) detects the presence of speech in the
signal. It has a special adaptive algorithm to automatically adjust to the level
of the noise in the signal, in order to provide robust operation even in the noisy
speech. It has many user configurable parameters, allowing the algorithm to
optimally tune itself for a specific application. The VAD also outputs several co-
efficients that characterize the spectral envelope of the noise (when no speech
is detected), so that the regenerated noise would appear similar to the original
noise.

The CST’s Comfort Noise Generator (CNG) generates noise, distributed ei-
ther uniformly or shaped according to the spectral envelope coefficients, which
can be passed to the CNG as parameters.

The CST’s Automatic Gain Control (AGC) is designed specifically to amplify
the voice signal, which has very non-stationary amplitude envelope. It oper-
ates much better in conjunction with the VAD, which can tell the AGC when
there is no speech in the signal, so that the AGC would not adapt in these peri-
ods.

In the Chipset Mode, the VAD may report about speech absence and send the
noise spectral envelope coefficients via special shielded codes, included in the
voice data. Either vocoded (wave form coded) digital data or the VAD/CNG pa-
rameters are produced for each coded timeframe. The CNG can be enabled
or disabled also via special shielded codes, received over the serial link (from
the Host to CST). Read section 9.5 about these shielded codes.

7.6.3 Telephony Signals Processing

Telephony signals processing includes several components – UMTD (detects
DTMF and CPT signals), UMTG (generates DTMF and CPT signals) and cli-
ent side Caller ID. All components have simple interfaces and operate with
16-bit 8 kHz samples (they have wider input dynamic range than voice proc-
essing components, which usually operate with 14-bit samples only).

7.6.3.1 Universal Multifrequency Tone Detector (DTMF/CPT/etc.)

CST includes the Universal Multifrequency Tone Detector (UMTD) for detect-
ing DTMF, Call Progress Tones (CPT) and many other telephony signals.

In brief, the UMTD detector filters the input samples, estimates the spectrum
of the input signal, checks the cadences and pauses and makes the decision
about presence of signaling tones. The UMTD can be easily configured to fit
the specific standard of any country.

Telephony Signals Processing

7-101 CST Framework Components

DTMF Detector

The CST’s DTMF Detector operates in compliance to ITU-T Q.24 Recommen-
dation.

The CST’s DTMF has good talk-on performance, detecting the tone even in
noisy signal, and good talk-off performance, avoiding false detection in the
presence of speech or music. Good talk-off performance allows turning the
DTMF detector on right away when going off hook and turning it off only when
going back on hook. In the Chipset Mode, the DTMF detector is activated only
in the voice mode of the AT parser, and detector results are sent to the Host
via special shielded codes (see section 9.5 for details).

CPT Detector

The CST’s CPT detector, in default configuration, accepts a wide range of call
progress tones fitting the standards of most countries and detects the following
signals/events:

Table 7-40. Detected CPT Signals

Configuration Signal Freq., Hz Durations, sec

Q.35 dialtone 340-500 Continuous, more than 2.6

busy 340-500 [0.07–0.70]–[0.01–0.80]

ringback 340-500 [0.67–2.50]–[3.00–6.00]

longtone 340-500 Continuous, more than 1

Q.35 extended dialtone 340-500 Continuous, more than 2.6

busy 340-500 [0.07–0.70]–[0.01–0.80]

340-500 [0.70–0.80]–[0.70–0.80]

ringback 340-500 [0.67–2.50]–[2.00–6.00]

340-500 [0.35–0.55]–[0.15–0.30]–[0.35–0.55]–[1.95–6.05]

longtone 340-500 Continuous, more than 1

CST contains two default configurations, which are defined in the array
CPTD_Configurations[4] (see the files umtd_signals.h and
umtd_signals.c). The first configuration detects all signals strictly accord-
ing to the Q.35 recommendation. The second configuration detects all signals
according to the Q.35 recommendation and some signals that do not fit the
Q.35 recommendation (see Table 7-41). The third and fourth configurations
are left empty by default, and the user can attach his/her own configurations
here.

Telephony Signals Processing

 7-102

In the Chipset Mode, the current configuration can be selected by the com-
mand AT+CNTRY (see section 9.4.1.31)

Table 7-41. CPTD Configurations

Country Configuration Country Configuration

Argentina Q.35 Italy Q.35 ext.

Australia Q.35 ext. Japan Q.35 ext.

Austria Q.35 Korea Q.35 ext.

Belgium Q.35 Netherlands Q.35

Brazil Q.35 Norway Q.35

Canada Q.35 ext. Singapore Q.35 ext.

China Q.35 Sweden Q.35

Denmark Q.35 Switzerland Q.35

Finland Q.35 Taiwan Q.35 ext.

France Q.35 United Arab Emirates Q.35 ext.

Germany Q.35 United Kingdom Q.35 ext.

Great Britain Q.35 ext. United States Q.35

Israel Q.35

In the modem mode of the AT parser, the CPT detector’s behavior can be con-
trolled by the command ATX (see section 9.4.1.23 for details). Use ATX1 to
disable, and ATX4 to enable both busy and dial tone detection.

In the voice mode, the CPTD events are sent to the Host via special shielded
codes (see section 9.5 for details).

7.6.3.2 Universal Multifrequency Tone Generator (DTMF/CPTD/etc.)

CST includes the Universal Multifrequency Tone Generator (UMTG) for
DTMF, CPT and many other telephony signals generation. It can be set to gen-
erate tones according to the standards of different countries (tones’ frequen-
cies and cadences are adjustable).

Telephony Signals Processing

7-103 CST Framework Components

DTMF Generator

The UMTG-based DTMF Generator operates in compliance to ITU-T Q.23
Recommendation.

The UMTG-based DTMF generator produces output DTMF tones with the
duration and pause specified by the user. During initialization, the user may
also enable output the bandpass filter to remove clicks at the beginning and
end of generated tones.

In all modes of the AT parser, the DTMF generator is controlled by the com-
mand ATDT (see section 9.4.1.5 for details). The duration of DTMF tones and
pauses is controlled by the register S11 (the value is in milliseconds).

CPT Generator

The UMTG-based CPT generator produces output signals with cadences and
frequencies specified in UMTG settings.

The following CPT signals are generated, with the following characteristics by
default:

Table 7-42. Generated CPT Signals Parameters

Signal Freq, Hz Durations, sec

dial 350+440 continuous

busy 480+620 0.5–0.5

fast busy 480+620 0.3–0.3

ringback 440+480 2.0–4.0

The user can add new signals, and change their frequencies and cadences,
so the CPT generator can be tuned to a standard of virtually any country. The
CPT generator can be controlled only in the Flex Mode.

7.6.3.3 Client Side CID

The CST’s Client Side Caller ID includes Type I and Type II Caller ID signal
detection, compliant with standards of several providers and countries
(Bellcore, British Telecom, ETSI (European Countries), Australia, China, etc.).
It has the following features:

� Complies with Bellcore GR-30-CORE, SR-TSV-002476; British Telecom
SIN227 and SIN242; ETSI ETS 300 659, ETS 300 778; Mercury Commu-
nications MNR 19

Telephony Signals Processing

 7-104

� Supports Caller ID On Call Waiting operation

� Supports Single, Multiple Data Message Formats and VMWI

� Delivers completely decoded CID messages at a presentation layer, in-
cluding forwarding call information, network operator messages, etc. The
message parser is supplied in open source code, see the file
CST\CST\CID\CIDParser.c.

� Supplied with simple high-level state machine wrapper (in open source
code, see the file CST\CST\CID\CIDWrapper.c) to make integration
and control easier.

� Can be switched to several different states by the user:
DT-AS (CAS) signal detector,
FSK carrier detector,
FSK message detector,
TE-ACK signal generator

� Allows the user to configure the software at run time, including carrier
thresholds, signal levels, etc.

In the Flex Mode of the CST chip, there are many parameters for each signal
detected or generated by CID, which can be adjusted.

The detailed description of the Client Side CID is given in the “Caller ID User’s
Guide”. Please, be aware that the CST ROM contains this object with limited
functionality (for example, only the Client Side is implemented, PBX side is not
implemented).

It is also possible to tune some parameters of some CID signals: DT-AS,
TE-ACK and FSK by using AT commands (see section 9.4.2).

In the CST Framework, the CID is enabled after each RING signal, detected
by the DAA driver, and after going off hook (to detect CID On Call Waiting). To
disable CID, use the command AT#CID0 (see section 9.4.2.4 for details). To
enable the CID and turn the formatted output on, use the command AT#CID1.

To parse a CID message, the CST Framework temporarily reserves a
442-words-long buffer.

Telephony Components Summary

7-105 CST Framework Components

7.6.4 Telephony Components Summary

The following table illustrates a relation between integrated CST algorithms,
CST Service tasks, CST Commander atomic commands and CST Action
standard operations.

Table 7-43. Relationship Between CST Algorithms, Service Tasks, Atomic Commands
and CST Actions

Algorithm
Corresponding
CST Service Task

Corresponding CST
Commander Atomic Command

Corresponding CST Action
Standard Operations

Modem data
pump
V.22/V.22bis,
V.32/V.32bi

cstst_MODEM cac_TURNON_MODEM sot_TURNON_MODEM_CALL_X,

sot_TURNON_MODEM_ANS

Error correction,
data compression
V.42/V.42bis

ADPCM codec
G.726

cstst_VOICE_DATA(rx/tx) cac_TURNON_VOICE_DATA_X sot_TURNON_VOICE_RXDATA,

sot_TURNON_VOICE_TXDATA,

sot_TURNON_VOICE_RXTXDATA

PCM codec
G.711

Electrical echo
canceller
G.168

cstst_VOICE_LOOP cac_TURNON_VOICE_LOOP sot_TURNON_VOICE_CALL_X,

sot_TURNON_VOICE_ANS,

sot_TURNON_VOICE_RXDATA,

sot_TURNON_VOICE_TXDATA,

sot_TURNON_VOICE_RXTXDATA

VAD/AGC/CNG cstst_VOICE_DATA cac_TURNON_VOICE_DATA_X sot_TURNON_VOICE_RXDATA,

sot_TURNON_VOICE_TXDATA,

sot_TURNON_VOICE_RXTXDATA

UMTG/D (DTMF) cstst_DTMF(rx) cac_TURNON_SIMPLE_X(cstst_
DTMF)

sot_OFF_HOOK,

sot_TURNON_VOICE_RXDATA,

sot_TURNON_VOICE_TXDATA,

sot_TURNON_VOICE_RXTXDATA

cstst_DTMF(tx) with
cse_DATA(…)

cac_DIALING sot_TURNON_MODEM_CALL_X,

sot_TURNON_VOICE_CALL_X,

sot_JUST_CALL_X

Telephony Components Summary

 7-106

Table 7-43. Relationship Between CST Algorithms, Service Tasks, Atomic Commands
and CST Actions (Continued)

Algorithm
Corresponding CST Action
Standard Operations

Corresponding CST
Commander Atomic Command

Corresponding
CST Service Task

UMTD (CPTD) cstst_CPTD(rx) cac_TURNON_SIMPLE_X(cstst_
CPTD),

cac_WAIT_CPTD_APPEARANCE
_XX

sot_OFF_HOOK,

sot_TURNON_MODEM_CALL_X,

sot_TURNON_VOICE_CALL_X,

sot_TURNON_VOICE_RXDATA,

sot_TURNON_VOICE_TXDATA,

sot_TURNON_VOICE_RXTXDATA,

sot_JUST_CALL_X

Caller ID cstst_CID cac_TURNON_CID_X sot_CID_AFTER_RINGEND,

sot_CID_AFTER_LINE_REVERSAL

Overview, Interface Functions and Function Call Diagram

7-107 CST Framework Components

7.7 CST Drivers

7.7.1 Overview, Interface Functions and Function Call Diagram

There are several drivers used in CST: a high-level DAA driver, a low-level
(LIO) DAA driver, a low-level (LIO) UART driver, and a peripheral driver. The
high-level DAA driver is hardware-independent and it is a part of the CST
Framework. The other drivers are hardware-specific.

The CST Framework defines prototypes for a few peripheral drivers’ functions
and contains a number of interface functions to access to the low-level (LIO)
DAA and UART drivers from the CST Framework itself.

Figure 7-6 illustrates the CST Framework and the CST driver subsystem and
their interconnections. The arrows denote the calls between the functions and
function blocks.

Figure 7-6. CST Drivers Function Call Diagram

CST Framework Layers

CST UART
Interface

UartReset()
UartReadAvail()
UartWriteAvail()
UartRead()
UartWrite()
UartAutoBaudCtrl()
UartSetCTS()
UartIsRTS()
UartSetDCD()
UartSetRI()
UartSetDSR()
UartIsDTR()

UartProcess()

UartOpen()

DAAReadWrite()
DAAAvail()
DAADelay()
DAARegRead()
DAARegWrite()
DAADelayDone()
DAARegReadDone()
DAARegWriteDone()

DAAOpen()
DAACodecInit()

DAAProcess()

DAAPeriphDriver()

CST DAA
Interface and High-
-Level DAA Driver

Peripheral Driver TargetBoardInit()

TargetPeriphInit()

EVMPeriphProcess()
EVMPeriphDriver()

SetIntVect()

EVM54CST_UART_setup()

UARTDrvILIO

open()
close()
submit()
cancel()
ctrl()

UartISR()

UART LIO
Driver

DAADrvILIO

open()
close()
submit()
cancel()
ctrl()

EVM54CST_DAA_setup()

DAACtrlCallBack() DAADataCallBack()

DAA LIO
Driver

CSL DAA
functions

CSL
DAA_isr()

CSL UART
functions

CSL

Each of the drivers shown on the diagram is described in the later sections of
this document.

Overview, Interface Functions and Function Call Diagram

 7-108

7.7.1.1 CST DAA Interface Functions. Files DAADrv.c, DAADrv.h

The CST Framework defines a number of interface functions to access to the
low-level (LIO) DAA driver. These functions are provided mainly to simplify in-
vocation of the LIO driver functions (see section 7.7.4) inside the CST Frame-
work. These functions do not contain any extra logic and serve as a bridge to
the LIO driver functions.

Table 7-44. CST DAA Interface Functions

Function Description

DAAOpen Opens a DAA I/O channel

DAAReadWrite Reads and writes a number of samples from/to the DAA channel

DAAAvail Returns count of samples that can be read/written from/to the DAA channel

DAADelay Starts a delay in the DAA driver

DAARegRead Starts a DAA device hardware register read

DAARegWrite Starts a DAA device hardware register write

DAADelayDone Checks if the delay completed

DAARegReadDone Checks if the DAA device hardware register read completed and returns the
register value

DAARegWriteDone Checks if the DAA device hardware register write completed

The other 3 DAA functions belong to the high-level DAA driver and are de-
scribed in a greater detail in section 7.7.3.4:

Table 7-45. High-Level DAA Driver Functions

Function Description

DAACodecInit High-level DAA driver initialization. It does not include hardware inititalization.

DAAProcess Performs periodic background DAA operations.

DAAPeriphDriver Executes a peripheral command

Overview, Interface Functions and Function Call Diagram

7-109 CST Framework Components

DAAOpen function

Function void tpVoid DAAOpen (tpVoid DaaChanHandle);

Parameter(s)

DaaChanHandle Pointer to an LIO channel object.

Type tpVoid is a pointer to void, defined in CSTCommon.h.

Return Value Channel handle, pointer to the channel state object/structure (the same value
as DaaChanHandle) on success. NULL if function failed.

See also EVM54CSTDrv.c.

DAAReadWrite Function

Function bool DAAReadWrite (tpVoid DaaChanHandle, int *pbuf, int

count);

Parameter(s)

DaaChanHandle Channel handle, returned by DAAOpen()

pbuf Pointer to the user buffer. The buffer must contain count
samples to be output through the DAA. If the function is
accepted, the buffer will be filled with newly obtained
samples from the DAA. This is because input and output
through the DAA are synchronous processes, so we can
use the same buffer for I/O.

count Amount of samples to be input/output

Return Value Nonzero, if the operation has been accepted and there’re new samples in the
buffer. Zero, if the operation has been denied (e.g. there’s not enough samples
to read from the DAA) and the user should try again later.

DAAAvail Function

Function int DAAAvail (tpVoid DaaChanHandle);

Parameter(s)

DaaChanHandle Channel handle, returned by DAAOpen()

Return Value Number of samples that can be read off the DAA and written to the DAA by the
DAAReadWrite() function. It’s not necessary to call this function before
DAAReadWrite() since the latter function makes sure there’s enough
samples to be read off the DAA before accepting the user’s buffer.

Overview, Interface Functions and Function Call Diagram

 7-110

DAADelay Function

This function starts a delay of specified number of samples in the DAA driver.
This delay does not affect the I/O process, nor does it sit in a tight loop. It just
starts the process, counting samples. Upon passing of the specified number
of samples (in either direction) through the DAA, the delay will be completed.
To find out if the delay completed, use the DAADelayDone() function.

Function bool DAADelay (tpVoid DaaChanHandle, int count);

Parameter(s)

DaaChanHandle Channel handle, returned by DAAOpen()

count Number of samples, making up the delay time

Return Value Nonzero, if the delay started. Zero, if the delay can’t be started because of
another delay being in progress.

DAARegRead Function

Function bool DAARegRead (tpVoid DaaChanHandle, unsigned int reg);

Parameter(s)

DaaChanHandle Channel handle, returned by DAAOpen()

reg DAA hardware register number

Return Value Nonzero, if the register read started. Zero, if the read can’t be started because
there is another register read or write in progress.

DAARegWrite Function

Function bool DAARegWrite (tpVoid DaaChanHandle, unsigned int reg,

unsigned int value);

Parameter(s)

DaaChanHandle Channel handle, returned by DAAOpen()

reg DAA hardware register number

value New value for the register

Return Value Nonzero, if the register write started. Zero, if the write can’t be started because
there is another register write or read in progress.

Overview, Interface Functions and Function Call Diagram

7-111 CST Framework Components

DAADelayDone Function

Function bool DAADelayDone (tpVoid DaaChanHandle);

Parameter(s)

DaaChanHandle Channel handle, returned by DAAOpen()

Return Value Nonzero, if the delay, initiated by DAADelay(), has completed. Zero,
otherwise.

DAARegReadDone Function

Function int DAARegReadDone (tpVoid DaaChanHandle);

Parameter(s)

DaaChanHandle Channel handle, returned by DAAOpen()

Return Value Nonnegative value, the value of the register, if the register read has completed.
Negative value otherwise.

DAARegWriteDone Function

Function bool DAARegWriteDone (tpVoid DaaChanHandle);

Parameter(s)

DaaChanHandle Channel handle, returned by DAAOpen()

Return Value Nonzero, if the register write has completed. Zero otherwise.

Overview, Interface Functions and Function Call Diagram

 7-112

7.7.1.2 CST UART Interface Functions. Files UartDrv.c, UartDrv.h

The CST Framework defines a number of interface functions to access to the
low-level (LIO) UART driver. These functions are provided mainly to simplify
invocation of the LIO driver functions (see 7.7.4) inside the CST Framework.
These functions do not contain any extra logic and serve as a bridge to the LIO
driver functions.

Table 7-46. CST UART Interface Functions

Function Description

UartOpen Opens input and output UART channels

UartReset Resets one or both channels

UartReadAvail Returns count of characters that can be read from the input channel

UartWriteAvail Returns count of characters that can be written to the output channel

UartRead Reads a number of characters from the input channel

UartWrite Writes a number of characters to the output channel

UartProcess Periodic UART process function. Takes care of the hardware control flow and
related to it functions.

UartAutoBaudCtrl Enables/disables the autobaud function. The autobaud function helps to set up a
correct baud rate if the baud rates of the two connected UARTs mismatch

UartSetCTS Sets the CTS pin to a specified state

UartIsRTS Reads and returns the state of the RTS pin

UartSetDCD Sets the DCD pin to a specified state

UartSetRI Sets the RI pin to a specified state

UartSetDSR Sets the DSR pin to a specified state

UartIsDTR Reads and returns the state of the DTR pin

Overview, Interface Functions and Function Call Diagram

7-113 CST Framework Components

UartOpen Function

Function void UartOpen (tpVoid* pUartRxChanHandle, tpVoid*

pUartTxChanHandle);

Parameter(s)

pUartRxChanHandle Pointer to a pointer to an LIO UART input channel
object

pUartTxChanHandle Pointer to a pointer to an LIO UART output channel
object

Type tpVoid is a pointer to void, defined in CSTCommon.h.

Return Value None

See also EVM54CSTDrv.c.

UartReset Function

Function void UartReset (tpVoid UartRxChanHandle, tpVoid

UartTxChanHandle);

Parameter(s)

UartRxChanHandle Pointer to an LIO UART input channel object if the
input channel needs to be reset, NULL if the reset is
not needed.

UartTxChanHandle Pointer to an LIO UART output channel object if the
output channel needs to be reset, NULL if the reset
is not needed.

Return Value None

UartReadAvail Function

Function int UartReadAvail (tpVoid UartRxChanHandle);

Parameter(s)

UartRxChanHandle Pointer to an LIO UART input channel object

Return Value Number of characters that can be read from the input UART channel.

Overview, Interface Functions and Function Call Diagram

 7-114

UartWriteAvail Function

Function int UartWriteAvail (tpVoid UartTxChanHandle);

Parameter(s)

UartTxChanHandle Pointer to an LIO UART output channel object

Return Value Number of characters that can be written to the output UART channel.

UartRead Function

Function int UartRead (tpVoid UartRxChanHandle, unsigned char

*pbuf, int count);

Parameter(s)

UartRxChanHandle Pointer to an LIO UART input channel object

pbuf Pointer to the user’s buffer

count Number of characters to be read and put into the
buffer

Return Value Zero if there are no count characters available yet, the user’s buffer is empty
and the user should try calling this function again later. Nonzero if count
samples have been written to the user’s buffer.

UartWrite Function

Function int UartWrite (tpVoid UartTxChanHandle, const unsigned

char *pbuf, int count);

Parameter(s)

UartTxChanHandle Pointer to an LIO UART output channel object

pbuf Pointer to the user’s buffer

count Number of characters in the user’s buffer to be out-
put

Return Value Zero if there is no room for count characters available yet in the driver’s FIFO,
and the user should try calling this function again later. Nonzero if count
samples have been written to the user’s buffer.

Overview, Interface Functions and Function Call Diagram

7-115 CST Framework Components

UartProcess Function

Function void UartProcess (tpVoid UartRxChanHandle, tpVoid

UartTxChanHandle);

Parameter(s)

UartRxChanHandle Pointer to an LIO UART input channel object

UartTxChanHandle Pointer to an LIO UART output channel object

Return Value None

UartAutoBaudCtrl Function

Function int UartAutoBaudCtrl (tpVoid UartRxChanHandle, int

enable);

Parameter(s)

UartRxChanHandle Pointer to an LIO UART input channel object

enable 1 to enable the autobaud function or 0 to disable the
autobaud function

Return Value Nonzero on success, zero on failure.

UartSetCTS Function

Function void UartSetCTS (tpVoid UartRxTxChanHandle, int state);

Parameter(s)

UartRxTxChanHandle Pointer to an LIO UART input or output channel object

state 1 to set the pin high, 0 to set the pin low

Return Value None

UartIsRTS Function

Function int UartIsRTS (tpVoid UartRxTxChanHandle);

Parameter(s)

UartRxTxChanHandle Pointer to an LIO UART input or output channel
object

Return Value Zero if pin state is low, nonzero if pin state is high.

Overview, Interface Functions and Function Call Diagram

 7-116

UartSetDCD Function

Function void UartSetDCD (tpVoid UartRxTxChanHandle, int state);

Parameter(s)

UartRxTxChanHandle Pointer to an LIO UART input or output channel object

state 1 to set the pin high, 0 to set the pin low

Return Value None

UartSetRI Function

Function void UartSetRI (tpVoid UartRxTxChanHandle, int state);

Parameter(s)

UartRxTxChanHandle Pointer to an LIO UART input or output channel object

state 1 to set the pin high, 0 to set the pin low

Return Value None

UartSetDSR Function

Function void UartSetDSR (tpVoid UartRxTxChanHandle, int state);

Parameter(s)

UartRxTxChanHandle Pointer to an LIO UART input or output channel object

state 1 to set the pin high, 0 to set the pin low

Return Value None

UartIsDTR Function

Function int UartIsDTR (tpVoid UartRxTxChanHandle);

Parameter(s)

UartRxTxChanHandle Pointer to an LIO UART input or output channel object

Return Value Zero if pin state is low, nonzero if pin state is high.

Peripheral Driver. Files CSTPeriph.h, EVM54CSTDrv.c, EVM54CSTDrv.h

7-117 CST Framework Components

7.7.2 Peripheral Driver. Files CSTPeriph.h, EVM54CSTDrv.c, EVM54CSTDrv.h

7.7.2.1 Task of the Peripheral Driver

The peripheral driver is dedicated to carrying out the basic peripheral functions
such as managing the hook state of the DAA (going off-hook/on-hook and dial-
ing a digit (in pulse mode)), detecting ring signals and line reversals and more.
The peripheral driver makes it easy to perform these generic telephony func-
tions. The peripheral driver is also used to perform the hardware-specific init-
ialization of CST and handling the hardware specific for the EVM54CST (LED
signaling).

7.7.2.2 Set of Commands For Peripheral Driver

The CST Service peripheral driver interface provides the user with a set of
standard commands to be executed in a background task. The Service can
execute only one peripheral command at a time. If the user wants to send a
new command to CST Service Peripheral Driver, he needs to continually try
to push the command until the driver accepts it. Available peripheral driver
commands are defined in the tPeriphDriverCommand enumeration.

Enum Definition typedef enum tPeriphDriverCommand {

Table 7-47. Set of Peripheral Driver Commands

Value Name Description

0 pdc_OFF_HOOK Go off hook.
No parameters

1 pdc_ON_HOOK Go on hook.
No parameters

2 pdc_ON_HOOK_LINE_
MONITOR

Go to special phone line monitor state for Caller ID (in this state,
DAA can listen to phone line signal while staying on-hook).
No parameters

3 pdc_PULSE_GEN Dial a digit in pulse mode.
1st parameter – digit to dial, from 0 to 9

4 pdc_READ_REG Read DAA hardware register.
1st parameter – register number, from 0 to 18.
Detailed description of DAA registers is given in the documents
TMS320C54CST Client Side Telephony (SPRS187) and Si3044
User Guide. 3.3 V ENHANCED GLOBAL DIRECT ACCESS
ARRANGEMENT, Silicon Laboratories, 2000.
.

Peripheral Driver. Files CSTPeriph.h, EVM54CSTDrv.c, EVM54CSTDrv.h

 7-118

Table 7-47. Set of Peripheral Driver Commands (Continued)

Value DescriptionName

5 pdc_WRITE_REG Write DAA hardware register.
1st parameter – register number, from 0 to 18.
2nd parameter - value to write to the register
Detailed description of DAA registers is given in TMS320C54CST
Client Side Telephony (SPRS187).

6 pdc_LED_SIGNAL Indicate some event by LEDs on EVM board (this command is
specific for C54CST EVM).
1st parameter – event, defined in tLedSignalEvents
enumeration. Can be one of the following:

lse_BOOT_ILLUMINATION Blink all LEDs at power on; not
implemented yet.

lse_DAA_HANDSET_RESET Indicate DAA or Handset codec
buffer overflow

lse_UART_RX_RESET Indicate UART RX buffer reset

lse_UART_TX_RESET Indicate UART TX buffer reset

lse_UART_CTS_OFF CTS circuit turned off (Host should
wait)

lse_UART_CTS_ON CTS circuit turned on (Host can
send data)

lse_VOICE_UNDERRUN Voice buffer underrun in voice
controller

lse_IDLE_START DSP entered IDLE1 mode

lse_IDLE_END DSP left IDLE mode

6 pdc_GET_UART_
STATUS_LINES

Reserved. Not used in the current version

} tPeriphDriverCommand;

Type tPeriphDriverCommand is defined in CSTPeriph.h.

Peripheral Driver. Files CSTPeriph.h, EVM54CSTDrv.c, EVM54CSTDrv.h

7-119 CST Framework Components

7.7.2.3 Set of Events From Peripheral Driver

Upon detection of an event (for example, a ring), the CST Service generates
a message originating from the cstst_PERIPH task (see section 7.1.1.3).
Available peripheral driver events are defined in the tCSTPeriphEvent enu-
meration and described in Table 7-48.

Enum Definition typedef enum tCSTPeriphEvent {

Table 7-48. Set of Events From the Peripheral Driver

Value Name Description

0 cpe_NONE No event

1 cpe_RING Ring signal detected

2 cpe_RING_END Ring signal lost

3 cpe_AUTO_RING_END Automatic ring-end event generated upon going off-hook.

4 cpe_LINE_REVERSAL Line reversal detected

} tCSTPeriphEvent;

Type tCSTPeriphEvent is defined in CSTPeriph.h.

7.7.2.4 Peripheral Driver Function Interface

The CST Framework declares several platform-specific peripheral driver func-
tions to be called along with the whole CST initialization. The CSTAc-
tion_Init() function (see 7.3.4.1) performs an internal platform-indepen-
dent CST initialization. The user is responsible for the specific hardware initial-
ization, implementing and setting interrupt service routines, etc. The CST
Framework offers an example of such platform-specific peripheral driver func-

Peripheral Driver. Files CSTPeriph.h, EVM54CSTDrv.c, EVM54CSTDrv.h

 7-120

tions for the following hardware: TMS320C54CST chip and EVM board. These
functions are described in Table 7-49.

Table 7-49. Peripheral Driver Function Interface

Name Functionality

TargetBoardInit To be implemented according to hardware specifics. Intended for primary
hardware initialization.

TargetPeriphInit To be implemented according to hardware specifics. Intended for final
hardware initialization.
In the CST Framework it initializes interrupt management, DAA and UART
peripheral and data controllers.

SetIntVect Set new interrupt service routine

Primary Hardware Initialization

To be implemented according to hardware specifics. Intended for primary
hardware initialization.

Function void TargetBoardInit (bool IsBIOSUsed, int Multiplier, int

ExtWaitStates);

Parameter(s)

IsBIOSUsed Tells this function not to initialize DSP peripheral registers
(CLKMD, BSCR, SWCR, SWWSR). Should be non-zero if
DSP/BIOS is used as these registers are normally
configured through the DSP/BIOS configuration.

Multiplier Multiplier for DSP Clock PLL (external clock applied to
DSP will be multiplied by this value, and DSP will run at
the resulting frequency). The function presets the CLKMD
DSP register.
For C54CST’s DAA to operate properly, input clock
should be 14.7456 MHz. The multiplier should be 4 or 8,
resulting in 59 or 118 MHz CPU clock.

ExtWaitStates Amount of wait states to access external memory, both in
program and data space (the amount of wait states to
access to I/O space is not affected by this parameter and
it is set to 7). The function presets the SWWSR DSP
register.

Return Value None

Peripheral Driver. Files CSTPeriph.h, EVM54CSTDrv.c, EVM54CSTDrv.h

7-121 CST Framework Components

Final Hardware Initialization

To be implemented according to hardware specifics. Intended for final hard-
ware initialization. In the CST Framework it initializes interrupt management
subsystem, DAA and UART peripherals and overrides CSTFxns.pPeriphPro-
cess and CSTFxns.pPeriphDriver methods (see sections 6.3.8 and 7.2.2.1).

Function void TargetPeriphInit (bool IsBIOSUsed, int TimerToBeUsed;

Parameter(s)

IsBIOSUsed Tells this function not to initialize the interrupt-related
registers, interrupt vector table and service routine.
Should be non-zero if DSP/BIOS is used as all interrupt
management is normally configured by the DSP/BIOS
configuration.

TimerToBeUsed Select timer for optional system functions (MIPS
measurement): 1 - timer 1; 0 - timer 0; -1 - disabled.
These timer-related system functions are available in a
non-BIOS environment only.

Return Value None

Setting an ISR

Set a new Interrupt service Routine. Used only in non-DSP/BIOS mode.

When DSP/BIOS is used, interrupts should be set through a DSP/BIOS config-
uration.

Function void SetIntVect (int Number, void (*pIntVector) ());

Parameter(s)

Number Interrupt vector number (0 to 31)

pIntVector Address of the Interrupt service Routine. The routine
should not be declared as interrupt, because the CST
software provides a single interrupt entrance for all vec-
tors.

Return Value None

See also EVM54CSTDrv.c, EVM54CSTDrv.h.

High-Level DAA Driver. Files DAADrv.c, DAADrv.h

 7-122

7.7.3 High-Level DAA Driver. Files DAADrv.c, DAADrv.h

7.7.3.1 Task of the High-Level DAA Driver0

DAA operations can be split in to two parts: hardware-specific and hardware-
independent. The independent part is provided by the high-level DAA driver.
The CST Service calls only the high-level DAA driver functions. In other words,
the Service never interacts directly with the low-level hardware DAA driver. It
is the high-level DAA driver that interacts with the low-level hardware driver via
low level I/O interface (LIO). The high-level DAA driver can execute a set of
standard operations by processing special command scripts. The scripts
specify sequences of commands; each sequence is hardware specific, as its
commands may read/write/analyze different DAA hardware registers (see
TMS320C54CST Client Side Telephony (SPRS187)).

7.7.3.2 Set of Standard Operations

Each operation corresponds to a standard script to be supplied by the low-level
DAA driver. See also 7.7.3.3.

Enum Definition typedef enum tDAAStdRequest {

Table 7-50. Set of Standard Operations of High-Level DAA Driver

Value Name Description

0 dsr_ON_HOOK_LINE_
MONITOR

Go on hook, but enable line monitoring

1 dsr_ON_HOOK Go on hook

2 dsr_OFF_HOOK Go off hook

3 dsr_RING_DETECTION Check ring

4 dsr_BEGIN_PULSING Begin pulsing for a digit (assuming first part of inter-digit pause)

5 dsr_SINGLE_PULSE Single pulse

6 dsr_END_PULSING End pulsing for a digit (assuming second part of inter-digit pause)

} tDAAStdRequest;

Type tDAAStdRequest is defined in DAADrv.h.

High-Level DAA Driver. Files DAADrv.c, DAADrv.h

7-123 CST Framework Components

7.7.3.3 Set of commands

There is a set of commands the high-level DAA driver can execute. These
commands compose the scripts, specifying how to perform the high-level DAA
driver standard operations. Most of the commands have a parameter.

Structure typedef struct {

Table 7-51. High-level DAA Driver Commands to Compose Scripts

Type Name Description

tCodecDrvStageSwitch Switch Command code

int Param Parameter

} tCodecDrvStage;

Type tCodecDrvStage is defined in DAADrv.h.

Addresses of the scripts should be put into an array, whose address should be
stored in a global pointer, tCodecDrvStage **pDAAStdRequests (see
DAADrv.c and DAADrv.h). By default, the scripts (for the C54CST’s DAA)
are contained in the array tCodecDrvStage *apDAAStdRequests[] and
pDAAStdRequests is made pointing to it during initialization (see 7.7.5.2).

Enum Definition typedef enum tCodecDrvStageSwitch {

Table 7-52. Set of Commands of High-Level DAA Driver

Value Name Description

0 cdss_READ_REG Read a hardware DAA register (Rx) to a working register (X)
–The working register is just a variable. The old value of the
working register (e.g. value before reading DAA register) is
saved into another variable (X-1) for other uses. The
parameter (x) contains the DAA register number:

X- 1 = X

X = Rx

1 cdss_WRITE_REG Write a hardware DAA register from the working register, the
parameter (x) contains the DAA register number:

Rx = X

2 cdss_SAVE_REG_VALUE Copy the working register into a ’saving’ array. The parameter
(x) contains the index into the ‘saving’ array:

Save[x] = X

3 cdss_RESTORE_REG_VALUE Copy a value from the ’saving’ array into a working register.
The parameter (x) contains the index into the ‘saving’ array:

X = Save[x]

High-Level DAA Driver. Files DAADrv.c, DAADrv.h

 7-124

Table 7-52. Set of Commands of High-Level DAA Driver (Continued)

Value DescriptionName

4 cdss_DO_IF_MASK Calculate bitwise AND of the working register and a mask
defined in the parameter (mask). The working register stays
unchanged. If the result of the calculation is zero, the script
execution terminates:

if ((X & mask) == 0) then break

5 cdss_AND_MASK Bitwise mask the working register. The parameter (mask)
defines the mask value:

X &= mask

6 cdss_OR_MASK Set bits in the working register according to a mask. The
parameter (mask) defines the mask value:

X |= mask

7 cdss_SET_MASK Set the working register to a value. The parameter (mask)
defines the value:

X = mask

8 cdss_WAIT Unconditional wait. The parameter defines the time in 8KHz
samples to wait before a next command will start.

9 cdss_WAIT_DIFFERENCE Repeat previous command (normally, cdss_READ_REG) and
wait until the previous (X-1) and current values (X) of the
working register differ or there’s a timeout. If there’s a timeout,
the script execution terminates:

repeat until timeout or X- 1 == X

if timeout break

10 cdss_SET_RESULT Set the result of execution of the script but don’t terminate the
script yet

11 cdss_PDC_READ_REG Special implementation of cdss_READ_REG for the
peripheral driver’s command pdc_READ_REG (see 7.7.2.2):

X = Rx

12 cdss_PDC_WRITE_REG Special implementation of cdss_WRITE_REG for the
peripheral driver’s command pdc_READ_REG (see 7.7.2.2):

Rx = X

13 cdss_NONE Script terminator. Must end each script

} tCodecDrvStageSwitch;

Type tCodecDrvStageSwitch is defined in DAADrv.h.

High-Level DAA Driver. Files DAADrv.c, DAADrv.h

7-125 CST Framework Components

Note that the only allowed numbers of DAA registers are 0 through 18, that is,
the high-level DAA driver supports maximum or 19 registers.

See also DAADrv54CST.c, DAADrv54CST.h, Si3044Stages.c,
EVM54CSTDrv.c.

7.7.3.4 High-Level DAA Driver Function Interface

Table 7-53. High-Level DAA Driver Function Interface

Name Functionality

DAACodecInit High-level DAA driver initialization. It does not include hardware inititalization.

DAAProcess Performs periodic background DAA operations such as ring detection, hook
control, etc. Returns a peripheral event (see 7.7.2.3). This routine is dynamically
called via pPeriphProcess method (see 7.7.2.1)

DAAPeriphDriver Executes a peripheral command (see 7.7.2.2) and returns a result of the
execution. This routine is dynamically called via pPeriphDriver method (see
7.7.2.1)

Initialization

High-level DAA driver initialization. It does not include low-level hardware DAA
initialization.

Function void DAACodecInit (tCSTChannel* pChannel);

Parameter(s) pChannel Pointer to a global CST channel structure

Return Value None

DAA Periodic Routine

Performs periodic background DAA driver operations. Returns a peripheral
event (see 7.7.2.3). This routine is called from EVMPeriphProcess(),
which, in turn, is dynamically called via pPeriphProcess method (see
7.7.2.1)

Function tCSTPeriphEvent DAAProcess (tCSTChannel* pChannel, int

AmountOf8KHzSamples);

Parameter(s) pChannel Pointer to a global CST channel structure
AmountOf8KhzSamples Time stamp in 8kHz samples that

informs the time passed since last call

Return Value A peripheral event (see 7.7.2.3)

Brief Description of the Low-level I/O (LIO) Interface

 7-126

DAA Driver Command Execution

Executes a peripheral command and returns a result of the execution.This rou-
tine is called from EVMPeriphDriver(), which, in turn, is dynamically called
via pPeriphDriver method (see 7.7.2.1)

Function long DAAPeriphDriver (tCSTChannel* pChannel,

tPeriphDriverCommand Command, int Param1, int Param2);

Parameter(s)

pChannel Pointer to a global CST channel structure

Command A peripheral command (see 7.7.2.2, commands from 0 to 5)

Param1 First auxiliary parameter for the command

Param2 Second auxiliary parameter for the command

Return Value Result of the command execution. Zero means that the command has not yet
finished executing (the user has to send the command again to push the
process). Nonzero result means that the execution has completed. For
example, when the user sends pdc_PULSE_GEN command to dial a digit in
pulse mode, the driver will return zero until the dialing of this digit is completed.

If the command is to read a DAA hardware register (pdc_READ_REG), the re-
turned 32-bit integer value will contain the result of the execution in the high
word and the read register value in the low word. If the high and low words are
equal to zero, the register has not been read yet. Otherwise, the high word be-
comes non-zero and low word contains the register value.

7.7.4 Brief Description of the Low-level I/O (LIO) Interface

This section contains information on the LIO interface used in the CST device
drivers. This information is key to understanding the CST drivers. Additional
information on the LIO interface and writing device drivers for block I/O can be
found in Writing DSP/BIOS Device Drivers for Block I/O (SPRA802).

The LIO interface is intended to be a simple uniform interface for drivers. The
interface makes it easy to integrate drivers for new devices, override driver
methods and alter their functionality, even at run time.

The LIO interface is defined by a function table, which consists of 5 function
pointers. Each pointer points to a dedicated function and can be changed.

The function table’s structure is shown in Table 7-54.

Structure typedef struct LIO_Fxns {

Brief Description of the Low-level I/O (LIO) Interface

7-127 CST Framework Components

Table 7-54. LIO Function Table

Function Type Function Name Description

LIO_Tcancel cancel Cancels all I/O jobs started by the submit() function.

LIO_Tclose close Closes an I/O channel.

LIO_Tctrl ctrl A control function to carry out implementation-specific operations.

LIO_Topen open Opens an I/O channel.

LIO_Tsubmit submit Submits a buffer for I/O and starts an I/O process. A completion
notification will be delivered to a callback function registered by the
open() function.

} LIO_Fxns;

Type LIO_Fxns is defined in LIO.h.

LIO Open Function

The function initializes a channel object for specified direction of data flow (in-
put vs. output), handles the name parameter and implementation-specific ar-
gument, stores the callback function address and callback function argument
in the channel object and marks the channel object as in use.

Once the channel has been opened, it may then be used for I/O with the sub-
mit() function. Normally, after the processing initiated by submit() com-
pletes, the callback function will be called with the callback function argument
to notify the user.

The channel may be closed when there’s no need to continue I/O. This is done
by the close() function.

Function Ptr open (String name, LIO_Mode mode, Arg arg,

LIO_Tcallback cb, Arg cbArg);

Parameter(s) name Can be used to specify channel ID
mode Specifies mode (input vs. output) of the channel
arg Implementation-specific argument
cb A callback function to be called with cbArg argument when

I/O operation completes
cbArg An argument to be used when calling the callback function

Note that the types Void, Bool, String, Uns, Arg and Ptr are defined in
the file std.h.Uns is some unsigned integer type, Ptr is a void pointer, Arg
is a type that is big enough to hold either of an integer and a pointer.

Enum Definition typedef enum LIO_Mode {

Brief Description of the Low-level I/O (LIO) Interface

 7-128

Table 7-55. LIO Open Function Modes

Name Value Description

LIO_INPUT 0 Open channel in input mode

LIO_OUTPUT 1 Open channel in output mode

} LIO_Mode;

Type LIO_Mode is defined in LIO.h.

Return Value Channel handle, pointer to the channel state object/structure, or NULL if
function failed.

LIO Close Function

The function closes a previously opened channel and marks the channel ob-
ject as not in use. The channel may be opened with open() once again after
it has been closed by close().

Function Bool close (Ptr chanp);

Parameter(s)

chanp Channel handle, previously returned by open().

Return Value TRUE on success, FALSE if failed.

LIO Submit Function

The function takes the user buffer to be output (or input to) and starts the I/O
process. Upon completion of the process, the callback function (which has
been previously registered in the open() function) will be called to notify the
user.

The ongoing I/O process may be stopped by the cancel() function.

The submit() function should be callable from an ISR.

Function Bool submit (Ptr chanp, Ptr buf, Uns nmaus);

Brief Description of the Low-level I/O (LIO) Interface

7-129 CST Framework Components

Parameter(s)

chanp Channel handle, previously returned by open().

buf User’s buffer with or for data

nmaus Size of the buffer in MAUs. MAU is a minimum addressable
unit, whose size is usually equal to sizeof(char) in C.

Return Value TRUE if the request has been taken and the I/O process started, FALSE if the
request can’t be satisfied.

LIO Cancel Function

The function is intended to stop an ongoing I/O process, initiated by the sub-
mit() function.

Function Bool cancel (Ptr chanp);

Parameter(s)

chanp Channel handle, previously returned by open().

Return Value TRUE if the job initiated by submit() has been successfully stopped or
cancelled, FALSE otherwise.

LIO ctrl Function

The function is dedicated to carry out implementation-specific operations. Any
driver functions that are beyond the interface of the open(), close(), submit()
and cancel() functions should be done through the use of this function.

For example, for a DAA device it would be logically to implement hardware reg-
isters reading and writing in this function.

If the operations implemented in this function are needed inside of the other
LIO functions, it may be desirable to call this control function via a pointer from
the driver’s LIO function table (see Table 7-54).

Function Bool ctrl (Ptr chanp, Uns cmd, Arg arg);

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

 7-130

Parameter(s)

chanp Channel handle, previously returned by open().

cmd Implementation-defined command parameter

arg Implementation-defined argument parameter

Return Value TRUE if the implementation-defined command has been successfully
accepted, FALSE otherwise.

LIO User’s Callback Function

The user of the LIO driver should provide the callback function to find out when
the I/O processes complete.

Normally, the callback function is called from the driver’s ISR. The function
should do whatever is required to start getting the newly obtained data (if the
channel is in input mode) or prepare new data to be sent (if the channel is in
output mode).

The function and its argument (the first function argument) are registered in
the open() function when opening the channel. The function will be called
with the registered argument.

Function Void callback (Arg arg, Uns nmaus);

Parameter(s)

Arg Registered argument, may be the address of the data buffer

nmaus size of data in MAUs. MAU is a minimum addressable unit,
whose size is usually equal to sizeof(char) in C.

Return Value None

7.7.5 Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

7.7.5.1 Task of the Low-level DAA Driver

The low-level DAA driver does the actual work with the underlying hardware,
in our case C54CST’s DAA. The driver exports its functions through the Low-
level I/O (LIO) interface. The driver makes use of the CSL DAA functions (see
TMS320C54x Chip Support Library API Reference Guide (SPRU420)).

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

7-131 CST Framework Components

7.7.5.2 Scripts for High-Level DAA Driver. File Si3044Stages.c

The scripts, corresponding to the high-level DAA driver standard operations
(see 7.7.3.2), are defined in the file Si3044Stages.c. These scripts are spe-
cific to the C54CST’s DAA. The pointers to the scripts are contained in the
tCodecDrvStage *apDAAStdRequests[] structure. The scripts contain
register numbers specific to the C54CST’s DAA and logic specific to process-
ing their values.

7.7.5.3 Low-Level DAA Driver Hardware Setup Function. Files DAADrv54CST.c,
DAADrv54CST.h

The hardware setup function is intended to perform the initialization of the DAA
devices, e.g. to set up the DAA sample rate, preset analog rx/tx gain/attenua-
tion and international registers, set up the appropriate McBSP, initialize non-
static LIO channel objects, etc. This function just calls the CSL DAA_setup()
function.

This function is to be called prior to use of any of the LIO functions (see 7.7.2.4)
of the driver.

Function void EVM54CST_DAA_setup (DAA_Setup *daaSetupStruct);

Parameter(s)

daaSetupStruct A pointer to a CSL multiple DAA device structure
(Table 7-56). The structure contains number of devices
to initialize and a pointer to an array of pointers to indi-
vidual device setup structures.

Return Value None

A good example of using this function is available in the file EVM54CSTDrv.c.

Structure typedef struct {

Table 7-56. Multiple DAA Device Setup Structure

Field Type Field Name Description

Uint16 numDevs Number of devices to be set up

DAA_DevSetup **dev Pointer to array of device setup structure pointers (see Table 7-54)

} DAA_Setup;

Type DAA_Setup is defined in csl_daa.h.

Structure typedef struct {

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

 7-132

Table 7-57. DAA Device Setup Structure

Field Type Field Name Description

DAA_Params *params Pointer to a structure with DAA device parameters (initial register
values, see Table 7-58, TMS320C54CST Client Side Telephony
(SPRS187) and, Si3044 User Guide. 3.3 V ENHANCED GLOBAL
DIRECT ACCESS ARRANGEMENT.� Silicon Laboratories,
2000)

DAA_Handle daaHandle Pointer to a DAA device state object created by the user

Uint16 mcbspPort Number of an McBSP port the DAA device is connected to
(MCBSP_PORT2 for internal DAA)

Int16 *pCircBuf Pointer to a circular buffer that will contain samples for I/O

Uint16 circBufSize Circular buffer size

Uint16 circBufOffset Initial circular buffer offset (write pointer offset of the read pointer).
Also used as the multiple of samples to skip when
overflowing/underflowing, which may be crucial for modem
applications.

Uint16 dataLength Callback data size. The data callback will be called if there are
this many samples available to read/write.

void *pID Some pointer to channel ID. In CST, this pointer points to a CST
global channel structure of type tCSTChannel (see 6.3.1)
associated with this device.

DAA_CallBack dataCallBack Pointer to data callback function

DAA_CallBack ctrlCallBack Pointer to control callback function

DAA_RstFxn reset Pointer to DAA device hardware reset control function.

} DAA_DevSetup;

Type DAA_DevSetup is defined in csl_daa.h.

Structure typedef struct {

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

7-133 CST Framework Components

Table 7-58. Initial DAA Device Registers Values

Field Type Field Name Description

Uint16 txAttenuation Analog transmit attenuation value, “OR”ed with rxGain
defines value of the TX/RX Gain Control register (see
TMS320C54CST Client Side Telephony (SPRS187))

Uint16 rxGain Analog receive gain value, “OR”ed with txAttenuation
defines value of the TX/RX Gain Control register

Uint16 sampleRateReg7 Sample Rate Control Register 7 value

Uint16 sampleRateReg8 Sample Rate Control Register 8 value

Uint16 sampleRateReg9 Sample Rate Control Register 9 value

Uint16 sampleRateReg10 Sample Rate Control Register 10 value

Uint16 ictrl1 International Control Register 1 value

Uint16 ictrl2 International Control Register 2 value

Uint16 ictrl3 International Control Register 3 value

} DAA_Params;

Type DAA_Params is defined in csl_daa.h.

DAA CSL Callback Functions

The low-level DAA driver creates two callback functions, a data callback, and
a control callback. These functions will be called from the CSL ISR.

The data callback is used to notify the user of data samples availability, e.g.
when it’s OK to read/write a new portion of samples.

The control callback is used to notify the user of completion of device register
reads and writes. The read notification also delivers the value of the register
just read. There’re two other control notifications, one for notifying the user of
the circular buffer overflow (which may happen when the system goes off the
real-time) and another one is for notifying the user when a delay completed
(the delay function is important for going off-hook and on-hook because this
takes a certain amount of time (or samples to pass through) before the new
hook state becomes valid).

The DAA device setup structure (see Table 7-57) should have pointers to
these callback functions.

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

 7-134

CSL DAA Callback Function Prototype

void CallBack (void* pID, Uint16 task, Uint16 arg);

Function

Parameter(s)

pID Pointer to channel ID, given in the DAA device setup structure
(see Table 7-57). In CST, this pointer points to a CST global
channel structure of type tCSTChannel (see 6.3.1) associated
with this device.

task For data callback:

� DAA_DATA – there’re samples ready to be read/written

For control callback:

A bit field with the following bits set/reset:

� DAA_OVERFLOW – the circular buffer overflowed
notification

� DAA_REG_READ – a DAA device register read completed

� DAA_REG_WRITE – a DAA device register write completed

� DAA_DELAY – a delay completed

arg For data callback:

Pointer to a DAA device state object created by the user. The
pointer of type DAA_Handle typecast to Uint16.

For control callback:

Register value just read, if (task & _DAA_REG_READ)!=0

Table 7-59. Bit Fields of the Task Parameter

Bit Field Name Bit Field Mask Value

_DAA_REG_READ 0x0001

_DAA_REG_WRITE 0x0002

_DAA_DATA 0x0004

_DAA_DELAY 0x0010

_DAA_OVERFLOW 0x0020

The bit fields are defined in csl_daa.h.

Return Value None

These CSL DAA callbacks are implemented in the functions DAADataCall-
Back() and DAACtrlCallBack().

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

7-135 CST Framework Components

DAA CSL Device Hardware Reset Control Function

During the initialization of the DAA devices, the reset control functions are
used to put the devices into the reset state and take them back out of the rest
as part of normal initialization procedure. The CSL provides one reset function
for the internal C54CST DAA device. This is function DAA_reset() and it is
a part of the CSL. In case there are external Si3021 DAAs connected to the
CST chip, the individual DAA hardware reset functions should be provided for
the extra DAAs.

The DAA device setup structure (see Table 7-57) should have a pointer to this
function.

7.7.5.4 CSL DAA Device Hardware Reset Control Function Prototype

void DAA_RstFxn (Uint16 flag);

Parameter(s)

flag Nonzero value puts the device into the reset state; zero value
takes the device out of the reset state.

7.7.5.5 LIO Functions of Low-Level DAA Driver. Files DAADrv54CST.c, DAADrv54CST.h

The 5 LIO functions (see 7.7.4) are exported in the LIO_Fxns DAADrvILIO
structure of the driver.

DAA LIO Open Function

The function initializes a channel object and opens a channel for I/O of the DAA
samples. In CST, this function is called just once during the final hardware init-
ialization (see 7.7.2.4).

Function Ptr open (String name, LIO_Mode mode, Arg arg,

LIO_Tcallback cb, Arg cbArg);

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

 7-136

Parameter(s)

name Can be used to specify channel ID. Ignored.

mode Specifies mode (input vs. output) of the channel. Ignored (and may
be either of LIO_INPUT and LIO_OUTPUT), because the DAA device
is a synchronous device, which inputs and outputs data samples at
the same rate. Therefore, the implementation of the submit()
function is made such that the function takes a buffer filled with
samples to be output and upon completion of the function, this same
buffer will be filled with new input samples. That is, output samples
are taken and replaced by new input samples.

arg Implementation-specific argument. Currently, this argument is used
to pass a pointer to the LIO channel object to the function. This helps
to avoid unwanted allocation of static data and to make the driver fully
multichannel.

cb A callback function to be called with cbArg argument when I/O
operation completes. Ignored, because CST usually asks the driver
if there’re enough samples to be read/written.

cbArg An argument to be used when calling the callback function. Ignored,
by the same reason as the above parameter.

Return Value Channel handle, pointer to the channel state object/structure (the same value
as arg), or NULL if function failed.

DAA LIO Close Function

The function closes a previously opened DAA channel and marks the channel
object as not in use. This function is never called in CST.

Function Bool close (Ptr chanp);

Function

chanp Channel handle, previously returned by open().

Return Value TRUE on success, FALSE if failed.

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

7-137 CST Framework Components

DAA LIO Submit Function

The function takes a buffer filled with samples to be output and upon comple-
tion of the function, this same buffer will be filled with new input samples. That
is, output samples are taken and replaced by new input samples. This is be-
cause the DAA device is a synchronous device, which inputs and outputs data
samples at the same rate.

Function Bool submit (Ptr chanp, Ptr buf, Uns nmaus);

Parameter(s)

chanp Channel handle, previously returned by open().

buf Pointer to the user’s buffer with data samples to be output by
the device. Upon completion of the function the buffer is filled
with new input samples.

nmaus Size of the buffer in MAUs. MAU is a minimum addressable
unit, whose size is usually equal to sizeof(char) in C. On
C54xx DSPs sizeof(char)==sizeof(int)==1. So, this
parameter specifies number of samples to be read/written.

Return Value TRUE if the request has been accepted and the buffer processed, FALSE if
the request can’t be satisfied (request was early or nmaus==0).

DAA LIO Cancel Function

Even though, this function should stop an ongoing I/O process, initiated by the
submit() function, it does not do so. This is because CST always continu-
ously inputs and outputs samples and never stops.

Function Bool cancel (Ptr chanp);

Parameter(s)

chanp Channel handle, previously returned by open().

Return Value FALSE

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

 7-138

DAA LIO ctrl Function

The function is dedicated to carry out implementation-specific operations. Any
driver functions that are beyond the interface of the open(), close(), submit()
and cancel() functions should be done through the use of this function. There
are a few of such specific operations…

Function Bool ctrl (Ptr chanp, Uns cmd, Arg arg);

Parameter(s)

chanp Channel handle, previously returned by open().

cmd Command parameter (see Table 7-60)

arg Optional argument parameter, whose meaning depends on
cmd.

Enum Definition typedef enum tDAADrvCmd {

Table 7-60. DAA LIO Driver Commands

Name Value Description

DAA_IOAVAILABILITY 0 Command to find out how many samples can be read/written at the
moment.

DAA_REG_READ 1 Command to start reading from a DAA device hardware register.

DAA_REG_WRITE 2 Command to start writing to a DAA device hardware register.

DAA_DELAY 3 Command to start a delay. The delay does not stop samples I/O nor
does it affect reading and writing of the device registers. It’s more
like an alarm clock or a timer.

DAA_REG_READ_DONE 4 Command to get a value of the register, if already available.

DAA_REG_WRITE_DONE 5 Command to see if the register write completed.

DAA_DELAY_DONE 6 Command to see if the delay completed.

} tDAADrvCmd;

Type tDAADrvCmd is defined in DAADrv.h.

Return Value Depends on the cmd parameter. FALSE if the command has not been
recognized.

The following table summarizes all commands, describes the meaning and
use of the optional parameter arg and associated returned value of the
ctrl() function:

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

7-139 CST Framework Components

Table 7-61. DAA LIO Driver Parameter - Result Map

cmd
arg Used for,
Treated as arg Use Returned Value

DAA_IOAVAILABILITY Output,

Int16*

(Int16)arg is assigned a count
of samples that can be read/writ-
ten at the moment

TRUE

DAA_REG_READ Input,

Uint16

arg is the number of the register
to be read

TRUE, if register
read started; FALSE
if not (another read/
write is in progress)

DAA_REG_WRITE Input,

tDAADrvRegWriteArg*

(tDAADrvRegWriteArg)arg
contains the register number to
be written to and its new value
(see Table 7-62)

TRUE, if register
write started; FALSE
if not (another read/
write is in progress)

DAA_DELAY Input,

Int16

arg is the number of
samples that make up the
delay time

TRUE, if delay
started; FALSE if not
(another delay is in
progress)

DAA_REG_READ_DO
NE

Output,

Int16*

(Int16)arg is assigned to the
register value just read

TRUE, if read com-
pleted; FALSE if not.

DAA_REG_WRITE_D
ONE

Nothing None TRUE, if write com-
pleted; FALSE if not.

DAA_DELAY_DONE Nothing None TRUE, if delay com-
pleted; FALSE if not.

Structure typedef struct tDAADrvRegWriteArg {

Table 7-62. DAA LIO Driver Register Write Structure

Field Type Field Name Description

unsigned int Reg DAA device hardware register number

unsigned int RegValue Value to be written to the register

} tDAADrvRegWriteArg;

Type tDAADrvRegWriteArg is defined in DAADrv.h.

DAA LIO Callback Function

CST does not use LIO callback functions for DAA because CST usually asks
the driver if there’re enough samples to be read/written.

Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c

 7-140

7.7.6 Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c

7.7.6.1 Task of the Low-Level UART Driver

The low-level UART driver does the actual work with the underlying hardware,
in our case C54CST’s UART. The driver exports its functions through the Low-
level I/O (LIO) interface. The driver makes use of the CSL UART functions (see
TMS320C54x Chip Support Library API Reference Guide (SPRU420)).

7.7.6.2 Low-Level UART Driver Hardware Setup Function. Files Uart550Drv.c, Uart550Drv.h

The hardware setup function is intended to perform the initialization of the
UART device, e.g. to set up the UART baud rate, character size, parity set-
tings, control flow and initialize non-static LIO channel objects. This function
calls the CSL UART_init() function.

This function is to be called prior to use of any of the LIO functions (see 7.7.2.4)
of the driver.

Function void EVM54CST_UART_setup (tUartDrvSetupStruct

uartDrvSetupStruct);

Parameter(s)

uartDrvSetupStruct This structure contains the address of the function
that tracks modem escape sequence characters
(see 7.2.2.1).

An example of using this function is available in the file EVM54CSTDrv.c.

Structure typedef struct {

Table 7-63. UART Setup Function to Track Modem Escape Sequence Characters

Field Type Field Name Description

tUARTUserFxn UserFxn This structure contains the address of the function that tracks
modem escape sequence characters

} tUartDrvSetupStruct;

Type tUartDrvSetupStruct is defined in UartDrv.h.

Return Value None

Default setup settings of the UART driver are summarized in the following
table:

Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c

7-141 CST Framework Components

Table 7-64. Default Setup Settings of the UART Driver

Setting Value

Baud rate 115200 (bit/s)

Character size 8 (bits)

Number of
stop bits

1

Parity None, disabled

These default settings are contained in the variables UART_Params Uart-
Params and tUartAutoBaud UartAutoBaudParams of the driver. And if
the defaults need to be changed, the changes should be made in the men-
tioned variables prior to calling the driver hardware setup function.

UART Rx Monitor/Escape Sequence Tracking Function

This function is called each time a new character from the UART is received.
The function is intended to track special character sequences (modem escape
sequences). These sequences are used to switch a modem between the data
and online command modes (see 7.2.2.1).

Function void UARTUserFxn (struct tCSTChannel* pChannel, char

data);

Parameter(s)

pChannel Pointer to a global CST channel structure

data Received character

Return Value None

Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c

 7-142

7.7.6.3 LIO Functions of Low-Level UART Driver. Files Uart550Drv.c, Uart550Drv.h

The 5 LIO functions (see 7.7.4) are exported in the LIO_Fxns UartDrvILIO
structure of the driver.

UART LIO Open Function

The function initializes a channel object and opens a channel for input or output
of the UART characters. In CST, this function is called just once during the final
hardware initialization (see 7.7.2.4).

Function Ptr open (String name, LIO_Mode mode, Arg ignored,

LIO_Tcallback cb, Arg cbArg);

Parameter(s)

name Can be used to specify channel ID. Ignored.

mode Specifies mode (input vs. output) of the channel. Possible
values are: LIO_INPUT, LIO_OUTPUT.

ignored Implementation-specific argument. Ignored.

cb A callback function to be called with cbArg argument when
I/O operation completes. Ignored, because CST usually asks
the driver if it’s possible to read/write a certain amount of
characters.

cbArg An argument to be used when calling the callback function.
Ignored, by the same reason as the above parameter.

Return Value Channel handle, pointer to the channel state object/structure, or NULL if
function failed.

UART LIO Close Function

The function closes a previously opened UART channel and marks the chan-
nel object as not in use. This function is never called in CST.

Function Bool close (Ptr chanp);

Parameter(s)

chanp Channel handle, previously returned by open().

Return Value TRUE on success, FALSE if failed.

Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c

7-143 CST Framework Components

UART LIO Submit Function

The function takes a buffer from the user and either fills it with received data
characters (if the channel is configured for input) or takes from it data charac-
ters to be sent (if the channel is configured for output).

Function Bool submit (Ptr chanp, Ptr bufp, Uns nmaus);

Parameter(s)

chanp Channel handle, previously returned by open().

bufp Pointer to the user’s buffer with/for data characters. This
pointer is treated as a pointer to an array of characters, in
other words, unsigned char*.

nmaus Size of the buffer in MAUs. MAU is a minimum addressable
unit, whose size is usually equal to sizeof(char) in C. On
C54xx DSPs sizeof(char)==sizeof(int)==1. So, this
parameter specifies number of characters to be read/written.
The characters are not packed, even though a char is 16-bit
wide and may keep more information. The most significant 8
bits of the characters are simply ignored.

Return Value TRUE if the request has been accepted and the user buffer processed, FALSE
if the request can’t be satisfied (reasons: there’s no room for that many
characters in the driver’s FIFO, there’re not enough characters in the driver’s
FIFO).

Note: in the current implementation of the driver, the FIFO size is fixed and
equal to 298 characters. E.g. submit() will not take more than 298 charac-
ters to be output nor will it return more than 298 input characters.

UART LIO Cancel Function

The function is intended to stop an ongoing I/O process. The function resets
the channel FIFO. For input channel it also reinitializes the hardware flow con-
trol so the host may start sending data again. For output channel it stops an
ongoing transmission of characters.

Function Bool cancel (Ptr chanp);

Parameter(s)

chanp Channel handle, previously returned by open().

Return Value TRUE if the function has been successfully executed, FALSE otherwise.

Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c

 7-144

UART LIO ctrl Function

The function is dedicated to carry out implementation-specific operations. Any
driver functions that are beyond the interface of the open(), close(), submit()
and cancel() functions should be done through the use of this function. There
are a few of such specific operations…

Function Bool ctrl (Ptr chanp, Uns cmd, Arg arg);

Parameter(s)

chanp Channel handle, previously returned by open().

cmd Command parameter (see Table 7-65)

arg Optional argument parameter, whose meaning depends on cmd.

Enum Definition typedef enum tUartDrvCmd {

Table 7-65. UART LIO Driver Commands

Name Value Description

UART_RESET 0 Command to reset the channel FIFO. For an input channel, this also
reinitializes the hardware control flow so the host may start sending
data again. For an output channel, this stops an ongoing character
transmission as well.

UART_IOAVAILABILITY 1 Command to find out how many characters can be read (for input
channel) or written (for output channel) at the moment.

UART_AUTOBAUD_FLAG 2 Enables the autobaud function (applicable for an input channel only).
The autobaud function tries to find and set the correct baud rate if the
baud rates of the two connected UARTs mismatch. By default, the
autobaud function is disabled and to enable it this command should be
explicitly given to the driver.

UART_PROCESS 3 Command to perform background UART processes: hardware flow
control related functions. This includes restarting transmission when
the host sets RTS high again and setting CTS high when there’s
enough space in the input FIFO again.

UART_CTS_PIN 4 Sets the CTS pin high or low.

UART_RTS_PIN 5 Returns the state of the RTS pin.

UART_DCD_PIN 6 Sets the DCD pin high or low.

UART_RI_PIN 7 Sets the RI pin high or low.

UART_DSR_PIN 8 Sets the DSR pin high or low.

UART_DTR_PIN 9 Returns the state of the DTR pin.

Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c

7-145 CST Framework Components

} tUartDrvCmd;

Type tUartDrvCmd is defined in UartDrv.h.

Return Value Depends on the cmd parameter. FALSE if the command has not been
recognized.

The following table summarizes all commands, describes the meaning and
use of the optional parameter arg and associated returned value of the
ctrl() function:

Table 7-66. UART LIO Driver Parameter - Result Map

cmd
arg Used for,
Treated as arg Use Returned Value

UART_RESET Nothing None TRUE, if
successful reset;
FALSE otherwise.

UART_IOAVAILABILITY Output,

Int16*

(Int16)arg is assigned a count
of characters that can be read (if
input channel) or written (if
output channel) at the moment

TRUE

UART_AUTOBAUD_
FLAG

Input,

tUartDrvCmdArg

if (arg==ENABLE) enables the
autobaud function, otherwise
disables it

TRUE, if
successful
enabling/disabling;
FALSE otherwise.

UART_PROCESS Nothing None TRUE

UART_CTS_PIN Input,

tUartDrvCmdArg

if (arg==PIN_ON) sets the CTS
pin high, otherwise sets it low

TRUE

UART_RTS_PIN Nothing None RTS pin state

UART_DCD_PIN Input,

tUartDrvCmdArg

if (arg==PIN_ON) sets the DCD
pin high, otherwise sets it low

TRUE

UART_RI_PIN Input,

tUartDrvCmdArg

if (arg==PIN_ON) sets the RI pin
high, otherwise sets it low

TRUE

UART_DSR_PIN Input,

tUartDrvCmdArg

if (arg==PIN_ON) sets the DSR
pin high, otherwise sets it low

TRUE

UART_DTR_PIN Nothing None DTR pin state

See also UartAutoBaud.c, UartAutoBaud.h.

Reloading Drivers

 7-146

UART LIO Callback Function

CST does not use LIO callback functions for UART because CST usually asks
the driver if it can give or take a certain amount of characters.

7.7.7 Reloading Drivers

Reloading the CST drivers is normally an easy procedure. The following sec-
tions contain information about reloading the standard CST UART, DAA and
peripheral drivers as well as using multiple DAA devices in multi-channel CST
flex applications.

7.7.7.1 Reloading the UART Driver

To reload the existing CST UART driver, the user should first create his own
driver for UART or whatever device will be used to replace the C54CST’s
UART.

The following steps should be taken:

1) An LIO channel object type should be defined for both input and output
channels. The channel object/structure should contain the state variables
of the channel (an example of the structure is available in file
Uart550Drv.h, type tUARTChanObj). Let’s say, it will be tMyUartChanObj.

2) A function analogous to EVM54CST_UART_setup() should be imple-
mented (see 7.7.6.2). Let’s say, it will be function My_UART_setup().

3) All 5 LIO functions should be implemented. Their implementation is hard-
ware specific but these functions have to behave the same way as the
original CST UART driver’s LIO functions. Remember that the UART LIO
submit() function works with 8-bit characters, which are not packed
(see 7.7.6.3).

It is important that the new driver accepts all of the commands (through the
LIO ctrl() function) listed in the . Even if there’re no certain UART lines
like DTR and RI or the autobaud function is not available, the commands
that correspond to these unavailable functions have to be simulated. and
the code of the original UART LIO driver will help to understand how to sim-
ulate the commands. A template for the UART driver can be found in the
files DriversTemplates\MyUartDrv.c and DriversTem-
plates\MyUartDrv.h.

Reloading Drivers

7-147 CST Framework Components

4) The LIO function addresses should be put into a variable:
LIO_Fxns MyUartDrvILIO =

{

 &cancel,

 &close,

 &ctrl,

 &open,

 &submit

};

This structure will be copied to the structure UartDrvILIO (see
Uart550Drv.c) in the beginning of the new peripheral driver’s final hard-
ware initialization function. If any of the LIO functions need to call the other
one, they should do that by reference through the pointers of the UartDr-
vILIO structure.

5) An ISR function specific to the hardware should be implemented and it
should use the LIO channel objects either directly (if they’re statically allo-
cated in the driver as in Uart550Drv.c) or the ISR function should take
their addresses as arguments. In this latter case, a void(void) wrapper
function may be needed to call the actual ISR with the appropriate argu-
ments.
So, there’re two options, direct and indirect access to the channel objects:

// direct access:

/////////////////

// channel objects defined inside the UART driver:

tMyUartChanObj MyRxUartChanObj, MyTxUartChanObj;

void MyUartIsr() // executed upon interrupt

{

 // Use MyRxUartChanObj and MyTxUartChanObj here

}

// indirect access:

////////////////////

void MyUartIsr (tMyUartChanObj* pMyRxUartChanObj,

 tMyUartChanObj* pMyTxUartChanObj)

{

 // Use *pMyRxUartChanObj and *pMyTxUartChanObj here

}

// channel objects defined outside the UART driver:

tMyUartChanObj MyRxUartChanObj, MyTxUartChanObj;

void MyUartIsrWrapper() // executed upon interrupt

{

 MyUartIsr (&MyRxUartChanObj, &MyTxUartChanObj);

}

Reloading Drivers

 7-148

6) Finally, a new peripheral driver will be needed to initialize the new hard-
ware, set the ISR and open UART channels for I/O. For example, a new
MyTargetPeriphInit() function (analogous to TargetPeriphI-
nit(), see EVM54CSTDrv.c) may look like this (important parts are in
bold):

void MyTargetPeriphInit (bool IsBIOSUsed, int TimerTo-
BeUsed)

 // if TimerToBeUsed<0, no timer will be used for MIPS
measurements

{

 tUartDrvSetupStruct UartDrvSetupStruct;

 /* Override the PeriphProcess and PeriphDriver func-
tions */

 CSTFxns.pPeriphProcess=MyPeriphProcess;

 CSTFxns.pPeriphDriver=MyPeriphDriver;

 if (!IsBIOSUsed)

 {

 /* Initialize the ISR handling code */

 IntInit();

 if(TimerToBeUsed>=0)

 {

 #undef IRQ_EVT_TINT1

 #define IRQ_EVT_TINT1 (24)

 /* Init the timer and install the timer ISR */

 CSTTimerInit(TimerToBeUsed?TIMER_DEV1:TIM-
ER_DEV0);

 SetIntVect (TimerTo-
BeUsed?IRQ_EVT_TINT1:IRQ_EVT_TINT0, &CSTTimerISR);

 }

 }

 /* Initialize the UART driver */

// default settings (115200, 8N1) are already in place,
though:

/*

 UartAutoBaudParams.ClkInput = UartParams.clkInput =
UART_CLK_INPUT_117;

 UartAutoBaudParams.AutoBaudRate = UartParams.baud =
UART_BAUD_115200;

*/

 UartDrvSetupStruct.UserFxn = CSTFxns.pUARTRxMonitor;

 // Copy LIO function table

Reloading Drivers

7-149 CST Framework Components

 UartDrvILIO = MyUartDrvILIO;

 // ISR accesses UART LIO channel objects directly:

 //

 if (!IsBIOSUsed)

 {

 /* Install the UART ISR */

 SetIntVect (UART_INTERRUPT_VECTOR_NUMBER, &MyUar-
tIsr);

 }

 /* Initialize the UART hardware device */

 My_UART_setup (UartDrvSetupStruct);

 /* Open both Rx and Tx channels (LIO) */

 UartOpen (&Ch0.UartRxChanHandle, &Ch0.UartTxChan-
Handle);

 /* Initialize the DAA driver */

 ...

}

7.7.7.2 Reloading UART Flow Control Functions

To prevent the UART driver from using the GPIO pins HD0-HD5 for UART con-
trol lines (CTS/RTS, DSR/DTR, DCD, RI) the tUARTDrvCtrlFxns
UartDrvCtrlFxns structure (see the file Uart550Drv.c) should be modi-
fied. This structure contains pointers to functions that set and read the states
of the mentioned UART lines. An example of redefining these function is avail-
able as an almost empty flex application example in the file main11 (re-
loading UART).c.

7.7.7.3 Reloading the DAA Driver

To reload the existing CST DAA driver, the user should first create his own driv-
er for DAA or whatever device will be used to replace the C54CST’s DAA.

The following steps should be taken:

1) An LIO channel object type should be defined for the input/output channel
(there’s a single channel for both input and output, see 7.7.5.4). The chan-
nel object/structure should contain the state variables of the channel (an
example of the structure is available in file DAADrv54CST.h, type tDAA-
ChanObj). Let’s say, it will be tMyDAAChanObj.

2) A function analogous to EVM54CST_DAA_setup() should be imple-
mented (see 7.7.5.3). Let’s say, it will be function My_DAA_setup().

Reloading Drivers

 7-150

3) All 5 LIO functions should be implemented. Their implementation is hard-
ware specific but these functions have to behave the same way as the
original CST DAA driver’s LIO functions.
It is important that the new driver implements all of the commands (through
the LIO ctrl() function) listed in Table 7-65 and Table 7-66 and the
code of the original DAA LIO driver will help to understand how to imple-
ment the commands. A template for the UART driver can be found in the
files DriversTemplates\MyDAADrv.c and DriversTem-
plates\MyDAADrv.h.

4) The LIO function addresses should be put into a variable:
LIO_Fxns MyDAADrvILIO =

{

 &cancel,

 &close,

 &ctrl,

 &open,

 &submit

};

This structure will be copied to the structure DAADrvILIO (see
DAADrv54CST.c) in the beginning of the new peripheral driver’s final
hardware initialization function. If any of the LIO functions need to call the
other one, they should do that by reference through the pointers of the
DAADrvILIO structure.

5) An ISR function specific to the hardware should be implemented and it
should use the LIO channel object either directly or the ISR function should
take their addresses as arguments. In this latter case, a void(void)
wrapper function may be needed to call the actual ISR with the appropriate
arguments (an example of such a wrapper is the function DAAISRWrap-
per() in EVM54CSTDrv.c).
So, there’re two options, direct and indirect access to the channel objects:

// direct access:

/////////////////

// channel object defined inside the DAA driver:

tMyDAAChanObj MyDAAChanObj;

void MyDAAIsr() // executed upon interrupt

{

 // Use MyDAAChanObj here

}

// indirect access:

///////////////////

Reloading Drivers

7-151 CST Framework Components

void MyDAAIsr (tMyDAAChanObj* pMyDAAChanObj)

{

 // Use *pMyDAAChanObj here

}

// channel objects defined outside the DAA driver:

tMyDAAChanObj MyDAAChanObj;

void MyDAAIsrWrapper() // executed upon interrupt

{

 MyDAAIsr (&MyDAAChanObj);

}

6) Implement DAA scripts (see 7.7.3.2 and 7.7.5.2) specific to your DAA de-
vice. Store the pointers to the scripts in the array tCodecDrvStage
*MyapDAAStdRequests[7]. This array will be copied to the array ap-
DAAStdRequests[] (see Si3044Stages.c) in the beginning of the
new peripheral driver’s final hardware initialization function. A template file
for the DAA scripts is available in the file DriversTemplates\MyDAAS-
tages.c.

7) Finally, a new peripheral driver will be needed to initialize the new hard-
ware, set the ISR and open the DAA channel for I/O. For example, a new
MyTargetPeriphInit() function (analogous to TargetPeriphI-
nit(), see EVM54CSTDrv.c) may now look like this (important parts are
in bold):

void TargetPeriphInit (bool IsBIOSUsed, int TimerTo-
BeUsed)

 // if TimerToBeUsed<0, no timer will be used for MIPS
measurements

{

 tUartDrvSetupStruct UartDrvSetupStruct;

 /* Override the PeriphProcess and PeriphDriver func-
tions */

 CSTFxns.pPeriphProcess=MyPeriphProcess;

 CSTFxns.pPeriphDriver=MyPeriphDriver;

 if (!IsBIOSUsed)

 {

 /* Initialize the ISR handling code */

 IntInit();

 if(TimerToBeUsed>=0)

 {

 #undef IRQ_EVT_TINT1

Reloading Drivers

 7-152

 #define IRQ_EVT_TINT1 (24)

 /* Init the timer and install the timer ISR */

 CSTTimerInit(TimerToBeUsed?TIMER_DEV1:TIM-
ER_DEV0);

 SetIntVect (TimerTo-
BeUsed?IRQ_EVT_TINT1:IRQ_EVT_TINT0, &CSTTimerISR);

 }

 }

 /* Initialize the UART driver */

 ...

 /* Initialize the DAA driver */

 // Copy LIO function table

 DAADrvILIO = MyDAADrvILIO;

 // Copy scripts pointers

 memcpy (&apDAAStdRequests[0], &MyapDAAStdRequests[0],
sizeof(MyapDAAStdRequests));

 // ISR accesses DAA LIO channel object indirectly,

 // and MyDAAChanObj and MyDAAIsrWrapper() should be
already defined:

///
/////////////

 /* Initialize the DAA hardware devices */

 My_DAA_setup (...);

 /* Open DAA channels (LIO) */

 Ch0.DAAChanHandle = DAAOpen (&MyDAAChanObj);

 if (!IsBIOSUsed)

 {

 /* Install the DAA ISR */

 SetIntVect (DAA_INTERRUPT_VECTOR_NUMBER, &MyDAAIsr-
Wrapper);

 }

 /* Initialize the high-level DAA driver state machine
(for channel 0) */

 DAACodecInit (&Ch0);

}

Note, when implementing the scripts and the LIO ctrl() function, remember
that the high-level DAA driver supports a maximum of 19 registers with num-
bers 0 through 18. If there are more than 19 registers, see if you really need
only 19 or fewer of them or may multiplex the registers.

Reloading Drivers

7-153 CST Framework Components

7.7.7.4 Replacing the Peripheral Driver Functions

In all cases, when the UART or DAA driver is reloaded, the default peripheral
driver (see files EVM54CSTDrv.c, EVM54CSTDrv.h) needs to be replaced.
An example of the function TargetPeriphInit() has been given in the pre-
ceding sections describing reloading of the UART and DAA drivers.

Besides the TargetPeriphInit() function, the static function EVMPer-
iphDriver() will also need to be replaced, if the target board does not have
the LEDs connected to the DSP in the same way as on the C54CST EVM
(again, see the file EVM54CSTDrv.c). The companion static function EVM-
PeriphProcess() will need to be replaced as well, but this is mainly be-
cause the new peripheral driver can’t access the old static function EVMPer-
iphProcess() from another module.

The TargetBoardInit() function is likely to be replaced as well. The rea-
son for that may have to do with LEDs, port 0, GPIOCR register and wait state
settings, which are hardware-specific.

After creating all of the replacements for the peripheral driver functions, make
sure that the main() function of your application calls the new peripheral driv-
er’s functions, for example, MyTargetBoardInit() and MyTargetPeri-
phInit() functions.

A template for the peripheral driver is available in the files DriversTem-
plates\MyBoardDrv.c and DriversTemplates\MyCSTPeriph.h.

7.7.7.5 Multiple Channels in CST With Multiple DAA Devices

It is easy to create a multi-channel flex application that would use two DAA de-
vices. The hardware setup consists of a standard C54CST EVM and a Texas
Instruments DAA Daughter Card with a single DAA device mounted on it. The
daughter card should be connected to the EVM.

The CSL library for the C54CST chip has been made supporting external DAA
devices such as Si3021. So, it is possible to use the same CSL and LIO code
as a driver for the external DAA as well.

A complete two-channel flex example application is available in the directory
FlexAppMultichan. The example application uses a new CST peripheral
driver to set up the two DAAs, C54CST’s internal and daughter card’s external.
The new peripheral driver is contained in the files EVM54CSTDrv2DAA.c and
MyCSTPeriph.h. The main application file is main.c. The files
CSTBIOS2.c, CSTBIOS2.h and CSTFlexAppBIOS2.cdb are supplemen-
tary to compile the application for the DSP/BIOS environment.

8-1

C54CST Resources:
Registers Conventions, Memory, and MIPS

This chapter is a summary of important information about C54CST chip re-
sources and their use by CST Framework and algorithms.

Topic Page

8.1 Overview 8-2.

8.2 General Register Conventions 8-3.

8.3 Program and Data Address Space Memory Map 8-6.

8.4 DSP Resource Usage for Each Algorithm and Framework 8-10.

Chapter 8

Overview

 8-2

8.1 Overview

This chapter summarizes the most important information on the C54CST chip
resources, their use by the CST Framework and algorithms. This information
includes general register conventions (important for creating flex applications
that will use CST), detailed memory address space layout (important when re-
solving memory-related problems), and memory/MIPS requirements of the
CST Framework and the CST XDAIS algorithms.

General Register Conventions

8-3C54CST Resources:

8.2 General Register Conventions

In flex mode, for developer’s code to be able to use the CST solution and co-
exist with CST code, it is important that the developer would follow some con-
ventions when using DSP registers.

The CST solution was developed with intent to use as little DSP registers as
possible. Table 8-1 lists the registers, which are used by some of the CST
modules, and their values, which are important for CST solution.

Table 8-1. DSP Registers Used by CST Solution

Registers CST Usage and Conventions File, Function

ST0 = 0 Boot routine, initialization of DP and ARP Boot.s54

CSTChipsetEntry()

ST1, INTM = 1 Boot routine, disable all interrupts in the very beginning of boot
function in order to initialize DSP correctly

Boot.s54

CSTChipsetEntry()

ST1,
CPL = 1
OVM = 0
SXM = 0
C16 = 0
CMPT = 0
FRCT = 0

Boot routine, preset all these flags according to C conventions Boot.s54

CSTChipsetEntry()

PMST, MP/MC = 0 Boot routine, turn on “MicroComputer” mode, when internal ROM
is enabled.

The user must keep this bit equal 0 in order to be able to use the
CST solution!

Boot.s54
CST_DSPInit()

PMST, DROM = 1 Boot routine, map internal ROM into data space in order to
access CST’s section “.const”.

The user must keep this bit equal 1 in order to be able to use the
CST solution, or the user should connect external memory to data
space of CST chip and copy CST’s section “.const” into this
external memory, because CST algorithms and framework keep
their constants in ROM and need to have them visible in data
memory space.

Boot.s54
CST_DSPInit()

PMST, OVLY = 1 Boot routine, maps the internal RAM into the program address
space, so that CST’s interrupt table would always be mapped to
the program address space.

The user must keep this bit equal 1 in order to be able to use the
CST solution and CST interrupt processing!

Boot.s54
CST_DSPInit()

General Register Conventions

 8-4

Table 8-1. DSP Registers Used by CST Solution (Continued)

Registers File, FunctionCST Usage and Conventions

PMST,
AVIS = 0
CLKOFF = 0
SMUL = 0
SST = 0

Boot routine, preset all these flags according to C conventions
and hardware requirements

Boot.s54
CST_DSPInit()

IMR = 0 Boot routine, disable all interrupt in interrupt mask register Boot.s54
CST_DSPInit()

SWCR = 1 Boot routine, enable wait states multiplier 2 in order to be on a
safe side when operating with external memory

Boot.s54
CST_DSPInit()

SWWSR = 0x7fff Boot routine, turn on maximum amount of wait states in order to
be on a safe side when operating with external memory

Boot.s54
CST_DSPInit()

GPIOCR = 0 Boot routine, disable all general purpose I/O pins Boot.s54
CST_DSPInit()

BSCR = 2 Boot routine, configure external bus operation mode Boot.s54
CST_DSPInit()

PMST, bits 7-15 Interrupt initialization routine.
Sets these bits to the upper address bits of aIntEntrance
interrupt vector table

int.s54
IntInit()

DAA accessed via
McBSP2

Low-level DAA driver DAADrv54CST.c
and CSL

BSCR, bit 3 EVM driver, sets DAACLK bit (bit 3)
if DSP clock is 118 MHz

EVM54CSTDrv.c
TargetBoardInit()

BSCR, bit 4 Low-level DAA driver, reset DAA CSL
DAA_reset()

UART registers
USAR, USDR

Low-level UART driver Uart550Drv.c,
UartAutoBaud.c,
CSL

GPIOSR, bits 0, 1,
2, 3, 4, 5

Low-level UART driver (hardware flow control)
bit 0 – input, DTR
bit 1 – input, RTS (from host point of view, CTS)
bit 2 – output, CTS (from host point of view, RTS)
bit 3 – output, DSR
bit 4 – output, DCD
bit 5 – output, RI

Uart550Drv.c,
CSL

GPIOCR = 0x3C UART driver, configure UART pins according to assignment
defined in section .

Uart550Drv.c,
CSL
UART_FlowCtrlInit()

General Register Conventions

8-5C54CST Resources:

Table 8-1. DSP Registers Used by CST Solution (Continued)

Registers File, FunctionCST Usage and Conventions

GPIOCR = 0 EVM driver, reset all general purpose I/O pins at initialization EVM54CSTDrv.c
TargetBoardInit()

Clock PLL register
CLKMD

EVM driver, set appropriate DSP clock multiplier (4 or 8) EVM54CSTDrv.c
SetDSPClockFreq()

SWCR = 0 EVM driver, reset wait state EVM54CSTDrv.c
TargetBoardInit()

SWWSR EVM driver, set user-defined wait states for external memory
access

EVM54CSTDrv.c
TargetBoardInit()

I/O Port 0, bits 0-3 EVM driver, LED indication EVM54CSTDrv.c
BrdLEDToggle()

I/O Port 0, bits 6, 7 EVM driver, Flash/RAM configuration EVM54CSTDrv.c
TargetBoardInit()

Timer 0 registers EVM driver, optionally initialize Timer 0 for CST statistics EVM54CSTDrv.c,

CSL
TargetPeriphInit()

Timer 1 registers EVM driver, optionally initialize Timer 1 for CST statistics EVM54CSTDrv.c,

CSL
TargetPeriphInit()

ST1, INTM = 0 Main function in chipset or flex mode, enables interrupts main.c

main()

IMR Device drivers enable specific interrupts DAADrv54CST.c
Uart550Drv.c, CSL

If the user’s application requires that the CST solution do not access certain
DSP registers, the user may redefine one or more of the CST drivers (see sec-
tions 7.7.3 and 7.7.7).

To disable use of some registers by CST, however, it may be enough to change
some parameters during CST initialization.

For example, to tell CST not to use any DSP timers for MIPS measurement,
it is enough to call function TargetPeriphInit(bool IsBIOSUsed,
int TimerToBeUsed) with second parameter being negative:

TargetPeriphInit(xxx, -1);

Program and Data Address Space Memory Map

 8-6

8.3 Program and Data Address Space Memory Map

For detailed description of C54CST chip generic memory map, please, refer
to TMS320C54CST Client Side Telephony DSP (SPRS187). This section de-
scribes mostly CST software-specific memory map distribution.

The CST solution occupies around 120 kW of TMS320C54CST’s ROM. This
ROM consists of 4 pages (residing from 0x6000 to 0xFFFF, 0x18000 to
0x1FFFF, 0x28000 to 0x2FFFF and 0x38000 to 0x3DFFF. Some memory in
Page 0 of ROM is occupied by a core code of DSP/BIOS (from 0xB200 to
0xBB1F), and some – by the start up bootloader (from 0xBB20 to 0xBFFF).
The rest of the ROM is occupied by the CST code.

TMS320C54CST has 40 kW of internal DARAM (dual access RAM), residing
from 0x80 to 0x9FFF.

The external RAM is visible in data address space from 0xA000 to 0xFFFF,
however the CST solution has its .const section in the ROM Page 0, that
is why it needs to have the ROM Page 0 mapped to the data address space,
from 0xC000 to 0xFFFF. For this reason the DROM bit should be set to 1.

Also, in order to have the interrupt vectors table in internal RAM and be able
to use it even in Far mode of DSP, the CST solution operates with the OVLY
bit equal to 1 (in this case the DSP’s internal RAM is mapped to the program
address space, from 0x80 to 0x5FFF).

Table 8-2 describes data address space of CST chip, and shows overview
of program and data memory space.

Table 8-2. CST RAM Areas Description

Area Type Location Sections and Explanation

Reserved for CST only. The user
should not use it.

0x60 to 0x6B
0x7B to 0xEF
0xF0 to 0xFF
0x100 to 0x17F
0x180 to 0xC7F

CSTTrap,
CSL and DSP/BIOS reserved area;
CST Interrupt Processing
CST Interrupt Vectors Table
CST BSS

Reserved for CST, but the user may
share both of them with CST.

0xC80 to 0x3AFF
0x3B00 to 0x3FFF

CST Heap
CST Stack

This area can be used to allocate user’s
data and program memory.
Since OVLY==1, all internal RAM up to the
address 0x5FFF is mapped to the program
address space, and thus the user’s program
can be loaded here.
If CST Stack area is moved from its original
location, disable stack statistics.

Program and Data Address Space Memory Map

8-7C54CST Resources:

Table 8-2. CST RAM Areas Description (Continued)

Area Type Sections and ExplanationLocation

Internal RAM 0x4000 to 0x9FFF Not used by the CST software in chipset
mode (update patch uses it though),
available for the user

External Memory 0xA000 to 0xBFFF User’s external RAM

Map of ROM Page 0 0xC000 to 0xFFFF

.const resides from
0xC000 to 0xFF00

CST needs this ROM page mapped to data
space in order to have access to its .const
section, which resides in ROM.

Program and Data Address Space Memory Map

 8-8

Figure 8-1. CST Solution Memory Map

Internal DARAM
for User Apps

37 kW

ËËË
ËËË

CST Stack

ROM Page0

CST Code

Part 1

0x6000

DSP/BIOS

Bootloader

Boot Vect.

0xB200

0xBB20

0xFF80

ROM Page1

CST Code

Part 2

0x18000

0x0000

0x0C80

0xA000

0xFFFF

MP/MC=0 OVLY=1DROM=1

MMRs

BIOS Reserved
0x0060

0x006C
User’s Scratch

0x007B
BIOS Reserved

0x00F0
CST Int Process

0x0100
CST Int Vectors

0x0180

Mapped ROM
Page 0 (DROM=1)

ËËË
ËËË

CST Heap
(flexible)

0x3B00

0x4000 In
te

rn
al

 D
A

R
A

M
 4

0
kW

Program SpaceData Space

0x10000
0x0000ËËËËË
ËËËËË
ËËËËË
ËËËËË

Mapped Internal
DARAM

(OVLY=1)

0x4000

Memory belong to:

SPIRIT CST

BIOS or Bootloader

User

User or SPIRIT CSTË
Ë

External

0xC000

0xFFF0
External

0xFF80
Boot Vect.

Mapped Internal
DARAM

(OVLY=1)

CST Const
Page 0 (DROM=1)

0xC000

Reserved
0xFFF0

0xFFFF

ËËËËË
ËËËËË
ËËËËË
ËËËËË
ËËËËË
ËËËËË
ËËËËË
ËËËËË

Mapped Internal
RAM (OVLY=1)

or

External
(OVLY=0)

0x14000

0x1FFFF

ËËËË
ËËËË
ËËËË
ËËËË
ËËËË

Mapped Internal
RAM (OVLY=1)

or

External
(OVLY=0)

ROM Page2

CST Code

Part 3

0x28000

0x20000

0x2FFFF

Program Space

ËËËË
ËËËË
ËËËË
ËËËË
ËËËË

Mapped Internal
RAM (OVLY=1)

or

External
(OVLY=0)

ROM Page3

CST Code

Part 4

0x38000

0x30000

0x3FFFF

0x3E000

External

External

0x40000

0x4FFFF

External

0x7F0000

0x7FFFFF

.....

ËËËËË
ËËËËË
ËËËËË
ËËËËË
ËËËËË

Mapped Internal
RAM (OVLY=1)

or

External
(OVLY=0)

ËËËËË
ËËËËË
ËËËËË
ËËËËË
ËËËËË

Mapped Internal
RAM (OVLY=1)

or

External
(OVLY=0)

0x48000 0x7F8000

CST BSS

In chipset mode, if update patch is not loaded, CST uses only 16 kW of internal
RAM of C54CST chip (from 0x60 to 0x3FFF). After update patch is loaded,
CST starts using all 40 kW of available internal RAM.

In flex mode, the User is free to use all the internal DARAM from 0xC80 to
0x9FFF, with several requirements to be met to enable correct operation of
CST Framework:

Program and Data Address Space Memory Map

8-9C54CST Resources:

� At least 0x500 words stack size should be reserved. If stack location is dif-
ferent from its original chipset mode location (from 0x0x3B00 to 0x3FFF),
stack statistics should be disabled (this is done by default when CSTAc-
tion_Init() is called; can also be done by CSTStatistics.Flags
&= ~sf_STACK_MEMORY;) to avoid unpredictable problems.

� CST memory manager has to be told what dynamic memory areas are
available (again, by default it is done when CSTAction_Init() is
called). The original size of CST’s heap can be either decreased or in-
creased, depending on the needs of the User application.

See and use flex example’s cmd-file at CST\Src\FlexApp and flex example
DSP/BIOS configuration at CST\Src\FlexAppBIOS as a template for flex
mode memory configuration.

Since internal DARAM is mapped into program space (OVLY==1), from 0x80
to 0x5FFF, it is possible to place user’s program space sections into it (like
.text, .cinit, .switch and so on).

Internal DARAM from 0x6000 to 0x9FFF can be used only for data (dynamic
memory, stack, .bss, .const), because this portion is not visible in program
space when on-chip ROM is enabled.

To reference CST solution’s objects residing in ROM, you have to include
CSTRom.s54 file into your project, which contains references to all global
identifiers of CST. Additionally, it contains all global identifiers of DSP/BIOS
components residing in ROM.

DSP Resource Usage for Each Algorithm and Framework

 8-10

8.4 DSP Resource Usage for Each Algorithm and Framework

Table 8-3. CST Algorithms ROM/RAM Characteristics

Algorithm ROM, W CONST, W BSS, W

V.32bis/V.32/V.22bis/V.22 17 822* 3 704* 24

V.42/V.42bis 13 412 162 40

Modem Integrator + V.14 3 129 26 81

UMTD 2 342 64 69

DTMF configuration 19 204 17

CPTD configuration 19 169 17

UMTG 1 122 219 79

DTMF configuration 14 158 10

CPTD configuration 27 67 21

Caller ID Type I and II 2159 248 32

CID Message Parser 740 595 19

G.168 2 354 0 29

G.726+G.711 2 152 502 29

G.723** RAM 0.9K - 8

G.729AB** RAM 0.5K - 2

LBR 1200** RAM 2.3K - 4

AGC 440 0 33

VAD 1 992 130 37

CNG 346 2 24

Common Library 1 367 74 0

CST Framework:

AT-commands 4 755 1 892 1 036

CST Commander 1 291 289 28

CST Service 2 788 104 72

Voice Controller 2 454 8 18

DSP Resource Usage for Each Algorithm and Framework

8-11C54CST Resources:

Table 8-3. CST Algorithms ROM/RAM Characteristics (Continued)

Algorithm BSS, WCONST, WROM, W

DAA Driver 1311 11 11

UART Driver 1 792 1 691

DSP Driver 2 834 45 104

Memory manager 781 0 26

BIOS parts in CST 274 0 12

Misc (Periph, Int, Alg) 2 828 15 64

CST Bootloader 78 0 0

RTS 456 0 0

CST Bundle ver. 2.0 101 422 15 740 2 613

* This number also includes some portions of Fax G3 and V.29 fast connect add-ons

** This algorithm is provided as an Add-on for CST chip, and requires small additional portions of program
memory in RAM

Table 8-4. CST Algorithims MIPS Characteristics

Buffer
Length, MIPS

Algorithm Configuration/Parameters

Length,
8kHz

Samples Peak Average Heap, W

UMTD DTMF 10 9.5 1.8 140

100 1.6 1.5

CPTD 10 4.9 1.1 100

100 0.9 0.7

UMTG DTMF 10 0.8 0.4 28

100 0.1 0.1

CPTG 10 1.2 0.4

100 0.2 0.1

Caller ID 10 3.8 1.7 44+

DSP Resource Usage for Each Algorithm and Framework

 8-12

Table 8-4. CST Algorithims MIPS Characteristics(Continued)

Algorithm Heap, W

MIPS
Buffer

Length,
8kHz

SamplesConfiguration/ParametersAlgorithm Heap, WAveragePeak

Buffer
Length,

8kHz
SamplesConfiguration/Parameters

100 1.4 1.4 255*

VAD 10 11.7 1.1 372

100 1.0 1.0

AGC adaptation enabled 10 0.7 0.7 20

100 0.6 0.6

disabled 10 0.5 0.5

100 0.4 0.4

CNG without filtering 10 1.6 1.6 37

100 1.6 1.6

with 10 LPC 10 1.9 1.9

100 1.8 1.8

G.168 127 taps 10 6.0 4.6 439

100 5.6 5.4

255 taps 10 8.8 7.1 825

100 8.3 7.4

511 taps 10 14.2 11.9 1591

100 13.7 12.8

G.711 encoder 64 kbps 80 0.9 0.8 10

decoder 80 0.9 0.8

G.726 encoder u/A-law 80 6.5 5.8 10

linear 80 5.9 5.3

decoder u/A-law 80 7.4 6.6

linear 80 5.2 4.7

DSP Resource Usage for Each Algorithm and Framework

8-13C54CST Resources:

Table 8-4. CST Algorithims MIPS Characteristics(Continued)

Algorithm Heap, W

MIPS
Buffer

Length,
8kHz

SamplesConfiguration/ParametersAlgorithm Heap, WAveragePeak

Buffer
Length,

8kHz
SamplesConfiguration/Parameters

G.723 encoder 5.3 kbps 240 25.9 23.6 950+

1280**

HP filter 240 24.0 23.1

HP filter,
VAD

240 24.3 6.7

6.3 kbps 240 24.2 24.0

HP filter 240 24.4 23.2

HP filter,
VAD

240 24.3 6.6

decoder 5.3 kbps 240 1.2 1.2

post filter 240 2.3 1.7

6.3 kbps 240 1.2 1.2

post filter 240 2.4 2.3

G.729 encoder 8 kbps 80 10.2 10.1 1846+
980*

VAD 80 10.2 4.4

decoder 80 2.5 2.4

LBR
1200

encoder 320 11 - 1920+
1200***

decoder 320 4.5 -

Data
pump

V.32bis 14400 100 ms far
echo buffer,
APP on

10 14.6 13.6 2284

V.42 /
V.42bis

V.42 only heap size =
1500

100 1.9*2 1.4*2 2308

DSP Resource Usage for Each Algorithm and Framework

 8-14

Table 8-4. CST Algorithims MIPS Characteristics(Continued)

Algorithm Heap, W

MIPS
Buffer

Length,
8kHz

SamplesConfiguration/ParametersAlgorithm Heap, WAveragePeak

Buffer
Length,

8kHz
SamplesConfiguration/Parameters

V.42 +
V.42bis
(duplex)

heap size =
1500, duplex
compression
with
dictionary
512

n/a**** 30 or more 4936

Full modem (V.32/V.42/V.42bis +
modem integrator)

100 ms far
echo buffer,
APP on,
heap size =
1500, duplex
compression
with
dictionary
512

10 n/a**** 30 or more 7460

* Allocated for parse message

** scratch

*** stack

**** n/a - MIPS value depends on the load ov V.42bis, and should be limited by the User via real-time
feedback to Modem Integrator, or via running V.42bis in lower priority thread

9-1

AT Command Set Descriptions

This chapter provides the user with description of AT commands, syntax,
shielded codes, and results tokens

Topic Page

9.1 AT Command Set Description 9-2.

9.2 AT Command Set Modes 9-3.

9.3 AT Command Syntax 9-6.

9.4 AT Commands 9-13.

9.5 Shielded Codes in Voice Mode 9-42.

9.6 AT Result Tokens 9-44.

9.7 AT Commands Summary 9-45.

Chapter 9

AT Command Set Description

 9-2

9.1 AT Command Set Description

SPIRIT CST AT command set supports a subset of standard AT-commands,
allowing access to all the algorithms in CST solution. Some features of this
CST AT command set, however, are proprietary and go beyond the scope of
standard AT-commands, in order to give richer functionality (such as duplex
voice mode, extended result tokens, control of CST hardware and software).

In chipset mode of CST chip, AT commands allow user to control the chip com-
pletely via serial link, eliminating the need for any other external interfaces with
the chip for high level control. User can use standard Windows’9x drivers (for
generic 14400 modem) to control CST chip and connect via it with convention-
al ISPs. Example of how to use AT commands in CST chip is given in CST
Chipset Mode Application Note.

CST host program supplied with CST chip demonstrates how to control CST
by using AT commands in chipset mode.

In flex mode, user may still want to use AT commands to control CST chip from
some external device or even from inside of the chip (user’s code inside CST
chip can control CST software via AT commands sent to AT parser as if they
came from UART). In this case, the user can use AT parser object from CST
framework, or, since SPIRIT CST AT command parser is supplied with CST
Software in open source code, the user can modify the code of AT parser and
add or remove any functionality that they want, and then load it to CST chip
in flex mode. Read more on AT parser open code in section 7.4.

AT Command Set Modes

9-3AT Command Set Descriptions

9.2 AT Command Set Modes

AT commands parser operates in several modes depending on the command
issued and on some other events:

� Standard Command Mode
� Call and Connection Setup Mode
� Modem Data Transfer Mode
� Modem Online Command Mode
� Voice Command Mode
� Call Setup Mode
� Voice Data Transfer Mode

In each of the command modes, all data received from DTE (UART or user
code) is passed to AT parser for processing.

In different Data Transfer modes, all data is passed to modem or to voice proc-
essing tasks.

The diagram of transactions between these modes is shown in Figure 9-1.

Figure 9-1. AT Parser State Diagram

Standard
command

mode

Call setup
mode

Modem
online

command
mode

Voice
command

mode

Modem
data

transfer
mode

Call &
connection
setup mode

Voice data
transfer
mode

AT#CLS=8

AT#CLS=0
or on-hook

Connection
established

or abort

ATD, ATA

<DLE><EXT>

AT#VRXTX,
#VTX, #VRX

ATD, ATA

User Abort or
NO DIALTONE or

 NO CARRIER

ATHATO

+++

NO CARRIER

Connection
established

After initialization, AT parser is in standard command mode. If ATD or ATA com-
mand is issued, it will start dialing, and will be in call and connection setup
mode until connection is established, and then will move to modem data trans-

AT Command Set Modes

 9-4

fer mode. If, however, DTE sends any character while in call and connection
setup mode, or CPTD does not detect dial tone before dialing or detects Busy
signal after dialing (recognition of this signals is controlled by ATX command,
see 9.4.1.23), call mode will be aborted and AT parser will switch back to stan-
dard command mode.

While in modem data transfer mode, AT parser is searching the incoming data
for the escape control sequence (<Guard_Pause>+++<Guard_Pause>),
which switches AT parser back to command mode (in this case called “modem
online command mode”), even while modem is still connected. The user can
use only a limited amount of AT commands in this mode. To return back to mo-
dem data transfer mode, ATO command should be issued. To terminate con-
nection and return to standard command mode – ATH command.

To switch to voice command mode, DTE should issue “AT#CLS=8” command.
This allows usage of all other voice mode commands. To switch back to stan-
dard command mode, DTE should issue ATH or AT#CLS=0 command.

To switch to voice data transfer mode, DTE should issue one of the following
commands:

AT#VRX - To start recording samples from phone line

AT#VTX - To start transmitting samples to phone line

AT#VRXTX - To start full-duplex samples exchange

While in voice data transfer mode, AT parser processes so called “shielded”
codes (codes that start with <DLE>5 symbol, described in section) to enable
transfer of some control information inside of the voice data stream (like ter-
mination command or DTMF and CPTD detectors result codes).

To return to voice command mode from voice data transfer mode, DTE should
send characters <DLE><ETX>6 (if voice data transfer mode was entered by
AT#VRX command, it is enough to send any character).

The summary definition of AT parser modes is given in Table 9-1.

5 <DLE> is a symbol from ASCII table equal to 0x10
6 <ETX> is a symbol from ASCII table equal to 0x03

AT Command Set Modes

9-5AT Command Set Descriptions

Table 9-1. Definition of AT Parser Modes

Mode Name Definition

Command Mode The DCE (in our case, CST solution) is not operating in the voice mode, the DCE is not
communicating with a remote station, and the DCE is ready to accept commands. Data
signals from the DTE are treated as command lines and processed by the DCE, and
DCE responses are sent to the DTE. The DCE enters this mode upon power-up, and
when a call is disconnected.

Voice Mode The overall DCE mode of operation that performs voice functions by accepting special
commands (voice commands), and providing voice and call discrimination event
reports to the DTE.

Online Command
Mode

In online command mode, the DCE is communicating with a remote station, but treats
signals from the DTE as AT commands and sends responses to the DTE as AT result
codes. Data received from the remote station during Online command mode is
discarded until Online data mode is once again entered (by ATO command from the
DTE). Data previously transmitted by the local DTE and buffered by the DCE is
discarded. Online command mode may be entered from online data mode (modem
data transfer mode) via special escape control sequence.

Voice Receive Mode The DCE enters the voice receive mode upon #VRX command. In this mode, the DCE
digitizes the analog signal from the line, converts the analog signal into binary data,
compresses the data, and transfers it to the DTE.

Voice Transmit Mode The DCE enters the voice transmit mode upon #VTX command. In this mode, the DCE
receives the digitized data from the DTE, uncompress and converts them into analog
signal, and transmits the analog signal to the line.

Voice Duplex Mode The DCE enters the voice duplex mode upon #VRXTX command. This mode provides
full duplex voice data processing. This command is a direct combination of Voice
transmit mode (#VTX command) and voice receive mode (#VRX command).

AT Command Syntax

 9-6

9.3 AT Command Syntax

Syntax of AT commands basically complies with ITU-T Recommendation
V.250: Serial asynchronous automatic dialing and control, 07/97, except for
the following:

Table 9-2. CST AT Commands Syntax Specifics

CST AT Commands Syntax Specifics:

Each bit of S-register can be addressed using dot delimiter

String parameters values are not used

Extended commands have at least one subparameter

Optional subparameters cannot be omitted

Space characters are filtered completely and they are ignored both in commands
and parameter values

S3, S4, S5 registers cannot be equal to 0

Parameter ranges for V.250 compatible commands are within the limits re-
quired by this Recommendation.

9.3.1 General AT Commands Conventions

A command line is made up of three elements: the prefix, the body, and the
termination character. AT parser is case-insensitive and accepts 7-bit sym-
bols.

The command line prefix consists of the characters ”AT” or characters ”A/”.
When command line starts with prefix “AT”, then a command or several com-
mands should follow it, and should end with terminator character (S3 register).
If the prefix ”A/” is encountered, the AT-parser immediately executes once
again the body of the previous command line.

To edit command line, backspace character (S5) can be used to delete last in-
put symbol.

The maximum length of command line is limited to 78 characters (without first
“AT” characters).

The body is made up of individual commands as specified later. Space charac-
ters are ignored and may be used whenever you need.

Any control characters with ACSII codes 0 through 31, inclusive, except for the
characters defined by S3 and S5 registers, are ignored by the AT-parser.

AT Command Syntax

9-7AT Command Set Descriptions

AT-parser echoes characters received from the DTE during command mode
and online command mode back to the DTE, depending on the setting of the
ATE command.

AT-parser considers lower-case characters to be the same as their upper-case
equivalents (in other words, AT-parser is case-insensitive).

9.3.2 Types of Commands

There are two types of commands: action commands and parameter com-
mands.

Action commands execute (invoking a particular function of the equipment),
or test availability whether or not the equipment implements the action com-
mand, and, if subparameters are associated with the action, the ranges of sub-
parameter values that are supported.

Parameter commands may ”set” (to store a value or values for later use),
”read” (to determine the current value or values stored), or ”test” (to determine
whether or not the equipment implements the parameter, and the ranges of
values supported).

Note: Use of Word “Action” and AT Commands

Use of the word “action” in this chapter applies only to AT commands. In the
rest of the document, this word has a different meaning.

9.3.3 Basic Syntax Command Format

The format of basic syntax commands is as follows:

<command>[<number>]

where <command> is either a single character, or one of the commands listed
in , or added by user. Characters used in <command> are from the set of alpha-
betic characters or one of the following characters: ‘&’, ‘#’, ‘$’.

Parameter <number> may be a string of one or more characters from ”0”
through ”9” representing a decimal integer value. If a command expects
<number> and it is missing (<command> is immediately followed in the com-
mand line by another <command> or the termination character), the value ”0”
is assumed. If a command does not expect a <number> and a number is pres-
ent, an ERROR result code is generated. All leading zeroes in <number> are
ignored by AT-parser.

Additional commands may follow a command (and associated parameter, if
any) on the same command line without any character required for separation.

AT Command Syntax

 9-8

The actions of some commands can cause the remainder of the command line
to be ignored (e.g. ATA, ATDL, etc.).

If the maximum number of characters that the AT-parser can accept in one line
(78 characters) is exceeded, only those commands which fit into first 78 char-
acters will be executed.

9.3.4 S-Parameters Syntax

Commands that begin with the letter ”S” constitute a special group of parame-
ters known as ”S-parameters”. They differ from other commands in some im-
portant respects. The number following the ”S” indicates the ”parameter num-
ber” being referenced. If the number is not recognized as a valid parameter
number, an ERROR result code is issued. If a dot (‘.’) follows the number of S-
parameter, the next number is treated as referenced bit number (from 0 to 15)
in this parameter to be tested, set or cleared.

Either a ”?” or ”=” character shall appear immediately following this number (or
bit number correspondingly). ”?” character is used to read the current value of
the indicated S-parameter; ”=” character is used to set the S-parameter to a
new value.

Execution of S-parameter related command can be delayed and the result
code is returned only after all associated events will be processed (e.g. DAA-
driver requests, such as reading a hardware DAA register).

9.3.4.1 Set S-Parameter

Definition:

S<parameter_number>[.<bit_number>]=[<value>]

If the ”=” sign is used, the new value to be stored in S-parameter is specified
in decimal following the ”=” sign. If no value is given (i.e. the end of the com-
mand line occurs or the next command follows immediately), the S-parameter
specified will be set to 0. The ranges of acceptable values are given in the de-
scription of each S-parameter.

If <parameter_number> refers to a bit of S-register, this bit is set to 1 if <val-
ue> is not equal to 0, or cleared otherwise.

AT Command Syntax

9-9AT Command Set Descriptions

9.3.4.2 Testing S-Parameter

Definition:

S<parameter_number>[.<bit_number>]?

If the ”?” sign is used, the AT-parser transmits a single line of information text
to the DTE. For most S-parameters, the text consists of exactly three charac-
ters, reporting the value of the S-parameter in decimal, with leading zeroes in-
cluded. However, if the returned value can not be represented by 3 digits and
exceeds 999, AT-parser outputs a number in decimal format without any lead-
ing zeroes.

If <parameter_number> refers to a bit of S-register, the bit value (0 or 1) is
returned.

9.3.5 Extended Syntax Commands

Both action commands and parameter commands names typically begin with
the ”+” character, but other leading characters can be used also. The first char-
acter following the ”+” shall be an alphabetic character in the range of ”A”
through ”Z”. This first character generally implies the application in which a
command is used or the standards committee defined in ITU-T Recommenda-
tion V.250: Serial asynchronous automatic dialing and control, 07/97. The
command may also include specification of a value or values. This is indicated
by the appearance of <value> in the descriptions below.

Action commands may have more than one subparameter associated with
them, and parameters may have more than one value. These are known as
”compound values”, and their treatment is the same in both actions and pa-
rameters.

9.3.5.1 Action Execution Command Syntax

The following syntax is used for actions that have two or more subparameters:

+<name>[=<compound_value>]

If the named action is supported and other relevant criteria are met (e.g. the
CST-software is in the proper state), the command is executed with indicated
subparameters. If <name> is not recognized, the AT-parser issues the ERROR
result code and terminates processing of the command line. An ERROR is also
generated if a subparameter is specified for an action that does not accept sub-
parameters, if too many subparameters are specified, if a mandatory subpara-
meter is not specified, if a value is specified of the wrong type, or if a value is
specified that is not within the supported range.

AT Command Syntax

 9-10

9.3.5.2 Action Test Command Syntax

The DTE (host) may test if an action command is implemented in the CST solu-
tion by using the syntax:

+<name>=?

If the AT-parser does not recognize the indicated name, it returns an ERROR
result code and terminates processing of the command line. If the DCE does
recognize the action name, it will return an OK result code. If the named action
accepts one or more subparameters, the AT-parser sends an information text
response to the DTE, prior to the OK result code, specifying supported range
of values for each such subparameter. The format of this information text is de-
fined for each action command; general formats for specification of sets and
ranges of numeric values are described in 9.3.5.5.

9.3.5.3 Parameter Set Command Syntax

The following syntax is used for parameters that accept a single value:

+<name>=[<value>]

The following syntax is used for parameters that accept more than one value:

+<name>=[<value_1>][,<value_2>]...[,<value_N>]

If a parameter is implemented and all values are valid according to the defini-
tion of the parameter, the specified values are stored. If <name> is not recog-
nized, one or more values are outside the permitted range, the parser issues
the ERROR result code and terminates processing of the command line. An
ERROR is also generated if too many values are specified. In case of an error,
all previous values of the parameter are unaffected.

9.3.5.4 Parameter Read Command Syntax

The DTE may determine the current value or values stored in a parameter by
using the following syntax:

+<name>?

If a parameter is implemented, the current values stored for the parameter are
sent to the DTE in an information text response. The format of this response
is described in the definition of the parameter. Generally, the values will be sent
in the same form in which they would be issued by the DTE in a parameter set-
ting command; if multiple values are supported, they will generally be sepa-
rated by commas, as in a parameter setting command.

AT Command Syntax

9-11AT Command Set Descriptions

9.3.5.5 Parameter Test Command Syntax

The DTE may test if a parameter is implemented in the DCE, and determine
the supported values, by using the syntax:

+<name>=?

If the AT parser does not recognize the indicated name, it returns an ERROR
result code and terminates processing of the command line. If the parser
recognizes the parameter name, it returns an information text response to
the DTE, followed by an OK result code. The information text response indi-
cates the supported values for each such subparameter. The format of this
information text is defined for each parameter; general formats for specifi-
cation of sets and ranges of numeric values are described below.

In general, the format of information text returned by extended syntax com-
mands is specified in the definition of the command.

When the action accepts a single numeric subparameter, or the parameter
accepts only one numeric value, the set of supported values may be pre-
sented in the information text as an ordered list of values. The list is pre-
ceded by a left parenthesis ”(”, and is followed by a right parenthesis ”)”. If
only a single value is supported, it appears between the parentheses. If
more than one value is supported, then the values may be listed individual-
ly, separated by comma character, or, when a continuous range of values is
supported, by the first value in the range, followed by a hyphen character
“-”, followed by the last value in the range.

When the action accepts more than one subparameter, or the parameter
accepts more than one value, the set of supported values is presented as a
list of the parenthetically-enclosed value range strings described above,
separated by commas.

For example, the information text in response to testing an action that ac-
cepts three subparameters, and supports various ranges for each of them,
could appear as follows:

(0) Only value 0 is supported

(0,8) Values 0 and 8 are supported only

(1-3) Values 1 through 3 are supported

(0),(1-3),
(0,4-6,9,11-12)

This indicates that the first subparameter accepts only
value 0, the second accepts any value from 1 through
3 inclusive, and the third subparameter accepts any of
the values 0, 4, 5, 6, 9, 11 or 12.

Value range indication is preceded by command name followed by a colon
“:”, i.e.

AT+VAD:(0-8000),(-32767-32767),(0-100),(0-100),(0-10)

AT Command Syntax

 9-12

9.3.6 Command Execution

9.3.6.1 Normal Execution

Upon receipt of the termination character (S3 register), the AT parser starts
execution of the commands in the command line in the order received from the
DTE. If the execution of a command results in an error, or a character is not
recognized as a valid command, execution is terminated, the remainder of the
command line is ignored, and the ERROR result code is issued. Otherwise, if
all commands execute correctly, only the result code associated with the last
command is issued; result codes for preceding commands are suppressed.
If no commands appear in the command line, the OK result code is issued.

Some commands can force AT parser to ignore the remainder of command
line after them (such as ATA, ATD, ATSxx?).

9.3.6.2 Aborting Commands

Some action commands that require time to execute may be aborted while in
progress (such as dialing and establishing connection, ATD and ATA). Abort-
ing a command is accomplished by transmission of any character from the
DTE. A single character is sufficient to abort the command in progress.

When such event happens, AT parser does not echo incoming character, ter-
minates the command in progress and returns an appropriate result code ac-
cording to specification for the particular command.

General Commands

9-13 AT Command Set Descriptions

9.4 AT Commands

9.4.1 General Commands

9.4.1.1 Circuit 109 (Received Line Signal Detector or DCD) Behaviour

This parameter determines how DCD line state changes depending on con-
nection status of the modem.

Syntax &C<value>

Parameter(s)

Value Description

0 DCD line always ON

1 DCD line is ON when modem is in connected state.
Otherwise, it is OFF.

9.4.1.2 Circuit 108 (DTR - Data Terminal Ready) Behaviour

This parameter determines how the CST reacts when DTR circuit is changed
from the ON to the OFF condition.

Syntax &D<value>

Parameter(s)

Value Description

0 DTR change is ignored

1 CST switches to online command mode if it was in online data
state (modem connected)

2 CST disconnects with remote modem and goes on-hook

3 CST re-initializes completely, equal to ATZ command

9.4.1.3 Set to Factory-Defined Configuration

Syntax &F<value>

Parameter(s)

Value Description

0 This command does not do anything in CST. It is implemented only
for compatibility.

9.4.1.4 Answer call

Answer Call. Go off-hook and start modem in answering mode. All characters
following this command in the command line are ignored. This command can
be aborted by sending any character from DTE.

Syntax A

General Commands

 9-14

9.4.1.5 Dial

Dial a number. Go off-hook, wait for dial tone to be detected, dial the specified
number, if any, and then start modem in originating mode.

Syntax D<dialing_number>

Parameter(s) Parameter string <dialing_number> may contain numeric characters “0”
through “9”, “A”, “B”, “C”, “D”, “#”, “*” and the following dial modifiers:

Dial Modifiers Description

L Redial last dialed number (see 9.4.1.6)

P Dial in pulse mode

R Force modem to connect in answering mode

T Dial in tone mode

W Wait for DIAL tone

/ Make a short pause. This pause is programmable in flex
mode only.

, Make a long pause. This pause is programmable both in
chipset (register S8, see 9.4.5) and flex modes.

; Just dial the number and go to command line mode immedi-
ately (neither modem nor voice will run after the number was
dialed)

@ After the number has been dialed wait for RINGBACK signal
detection and then it’s disappearance before entering Voice
Mode (VCON)

! Flash (going on hook for a short time, and then back off
hook). Flash pause is programmable in flex mode only.

Dialing is aborted upon detection of any character not from this list.

Dial symbols and modifiers are case insensitive.

9.4.1.6 Dial Last Dialed Number

Dial last dialed number. All characters in the command line following this com-
mand are ignored.

Syntax DL

General Commands

9-15 AT Command Set Descriptions

9.4.1.7 Command Echo

Select echo mode for AT-parser.

Syntax E<value>

Parameter(s)

Value Description

0 Turn off echo mode for command mode of AT parser

1 Turn on echo mode for command mode of AT parser

9.4.1.8 Hook Control

Switch DAA to off hook or on hook state.

Syntax H<value>

Parameter(s)

Value Description

0 Go on-hook.

1 Go off-hook. Turn on CPTD and DTMF detectors.

9.4.1.9 Request Identification Information

Request miscellaneous information.

Syntax I<value>

Parameter(s)

Value Description

0 Request manufacturer info. In flex mode, the user can redefine a
string returned in this case.

General Commands

 9-16

9.4.1.10 Monitor Speaker Loudness

Adjust speaker volume.

Syntax L<value>

Parameter(s)

Value Description

0 Very low volume

1 Low volume

2 Normal volume

3 High volume

NOTICE: This command does not have any effect in CST EVM, because this
EVM does not have monitor speaker. However, it is still supported to simplify
monitor speaker control on User-specific platform.

9.4.1.11 Monitor Speaker Mode

Speaker On/Off. Using the speaker, you can monitor the status of each call
your modem dials. This is helpful for tracking call progress.

Syntax M<value>

Parameter(s)

Value Description

0 Speaker is turned off all the time

1 Speaker is turned on from going off hook till the connection is
established

2 Speaker is turned on all the time

3 Speaker is turned on from the end of dialing till the connection is
established

NOTICE: This command does not have any effect in CST EVM, because this
EVM does not have monitor speaker. However, it is still supported to simplify
monitor speaker control on User-specific platform.

General Commands

9-17 AT Command Set Descriptions

9.4.1.12 Return to Online Data Mode

Return to modem data mode from modem online command mode. All data re-
ceived by the modem while in modem online command mode is discarded. In
response to this command, the AT parser will return the same string as when
modem connects successfully, indicating current connection speed.

Syntax O

9.4.1.13 Select Pulse Dialing

Standard function: Select pulse-dialing mode as default.

Complimentary function: Select power-saving mode. When this command is
entered, CST framework starts using IDLE 1 instruction of C54 DSP to put
DSP into power-saving mode in between processing and interrupts. IDLE 1
mode stops only DSP’s core, it does not stop its peripherals, however even this
allows to significantly reduce power consumption in power-critical applica-
tions.
By default, this mode is off.

Since this command can be considered as redundant (ATDP is used much
more often), such combination of functions should not cause much inconve-
nience.

Syntax P

9.4.1.14 Result Code Suppression

Syntax Q<value>

Parameter(s)

Value Description

0 Enable result code indication (default).

1 Suppress result codes.

9.4.1.15 Command Line Termination Character

Syntax S3=<value> Set parameter
S3? Read parameter

Parameter(s)

Acceptable
Limits Description

1…127 Command line termination character value (13 by default).

General Commands

 9-18

9.4.1.16 Response Formatting Character

Syntax

S4=<value> Set parameter

S4? Read parameter

Parameter(s)

Acceptable
Limits Description

1…127 Response formatting character value (10 by default).

9.4.1.17 Command Line Editing Character

Select Backspace character.

Syntax

S5=<value> Set parameter

S5? Read parameter

Parameter(s)

Acceptable
Limits Description

1…127 Backspace character value (8 by default).

9.4.1.18 Pause Before Dialing

This parameter specifies the amount of time (seconds) that the modem waits
after going off hook and performing any other actions, such as dialing or an-
swering to remote modem.

Syntax

S6=<value> Set parameter

S6? Read parameter

Parameter(s)

Acceptable
Limits Description

2…10 Number of seconds to wait before next action.

General Commands

9-19 AT Command Set Descriptions

9.4.1.19 Comma Dial Modifier Time

This parameter specifies the amount of time (seconds) that the modem
pauses during dialing when a ”,” (comma) dial modifier is encountered in a dial
string (see 9.4.1.5).

Syntax

S8=<value> Set parameter

S8? Read parameter

Parameter(s)

Acceptable
Limits Description

1…255 Number of seconds to wait.

9.4.1.20 S-Registers Set or Test

Read or write to S-register. The description of available S-registers is given in
9.4.5.

Syntax

S<reg_number>[.<bit_number>]
=<value>

Write S-register. When <bit_number>
is not specified, S-register value is
completely replaced by <value>,
otherwise only selected bit is written. In
the later case, any value that is not equal
to 0 is treated as a command to set this
bit to 1.

S<reg_number>[.<bit_
number>]?

Read S-register. When <bit_number>
is not specified, the whole S-register
value is printed; otherwise only selected
bit value is printed.

Parameter(s)

Name
Acceptable

Limits Description

reg_number 0…199 S-register number

bit_number 0…15 Bit index of S-register

If <reg_number> is not any of the S-registers defined in CST AT parser (see
Table 9-9), any value can be written into it, but the value of such register will
always read as 0.

General Commands

 9-20

9.4.1.21 Select Tone Dialing

Standard function: Select DTMF tone dialing mode as default.

Complimentary function: Turn off power-saving mode. When this command is
entered, CST framework stops using IDLE 1 instruction of DSP to put DSP into
power-saving mode in between processing and interrupts. IDLE 1 mode stops
only DSP’s core, it does not stop its peripherals, however even such behavior
may be undesirable in some applications. This is why this command allows
disabling usage of IDLE.
By default, this mode is on.

Since this command can be considered as redundant (ATDT is used much
more often), such combination of functions should not cause much inconve-
nience.

Syntax T

9.4.1.22 DCE Response Format

The setting of this parameter determines the contents of the header and trailer
transmitted with result codes and information responses. It also determines
whether result codes are transmitted in a numeric form or an alphabetic (ver-
bose) form. The text portion of information responses is not affected by this
setting.

Syntax V<value>

Parameter(s)

Value Description

0 Select numeric responses

1 Select verbose responses

General Commands

9-21 AT Command Set Descriptions

9.4.1.23 Result Code Selection and Call Progress Monitoring Control

The setting of this parameter determines whether or not the DCE transmits
particular result codes to the DTE. It also controls recognition busy and dial
tone when going off hook.

However, this setting has no effect on the operation of the W dial modifier (see
9.4.1.5), which always checks for dial tone regardless of this setting.

Syntax X<value>

Parameter(s)

Value CONNECT Response Dial tone Detection Busy Tone Detection

0 CONNECT disabled disabled

1 CONNECT <text> disabled disabled

2 CONNECT <text> enabled disabled

3 CONNECT <text> disabled enabled

4 CONNECT <text> enabled enabled

9.4.1.24 Reset To Default Configuration

Go on hook and reboot CST solution. All characters following the command
are ignored.

Syntax Z

Note: This command is not implemented in release 1. It should be implement-
ed in CST Release 2.

9.4.1.25 Print Brief S-Registers Summary

Print S-registers summary.

Syntax $

9.4.1.26 Print Brief AT Command Summary

Print AT commands summary. Both internal and user defined AT-commands
are printed.

Syntax $H

9.4.1.27 Print Current Settings Summary

Print AT commands-related settings summary. Both internal and user defined
AT-commands current status is printed.

Syntax &V

General Commands

 9-22

9.4.1.28 Switch Channel

This command does nothing by default.
User may use this parameter in user-specific multichannel application.

Syntax #CHAN<number>

<number> channel number to switch to.

9.4.1.29 Flex Application Load on The Fly

Loads flex application via UART.

Control can be passed to loaded program immediately after load, if entry point
is non-zero, or can be returned to CST’s AT-parser. This command can also
be used also for modifying some of the variables in the internal memory on the
fly, for example, for loading additional user-specific CPTD settings.

The format of the loaded image is the same as used by bootloader (see
TMS320C54CST Bootloader Technical Reference (SPRA853)).

Syntax #DATA

9.4.1.30 Mode Selection

AT parser mode selection (see section 9.2 for details).

Syntax

CLS=<mode> Set mode of CST system. See 9.2 for details.

CLS? Retrieve current mode.

CLS=? Test available modes. Parser returns (0,8) information
response.

Parameter(s)

Value Description

0 Standard command mode

8 Voice command mode

Caller ID Related Commands

9-23 AT Command Set Descriptions

9.4.1.31 Country selection

Select CPT detector configuration. CST has 4 country configurations, 2 of
them are already defined (user can change them), other reserved for the user.
See section 7.6.3.1 for details.

Syntax

+CNTRY=<number> Set country configuration for CPTD.

+CNTRY? Retrieve current country configuration.

+CNTRY=? Test available configuration. Parser returns (0,3)
information response.

Parameter(s)

Value Description

0 Default configuration. CST will detect CPT signals compliant with
Q.35 recommendation.

1 CST will detect CPT signals complied with Q.35 recommendation
and some signals which do not fin in Q.35 recommendation (i.e.
Singapore busy tone, Italian dial tone, etc).

2 Empty. Can be defined to select user-specific configuration.

3 Empty. Can be defined to select user-specific configuration.

9.4.2 Caller ID Related Commands

CST client side caller ID component conforms to many standards of different
countries, and as a result, it has many parameters, which have to be tuned to
help CID operate correctly in a specific region.

Detailed definition and explanation of these parameters is given in “CID User’s
Guide”. This chapter gives only brief description of AT commands, which tune
some of these parameters.

9.4.2.1 TE-ACK Signal Settings

Select TE-ACK generator parameters such as duration, type and level.

Syntax

+ATEACK=<Duration,Dtmf,Level> See Table 9-3 for details.

+ATEACK? Tests actual parameter values.

+ATEACK=? Tests available parameter values.

Parameter(s)

Caller ID Related Commands

 9-24

Table 9-3. TE-ACK Signal Settings

Parameter
Acceptable

Limits Description

Duration 65…90 Duration of TE-ACK signal, msec.

Dtmf 65…68 These values represent DTMF symbol ’A’,’B’,’C’ and ’D’ to be
generated.

ToneLevel 0…16384 Generated signal level per tone (Q15.0 format) - 32768
corresponds to the full-scale sine-wave.

9.4.2.2 DT-AS Signal Settings

Select DT-AS detector parameters.

Syntax

+ADTAS=<Duration,Twist,
ToneLevel,SpuriousLevel>

See Table 9-4 for details.

+ADTAS? Tests actual parameter values.

+ADTAS=? Tests available parameter values.

Parameter(s)

Table 9-4. DT-AS Detector Parameters

Parameter
Acceptable

Limits Description

Duration 50…100 Minimum acceptable duration (in msec).

Twist 8192…32767 Maximum acceptable tones twist (Q15.0 format).

ToneLevel 0…32767 Detector sensitivity. This parameter controls minimum signal
level for tone to be accepted by detector (Q15.0 format).

SpuriousLevel 4096…16384 Acceptable relative spurious level (Q15.0 format). Greater
values enhance tone recognition but make worse talk-off
performance.

Caller ID Related Commands

9-25 AT Command Set Descriptions

9.4.2.3 FSK Demodulator Settings

Select FSK demodulator settings that control message recognition.

Syntax

+AFSK=<ToneLevel
SpuriousLevel>

See Table 9-5 for details.

+AFSK? Tests actual parameter values.

+AFSK=? Tests available parameter values.

Parameter(s)

Table 9-5. FSK Demodulator Settings

Parameter
Acceptable

Limits Description

ToneLevel 100…32767 Detector sensitivity. This parameter controls minimum signal
level for tone to be accepted by detector (Q15.0 format).

SpuriousLevel 8192…16384 Acceptable relative spurious level (Q15.0 format). Greater
values enhance tone recognition but make worse talk-off
performance.

9.4.2.4 Caller ID Output Select

Select the form of output the caller ID information response

Syntax #CID<value>

Modem Related Commands

 9-26

Parameter(s)

Value Description

0 Turn off caller ID

1 Caller ID is turned on after the first ring and outputs received data
(caller ID information) in formatted representation. For example:

RING

Caller ID info:

Calling Line Indentity: 9117843

Calling Party Name: TAGANSKAYA

2 Caller ID is turned on after the first ring and outputs received data
(caller ID information) in unformatted representation. Unformatted
representation means that data, received by CID’s FSK
demodulator, is not parsed by CID message parser, but is output to
terminal in ASCII hex format, byte by byte. For example:
RING

Caller ID info:

020739313137383433070F202020202020202020202020202
020

9.4.3 Modem Related Commands

9.4.3.1 Data Compression

This extended-format multi-parameter command controls the V.42bis data
compression component. It accepts four numeric subparameters.

Syntax

+DS=<direction>,
<negotiation>,
<max_dict>,
<max_string>

See Table 9-6 for details.

+DS? Tests actual parameter values.

+DS=? Tests available parameter values.

Modem Related Commands

9-27 AT Command Set Descriptions

Parameter(s)

Table 9-6. Data Compression Subparameters

Parameter
Acceptable

Limits Description

direction 0…3 Desired directions of operation for the data compression function:
0 – compression disabled in both directions
1 – compression is enabled for transmit direction only
2 – compression is enabled for receive direction only
3 – compression is enabled for both directions

This parameter is also controlled by %C command.

negotiation 0 Specifies whether or not the modem should continue to operate if
the desired result is not obtained.
0 means that modem does not disconnect when remote party
does not negotiate V.42bis parameters.

max_dict 512,
1024,
2048,
4096

Maximum number of dictionary entries. Greatly affects memory
usage by V.42bis object and compression ratio. With greater
dictionary size V.42bis yields better compression, but consumes
more memory. In chipset mode, or in flex mode when system has
no additional memory, this parameter should be set to 512.

max_string 6…32 Maximum string length to be negotiated (V.42bis P2 parameter).
Typically, it has to be set to 32.

9.4.3.2 Break Handling in Error Control Operation

This parameter is used to control the manner of handling the breaks (long
times when no symbols arrive) by V.42 error correction component. This com-
mand is used just for V.250 compatibility and in reality the user can not change
this parameter.

Syntax

+EB=<break_selection>,
<timed>,
<default_length>

Always equal to 0,0,0. This means that
breaks are completely ignored.

+EB? Always returns 0,0,0.

+EB=? Tests available parameter values.

Parameter(s) See section 6.5.2 of ITU-T Recommendation V.250: Serial asynchronous
automatic dialing and control, 07/97, for details.

Modem Related Commands

 9-28

9.4.3.3 32-Bit Frame Check Sequence

This parameter controls the use of the 32-bit FCS option in V.42.

Syntax

+EFCS=<value> Enable/disable usage of 32-bit FCS

+EFCS? Returns current setting.

+EFCS=? Tests available parameter values.

Parameter(s)

Value Description

0 Use only 16-bit FCS

1 Use 32-bit FCS if possible (default)

See section 6.5.4 of ITU-T Recommendation V.250: Serial asynchronous au-
tomatic dialing and control, 07/97, for details.

9.4.3.4 Error Control Reporting

V.250 recommendation uses this parameter to control the transfer of inter-
mediate result code of kind “:+ER:xxx” before final result code (e.g. CON-
NECT) is transmitted.

Syntax

+ER=<value> Always 0. This means that CST does not support
intermediate result codes at all.

+ER? Always return 0.

+ER=? Tests available parameter values.

Parameter(s) See section 6.5.5 of ITU-T Recommendation V.250: Serial asynchronous
automatic dialing and control, 07/97, for details.

Modem Related Commands

9-29 AT Command Set Descriptions

9.4.3.5 Error Control Selection

This command controls the manner of V.42 protocol operation in the protocol
establishment phase. Modem Integrator in CST solution uses only the most
generic options of V.42 object for establishing connection7.

Syntax

+ES=<orig_rqst>,
<orig_fbk>,
<ans_fbk>

Always equal to 3,0,2.
These values mean the following:
3 - use V.42 with detection phase only;
0 - use V.42 or and fall into V.14 mode if
connection can not be established;
2 - both V.42 or V.14 are verified when
modem is answerer

+ES? Always returns 3,0,2

+ES=? Tests available parameter values.

Parameter(s) See section 6.5.1 of ITU-T Recommendation V.250: Serial asynchronous
automatic dialing and control, 07/97, for details.

9.4.3.6 Selective Reject

Since the V.42 component version supplied in CST solution does not support
selective reject, this command is used just for V.250 compatibility.

Syntax

+ESR= Always 0. No selective reject is supported.

+ESR? Always returns 0.

+ESR=? Lists the supported range of values.

Parameter(s) See section 6.5.3 of ITU-T Recommendation V.250: Serial asynchronous
automatic dialing and control, 07/97, for details.

7 Using custom connection procedure defined in section 2.5.2 of V.42 User Guide can extend connection
capabilities at severe link conditions

Modem Related Commands

 9-30

9.4.3.7 Window Size

This parameters controls the maximum number of information frames that
V.42 object may have unacknowledged simultaneously. To provide compatibil-
ity with ITU-T standard, the user should set this parameter to 15. However, real
window size can be less than declared value, and be defined dynamically
according to the actual heap size (see 9.4.3.9 +EHEAP command).

Syntax

+EWIND=<value1>,<value2> See Table 9-7 for details

+EWIND? Returns actual parameter values.

+EWIND=? Lists the supported range of values.

Parameter(s)

Table 9-7. V.42 Window Size Subparameters

Parameter
Acceptable

Limits Description

value1 1…15 Transmit window size.

value2 0 Always is set to 0. It means that receive window size is equal to
transmit windows size.

Also, see section 6.5.7 of ITU-T Recommendation V.250: Serial asynchro-
nous automatic dialing and control, 07/97, for details.

9.4.3.8 Frame Length

This parameter controls the maximum number of bytes in information field of
an information frame transmitted by V.42. Typical value is 128. In very noisy
environment (e.g. when BER>10-4) this parameter can be reduced, but AT
parser only allows to set it as low as 32.

Syntax

+EFRAM=<value1>,<value2> See Table 9-8 for details

+EFRAM? Returns actual parameter values.

+EFRAM=? Lists the supported range of values.

Parameter(s)

Modem Related Commands

9-31 AT Command Set Descriptions

Table 9-8. V.42 Frame Length Subparameters

Parameter
Acceptable

Limits Description

value1 32…128 Transmit frame length.

value2 0 Always is set to 0. It means that receive frame length is equal to
transmit frame length.

Also, see section 6.5.8 of ITU-T Recommendation V.250: Serial asynchro-
nous automatic dialing and control, 07/97, for details.

9.4.3.9 V.42 Heap Select

Memory heap size available for V.42 is selected according to the system
needs. Greater heap provides more robust performance for the outgoing traffic
(lower delays and better outgoing throughput).

Syntax

+EHEAP=<size> Heap size in words. Should be in range of 1000…4000.

+EHEAP? Tests actual parameter values.

+EHEAP=? Lists the supported range of values.

9.4.3.10 V.42 or Buffered V.14 Select

Select data-link layer protocol.

Syntax \N<value>

Parameter(s)

Value Description

0 V.42 error correction is disabled. V.14 buffer mode is used instead

1 V.42 operation is enabled

Modem Related Commands

 9-32

9.4.3.11 V.42bis Compression Mode

Select V.42bis compression mode. When V.42 protocol is not in use, this set-
ting does not have any effect, because V.42bis compression can only be used
by V.42 protocol.

This option greatly affects memory size required to run the modem.

Syntax %C<value>

Parameter(s)

Value Description

0 Compression is disabled in both directions

1 Compress transmitted data only

2 Decompress received data only

3 Compress/decompress in both direction

9.4.3.12 Round Trip Delay Settings

Maximal telephone line connection round trip delay. This parameter is used
only by V.32bis/V.32 modem to allocate memory for far echo bulk delay buffer,
in order to be able to suppress far echo from the incoming signal (see section
7.6.1.3 for details).

Syntax

+ARTD=<delay> Delay in milliseconds. Should be in range of
20…2000 ms.

+ARTD? Tests actual parameter value.

+ARTD=? Lists the supported range of values.

Parameter(s) <delay> should be in range 20…2000 ms.

9.4.3.13 Modem Output Gain

Sets the power of modem output signal in dB. This value is written to S-register
28, so this parameter can also be controlled via S-registers.

Syntax %L<value>

Parameter(s) <value> should be in range 0…17 and represents output modem gain in dB
(with negative sign).

Modem Related Commands

9-33 AT Command Set Descriptions

9.4.3.14 Maximum Modem Speed

Select maximum modem speed.

Syntax B<value>

Parameter(s)

Value Description

0, 1 Automodem (14400 bps Max)

2 1200 bps (V.22bis/V.22)

3 2400 bps (V.22bis)

4 4800 bps (V.32bis/V.32)

5 7200 bps (V.32bis/V.32)

6 9600 bps (V.32bis/V.32)

7 12000 bps (V.32bis)

8 14400 bps (V.32bis)

9.4.3.15 Fast Connect

Controls the fast connect capability (see section 7.6.1.3 for details).

Syntax #F<value>

Parameter(s)

Value Description

0 Fast connect mode is disabled.

1 Fast connect mode is enabled.

9.4.3.16 Modem Automatic Speed-up

Controls modem automatic speed-up capability.

Syntax #ASPDUP<value>

Parameter(s)

Value Description

0 Speed-up mode is disabled. Even if conditions on the line allow to
operate at higher bit rate, modem will not try to increase it.

1 Speed-up mode is enabled. If conditions on the line allow to
operate at higher bit rate, modem will try to increase it via rate
renegotiation.

Voice Mode Commands

 9-34

9.4.3.17 Modem Slowdown

Controls modem automatic slow-down capability.

Syntax #ASLWDN<value>

Parameter(s)

Value Description

0 Slow-down mode is disabled. Even if conditions on the line are
poor to operate at current bit rate, modem will not automatically
reduce the rate.

1 Slow-down mode is enabled. If conditions on the line are poor to
operate at current bit rate, modem will automatically reduce the
rate via rate renegotiation.

9.4.4 Voice Mode Commands

9.4.4.1 Select Echo Canceller Mode

Controls Line Echo Canceller

Syntax #VEC<value>

Parameter(s)

Value Description

0 Turn off Echo Canceller

1 Turn on Echo Canceller without NLP (Non-Linear Processor)

2 Turn on Echo Canceller with NLP

9.4.4.2 Set Output Voice Signal Attenuation

Set output voice signal attenuation, decreasing output signal power in voice
mode. The parameter denotes negative value in dB.

Syntax +VGT<value>

Parameter(s) <value> should be in the range from 0 to 30, denoting attenuation from 0 to -30
dB. By default, equal to 0.

Voice Mode Commands

9-35 AT Command Set Descriptions

9.4.4.3 Compression Method Selection

Voice Data Bit-Rate Selection

Syntax

#VBS=<value> Set voice data bit rate

#VBS? Prints currently selected bit rate

#VBS=? Prints all available bit rate settings

Parameter(s)

Value Description

2 Set 2 bits per 8000 Hz sample rate (G.726 ADPCM, 16 kbps)

3 Set 3 bits per 8000 Hz sample rate (G.726 ADPCM, 24 kbps)

4 Set 4 bits per 8000 Hz sample rate (G.726 ADPCM, 32 kbps)

5 Set 5 bits per 8000 Hz sample rate (G.726 ADPCM, 40 kbps)

8 Set 8 bits per 8000 Hz sample rate (PCM, µ-law, 64 kbps)

9.4.4.4 Voice Receive Mode

Turn on Voice Receive Mode. All additional characters in the command line are
ignored. AT parser indicates completion of this command by issuing result
code CONNECT. Immediately after this result code, CST will start sending
voice data bitstream to DTE according to the selected bit rate. Different events
are reported to DTE using special shielded codes (see section 9.5). The end
of the bitstream (when DTE decides to turn this mode off) is marked by
<DLE><ETX> shielded code sequence.

To turn this mode off and come back to Voice Command Mode, DTE should
send any character.

Syntax #VRX

9.4.4.5 Voice Transmit Mode

Turn on Voice Transmit Mode. All additional characters in the command line
are ignored. AT parser indicates completion of this command by issuing result
code CONNECT. After this result code, DTE may start sending voice data bit
stream according to selected bit rate. DCE reports different events to DTE us-
ing special shielded codes (see section 9.5).

To turn this mode off, DTE should send <DLE><ETX> sequence.

Syntax #VTX

Voice Mode Commands

 9-36

9.4.4.6 Voice Duplex Mode

Turn on Voice Duplex Mode, when DCE receives and transmits voice data si-
multaneously. All additional characters in the command line are ignored. Mo-
dem indicates completion of this command by issuing result code CONNECT.
Immediately after this result code, CST will start sending voice data bitstream
to DTE according to the selected bit rate, and DTE can start sending voice data
bitstream to CST. Different events are reported to DTE using special shielded
codes (see section 9.5).

To turn this mode off, DTE should send <DLE><ETX> sequence.

Syntax #VRXTX

9.4.4.7 AGC Parameters

Set AGC reference signal level.

Syntax

+AGC=<value> Set AGC reference signal level.

+AGC? Prints current reference signal level.

+AGC=? Prints acceptable range of reference signal level.

Parameter(s) <value> should be in the range from 0 to 8000.

9.4.4.8 VAD Parameters

Set VAD reference signal level.

Syntax

+VAD=<lowAmp>,
<quality>,
<noiseSmooth>,
<speechSmooth>,
<lpcOrder>

Set VAD algorithm creation parameters.

+VAD? Prints currently selected bit rate

+VAD=? Lists the supported range of values.

S-Registers

9-37 AT Command Set Descriptions

Parameter(s)

Parameter
Acceptable

Limits
Default
Value Description

lowAmp 0..8000 80 Minimum noise amplitude. Signals with lower amplitude will
be treated as noise.

quality -32767..
32767

-19662 Used for VAD energetic thresholds adjustment.
The lower this number is, the higher is probability that noise
will be recognized as speech, and vice versa. In other words,
this parameters allows to tune VAD for different
Speech-to-Noise ratios or for different applications.

If, for example, VAD is used together with vocoder, this
parameter should be low (around –19000), in order to make
sure that even noise-like speech segments will be detected
as speech.

On the other hand, if VAD is used to control AGC, this
parameter can be chosen higher (above -10000), in order to
make sure that only those segments that really represent
speech are detected.

noiseSmooth 0..100 0 Number of hangover frames after noise segment.

speechSmooth 0..100 0 Number of hangover frames after speech segment.

lpcOrder 0..10 10 Number of LPC coefficients for CNG.

9.4.5 S-Registers

The S-registers defined in CST AT parser are described in Table 9-9. Some
of them are standard, some are proprietary. S-registers in parenthesis are im-
plemented only for compatibility and are not used inside CST solution.

Table 9-9. S-Registers Defined in CST-Solution

Register
Number

Related
AT-cmd Description

(S0) - Automatic Answer; does not affect CST behavior

S3 - Command Line Termination Character <CR>
By default, equal to 13.

S4 - Response Formatting Character <LF>
By default, equal to 10.

S5 - Command Line Editing Character, backspace <BS>
By default, equal to 8.

S6 - Pause Before Blind Dialing, in seconds
In CST this register contains the duration of the delay inserted after going off-hook and
before any other action. By default, equal to 1 sec.

S-Registers

 9-38

Table 9–9. S-Registers Defined in CST-Solution (Continued)

Register
Number Description

Related
AT-cmd

S7 – Connection Completion Timeout, in seconds
If a modem can’t establish a connection for the period of this timeout. CST will stop
connecting and will go on hook. By default, equal to 60 sec.

S8 – Comma Dial Modifier pause duration, in seconds
Dialing string may contain the comma character, which sustains a pause in dialing for
the specified amount of seconds. By default, equal to 2 sec.

(S10) – Automatic Disconnect Delay; does not affect CST behavior

S11 – DTMF tone/space duration, msec.
The duration of a DTMF tone and the pause between the DTMF tones. By default,
equal to 80.

S12 – Guard pause before and after ’+++’ (escape sequence) in 1/8th of msec
Escape sequence is guarded with 2 periods of inactivity, when DTE should not send
anything to DCE. If these periods exist before and after ’+++’ sequence, the AT Parser
will consider the incoming sequence as Escape Sequence, and will switch to the
Modem Online Command Mode. By default, equal to 8000 (1 sec).

S26 \N Boolean flag enabling V.42 mode (when disabled, V.14 mode is used). See section
9.4.3.10 for details. By default, equal to 1.

S27 %C V.42bis compression selection. Bit 0 enables V.42bis compressor, bit 1 enables
V.42bis decompressor. See section 9.4.3.11 for details. By default, equal to 3.

S28 %L Modem output signal attenuation in decibels (0..17 dB), treated as negative value. See
section 9.4.3.13 for details. By default, equal to 9.

S29 #F Enables the fast connect mode. See section 9.4.3.15 for details. By default, equal to 0.

S30 +VGT Output voice signal attenuation in decibels (0..30 dB), treated as negative value. See
section 9.4.4.2 for details. By default, equal to 0.

S31 – Common input signal attenuation in decibels (0..30 dB), treated as negative value.
Used only in Voice mode. See section 9.4.4.2 for details. By default, equal to 0.

S37 B The maximum desired modem rate. See section 9.4.3.14 for details.
0,1 – Automodem; 2 – V.22 1200; … 8 – V.32bis 14400.
By default, equal to 0

S38 – An extra pause before V.42 session completion, in seconds. The modem waits this
amount of time before V.42 connection is terminated, in order to flush data from
internal buffers. By default, equal to 2.

S40 T and P Default dialing mode: 0 – tone mode, 1 – pulse mode;
Used when dialing string does not contain explicit dialing mode modifier. See sections
9.4.1.13 and 9.4.1.21 for details. By default, equal to 0.

S-Registers

9-39 AT Command Set Descriptions

Table 9–9. S-Registers Defined in CST-Solution (Continued)

Register
Number Description

Related
AT-cmd

S41 #VEC Line echo canceller mode:
0 – EC off; 1 – EC on without NLP; 2 – EC on with NLP. By default, equal to 1.

S42 #VBS Voice Bit Per Second rate. Can be 2, 3, 4, 5 or 8, which corresponds to rates 16, 24,
32 and 40 kbps for G.726 and 64 kbps for G.711. See section 9.4.4.3 for details. By
default, equal to 8.

S43 #CID Caller ID mode. Selects: 1 – formatted CID, 2 – unformatted CID information printing; 0
– disables it. See section 9.4.2.4 for details. By default, equal to 1.

S44 – Enables VAD in voice mode. By default, equal to 1.

S45 – Enables AGC in voice mode. By default, equal to 1.

S46 – Shield code value. By default, equal to 0x10 (<DLE>).

S47 – Enable Caller ID report even if data have been received with incorrect CRC. By
default, equal to 0.

S50 E Boolean flag to enable AT Parser echo. See section 9.4.1.7 for details.

S51 – Enables automatic adjustment of the UART baud rate. By default, equal to 1 (auto
baud enabled).

S60 – Statistics enable flags. Bit 0 enables MIPS measurement, bit 1 enables heap free size
measurement, and bit 2 enables stack free size measurement. By default, equal to 7
(all flags enabled).

S61 – Contains a number of currently active (created) xDAIS algorithms. Read only.

S62 – Contains free heap size in words. Read only.

S63 – Contains free stack size in words. Read only.

S64 – Peak MIPS tracked since last reset (averaged on 4 msec block).
Writing to this register a zero value resets it.

S65 – Contains average value of input signal power, in dBm. Read only.

S70 #CHAN Active channel number. Not used.

S101 …
S119

– Directly mapped to DAA internal Registers 1 through 19. Read section 9.4.6 for details.

S-Registers Controlling DAA

 9-40

9.4.6 S-Registers Controlling DAA

CST chip has an on-chip DAA, which sometimes needs to be tuned to a specif-
ic country telephone network standard. In order to be able to do this even in
chipset mode, CST AT S registers S101 through S119 are directly mapped to
the DAA internal registers 1 through 19.

Reading these S registers allows reading the contents of the DAA registers.
Writing to these S registers allows writing to the DAA registers.

Since S registers in CST AT parser support bit-wise syntax for accessing them,
the user can easily read or modify any bit of the DAA registers.

Short summary of DAA registers is given in Table 9-10. This table is taken
from TMS320C54CST Client Side Telephony DSP (SPRS187) with some
modifications. Refer to it for explanation of the abbreviation used in
Table 9-10.

Table 9-10. DAA Registers Summary

SReg Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

101 Control 1 SR DL SB

102 Control 2 AL HBE RXE

105 DAA Control 1 RDTN RDTP ONHM RDT OH

106 DAA Control 2 PDL PDN

109 Sample Rate Ctrl SRC[2..0]

111 Chip A Revision REVA[3:0]

112 Line Side Status CLE FDT LCS[3:0]

113 Chip B Revision CBID REVB[3:0] ARXB ATXB

114 Line Side
Validation

CHK CIP SAFE

115 TX/RX Gain Ctrl TXM ATX[2:0] RXM ARX[2:0]

116 International Ctrl1 OFF/
SQL2

OHS ACT DCT[1:0] RZ RT

117 International Ctrl2 MCAL CALD LIM OPE BTE ROV BTD

118 International Ctrl3 FULL DIAL FJM VOL FLVM MODE RFWE SQLH

119 International Ctrl4 LVCS[4:0] OVL DOD OPD

International settings of DAA for different countries are given in Table 9-11.

S-Registers Controlling DAA

9-41 AT Command Set Descriptions

Table 9-11. Country Specific DAA Register Settings

S-Register 116 117 118

AT Bit Reference
Country

S116.6
OHS

S116.5
ACT

S116.2,3
DCT[1:0]

S116.1
RZ

S116.0
RT

S117.4
LIM

S118.4
VOL

Australia 1 1 01 0 0 0 0

Bulgaria 0 0 or 1 10 0 0 0 0

China 0 0 01 0 0 0 0

CTR21 0 0 or 1 11 0 0 1 0

Czech Republic 0 1 10 0 0 0 0

FCC 0 0 10 0 0 0 0

Hungary 0 0 10 0 0 0 0

Japan 0 0 01 0 0 0 0

Malaysia 0 0 01 0 0 0 0

New Zealand 0 1 10 0 0 0 0

Philippines 0 0 01 0 0 0 1

Poland 0 0 10 1 1 0 0

Singapore 0 0 10 0 0 0 0

Slovakia 0 0 or 1 10 0 0 0 0

Slovenia 0 1 10 0 0 0 0

South Africa 1 1 10 1 0 0 0

South Korea 0 0 01 1 0 0 0

Notes: 1) CTR21 includes the following countries: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland,
Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United King-
dom.

2) This table is copied from TMS320C54CST Client Side Telephony DSP (SPRS187) with some modifications.

Country-specific settings for DAA can be configured via CST host, read chap-
ter 10.2.2.

Detailed description of DAA’s registers is given in TMS320C54CST Client Side
Telephony DSP (SPRS187) (for C54CST’s DAA) and Si3044 User Guide. 3.3
V ENHANCED GLOBAL DIRECT ACCESS ARRANGEMENT, �Silicon Labo-
ratories, 2000 (for Si3021 DAA).

Shielded Codes in Voice Mode

 9-42

9.5 Shielded Codes in Voice Mode

While in voice mode, AT parser processes so called “shielded” codes (codes
that start with <DLE> symbol) to enable transfer of some control information
inside of the voice stream (like termination command or DTMF and CPTD de-
tectors result codes).

The codes used in the description below have the following numerical values:

� ETX - 0x03

� DLE - 0x10

The following codes are sent from DTE to AT parser while in voice data transfer
mode:

Table 9-12. CST AT Parser Voice Mode Shielded Codes Sent From DTE

Shielded Code Sent to AT Parser Meaning

<DLE><ETX> Exit voice data transfer mode after finishing playing all data in the
playback buffer. AT parser returns VCON result code.

The following codes are sent from AT parser to DTE while in voice data transfer
and voice command mode:

Table 9-13. CST AT Parser Voice Mode Shielded Codes Sent to DTE

Shielded Code Sent to DTE Meaning

<DLE>0-9,*,#,A-D DTMF digits were detected by DTMF detector. Reported only once for
each continuous tone.

<DLE>b Busy tone was detected by CPT detector. Reported only once.

<DLE>c<String><CR><LF> Report a string, terminated with new line characters – <CR><LF>

Used to report decoded CID information and RING result code during
voice data mode.

<DLE>d Dial tone was detected by CPT detector. Reported only once.

<DLE>e End of tone that was earlier detected by CPTD (this way DTE is informed
when, for example, ringback tone finishes).

<DLE>n Used by voice controller to transmit noise LPC instead of vocoder data,
when VAD detects absence of voice activity

<DLE>r Ringback tone was detected by CPTD detector. Reported only once.

Shielded Codes in Voice Mode

9-43 AT Command Set Descriptions

Table 9-13. CST AT Parser Voice Mode Shielded Codes Sent to DTE (Continued)

Shielded Code Sent to DTE Meaning

<DLE><ETX> Denotes end of Voice Received Data stream. Occurs only after DTE
issues a command to abort Voice Receive Mode.

If a voice data stream contains a character with the same code as <DLE> sym-
bol has, this character is converted to two <DLE> characters on sending side,
and is converted back to one character on receiving side.

AT Result Tokens

 9-44

9.6 AT Result Tokens

AT parser outputs the following result tokens:

Table 9-14. CST AT Parser Result Tokens

Token Name Result Code Description

OK 0 Command is accepted

CONNECT 1 Modems have connected

RING 2 Ring is detected

NO CARRIER 3 Connection with remote modem was lost

ERROR 4 Wrong AT command or parameter

NO DIALTONE 6 Dial tone was not detected within specified timeout (10 sec by
default)

BUSY 7 Busy signal was detected while trying to connect

NO ANSWER 8 Modem is not responding

CONNECT Protocol/Rate 46 Reports protocol and rate at which modems have connected

NO CARRIER 4096
(0x1000)

Connection establishment was aborted by the user

VCON 4097
(0x1001)

Voice connect – output when voice command mode is entered
and call setup is completed successfully.

DIALTONE 4098
(0x1002)

Dial signal was detected

RINGBACK 4099
(0x1003)

Ringback signal was detected

NO MEMORY 4105
(0x1009)

There is not enough memory to create one of the algorithms,
required for AT-command execution

Formatted/ Unformatted
CID data

- A CID signal was received (this may happen at any time after
the first ring and till the end of voice connection, i.e. till the AT
parser goes on-hook).

RING token and CID data are unsolicited results, in other words they can be
output at any time, not in response to some user’s AT command.

AT Commands Summary

9-45 AT Command Set Descriptions

9.7 AT Commands Summary
This section gives a brief overview of all AT commands, split into two tables:

� standard V.250-compatible commands (Table 9-15)

� CST-proprietary commands (Table 9-16)

Table 9-15. Summary of Standard V.250 Commands Supported by CST

Name Description Type1
Syn-
tax2

Availability
Options3 Category

Section
to

reference4 Ref.

&C Circuit 109 (Received line signal
detector) Behavior

P B A General 6.2.8 9.4.1.1

&D Circuit 108 (Data terminal ready)
Behavior

P B A General 6.2.9 9.4.1.2

&F Set to Factory-Defined Configuration A B A General 6.1.2 9.4.1.3

A Answer A B0 CV General 6.3.5 9.4.1.4

D Dial A B CV General 6.3.1 9.4.1.5

DL Dial Last Dialed Number A B0 CV General 6.3.1 9.4.1.6

E Command Echo P B A General 6.2.4 9.4.1.7

H Hook Control A B A General 6.3.6 9.4.1.8

I Request Identification Information A B A General 6.1.3 9.4.1.9

L Monitor Speaker Loudness P B A General 6.3.13 9.4.1.10

M Monitor Speaker Mode P B A General 6.3.14 9.4.1.11

O Return to Online Data Mode A B0 O General 6.3.7 9.4.1.12

P Select Pulse Dialing P B0 A General 6.3.3 9.4.1.13

Q Result Code Suppression P B A General 6.2.5 9.4.1.14

S S-Registers Set or Test P or A S General 9.4.1.20

T Select Tone Dialing P B0 A General 6.3.2 9.4.1.21

Notes: 1) Types of commands:
A - action commands, P - parameter selection

2) Syntax of commands:
B - basic (9.3.3); B0 – basic, without parameters (9.3.3);
S - S-register specific (9.3.4); E - extended (9.3.5)

3) Availability options:
V - Voice Mode; C - Command Mode;
O - Online Command Mode; A - all modes.

4) ITU-T Recommendation V.250: Serial asynchronous automatic dialing and control, 07/97

AT Commands Summary

 9-46

Table 9-15. Summary of Standard V.250 Commands Supported by CST (Continued)

Name Ref.

Section
to

reference4Category
Availability
Options3

Syn-
tax2Type1Description

V DCE Response Format P B A General 6.2.6 9.4.1.22

X Result Code Selection and Call
Progress Monitoring Control

P B A General 6.2.7 9.4.1.23

Z Reset To Default Configuration A B0 A General 6.1.1 9.4.1.24

+DS Data Compression P E A Modem 6.6.1 9.4.3.1

+EB Break Handling in Error Control
Operation

P E A Modem 6.5.2 9.4.3.2

+EFCS 32-bit Frame Check Sequence P E A Modem 6.5.4 9.4.3.3

+EFRA
M

V.42 Frame Size P E A Modem 6.5.8 9.4.3.8

+ER Error Control Reporting P E A Modem 6.5.5 9.4.3.4

+ES Error Control Selection P E A Modem 6.5.1 9.4.3.5

+ESR Selective Reject P E A Modem 6.5.3 9.4.3.6

+EWIND V.42 Window Size P E A Modem 6.5.7 9.4.3.7

Notes: 1) Types of commands:
A - action commands, P - parameter selection

2) Syntax of commands:
B - basic (9.3.3); B0 – basic, without parameters (9.3.3);
S - S-register specific (9.3.4); E - extended (9.3.5)

3) Availability options:
V - Voice Mode; C - Command Mode;
O - Online Command Mode; A - all modes.

4) ITU-T Recommendation V.250: Serial asynchronous automatic dialing and control, 07/97

AT Commands Summary

9-47 AT Command Set Descriptions

Table 9-16. Summary of CST-Solution Proprietary AT Commands

Name Description Type1 Syntax2
Availability
Options3 Category Ref.

$ S-Register Summary A B0 A General 9.4.1.25

$H AT Command Summary A B0 A General 9.4.1.26

&V Current Settings Summary A B0 A General 9.4.1.27

#CHAN Current channel A B0 A General 9.4.1.28

#DATA Flex application load A B0 A General 9.4.1.29

#CLS Mode selection A E A General 9.4.1.30

+CNTRY Country selection A E A General 9.4.1.31

+EHEAP V.42 Heap Select P E A Modem 9.4.3.9

\N V.42 or Buffered V.14 Select P B A Modem 9.4.3.10

%C V.42bis Compression Mode P B A Modem 9.4.3.11

+ARTD Round Trip Delay Settings A E A Modem 9.4.3.12

%L Modem Output Gain P B A Modem 9.4.3.13

B Maximum Modem Speed A B A Modem 9.4.3.14

#F Fast Connect Control P B A Modem 9.4.3.15

+ASPDUP Speedup Control P E A Modem 9.4.3.16

+ASLWDN Slowdown Control P E A Modem 9.4.3.17

#CID Caller ID Output Select P B A Caller ID 9.4.2.4

+ATEACK TE-ACK Signal Settings P E A Caller ID 9.4.2.1

+ADTAS DT-AS Signal Settings P E A Caller ID 9.4.2.2

+AFSK FSK Demodulator Settings P E A Caller ID 9.4.2.3

Notes: 1) Types of commands:
A - action commands, P - parameter selection

2) Syntax of commands:
B - basic (9.3.3); B0 – basic, without parameters (9.3.3);
S - S-register specific (9.3.4); E - extended (9.3.5)

3) Availability options:
V - Voice Mode; C - Command Mode;
O - Online Command Mode; A - all modes.

AT Commands Summary

 9-48

Table 9-16. Summary of CST-Solution Proprietary AT Commands (Continued)

Name Ref.Category
Availability
Options3Syntax2Type1Description

#VEC Echo Canceller Mode P B V Voice 9.4.4.1

+VGT Set Voice Loop Gain P B V Voice 9.4.4.2

#VBS Compression Method Selection P E V Voice 9.4.4.3

#VRX Voice Receive Mode A B0 V Voice 9.4.4.4

#VTX Voice Transmit Mode A B0 V Voice 9.4.4.5

#VRXTX Voice Duplex Mode A B0 V Voice 9.4.4.6

+AGC AGC Parameters P E A Voice 9.4.4.7

+VAD VAD Parameters P E A Voice 9.4.4.8

Notes: 1) Types of commands:
A - action commands, P - parameter selection

2) Syntax of commands:
B - basic (9.3.3); B0 – basic, without parameters (9.3.3);
S - S-register specific (9.3.4); E - extended (9.3.5)

3) Availability options:
V - Voice Mode; C - Command Mode;
O - Online Command Mode; A - all modes.

Table 9-17. Summary of Commands by Categories

Category Commands

General &C, &D, &F, &V, A, D, DL, E, H, I, L, M, O, P, Q, S, T, V, X, Z, $, $H, #CLS, #CHAN, #DATA,
+CNTRY
S0, S3, S4, S5, S6, S8, S11, S12, S31, S40, S46, S50, S51, S60, S61, S62, S63, S64, S65,
S70

Modem +DS, +EB, +EFCS, +ER, +ES, +ESR, +EWIND, +EFRAM, +ARTD, +EHEAP, +ASPDUP,
+ASLWDN, %L, \N, %C, B, #F
S7, S10, S26, S27, S28, S29, S37, S38

Voice #VEC, +VGT, #VBS, #VRX, #VTX, #VRXTX, +AGC, +VAD
S30, S41, S42, S44, S45, S47

Caller ID +ATEACK, +ADTAS, +AFSK, #CID
S43, S47

10-1

CST Host Utility

In order to better control CST Chip over serial link, SPIRIT has developed a
special PC application - CST host. It can be used as terminal in data mode,
as play and record utility in voice mode, and also it simplifies setting the CST
chip settings.

To start CST Host, run CST\CSTHost\CSTHost.exe.

Topic Page

10.1 Minimum System Requirements 10-2.

10.2 CST Host Settings 10-3.

10.3 Voice Playback and Record 10-7.

Chapter 10

Minimum System Requirements

 10-2

10.1 Minimum System Requirements

CST host requires the following parameters to be met on PC on which it is run-
ning:

Table 10-1. CST Host Parameter Requirements

Parameter Minimum Requirement

Processor Intel Pentium , 300 MHz

Hard drive free space 3 Mb

RAM 16 Mb

Video VGA 800*600

Communication adapter Standard COM-port

CST Host Settings

10-3CST Host Utility

10.2 CST Host Settings

Note: Running applications or demo examples on EVM boards

Before running any application or demo example on EVM board, it is impor-
tant to correctly tune the COM port, DAA settings and CST solution settings.
All these settings are stored in CST host initialization file.
DAA and CST solution settings have to be reloaded every time EVM board
is powered on or CST chip is reset.

CST host settings dialog divided on following sections:

� COM port settings – selects and configures COM port.

International settings – configures DAA driver for the standards of your
country.

� Modem – allows changing of some modem parameters.

� Voice mode – selects encoder, input/output file format, echo canceller
mode, switches ON/OFF VAD and AGC.

� General – selects representing type of CID information, and DTMF tone/
pause durations.

Figure 10-1. CST Host Settings Dialog

CST Host Settings

 10-4

10.2.1 COM Port Settings

To configure COM port in CST host, open terminal window at File->CST
Terminal, and press Settings button. Choose COM port to which EVM is
connected, and press Configure Port button. Set the port for 115200 bps,
8 bits of data, 1 stop bit, no parity, Hardware flow-control, and press OK.

Then press OK again on “Settings…” window.

Try to type AT<ENTER> to check if the COM was configures correctly and the
EVM can receive and send data over it. If everything is correct, you should see
echo of the command that you enter, and then OK response:

AT
OK

CST chip UART driver has a limited capability of autobaud detection, so if for
some reason the port speed was selected other than 115200, the user must
help CST chip to synchronize to the new baud rate. In order to do this, keep
typing several continuous “AT” commands without <Enter> until you see the
correct echo.

Figure 10-2. COM Port Settings Dialog

CST Host Settings

10-5CST Host Utility

10.2.2 DAA International Settings

It is important to tune DAA properly for the standards of your country. This can
be done via special dialog in CST host, which is invoked by pressing Set-
tings, DAA International settings. The window shown in
Figure 10-3 should appear.

This dialog allows you to choose one of the presets for different countries and
Line monitor Mode. The presets are described in Table 9-11. There is also a
“User-defined” preset, which allows tuning different DAA parameters
manually. By default, it uses settings from the previously selected country
preset.

All settings in this dialog box are saved in the initialization file of CST host.

Transfer of these settings to CST chip is done via special S-registers, using
AT commands. Every time these settings are modified, EVM board is powered
on or CST chip is reset, DAA settings have to be reloaded to CST chip.

Figure 10-3. DAA Settings Dialog

Line monitor mode controls bit 2 of DAA register 18 (S register 118). If it se-
lected as “high”, this bit is set to 1, otherwise – to 0. This bit influences DAA
functionality in conjunction with several other bits, detailed description of this
is given in TMS320C54CST Client Side Telephony DSP. Data Manual. Texas
Instruments (SPRS187). For the most part, this bit is used to control on-hook
current line monitor – high or low.

CST Host Settings

 10-6

A short description of DAA’s AT S-registers is given in section 9.4.5

 of this document. Detailed description of DAA’s registers is given in
TMS320C54CST Client Side Telephony DSP. Data Manual. Texas Instru-
ments (SPRS187) (for C54CST’s DAA) and Si3044 User Guide: 3.3 V EN-
HANCED GLOBAL DIRECT ACCESS ARRANGEMENT, Silicon Laborato-
ries, 2000 (for Si3021 DAA).

10.2.3 Miscellaneous Settings

There are also different CST solution settings, which can be modified using
CST host and loaded to CST chip via AT commands. Most of the settings are
self-explanatory and their detailed description can be found in sections de-
scribing corresponding AT commands.

Just as with DAA settings, CST solution settings have to be reloaded to CST
chip every time these settings are modified, EVM board is powered on or CST
chip is reset.

The only setting, which does not influence CST chip, but only influences
CST host is “File Format” in voice mode settings. This option controls
whether CST host reads/writes voice files without any processing (“Same as
encoder (as is)” mode), or it reads/writes files in WAVe format (16 bit, 8
kHz mono). In case of WAVe file format CST host encodes/decodes the voice
according to the selected “Encoder” mode before sending it to and after re-
ceiving it from CST chip. Read more on file format in section 10.3.1.

The “Same as encoder (as is)” mode should be used when files to be
sent to CST chip in voice mode and files recorded from CST chip should be
in encoded mode (G.726 bitstream or G.711 bytes).

The “Wave file (16bit 8kHz)” mode should be used when files to be
sent to CST chip in voice mode and files recorded from CST chip should be
in WAVe 16-bit 8kHz file format independently of the selected encoder type for
CST chip.

The names of the files to be played (read from PC and sent to CST chip) and
to be recorded (received from CST chip and save to PC) are set in the corre-
sponding fields “Greeting message” and “File to be recorded” in
main CST Terminal window. Before running a script, CST host makes sure that
these files can be opened for read/write.

Voice Playback and Record

10-7CST Host Utility

10.3 Voice Playback and Record

CST host has a simple scripting engine inside, with 3 simple scenarios to dem-
onstrate voice mode functionality. To run one of these scripts, CST host has
buttons shown on the figure below.

Figure 10-4. Voice Play/Record Buttons

Pictures below are describing the processing flow.

Figure 10-5. CST Host Processing Flow

Go on hook

Wait for RING

Go off hook

Play greeting
message & record

user’s message

Play recorded
message

a)

Receive CID

Wait for RING

Go off hook

Record user’s
message

Go on hook

Receive CID

b)

Wait for RING

Go off hook

Playback
message

Go on hook

Receive CID

c)

It also has 2 input fields to set the names of files to be played and to be re-
corded, and playback/record duration field.

“File Format” setting in Settings dialog (read more on that in section
10.2.3) determines the type of the data in files.

The duration field determines how long the file will be played (if its length is
greater than the specified duration), or how long it will be recorded (unless the
caller hangs up and BUSY detected, which may stop recording earlier).

Voice Playback and Record

 10-8

To start a script, press one of the script buttons.

In the beginning of any script CST host will infinitely wait for RING result code
from CST chip.

Upon detection of this event, scripting engine will issue several AT commands
to make CST chip go off hook and configure it to the voice mode with the speci-
fied settings.

After this, “Record” script will configure CST chip to send data from phone line
to PC, and will save this data to a file; “Playback recording” script will con-
figure CST chip to output data from PC to the phone line, and will send data
from a file to the chip; “Play greeting and record” script will configure
CST chip to simultaneously play and record data to/from phone line, and will
send data from a file and save data to a file at the same time. In latter case,
after “Play greeting and record” script finishes playing the greeting, it
will play out the recorded message.

The user can terminate script execution at any time by unpressing the corre-
sponding script button. Execution will also be terminated upon some unsolicit-
ed result code, time-out in communication with CST chip or reception of BUSY
signal.

10.3.1 CST Host Audio File Format

CST host stores voice data in files in two ways. When “Same as encoder
(as is)” mode is selected, it saves bytes that are received from COM-port
“as is” just removing DLE formatting which do not belong to voice bitstream.
<DLE><DLE> symbols are not removed. Files stored in this mode take less
storage memory than in “raw PCM” mode.

When “Wave file (16bit 8kHz)” mode is selected, CST host performs
on-the-fly conversion of incoming packed stream to 16-bit WAVe format at
8 kHz sample rate. CST host also performs outgoing bitstream packing for
specified codec. Conventional audio editors can easily browse these files.

CST host does not automatically recognize file format when opening a file, so
files stored in one format cannot be played out correctly in another format.

Voice Playback and Record

10-9CST Host Utility

10.3.2 Application Sequence “Playback Greeting and Record”

The scenario of the “Playback greeting and record” CST host session is as fol-
lows
(also shown briefly in Figure 10-5) a):

1) CST chip is on-hook, waiting for the ring. CST host is waiting for the ”RING”
result code from the CST chip.

2) Once ring is detected, CST chip reports ”RING” result to the host and starts
waiting for CID signal. If CID Mark Bit is detected (1100 or 1200 Hz), CID
proceeds with detection and reception of CID message, and then CST
chip outputs the result of CID reception to the CSH host terminal.

3) On reception of “RING” result code, host increments the counter of the in-
coming rings, and if this counter exceeds the amount of rings which CST
host application has to wait before going off hook, it issues a series of AT
commands, causing CST chip to switch into voice mode and go off hook.

4) After going off hook, CST host initiates playback of the greeting message
located in the file on PC, sending it as G.726 compressed bitstream to CST
chip via serial link.

5) While message is played, starts recording a message from the telephone
line to a file on PC. PCM samples from the telephone line are compressed
in CST chip using G.726 ADPCM codec, and are passed to PC as com-
pressed bitstream.
As the message is being recorded, CST chip normalizes its amplitude (us-
ing AGC), scans for DTMF and CPTD tones (in order to pass information
about them via shielded codes to host) and detects periods of silence in
the speech (using VAD). If silence is detected, CST chip stops sending
compressed bitstream to PC, but instead starts sending much shorter si-
lence frames, which contain information about Noise Spectral Envelope
to PC.
Since echo canceller is turned on, the messages played back to the line
are going to be suppressed in the recorded message.

6) When playback duration exceeded or file ended CST host stops recording
and starts playing of recorded message.

7) In case of BUSY tone is detected, CST host stops recording the message
and saves it in a file. It causes CST chip to go on hook, and goes to step
1 of this scenario. This issues on all stages of processing.

11-1

Product Installation Procedure

This chapter provides brief instructions on installation of the CST SDK, setup
of the CST host to communicate with the C54CST EVM, and the setup of Win-
dows� to communicate with the C54CST as a generic modem.

Topic Page

11.1 Installing CST SDK 11-2.

11.2 Description of Product and Document Directory Tree 11-3.

11.3 Setting up CST Host 11-4.

11.4 Installing Modem Drivers for CST Chips in Windows� 11-5.

Chapter 11

Installing CST SDK

 11-2

11.1 Installing CST SDK

To install CST Documentation, CST open code, CST Flex mode examples,
CST host application and other auxiliary software, run the file CSTIns-
tall.exe (it is a self-extracting archive). Specify the destination folder to ex-
tract the files to (it can be any folder, but it is recommended to specify your TI
folder, usually c:\ti\C5400, so that all CST files would reside in
c:\ti\C5400\CST), and press “Extract”. The extracted files will be located
in the directories as described in section 11.2.

Note: Important notes for Code Composer Studio version 2.1 users

Notes for Code Composer Studio version 2.1 users
(for correct flex application compilation):

1) After extraction is done, you need to update the Chip Support Library
(CSL) as follows:
Follow the instructions in the Readme.txt file provided in the
CST\CCS_Patch folder

2) If an error message is displayed during compilation, saying that some
header file (such as xdas.h or std.h) could not be opened, the correct
paths need to be added in the CCS options of flex application project, as
follows:
Open ”Project->Build Options” and select the ”Preprocessor” category. In
the ”Include Search Path” window correct the following paths to point to
your specific TI folder location:
”C:\ti\c5400\xdais\include;
C:\ti\c5400\xdais\src\api”
It is a bug in CCS 2.1xx, and it is fixed in CCS 2.2.

To create CST Flex mode applications, the user needs Code Composer Studio
from Texas Instruments. Its installation is described in corresponding CCS
documents, and is beyond the scope of this document.

Description of Product and Document Directory Tree

11-3Product Installation Procedure

11.2 Description of Product and Document Directory Tree

CST documentation and software has the following directory tree:

Figure 11-1. CST Documentation and Software Directory Tree

CST

CCS_Patch

CSTHost

Samples

CST root folder

Update files for the Code Composer Studio 2.1, contain CSL
library update for CST chip

CST Host terminal application CSTHost.exe
Voice files to be played or recorded.
Standard CST greeting at different bit rates.

Docs CST Documentation

Application notes, both for Chipset and Flex modesApplication notes

Data Sheets Data Sheets for each algotithm: short description, RAM/ROM/MIPS
requirements; CST Chip hardware data sheet

User Guides User’s Guides for each algorithm, for CST in general and for CST
Framework

Src
AGC

ALGRF

Bootloader
BIOS

DriversEVM54CST
CSL
CNG
CID

UMTD

ROM
Patch

MODINT
MDP

G726G711
G168

Framework

UMTG

V42
VAD

VOICE

Automatic Gain Control interface C and H files
Reference Framework 3 XDAIS Algorithm instantiation code
Files needed to run CST under DSP/BIOS
CST Bootloader assembly source code
Caller ID interface C and H files, Wrapper and Parser open code
Comfort Noise Generator C and H files
Chip Support Library, C and H files specific for CST device
C54CST EVM Drivers for UART, DAA and peripheral drives

CST Framework sources
Echo Canceller interface C and H files
Waveform codec interface C and H files

Modem Data Pump (v.42bis/V.32bis) interface C and H files
Modem Integrator interface files, Modem Controller sources
CST Chipset mode Patch (patches some modem functions)
CST ROM reference files (global reference, memory map)
Universal Multi-Tone Detector interface C and H files, and
configuration files to implement DTMF and CPT Detector
Universal Multi-Tone Generator interface C and H files, and
configuration files to implement DTMF and CPT Generators
V.42 and V.42bis interface C and H files
Voice Activity Detector interface C and H files
Voice Controller sources (voice stream framer, etc.)

Utilities Several usefull utilities for CST

GEL

DriversTemplates

FlexApp
FlexAppBIOS

FlexExamples

FlexAppMultichan

Code Composer GEL file, needed to run a Flex Application

Template Files for new UART, DAA and peripheral drivers
(includes a compatible project)
CST Flex application project template (not using DSP/BIOS)
CST Flex application project template, DSP/BIOS-based
A multivhannel CST Flex application (both projects: for DSP/BIOS
and w/o). Shows how to create 2-channel modem application with
additional external DAA
CST Flex mode examples - C files

CST Interface and Open Source Code

Setting up CST Host

 11-4

11.3 Setting up CST Host

To control CST chip in Chipset mode via serial link, the user needs CST host
application or some generic terminal, for example HyperTerminal or Pro-
comm Plus . CST host application is extracted to the local hard drive along
with other CST files and it does not need any special installation procedure.
Just run CST\CSTHost\CSTHost.exe.

A COM port which is used to communicate with CST chip need to be setup with
the following settings:

115200 bps, 8 bits of data, 1 stop bit, no parity, Hardware flow-control

Read section 10.2.1 to learn how to setup CST host to these settings. Setting
up a generic terminal should be similar to this process.

If you also have EVM C54CST board, read the whole section 3.3 on how to
install and configure the hardware (see TMS320C54CST Evaluation Module.
Technical Reference. Spectrum Digital, Inc.).

Installing Modem Drivers for CST Chips in Windows�

11-5Product Installation Procedure

11.4 Installing Modem Drivers for CST Chips in Windows�

CST chip can also be controlled by a Windows� modem driver as a generic
modem. In order to register CST chip in Windows, open Control Panel, then
Modems, and add a modem from a list (without Windows auto-detection).
Choose Standard Modem Types, Standard 14400 bps Modem, and select
appropriate COM port, to which CST chip is connected. This will create a mo-
dem with the name something like “Standard 14400 bps Modem”. Then open
properties window for this modem, and change COM port maximum speed to
57600. Also, make sure that hardware flow control (RTS/CST) is enabled, in
Connection/Advanced.

Note: Notice: TMS320C54CST chip and UART capabilities

UART in TMS320C54CST chip does not have hardware auto-baud capabili-
ties, and since the COM port speed selected by default after chip reset is
115200, it may take a while before software auto-baud implemented in CST
UART driver detects a new speed. For this reason, in some cases it may be
more convenient or even necessary to create a modem driver in Windows
not as standard 14400 bps modem, but as standard 28800 bps modem, be-
cause in this case maximum COM port speed in Windows modem driver can
be set to 115200, thus eliminating the problem of auto-baud detection delay
at start up.

12-1

Chipset Mode Testing and Troubleshooting

This chapter describes several test procedures that the user can perform to
make sure that CST chip operates correctly in a specific hardware environ-
ment, and gives specific step on how to troubleshot some of the common prob-
lems.

Make sure to configure EVM, Host’s COM port and CST chip DAA correctly
before performing these tests (read sections 3.3 and 10.2 on how to configure
them correctly).

You can also test CST chip and functionality of the CST software by running
examples described in Client Side Telephony (CST) Chipset Mode
(SPRA859).

Topic Page

12.1 Testing UART 12-2.

12.2 Testing DAA 12-4.

12.3 Troubleshooting Procedures 12-7.

Chapter 12

Testing UART

 12-2

12.1 Testing UART

The following UART functionality can be tested:

1) Data transfer

This general functionality can be easily tested using AT parser.

AT parser should echo the input commands, and should output responses
correctly. For example, you can type:
AT
Response: OK
AT$
Response: <…S-registers Help…>

2) Autobaud

Make sure that echo is enabled in AT parser (enter ATE1 command).
While AT parser is in command mode, change COM port speed from
115200 to a lower speed, from 57600 to 19200. Type several repetitive se-
quences “ATATAT”. When you see correct echo as “ATATAT”, it means the
software auto-baud in CST chip has recognized the serial port speed cor-
rectly.

3) Hardware Flow Control

Connect to remote modem using V.22bis protocol, with error correction
enabled and software compression disabled. Type:
ATB3
AT\N1%C0
ATDTxxxx (where xxxx is the number of the remote modem)
After modems connect, send a big piece of data to the CST modem (you
can do this by pasting some big text file from the clipboard). On remote end
you should see that all this data is received identical to the original data. If
some blocks of consecutive data are lost, it may be because hardware
flow control is not working in serial connection between host and CST chip.

Hardware flow control operation can also be observed using LED DS5
(section 3.5). If this LED starts blinking when big piece of data is being
transferred from host to DSP, it means flow control operated correctly.

Testing UART

12-3Chipset Mode Testing and Troubleshooting

4) Intensive duplex data transfer

This functionality can be tested in several ways:

a) PCM Test: Run Play Greeting and Record script in voice host (see
section 10.3) with PCM codec enabled (G.726 disabled) and hear the
quality of the recorded sound, which will be played after the greeting
(you should speak something while listening to greeting message).
This script tests UART in duplex mode, with over 80 kilobits sent in
both directions per second.
Although the load is intensive in this test, it also has a drawback: if
some bytes are missed in serial link, it is almost inaudible for the tester.

b) G.726 40 kbps test: Since for G.726 codec correctness of bitstream
plays much greater significance (especially when the bit-rate is 5 or
3 bits per sample), it is also recommended to test intensive transfer
in this mode.
Run Play Greeting and Record script in voice host (see section 10.3)
with G.726 40 kbps codec enabled and hear the quality of the re-
corded sound, which will be played after the greeting (you should
speak something while listening to greeting message).
This script tests UART in duplex mode, with over 50 kilobits sent in
both directions per second.

If some of these tests fail, check the following:

1) CST’s UART is connected by modem cable to host COM port, and all the
circuits in the cable are connected.

2) Host’s COM port is correctly configured for data rate and flow control.

3) Try to do the same tests with a standard conventional external modem. If
they fail too, something is wrong in the cable or COM port settings.

Testing DAA

 12-4

12.2 Testing DAA

The following DAA functionality can be tested:

1) Sensing ring signal

Make sure that CST chip is in on-hook state (type ATH command). Dial the
number of telephone line to which CST chip is connected.

RING result codes should appear on the terminal connected to CST chip.

2) Going off hook

Make sure that CST chip is in on-hook state (type ATH command). Dial the
number of telephone line to which CST chip is connected.

When RING result code appears on the terminal, type ATH1 command. If
CST chip was able to go off hook, ringback tone should stop in the phone
from which you are calling, and you should hear silence.

3) Going on hook

Do the previous test. Then, while in off hook mode, type ATH to go on
hook. If CST chip was able to go on hook, you should hear busy tone or
Disconnected message in the phone from which you are calling.

4) Enabling caller ID path in on-hook state

Make sure that CST chip is in on-hook state (type ATH command) and that
caller ID is enabled (type AT#CID1). Also, make sure that the phone line
connected to CST chip is analog and is subscribed to caller ID service.

Dial the number of telephone line to which CST chip is connected.

After first RING, CST framework enables CID path while staying on hook
so that CID could receive the information from the telephone station. If CID
received the information from the station and printed it on the terminal, it
means that CID path was enabled successfully.

5) Sampling signal from phone line (A/D conversion)

This functionality can be tested in several ways:

a) CST chip recognizes DTMF tones in voice mode. Type:
AT#CLS=8 (call to CST chip after this)
ATH1
AT#VTX
Start pushing buttons on the phone from which you are calling, and
CST should output detected DTMF digits to the terminal as shielded
codes.

Testing DAA

12-5Chipset Mode Testing and Troubleshooting

b) Run Record script in voice host (see section 10.3) with PCM codec en-
abled (G.726 disabled) and hear the quality of the recorded sound us-
ing the standard sound editor (recorded file will be in 8 kHz, MONO,
8-bit, µ-law format).

c) Connect to remote modem using V.22bis protocol via good quality
telephone connection, with disabled error correction (V.42). Type:
ATB3
AT\N0
ATDTxxxx (where xxxx is the number of the remote modem)
If modem does not connect, or if after connection the modem starts
outputting some strange symbols to the terminal, this may be because
the signal from phone line is not sampled correctly (usually it may be
overamplification or some additive noise).

d) Connect to remote modem using V.32bis protocol via good quality
telephone connection, with disabled error correction (V.42). Type:
ATB0
AT\N0
ATDTxxxx (where xxxx is the number of the remote modem)
If modem does not connect at 14400 (connects at lower rate), or if after
connection the modem starts outputting some strange symbols to the
terminal, this may be because the signal from phone line is not
sampled correctly (usually it may be overamplification or some addi-
tive noise). However, since the quality of reception in V.32bis also de-
pends on how well modem suppresses its own echo signal, the reason
of the problem may also be in how signal is output (there may be some
non-linear distortions in echo path).

6) Outputting signal to phone line (D/A conversion)

This functionality can be tested in several ways:

a) CST chip generates DTMF tones. Type:
ATH
ATDTxxx (where xxx is the number to dial)
If the number is dialed correctly, the signal from DAA is output to phone
line more or less correctly (this is a rough test).

b) Run Playback Recording script in Voice Host (see section 10.3) with
PCM codec enabled (G.726 disabled) and hear the quality of the
played file.

Testing DAA

 12-6

c) Connect to remote modem using V.22bis protocol via good quality
telephone connection, with disabled error correction (V.42). Type:
ATB3
AT\N0
ATDTxxxx (where xxxx is the number of the remote modem)
If modem does not connect, or if after connection the remote modem
starts outputting some strange symbols to the terminal, this may be
because CST’s modem does not transmit the signal correctly (usually
it may be because of non-linear distortions in output DAA path, such
as saturation).

d) Connect to remote modem using V.32bis protocol via good quality
telephone connection, with disabled error correction (V.42). Type:
ATB0
AT\N0
ATDTxxxx (where xxxx is the number of the remote modem)
If modem does not connect at 14400 (connects at lower rate), or if after
connection any of the modems (CST’s or remote) starts outputting
some strange symbols to the terminal, this may be because CST’s
modem does not transmit the signal correctly (usually it may be be-
cause of non-linear distortions in output DAA path, such as satura-
tion). The quality of reception in V.32bis also depends on how well mo-
dem suppresses its own echo signal. If the signal is output with some
distortions, modem’s echo canceller may not be able to suppress it
well enough to hear the remote modem signal well.

If some of these tests fail, check the following:

1) Make sure that DAA settings that are loaded via S-registers, are correct
for your country or your telephone station. If you are not sure what the cor-
rect settings are, try changing the settings and perform the test again, until
you find the settings at which all the tests pass.

2) Make sure that external DAA’s analog circuitry is correct (if you develop
your own hardware) and the signal is not overamplified or saturated.

3) Make sure that DSP is clocked at 14.7456 MHz precisely.

Troubleshooting Procedures

12-7Chipset Mode Testing and Troubleshooting

12.3 Troubleshooting Procedures

Note: Troubleshooting and Testing

In case of any problem, please, first try to perform elementary tests de-
scribed above, in order to localize the problem better.

Table 12-1. Troubleshooting Procedures

No Problem Explanation and Solution

1 Modem does not
connect, but outputs “NO
CARRIER” message
almost immediately after
dialing

This happens when modem integrator can not create one of the modem
objects because of the shortage of dynamic memory. This most often may
happen if V.42bis is enabled and dynamic memory is occupied with
something else already.

Disable V.42bis, and, if it does not help, V.42, or
free dynamic memory or increase dynamic memory size.

2 Creation of xDAIS object
fails even though it
seems that there is
enough dynamic
memory

Two possible reasons for this:

1) Specific XDAIS object may require alignment for its dynamic data, which
in addition to the requested size exceeds available memory

2) Dynamic memory is severely fragmented and there is no continuos
memory space enough to allocate that specific XDAIS object.

In the first case the user may try to create all the XDAIS objects, which
are needed simultaneously, in a different order, and this may help
Memory Manager to allocate dynamic memory for them more
efficiently.

In the second case, to avoid such situation, the user should try to
delete XDAIS objects in the reverse order than they were created,
because CST Memory Manager does not have a mechanism to
defragment memory. To defragment memory in a running system, the
user has to delete all objects.

Troubleshooting Procedures

 12-8

Table 12-1. Troubleshooting Procedures (Continued)

No Explanation and SolutionProblem

3 CST chip does not
respond to any AT
commands send via
serial port, and does not
echo any symbols back

There may be several reasons for that:

1) COM port on host is not configures correctly.
Configure COM port to 115200 bps,
8 bits -1stop bit – no parity, hardware flow control

2) Serial cable is not appropriate.
Use only modem serial cable.

3) CST Solution is not running inside CST chip.
In chipset mode, make sure that INT1 pin is connected to logic 0 and
reset the chip. If using EVM, make sure to configure it according to
section 3.3.

In Flex mode, make sure that CST solution is initialized correctly and
CSTServiceProcess() is called with 5 ms period or less. Also, make
sure that DAA driver initialized DAA correctly and it receives 8 kHz
samples from it.

4 When playing or
recording voice data,
some clicks or noise can
be heard periodically

This usually happens when host application does not provide continuous
operation with serial port. This, in turn, may happen because host
application is not able to run in real-time on PC.

Close all resource consuming applications on PC.

5 CST chip does not
physically go off hook
after ATH1 command

DAA does not create loop current big enough for telephone station to
realize that there is an active load.

Change DAA International settings to fit the specifics of your local
telephone station. For example, change line monitor mode or DC
Termination. Read more about these settings in section 10.2.2.

Index

Index-1

Index

A
Abbreviations and Acronyms, 1-4
Aborting Commands. See Command Execution
Action Execution, 7-51, 9-9
Action Interface Usage, 6-24
Action Layer Interface, 6-19
Action Message, 7-47
Action Message Contents, 7-48
Action Message Type Key, 7-47
Action Test, 9-10
ADPCM/PCM, 7-99
ADPCM/PCM Encoder/Decoder G.726/G.711, 7-99
AGC. See Voice Controller Function Interface
AGC Parameters, 9-36
Algorithms

adding new algorithims to non-standard applica-
tions, 7-59

creation and deletion, 7-74
PSTN Oriented, running, 7-12
XDAIS, 7-9

Answer call, 9-13
API, framework, 6-15
Application Design

detailed, 5-8
implementation, 5-10
preliminary, 5-6

Application Sequence ”Playback Greeting and Re-
cord”, 10-9

Applications
building and loading flex applications, 5-16
CST, designing and implementing, 5-5
for multi-threaded applications, 5-17
single-threaded applications, 5-16

Asynchronous to Synchronous Data Conversion,
V.14, 7-84

AT
adding new commands, 7-65
command set description, 9-2
command set modes, 9-3
command syntax, 9-6
command types, 9-7
commands, 9-13
general commands conventions, 9-6
result tokens, 9-44

AT Command Execution, 7-64

AT Command Line Parser, 7-63

AT Command Line Parser Interface, description of,
7-65

AT Commands, 9-13
Caller-ID related, 9-23

Caller ID Output Select, 9-25
DT-AS Signal Settings, 9-24
FSK Demodulator Settings, 9-25
TE-ACK Signal Settings, 9-23

general, 9-13
Answer call, 9-13
Circuit 108 (DTR - Data Terminal Ready) Be-

haviour, 9-13
Circuit 109 (Received Line Signal Detector or

DCD) Behaviour, 9-13
Comma Dial Modifier Time, 9-19
Command Echo, 9-15
Command Line Editing Character, 9-18
Command Line Termination Character, 9-17
Country selection, 9-23
DCE Response Format, 9-20
Dial, 9-14
Dial Last Dialed Number, 9-14
Flex Application Load on The Fly, 9-22
Hook Control, 9-15
Mode Selection, 9-22
Monitor Speaker Loudness, 9-16
Monitor Speaker Mode, 9-16
Pause Before Dialing, 9-18

Index

Index-2

Print Brief AT Command Summary, 9-21
Print Brief S-Registers Summary, 9-21
Print Current Settings Summary, 9-21
Request Identification Information, 9-15
Reset To Default Configuration, 9-21
Response Formatting Character, 9-18
Result Code Selection and Call Progress

Monitoring Control, 9-21
Result Code Suppression, 9-17
Return to Online Data Mode, 9-17
S-Registers Set or Test, 9-19
Select Pulse Dialing, 9-17
Select Tone Dialing, 9-20
Set to Factory-Defined Configuration, 9-13
Switch Channel, 9-22

modem related, 9-26, 9-30, 9-32
32-Bit Frame Check Sequence, 9-28
Break Handling in Error Control Operation,

9-27
Data Compression, 9-26
Error Control Reporting, 9-28
Error Control Selection, 9-29
Fast Connect, 9-33
Frame Length, 9-30
Maximum Modem Speed, 9-33
Modem Automatic Speed-up, 9-33
Modem Output Gain, 9-32
Modem Slowdown, 9-34
Selective Reject, 9-29
V.42 Heap Select, 9-31
V.42 or Buffered V.14 Select, 9-31
V.42bis Compression Mode, 9-32

S-Registers, 9-37
summary, 9-45
voice mode, 9-34

AGC Parameters, 9-36
Compression Method Selection, 9-35
Select Echo Canceller Mode, 9-34
Set Output Voice Signal Attenuation, 9-34
VAD Parameters, 9-36
Voice Duplex Mode, 9-36
Voice Receive Mode, 9-35
Voice Transmit Mode, 9-35

AT commands vs alternative interfaces, 5-3
AT Parser, 6-13, 7-63

initialization, 7-65
Atomic Command Scripts, basic predefined, 7-45
Atomic Commands, 7-41

standard and custom, 6-21
Audio channels, running several, 7-60

Audio File Format, 10-8

B
Background Periodic Function, 7-32
Bootloader, 5-18
Break Handling in Error Control Operation, 9-27
Buffers

allocation for Vocoder, 7-94
deallocation for Vocoder, 7-95

Building and Loading, flex applications, 5-16
Byte Monitor Function, 7-34

C
C54CST, adapting for user-specific hardware, 3-8
C54CST resources

DSP resource usage for each algorithm and
framework, 8-10

general register conventions, 8-3
program and data address space memory map,

8-6
Call Tree, 6-17
Callback Function

DAA CSL, 7-133
DAA CSL prototype, 7-134
DAA LIO, 7-139
LIO user’s, DAA, 7-130
UART LIO, 7-146

Callback Function Called From CST Service, 7-30
Caller ID, commands, 9-23
Caller ID Output Select, 9-25
Cancel Function, DAA LIO, 7-129
Channels

audio, 7-60
modem, 7-62

Chipset Mode, standalone, 2-3
Chipset vs. Flex Mode, 5-2
CID. See Telephony Signals Processing
Circuit 108 (DTR - Data Terminal Ready) Behaviour,

9-13
Circuit 109 (Received Line Signal Detector or DCD)

Behaviour, 9-13
Client Side CID, 7-103
Close Function, DAA LIO, 7-128
CNG. See Voice Controller Function Interface
CNG Parameters, sending, 7-94

Index

Index-3

Codes, shielded in Voice mode, 9-42

COM Port Settings, 10-4
Comma Dial Modifier Time, 9-19

Command Echo, 9-15

Command Execution, 7-64
aborting commands, 9-12
at different CST layers, 6-22
normal execution, 9-12
syntax, 9-12

Command Line Editing Character, 9-18
Command Line Parser, 7-63

Command Line Termination Character, 9-17

Commander Extended Message Events, 7-38
Commander Function Interface, 7-40

Commander Layer, 6-7

Commander Modes, 7-37
Commands

action execution command syntax, 9-9
action test command syntax, 9-10
AT, 9-13

summary, 9-45
AT command set description, 9-2
AT command set modes, 9-3
AT command syntax, 9-6
AT command types, 9-7
atomic, 7-41
Atomic, standard and custom, 6-21
Basic syntax format, 9-7
extended syntax commands, 9-9
general AT commands conventions, 9-6
parameter read command syntax, 9-10
parameter set command syntax, 9-10
parameter test command syntax, 9-11

Components
framework, 4-3
telephony, 4-5

Compressed Voice Samples, transferring to CST
Service Layer, 7-93

Compression Method Selection, 9-35
Country selection, 9-23

CPT Detector, 7-101

CPT Generator, 7-103
Creation Function, wrapper for, 7-97

CST
abbreviations, 1-4
acronyms, 1-4
action, 7-47

action interface usage, 6-24
AT Parser, 7-63
bootloader, 5-18
Commander, 7-16
commander layer, 6-7
controlling through action layer interface, 6-19
DAA interface functions, 7-108
designing and implementing standard applica-

tions, 5-5
detailed application design, 5-8
drivers, 7-107
Dynamic functions, 6-26
framework and API overview, 6-2
framework components, 7-2
framework layers, 6-3
getting started, 2-2
Hardware, 3-2
host utility

host settings, 10-3
minimum system requirements, 10-2
voice playback and record, 10-7

implementation, 5-10
Installing Modem Drivers for CST Chips in Win-

dows, 11-5
installing SDK, 11-2
layers, command execution at different CST lay-

ers, 6-22
legal disclaimer, 1-7
multiple channels in, 7-153
overview, 1-2
preliminary application design, 5-6
service layer, 6-9
setting up a CST Host, 11-4
steps to running a CST solution, 2-3, 2-5
Telephony Components Brief Specification, 7-75
UART interface functions, 7-112

CST Action Execution, 7-51

CST Action Function Interface, 7-50

CST Action Interface, 7-52
non-standard applications, 7-59

adding new algorithms, 7-59
Running Several Audio Channels, 7-60

standard applications, 7-52

CST Action Layer, 6-14

CST Action Message, 7-47

CST Action Message Contents, 7-48

CST Action Message Type Key, 7-47

CST Chip, modes, 3-4

CST Commander, main control fields, 7-37

Index

Index-4

CST Commander Atomic Command Scripts, basic
predefined, 7-45

CST Commander Atomic Commands, 7-41

CST Commander Extended Message Events, 7-38

CST Commander Function, main, 7-41

CST Commander Function Interface, 7-40

CST Commander Layer, 6-13

CST Commander Modes, 7-37

CST Framework, memory management, 7-66

CST Framework Layers
action-based interface, 6-6
commander layer, 6-7
service, 6-9

CST Framework Reset Function, 7-33

CST Initialization, 7-50

CST Memory Manager
creating Second Heap, 7-70
using, 7-69

CST Service
receiving messages from, 7-15
sending message to, 7-14

CST Service Layer, 6-13
transferring compressed voice samples to, 7-93

CST Service Message, 7-3

CST Service Message Types, 7-5

CST Service Tasks, 7-3

CST Settings, 7-21

CST Solution, 2-3, 2-5
Flex Mode, 2-5
Standalone Chipset Mode, 2-3

CSTAtomic.c, CSTAtomic.h, 7-41

CSTCommander.c, CSTCommander.h, 7-26

CSTPeriph.h. See Peripheral Drivers

CSTServiceProcess(), subroutine called from, 7-14

CSTSReg Function Interface, 7-24

ctrl Function, DAA LIO, 7-129

D
DAA

controlled by S-registers, 9-40
CSL callback functions, 7-133
CSL callback functions prototype, 7-134
CSL device hardware reset control functions,

7-135

CSL device hardware reset control functions pro-
totype, 7-135

Driver Command Execution, 7-126
drivers

high-level, 7-122
low-level, 7-130

high-level driver commands, 7-123
high-level driver function interface, 7-125
high-level driver initialization, 7-125

periodic routine, 7-125
interface functions, 7-108
LIO Callback function, 7-139
LIO Cancel Function, 7-137
LIO Close Function, 7-136
LIO ctrl Function, 7-138
LIO Open Function, 7-135
LIO Submit Function, 7-137
LIO User’s Callback function, 7-130
low-level DAA driver hardware setup function,

7-131
low-level driver functions, 7-135
low-level I/O interface, 7-126

LIO Cancel Function, 7-129
LIO Close Function, 7-128
LIO ctrl Function, 7-129
LIO Open Function, 7-127
LIO Submit Function, 7-128

multiple channels in CST with multiple devices,
7-153

reloading drivers, 7-149
scripts for high-level driver, 7-131
standard operations of high-level drivers, 7-122
task of high-level drivers, 7-122
task of low-level drivers, 7-130
testing and troubleshooting, 12-4

DAA International Settings, 10-5
DAA Periodic Routine, 7-125
DAA/Handset I/O, 7-12
DAAAvail, 7-109
DAADelay, 7-110
DAADelayDone, 7-111
DAADrv.c, 7-108, 7-122
DAADrv.h, 7-108, 7-122
DAADrv54CST.c, 7-130, 7-131, 7-135
DAADrv54CST.h, 7-131, 7-135
DAAOpen, 7-109
DAAReadWrite, 7-109
DAARegRead, 7-110
DAARegReadDone, 7-111

Index

Index-5

DAARegWrite, 7-110

DAARegWriteDone, 7-111

Data Compression, 9-26
V.42bis, 7-87

Data Compression Subparameters, 9-27

Data Flow, 7-79

Data Modem, 4-6, 7-76

Data Pump, 7-83

DCE Response Format, 9-20

Decoding Function, wrapper for, 7-98

Deletion Function, wrapper for, 7-98

Detector, CPT, 7-101

DTMF, 7-101

Devices, multiple channels is CST, 7-153

Dial, 9-14

Dial Last Dialed Number, 9-14

Directory, for products and documents, 11-3

document directory tree, 11-3

Driver Command Execution, DAA, 7-126

Driver Command Function, 7-33

Drivers, 7-107
DAA

high-level, 7-122
low-level, 7-130

function call diagram, 7-107
installing modem drivers for CST Chips in Win-

dows, 11-5
interface functions, 7-107
low-level UART, 7-140
peripheral, 7-117
reloading DAA, 7-149
reloading UART, 7-146
replacing peripheral driver functions, 7-153

DSP Resource Usage, for each algorithm and
framework, 8-10

DSP/BIOS Memory Manager, 7-71
Second Heap, 7-73
wrapper functions, 7-72

DT-AS Detector Parameters, 9-24

DT-AS Signal Settings, 9-24

DTMF Detector, 7-101

DTMF Generator, 7-103

Dynamic Functions, 6-26, 7-26

E
Echo Canceller G.168, 7-99
Egress Message, 7-30

processing, 7-31
Encoding Function, wrapper for, 7-98
Error Control Reporting, 9-28
Error Control Selection, 9-29
Error Correction, V.42, 7-85
EVM, configuration, 3-5
EVM54CSTDrv.c. See Peripheral Drivers
EVM54CSTDrv.h. See Peripheral Drivers

F
Fast Connect, 9-33
Flex Application Development

AT commands vs alternative interfaces, 5-3
chipset vs. flex mode, 5-2

Flex Application Load on The Fly, 9-22
Flex Applications

building and loading, 5-16
CST bootloader, 5-18
projects, 5-16

Flex Mode, 2-5
Flex mode, 4-2
Flow control, for UART hardware, 3-6
Flow Control functions, reloading UART, 7-149
Frame Length, 9-30
Framework

API, 6-15
layers, 6-3

Framework API, main CST types, 6-15
call tree, 6-17
S-registers, 6-16

Framework Components, CST service layer, 7-2
Framework components, 4-3
Framework Reset Function, 7-33
Frameworks, Telephony Components Brief Specifi-

cation, 7-75
FSK Demodulator Settings, 9-25
Function, Main Periodic High-Priority Thread, 7-13
Function Call Diagram, for drivers, 7-107
Functions

background periodic, 7-32
CST framework reset, 7-33

Index

Index-6

dynamic, 6-26, 7-26
High Priority Voice Processsing, 7-35
Low Priority Voice Processing, 7-36
peripheral driver command, 7-33
UART Byte Monitor, 7-34
Vocoder Selection, 7-36

G
G.726/G.711, encoder/decoder, 7-99
Generator

CPT, 7-103
DTMF, 7-103

H
Hardware

C54CST Chip, 3-8
CST Chip, 3-2
CST chip modes, 3-4
EVM configuration, 3-5
LED indications, 3-7
UART flow control, 3-6

Hardware Initialization
final for peripheral drivers, 7-121
primary for peripheral drivers, 7-120

Hardware Reset Control functions
DAA CSL device, 7-135
DAA CSL device prototype, 7-135

Hardware Setup Function
for low-level DAA driver, 7-131
for low-level UART driver, 7-140

High Priority Processing, Voice Controller Function
Interface, 7-92

High Priority Voice Processsing Function, 7-35
Hook Control, 9-15
Host, setting up, 11-4
Host settings

COM port settings, 10-4
DAA International Settings, 10-5
for the CST host utility, 10-3
Miscellaneous Settings, 10-6

I
Ingress Messages, 7-34
Initialization, CST, 7-50

Interface, action-based, 6-6
Interface Functions

DAA, 7-108
high-level, 7-125

DAAAvail, 7-109
DAADelay, 7-110
DAADelayDone, 7-111
DAAopen, 7-109
DAAReadWrite, 7-109
DAARegRead, 7-110
DAARegWrite, 7-110
DAARegWriteDone, 7-111
for drivers, 7-107
UART, 7-112
UartAutoBaudCtrl, 7-115
UartIsDTR, 7-116
UartIsRTS, 7-115
UartOpen, 7-113
UartProcess, 7-115
UartRead, 7-114
UartReadAvail, 7-113
UartReset, 7-113
UartSetCTS, 7-115
UartSetDCD, 7-116
UartSetDSR, 7-116
UartSetRI, 7-116
UartWrite, 7-114
UartWriteAvail, 7-114

K
Key, CST message action type, 7-47

L
Layers

command execution at different CST layers, 6-22
CST commander, 6-7
CST service, 6-9
framework, 6-3
summary, 6-12

LED, indications, 3-7
Legal Disclaimer, 1-7
LIO, 7-130

See also Low-level Interface
Cancel function

DAA, 7-129
UART, 7-143

Close function
DAA, 7-128

Index

Index-7

UART, 7-142
ctrl function

DAA, 7-129
UART, 7-144

DAA callback function, 7-139
functions of low-level DAA driver, 7-135
low-level UART driver functions, 7-142
Open function

DAA, 7-127
UART, 7-142

Submit function
DAA, 7-128
UART, 7-143

UART driver files, 7-140

LIO Cancel Function
DAA, 7-137
UART, 7-143

LIO Close Function
DAA, 7-136
UART, 7-142

LIO ctrl Function
DAA, 7-138
UART, 7-144

LIO Open Function
DAA, 7-135
UART, 7-142

LIO Submit Function
DAA, 7-137
UART, 7-143

LIO User’s Callback Function, DAA, 7-130

Low Priority Modem Thread, 7-35

Low Priority Processing, Voice Controller Function
Interface, 7-92

Low Priority Voice Processing, 7-36

Low-level Interface, DAA, description of, 7-126

M
Main High-priority Thread, 7-51

Maximum Modem Speed, 9-33

Memory Management
CST Frameworks, 7-66
possible memory configurations, 7-68

using CST Memory Manager, 7-69

Memory Manager
DSP/BIOS, 7-71
User-defined, 7-71

Memory Manager Function Interface, 7-67
Free Memory Size Estimation, 7-68
Memory Allocation, 7-67
Memory Deallocation, 7-67

Message Processing in Low-Priority Threads, 7-15
Messages

getting egressmessage from CST service mes-
sage, 7-30

ingress, processing, 7-34
processing, main routine, 7-15
receiving from CST Service, 7-15
sending to CST Service, 7-14
User’s Callback Function to Process CST Com-

mander Messages, 7-32
Mode Selection, 9-22
Modem, commands, 9-26
Modem Automatic Speed-up, 9-33
Modem Channels, 7-62
Modem Drivers, installing for CST Chips in Win-

dows, 11-5
Modem Output Gain, 9-32
Modem Slowdown, 9-34
Modes

AT commands vs alternative interfaces, 5-3
chipset vs flex mode, 5-2

Monitor Function, 7-31
Monitor Speaker Loudness, 9-16
Monitor Speaker Mode, 9-16
Multi-Threaded Applications, 5-17
Multiple Channels, in CST with multiple DAA de-

vices, 7-153

O
Open Function, DAA LIO, 7-127

P
Packed Voice Data Reception, 7-91
Parameter read, 9-10
Parameter Set, 9-10
Parameter test, 9-11
Parser, 7-63

AT Command Line, 7-63
Parts and Services, 6-11
Pause Before Dialing, 9-18
Periodic Routine, DAA, 7-125

Index

Index-8

Peripheral Background Periodic Function, 7-32
Peripheral Driver, 7-117

commands, 7-117
events, 7-119
final hardware initialization, 7-121
function interface, 7-119
primary hardware initialization, 7-120
task defined, 7-117

Peripheral Driver Command Function, 7-33
Peripheral driver functions, replacing, 7-153
Posting Low Priority Modem Thread, 7-35
Print Brief AT Command Summary, 9-21
Print Brief S-Registers Summary, 9-21
Print Current Settings Summary, 9-21
product directory tree, 11-3
Program and Data Address Space Memory Map,

8-6
Projects

CST bootloader, 5-18
for building flex applications, 5-16
for multi-threaded applications, 5-17
for single-threaded applications, 5-16

PSTN Oriented Algorithms, 7-12

R
Register Conventions, for C54CST resources, 8-3
Reloading drivers, UART, 7-146
Request Identification Information, 9-15
Reset To Default Configuration, 9-21
Response Formatting Character, 9-18
Result Code Selection and Call Progress Monitoring

Control, 9-21
Result Code Suppression, 9-17
Result tokens, 9-44
Return to Online Data Mode, 9-17
Round Trip Delay Settings, 9-32
Running Several Audio Channels, 7-60
Running Several Modem Channels, 7-62
Rx Monitor/Escape Sequence Tracking, for UART,

7-141

S
S-Parameters, Syntax, 9-8

testing, 9-9

S-Register , search for, 7-26
S-Registers, 9-37

controlling DAA, 9-40
defined in CST solution, 9-37
implementation, 7-16

S-registers, 6-16
S-Registers Set or Test, 9-19
Scripts, for high-level DAA drivers, 7-131
SDK, installing, 11-2
Second Heap, 7-70, 7-73
Select Echo Canceller Mode, 9-34
Select Pulse Dialing, 9-17
Select Tone Dialing, 9-20
Selective Reject, 9-29
Service Function Interface, 7-11
Service Layer, exchanging messages with, 7-2
Service Message Result Codes, 7-9
Service Message Summary, 7-6
Service Message Types, 7-5
Service Status, 7-8
Service Tasks, 7-3
Set Output Voice Signal Attenuation, 9-34
Set S-Parameter, 9-8
Set to Factory-Defined Configuration, 9-13
Si3044Stages.c, 7-130, 7-131
Signals, telephony processing, 4-7
Signals Processing

DAARegReadDone, 7-111
telephony, 7-100

Single-Threaded Applications, 5-16
Software, 4-2

Applications, flex mode, 4-2
Framework components, 4-3
telephony components, 4-5

Submit Function, DAA LIO, 7-128
Switch Channel, 9-22
Syntax

action execution command, 9-9
action test command, 9-10
AT commands, 9-6
basic command format, 9-7
command execution, 9-12

aborting commands, 9-12
normal execution, 9-12

extended commands, 9-9
parameter read command, 9-10
parameter set command, 9-10

Index

Index-9

parameter test command, 9-11
S-Parameters, 9-8
Set S-Parameter, 9-8

T
TE-ACK Signal Settings, 9-23
Telephony Components, summary, 7-105
Telephony components, 4-5

Data Modem, 4-6
telephony signals processing, 4-7
voice processing, 4-6

Telephony Components Brief Specification, 7-75
Asynchronous to Synchronous Data Conversion,

V.14, 7-84
Data Compression V.42bis, 7-87
data flow, 7-79
data modem, 7-76
data pump, 7-83
Error Correction, V.42, 7-85
telephony signals processing, 7-100
V.32/V.32bis and V.22/V.22bis, 7-83
Voice Processing, 7-88

Telephony Signals, processing, 4-7
Telephony Signals Processing, 7-100

Client-side CID, 7-103
Universal Multifrequency Tone Detector (DTMF/

CPT/etc.), 7-100
Universal Multifrequency Tone Generator (DTMF/

CPTD/etc.), 7-102
Testing S-Parameter, 9-9
TMS320C54CST. See EVM
tokens. See Result tokens
Troubleshooting

procedures, 12-7
testing DAA, 12-4
testing UART, 12-2

U
UART

hardware flow control, 3-6
hardware setup function, 7-140
interface functions, 7-112
LIO cancel function, 7-143
LIO close function, 7-142
LIO ctrl function, 7-144
LIO open function, 7-142

LIO submit function, 7-143
low-level driver files, 7-140
low-level driver functions, 7-142
reloading drivers, 7-146
reloading flow control function, 7-149
Rx Monitor/Escape Sequence Tracking Function,

7-141
task of low-level driver, 7-140
testing and troubleshooting, 12-2

UART Byte Monitor Function, 7-34
Uart550Drv.c, 7-140, 7-142
Uart550Drv.h, 7-140, 7-142
UartAutoBaud.c, 7-140
UartAutoBaudCtrl, 7-115
UartDrv.c, 7-112
UartDrv.h, 7-112
UartIsDTR, 7-116
UartIsRTS, 7-115
UartOpen, 7-113
UartProcess, 7-115
UartRead, 7-114
UartReadAvail, 7-113
UartReset, 7-113
UartSetCTS, 7-115
UartSetDCD, 7-116
UartSetDSR, 7-116
UartSetRI, 7-116
UartWrite, 7-114
UartWriteAvail, 7-114
Universal Multifrequency Tone Detector (DTMF/

CPT/etc.)
See also Telephony Signals Processing
CPT Detector, 7-101
DTMF Detector, 7-101

Universal Multifrequency Tone Generator (DTMF/
CPTD/etc.)
See also Telephony Signals Processing
CPT Generator, 7-103
DTMF Generator, 7-103

User-Defined Memory Manager, 7-71

V
V.14, Asynchronous to Synchronous Data Conver-

sion, 7-84
V.32/V.32bis and V.22/V.22bis, data pump, 7-83
V.42, error correction, 7-85

Index

Index-10

V.42 Heap Select, 9-31
V.42 or Buffered V.14 Select, 9-31
V.42bis, data compression, 7-87
V.42bis Compression Mode, 9-32
VAD. See Voice Controller Function Interface
VAD Parameters, 9-36
VController.c, VController.h, 7-88

Voice Controller Function Interface, 7-90
Voice Controller Main Structure Definition, 7-88

Vocoder
buffers allocation, 7-94
buffers deallocation, 7-95

Vocoder Selection, 7-36, 7-93
Voice Controller Function Interface

ADPCM/PCM Encoder/Decoder G.726/G.711,
7-99

buffers allocation for Vocoder, 7-94
buffers deallocation for Vocoder, 7-95
description of, 7-90
Echo Canceller G.168, 7-99
High Priority processing, 7-92
Low Priority processing, 7-92
Packed Voice Data Reception, 7-91
sending CNG parameters, 7-94
Transferring Compressed Voice Samples to CST

Service Layer, 7-93
VAD, CNG and AGC, 7-100
Vocoder selection, 7-93
voice decoder creation, 7-95
voice decoder deletion, 7-96
voice encoder creation, 7-95
voice encoder deletion, 7-96
wrapper functions, 7-97

Voice Controller Main Structure Definition, 7-88
Voice Data Reception, 7-91
Voice Decoder

creation of, 7-95

deletion of, 7-96
Voice Duplex Mode, 9-36
Voice Encoder

creation of, 7-95
deletion of, 7-96

Voice Mode
commands, 9-34
shielded codes, 9-42

Voice Operations, 7-12
Voice Playback and Record, 10-7

Application Sequence ”Playback Greeting and
Record”, 10-9

Audio File Format, 10-8
Voice Processing, 4-6, 7-88

VController.c, VController.h, 7-88
Voice Processsing, 7-35
Voice Receive Mode, 9-35
Voice Transmit Mode, 9-35

W
Window Size, 9-30
Wrapper for Creation Function, 7-97
Wrapper for Decoding Function, 7-98
Wrapper for Deletion Function, 7-98
Wrapper for Encoding Function, 7-98
Wrapper Functions, 7-72, 7-97

wrapper for creation function, 7-97
wrapper for decoding function, 7-98
wrapper for deletion function, 7-98
wrapper for encoding function, 7-98

X
XDAIS, Algorithims, 7-9

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Information About Cautions and Warnings
	Related Documentation From Texas Instruments
	Related Documentation
	Documentation for XDAIS Algorithms
	Trademarks
	Software Copyright
	If You Need Assistance . . .

	Contents
	Figures
	Tables
	Notes, Cautions, and Warnings
	Chapter 1: Introduction to Client Side Telephony (CST)
	1.1 CST Overview
	1.2 Abbreviations and Acronyms
	1.3 Legal Disclaimer

	Chapter 2: Getting Started
	2.1 Overview
	2.2 Running a CST Solution: Standalone Chipset Mode
	2.3 Running a CST Solution: Flex Mode

	Chapter 3: Hardware Overview
	3.1 Introduction to the CST Chip
	3.2 Main Modes of CST Chip
	3.3 TMS320C54CST EVM Configuration
	3.4 UART Hardware Flow Control
	3.5 LED Indication
	3.6 Adapting the C54CST Chip for User-Specific Hardware

	Chapter 4: Software Overview
	4.1 Flex Mode Applications
	4.2 Framework Components
	4.3 Telephony Components
	4.3.1 Data Modem
	4.3.2 Voice Processing
	4.3.3 Telephony Signals Processing

	Chapter 5: Flex Application Development Guidelines
	5.1 Chipset vs. Flex Mode
	5.2 AT Commands vs Alternative Interfaces
	5.3 Designing and Implementing Standard CST Applications
	5.3.1 Preliminary Application Design
	5.3.2 Detailed Application Design
	5.3.3 Implementation
	5.3.4 Chapter Summary

	5.4 Building and Loading Flex Applications
	5.4.1 Projects for Building Flex Applications
	5.4.1.1 Project for Single-Threaded Applications
	5.4.1.2 Project for Multi-Threaded Applications

	5.4.2 CST Bootloader

	Chapter 6: CST Framework and API Overview
	6.1 Overview
	6.2 CST Framework Layers
	6.2.1 Action-Based Interface
	6.2.2 CST Commander Layer
	6.2.3 CST Service Layer
	6.2.4 Other CST Parts and Services
	6.2.5 CST Layers Summary
	CST Service Layer
	CST Commander Layer
	AT Parser
	CST Action Layer

	6.3 Framework API
	6.3.1 Main CST Types
	6.3.2 S-Registers
	6.3.3 Call Tree
	6.3.4 Controlling CST Through Action Layer Interface
	6.3.5 Standard and Custom Atomic Commands
	6.3.6 Command Execution at Different CST Layers
	6.3.7 CST Action Interface Usage
	6.3.8 CST Dynamic Functions

	Chapter 7: CST Framework Components
	7.1 CST Service Layer
	7.1.1 Files CSTSReg.c, CSTSReg.h
	7.1.1.1 Exchanging Messages With CST Service Layer
	7.1.1.2 CST Service Message
	7.1.1.3 Set of CST Service Tasks
	7.1.1.4 Set of CST Service Message Types
	7.1.1.5 CST Service Message Summary
	7.1.1.6 CST Service Status
	7.1.1.7 Set of CST Service Message Result Codes
	7.1.1.8 CST XDAIS Algorithms
	7.1.1.9 Brief Description of CSTService Function Interface
	DAA/Handset I/O, Voice Operations
	Running PSTN Oriented Algorithms
	The Main Periodic High-Priority Thread Function
	Subroutine Called From
	Sending Messages to CST Service
	Receiving Messages from CST Service
	Main Routine for Service Message Processing
	Message Processing in Low-Priority Threads

	7.2 CST Commander
	7.2.1 Files CSTSReg.c, CSTSReg.h
	7.2.1.1 Set of S-Registers and Their Implementation
	7.2.1.2 CST Settings
	7.2.1.3 Brief Description of CSTSReg Function Interface
	Initialization
	Add New S-register Array
	Read S-Register
	Search for S-Register

	7.2.2 Files CSTCommander.c, CSTCommander.h
	7.2.2.1 CST Dynamic Functions
	Callback Function Called From CST Service
	Getting Egress Message From CST Service Message
	Processing CST Service Egress Message
	Additional Monitor Function
	User’s Callback Function to Process CST Commander Messages
	Peripheral Background Periodic Function
	Peripheral Driver Command Function
	CST Framework Reset Function
	UART Byte Monitor Function
	Processing CST Service Ingress Messages
	Posting Low Priority Modem Thread
	High Priority Voice Processsing Function
	Vocoder Selection Function
	Low Priority Voice Processing Function

	7.2.2.2 Main Control Fields of CST Commander
	7.2.2.3 Set of CST Commander Modes
	7.2.2.4 CST Commander Extended Message Events
	7.2.2.5 Brief Description of CST Commander Function Interface
	Reset Runtime Variables
	The Main CST Commander Function

	7.2.3 Files CSTAtomic.c, CSTAtomic.h
	7.2.3.1 CST Commander Atomic Commands
	7.2.3.2 Basic Predefined CST Commander Atomic Command Scripts

	7.3 CST Action
	7.3.1 Unified CST Action Message
	7.3.2 CST Action Message Type Key
	7.3.3 CST Action Message Contents
	7.3.3.1 Configuration Commands
	7.3.3.2 Standard Commands

	7.3.4 Brief Description of CST Action Function Interface
	7.3.4.1 CST Initialization
	7.3.4.2 CST Action Execution
	7.3.4.3 Main High-priority Thread

	7.3.5 Using CST Action Interface, Practical Aspects
	7.3.5.1 Standard Applications
	7.3.5.2 Non-Standard Applications
	Adding New Algorithms
	Running Several Audio Channels
	Running Several Modem Channels

	7.4 CST AT Parser
	7.4.1 AT Command Line Parser
	7.4.2 AT Command Execution
	7.4.3 Brief Description of AT Command Line Parser Interface
	7.4.3.1 AT Parser Initialization
	7.4.3.2 Adding New AT Commands

	7.5 Memory Management
	7.5.1 Overview
	7.5.2 Memory Manager Function Interface
	7.5.2.1 Memory Allocation
	7.5.2.2 Memory Deallocation
	7.5.2.3 Free Memory Size Estimation

	7.5.3 Possible Memory Configurations
	7.5.3.1 Using CST Memory Manager
	Creating Second Heap

	7.5.3.2 Using User-Defined Memory Manager
	7.5.3.3 Using DSP/BIOS Memory Manager
	Wrapper Functions
	Creating Second Heap

	7.5.4 More About Algorithm Creation and Deletion

	7.6 Telephony Components Brief Specification
	7.6.1 Data Modem
	7.6.1.1 Data Flow
	7.6.1.2 Brief Description of Data Modem Contrroller Interface (File DMC\
ontroller.c)
	Modem Process Function
	Set Callback Function to Pull Received Data

	7.6.1.3 V.32/V.32bis and V.22/V.22bis Data Pump
	7.6.1.4 Asynchronous to Synchronous Data Conversion, V.14
	7.6.1.5 Error Correction, V.42
	7.6.1.6 Data Compression V.42bis

	7.6.2 Voice Processing
	7.6.2.1 Files VController.c, VController.h
	Voice Controller Main Structure Definition

	7.6.2.2 Brief Description of Voice Controller Function Interface
	Packed Voice Data Reception
	High Priority Processing
	Low Priority Processing
	Vocoder Selection
	Transferring Compressed Voice Samples to CST Service Layer
	Sending CNG Parameters
	Buffers Allocation for Vocoder
	Buffers Deallocation for Vocoder
	Voice Encoder Creation
	Voice Decoder Creation
	Voice Encoder Deletion
	Voice Decoder Deletion

	7.6.2.3 Wrapper Functions
	Wrapper for Creation Function
	Wrapper for Deletion Function
	Wrapper for Encoding Function
	Wrapper for Decoding Function

	7.6.2.4 ADPCM/PCM Encoder/Decoder G.726/G.711
	7.6.2.5 Echo Canceller G.168
	7.6.2.6 VAD, CNG and AGC

	7.6.3 Telephony Signals Processing
	7.6.3.1 Universal Multifrequency Tone Detector (DTMF/CPT/etc.)
	DTMF Detector
	CPT Detector

	7.6.3.2 Universal Multifrequency Tone Generator (DTMF/CPTD/etc.)
	DTMF Generator
	CPT Generator

	7.6.3.3 Client Side CID

	7.6.4 Telephony Components Summary

	7.7 CST Drivers
	7.7.1 Overview, Interface Functions and Function Call Diagram
	7.7.1.1 CST DAA Interface Functions. Files DAADrv.c, DAADrv.h
	DAAOpen function
	DAAReadWrite Function
	DAAAvail Function
	DAADelay Function
	DAARegRead Function
	DAARegWrite Function
	DAADelayDone Function
	DAARegReadDone Function
	DAARegWriteDone Function

	7.7.1.2 CST UART Interface Functions. Files UartDrv.c, UartDrv.h
	UartOpen Function
	UartReset Function
	UartReadAvail Function
	UartWriteAvail Function
	UartRead Function
	UartWrite Function
	UartProcess Function
	UartAutoBaudCtrl Function
	UartSetCTS Function
	UartIsRTS Function
	UartSetDCD Function
	UartSetRI Function
	UartSetDSR Function
	UartIsDTR Function

	7.7.2 Peripheral Driver. Files CSTPeriph.h, EVM54CSTDrv.c, EVM54CSTDrv.h\

	7.7.2.1 Task of the Peripheral Driver
	7.7.2.2 Set of Commands For Peripheral Driver
	7.7.2.3 Set of Events From Peripheral Driver
	7.7.2.4 Peripheral Driver Function Interface
	Primary Hardware Initialization
	Final Hardware Initialization
	Setting an ISR

	7.7.3 High-Level DAA Driver. Files DAADrv.c, DAADrv.h
	7.7.3.1 Task of the High-Level DAA Driver0
	7.7.3.2 Set of Standard Operations
	7.7.3.3 Set of commands
	7.7.3.4 High-Level DAA Driver Function Interface
	Initialization
	DAA Periodic Routine
	DAA Driver Command Execution

	7.7.4 Brief Description of the Low-level I/O (LIO) Interface
	LIO Open Function
	LIO Close Function
	LIO Submit Function
	LIO Cancel Function
	LIO ctrl Function
	LIO User’s Callback Function

	7.7.5 Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.\

	7.7.5.1 Task of the Low-level DAA Driver
	7.7.5.2 Scripts for High-Level DAA Driver. File Si3044Stages.c
	7.7.5.3 Low-Level DAA Driver Hardware Setup Function. Files DAADrv54CST.\
c, DAADrv54CST.h
	DAA CSL Callback Functions
	CSL DAA Callback Function Prototype
	DAA CSL Device Hardware Reset Control Function

	7.7.5.4 CSL DAA Device Hardware Reset Control Function Prototype
	7.7.5.5 LIO Functions of Low-Level DAA Driver. Files DAADrv54CST.c, DAAD\
rv54CST.h
	DAA LIO Open Function
	DAA LIO Close Function
	DAA LIO Submit Function
	DAA LIO Cancel Function
	DAA LIO ctrl Function
	DAA LIO Callback Function

	7.7.6 Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c
	7.7.6.1 Task of the Low-Level UART Driver
	7.7.6.2 Low-Level UART Driver Hardware Setup Function. Files Uart550Drv.\
c, Uart550Drv.h
	UART Rx Monitor/Escape Sequence Tracking Function

	7.7.6.3 LIO Functions of Low-Level UART Driver. Files Uart550Drv.c, Uart\
550Drv.h
	UART LIO Open Function
	UART LIO Close Function
	UART LIO Submit Function
	UART LIO Cancel Function
	UART LIO ctrl Function
	UART LIO Callback Function

	7.7.7 Reloading Drivers
	7.7.7.1 Reloading the UART Driver
	7.7.7.2 Reloading UART Flow Control Functions
	7.7.7.3 Reloading the DAA Driver
	7.7.7.4 Replacing the Peripheral Driver Functions
	7.7.7.5 Multiple Channels in CST With Multiple DAA Devices

	Chapter 8: C54CST Resources: Registers Conventions, Memory, and MIPS
	8.1 Overview
	8.2 General Register Conventions
	8.3 Program and Data Address Space Memory Map
	8.4 DSP Resource Usage for Each Algorithm and Framework

	Chapter 9: AT Command Set Descriptions
	9.1 AT Command Set Description
	9.2 AT Command Set Modes
	9.3 AT Command Syntax
	9.3.1 General AT Commands Conventions
	9.3.2 Types of Commands
	9.3.3 Basic Syntax Command Format
	9.3.4 S-Parameters Syntax
	9.3.4.1 Set S-Parameter
	9.3.4.2 Testing S-Parameter

	9.3.5 Extended Syntax Commands
	9.3.5.1 Action Execution Command Syntax
	9.3.5.2 Action Test Command Syntax
	9.3.5.3 Parameter Set Command Syntax
	9.3.5.4 Parameter Read Command Syntax
	9.3.5.5 Parameter Test Command Syntax

	9.3.6 Command Execution
	9.3.6.1 Normal Execution
	9.3.6.2 Aborting Commands

	9.4 AT Commands
	9.4.1 General Commands
	9.4.1.1 Circuit 109 (Received Line Signal Detector or DCD) Behaviour
	9.4.1.2 Circuit 108 (DTR - Data Terminal Ready) Behaviour
	9.4.1.3 Set to Factory-Defined Configuration
	9.4.1.4 Answer call
	9.4.1.5 Dial
	9.4.1.6 Dial Last Dialed Number
	9.4.1.7 Command Echo
	9.4.1.8 Hook Control
	9.4.1.9 Request Identification Information
	9.4.1.10 Monitor Speaker Loudness
	9.4.1.11 Monitor Speaker Mode
	9.4.1.12 Return to Online Data Mode
	9.4.1.13 Select Pulse Dialing
	9.4.1.14 Result Code Suppression
	9.4.1.15 Command Line Termination Character
	9.4.1.16 Response Formatting Character
	9.4.1.17 Command Line Editing Character
	9.4.1.18 Pause Before Dialing
	9.4.1.19 Comma Dial Modifier Time
	9.4.1.20 S-Registers Set or Test
	9.4.1.21 Select Tone Dialing
	9.4.1.22 DCE Response Format
	9.4.1.23 Result Code Selection and Call Progress Monitoring Control
	9.4.1.24 Reset To Default Configuration
	9.4.1.25 Print Brief S-Registers Summary
	9.4.1.26 Print Brief AT Command Summary
	9.4.1.27 Print Current Settings Summary
	9.4.1.28 Switch Channel
	9.4.1.29 Flex Application Load on The Fly
	9.4.1.30 Mode Selection
	9.4.1.31 Country selection

	9.4.2 Caller ID Related Commands
	9.4.2.1 TE-ACK Signal Settings
	9.4.2.2 DT-AS Signal Settings
	9.4.2.3 FSK Demodulator Settings
	9.4.2.4 Caller ID Output Select

	9.4.3 Modem Related Commands
	9.4.3.1 Data Compression
	9.4.3.2 Break Handling in Error Control Operation
	9.4.3.3 32-Bit Frame Check Sequence
	9.4.3.4 Error Control Reporting
	9.4.3.5 Error Control Selection
	9.4.3.6 Selective Reject
	9.4.3.7 Window Size
	9.4.3.8 Frame Length
	9.4.3.9 V.42 Heap Select
	9.4.3.10 V.42 or Buffered V.14 Select
	9.4.3.11 V.42bis Compression Mode
	9.4.3.12 Round Trip Delay Settings
	9.4.3.13 Modem Output Gain
	9.4.3.14 Maximum Modem Speed
	9.4.3.15 Fast Connect
	9.4.3.16 Modem Automatic Speed-up
	9.4.3.17 Modem Slowdown

	9.4.4 Voice Mode Commands
	9.4.4.1 Select Echo Canceller Mode
	9.4.4.2 Set Output Voice Signal Attenuation
	9.4.4.3 Compression Method Selection
	9.4.4.4 Voice Receive Mode
	9.4.4.5 Voice Transmit Mode
	9.4.4.6 Voice Duplex Mode
	9.4.4.7 AGC Parameters
	9.4.4.8 VAD Parameters

	9.4.5 S-Registers
	9.4.6 S-Registers Controlling DAA

	9.5 Shielded Codes in Voice Mode
	9.6 AT Result Tokens
	9.7 AT Commands Summary

	Chapter 10: CST Host Utility
	10.1 Minimum System Requirements
	10.2 CST Host Settings
	10.2.1 COM Port Settings
	10.2.2 DAA International Settings
	10.2.3 Miscellaneous Settings

	10.3 Voice Playback and Record
	10.3.1 CST Host Audio File Format
	10.3.2 Application Sequence “Playback Greeting and Record”

	Chapter 11: Product Installation Procedure
	11.1 Installing CST SDK
	11.2 Description of Product and Document Directory Tree
	11.3 Setting up CST Host
	11.4 Installing Modem Drivers for CST Chips in Windows

	Chapter 12: Chipset Mode Testing and Troubleshooting
	12.1 Testing UART
	12.2 Testing DAA
	12.3 Troubleshooting Procedures

	Index

