Client Side Telephony (CST)
Chip Software
User’s Guide

SPIRITCORP s,

www.spiritDSP.com/CST

Literature Number: SPRU029A
March 2003

Q’ TeEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI's terms and conditions of sale supplied at the
time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI's standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using Tl components. To minimize the risks
associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
Tl patent right, copyright, mask work right, or other Tl intellectual property right relating to any
combination, machine, or process in which Tl products or services are used. Information
published by TI regarding third party products or services does not constitute a license from Tl
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that third
party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. Tl is not responsible or
liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright [0 2003, Texas Instruments Incorporated

About This Manual

Preface

Read This First

This user’s guide assists the user with programming the various components
from SPIRIT™ Corp for the TMS320C54x platform. It provides instructions for
integrating these software components and implementating various telephony
devices based on TMS320C54x platform. All CST algorithims conform to the
TMS320 DSP Algorithm Standard, also known as XDAIS.

How to Use This Manual

The contents of the Client Side Telephony (CST) Chip Software User’s Guide
are as follows:

[0 Chapter 1, Introduction to Client Side Telephony (CST), is a brief over-

view of the Client Side Telephony (CST) Chip Software User’s Guide
(CST), abbreviations and terms used throughout this document, and im-
portant copyright information.

Chapter 2, Getting Started, provides quick steps to allow the user to imme-
diately begin using a CST chip and its modes. Important notes concerning
SDK installation procedures are also provided.

Chapter 3, Hardware Overview, provides an overview of the CST chip and
the C54CST EVM board, and its settings. A description of the UART inter-
face with the C54CST is provided, as well as instructions for adapting a
C54CST chip to user specific hardware.

Chapter 4, Software Overview, is an overview of the Framework and Com-
ponents of CST Software parts. This chapter also describes the benefits
of using Flex mode to control CST chips.

Chapter 5, Flex Application Development Guidelines, is a brief overview
on how to develop user-specific applications. The benefits of Flex mode
over Chipset is discussed.

Chapter 6, CST Framework and API Overview, provides the user with
overviews and descriptions of the different CST Layers, services, their
API.

Notational Conventions

Notational Conventions

vi

Chapter 7, CST Framework Components, provides detailed descriptions
of all CST framework components, their interface, and architecture.

Chapter 8, C54CST Resources:

Registers Conventions, Memory, and MIPS, is a summary of important
information about C54CST chip resources and their use by CST
framework and algorithms.

Chapter 9, AT Command Set Descriptions, provides the user with de-
scription of AT commands, syntax, shielded codes, and result tokens.

Chapter 10, CST Host Utility, provides the user with requirements and set-
tings for running a CST host utility.

Chapter 11, Product Installation Procedure, provides brief instructions on
installation of the CST SDK, setup of the CST host to communicate with
the C54CST EVM, and the setup of Windows™ to communicate with the
C54CST as a generic modem.

Chapter 12, Chipset Mode Testing and Troubleshooting, provides de-
scriptions of several test procedures available for troubleshooting and
testing functionality.

This document uses the following conventions.

[Program listings, program examples, and interactive displays are shown

inaspeci al typeface similar to a typewriter's. Examples use a bol d
ver si on of the special typeface for emphasis; interactive displays use a
bol d ver si on of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Here is an example of a system prompt and a command that you might
enter:

C. c¢sr -a /user/ti/sinmuboard/utilities

Information About Cautions and Warnings

Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.
Related Documentation From Texas Instruments

Using the TMS320 DSP Algorithm Standard in a Static DSP System
(SPRA577)

TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)
TMS320 DSP Algorithm Standard API Reference (SPRU360)

Technical Overview of eXpressDSP-Compliant Algorithms for DSP Software
Producers (SPRA579)

The TMS320 DSP Algorithm Standard (SPRA581)

Achieving Zero Overhead with the TMS320 DSP Algorithm Standard IALG In-
terface (SPRA716)

Reference Framework 3: A Flexible, Multi-Channel/Algorithm, Static System
(SPRAT793)

Reference Frameworks for eXpressDSP Software: API Reference
(SPRA147)

TMS320 DSP/BIOS User’s Guide, (SPRU423)

Read This First vii

Related Documentation

TMS320C5000 DSP/BIOS Application Programming Interface (API) Refer-
ence Guide (SPRU404)

Writing DSP/BIOS Device Drivers for Block I/O (SPRA802)
TMS320C54x Chip Support Library API Reference Guide, (SPRU420)
TMS320C54CST Client Side Telephony DSP (SPRS187)
TMS320VC5407 Bootloader Technical Reference (SPRA827)

Client Side Telephony (CST) Chipset Mode (SPRA859)

Client Side Telephony (CST) Chip Flex Mode Flex Examples Description
(SPRA862)

Related Documentation

Si3044 User Guide. 3.3 V ENHANCED GLOBAL DIRECT ACCESS AR-
RANGEMENT. O Silicon Laboratories, 2000. http://www.silabs.com/products

ITU-T Recommendation V.250. Serial asynchronous automatic dialing and
control, 07/97

ITU-T Recommendation V.253. Control of voice-related functions in a DCE
by an asynchronous DTE, 02/98

TMS320C54CST Evaluation Module. Technical Reference. Spectrum Digital,
Inc.

Using the Zero-Overhead model / Static memory example

Documentation for XDAIS Algorithms

viii

Automatic Gain Control (AGC) Algorithm User’s Guide (SPRU631)
Caller ID (CID) Algorithm User’s Guide (SPRU632)

Comfort Noise Generator (CNG) Algorithm User’s Guide (SPRU633)
Echo Canceller (EC) Algorithm User’s Guide (SPRU634)

Voice Activity Detector (VAD) Algorithm User’s Guide (SPRU635)
Modemintegrator Algorithm User’s Guide (SPRU636)

G726 Algorithm User’s Guide (SPRU637)

Universal Multifrequency Tone Detector (UMTD) Algorithm User’s Guide
(SPRU638)

Universal Multifrequency Tone Generator (UMTG) Algorithm User’s Guide
(SPRU639)

Trademarks

Software Copyright

Trademarks

TMS320™ is the trademark of Texas Instruments.
“eXpressDSP Compliant” is a trademark of Texas Instruments.
SPIRIT CORP™ is the tradmark of Spirit Corp.
HyperTerminal™ is a trademark of Hilgraeve, Inc.

Windows, Windows 95/98/2000/NT/XP ™ are registered trademarks of Micro-
soft Corporation.

Procomm Plus™ is a trademark of Datastorm Technologies, Inc.

CST Software Copyright [0 2003, SPIRIT Technologies, Inc.

Read This First ix

If You Need Assistance

If You Need Assistance. ..

O World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/products/index.htm
DSP Solutions http://www.ti.com/dsp
320 Hotline On-line™ http://www.ti.com/sc/docs/dsps/support.htm
Microcontroller Home Page http://www.ti.com/sc/micro
Networking Home Page http://www.ti.com/sc/docs/network/nbuhomex.htm
Military Memory Products Home Page http://www.ti.com/sc/docs/military/product/memory/mem_1.htm
1 North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
Tl Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (972) 293-5050 Fax: (972) 293-5967
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
Microcontroller Hotline (281) 274-2370 Fax: (281) 274-4203 Email: micro@ti.com
Microcontroller Modem BBS (281) 274-3700 8-N-1
DSP Hotline Email: dsph@ti.com
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs
Networking Hotline Fax: (281) 274-4027
Email: TLANHOT@micro.ti.com
(O Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:
Multi-Language Support +33130701169 Fax: +33130701032
Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 13070 11 65
Francais +33130701164
Italiano +33 130701167
EPIC Modem BBS +33130701199
European Factory Repair +33 493222540
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
O Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/
O Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071

DSP BBS via Nifty-Serve

Type “Go TIASP”

If You Need Assistance

(0 Documentation

When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.
Mail: Texas Instruments Incorporated Email: dsph@ti.com Email: micro@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

For product price & availability questions, please contact your local Product
Information Center, or see www.ti.com/sc/support http://www.ti.com/sc/sup-
port for details.

For additional CST technical support, see the TI CST Home Page
(www.ti.com/telephonyclientside) or the Tl Semiconductor KnowledgeBase
Home Page (www.ti.com/sc/knowledgebase).

If you have any problems with the Client Side Telephony software, please, read
first the list of Frequently Asked Questions at http://www.spiritDSP.com/CST.

You can also visit this web site to obtain the latest updates of CST software &
documentation.

Read This First Xi

1

Contents

Introduction to Client Side Telephony (CST) ...t e e 1-1
A brief overview of the Client Side Telephony (CST) Chip Software User’s Guide (CST), abbre-
viations and terms used throughout this document, and important copyright information.
L1 CST OVEIVIEW . .. ittt ettt e e e e e e e e e e e e e e e e 1-2
1.2 Abbreviations and ACrONYMSttt e e e e 1-4
1.3 Legal DisClaimer o e 1-7
Getting Started 2-1
This chapter provides quick steps to allow the user to immediately begin using a CST chip and
its modes. Important notes concerning SDK installation procedures are also provided.
2.0 OVBIVIBW ittt 2-2
2.2 Running a CST Solution: Standalone ChipsetMode 2-3
2.3 Runninga CST Solution: FlexMode i 2-5
Hardware OVEIVIEWt e e e e e e e e e e 3-1
This chapter provides an overview of the CST chip and the C54CST EVM board, and its set-
tings. A description of the UART interface with the C54CST is provided, as well as instructions
for adapting C54CSt chips to user specific hardware.
3.1 Introductiontothe CST Chipo e 3-2
3.2 MainModes of CST Chip . ..ot e e 3-4
3.3 TMS320C54CST EVM Configuration, 3-5
3.4 UART Hardware Flow Control e 3-6
3.5 LEDINAICAtiONo 3-7
3.6 Adapting the C54CST Chip for User-Specific Hardware 3-8
SOftWAre OVEIVIEBW . . .ottt et e e e e e e e e 4-1
This chapter is an overview of the Framework and Components of CST Software parts. This
chapter also describes the benefits of using Flex mode to control CST chips..
4.1 Flex Mode Applications 4-2
4.2 Framework COMPONENTSttt e e 4-3
4.3 Telephony COMPONENTSttt e et e e 4-5
4.3.1 DataMOOem 4-6
4.3.2 VOICE ProCESSING . ..ottt e 4-6
4.3.3 Telephony Signals Processing, 4-7

Xiii

Contents

5 Flex Application Development Guidelines 5-1
This chapter is a brief overview on how to develop user-specific applications. The benefits of
Flex mode over Chipset is discussed.

5.1 Chipsetvs. FIeX Mode e e e e 5-2
5.2 AT Commands vs Alternative Interfaces i 5-3
5.3 Designing and Implementing Standard CST Applications 5-5
5.3.1 Preliminary Application Design 5-6
5.3.2 Detailed Application Design i 5-8
5.3.3 Implementation 5-10
5.3.4 Chapter SUMMary e 5-15
5.4 Building and Loading Flex Applications i 5-16
5.4.1 Projects for Building Flex Applications 5-16
5,42 CSTBootloader 5-18
CST Framework and API OVEIVIEWttt e e e i 6-1
This chapter provides the user with overviews and descriptions of the different CST Layers, ser-
vices, their API.
B.1 OV BV BW o ittt 6-2
6.2 CST Framework Layers . ..ottt e e et et e e 6-3
6.2.1 Action-Based Interface 6-6
6.2.2 CSTCommander Layercuuiiii et 6-7
6.2.3 CST ServiCe Layer . ..ot et e e e 6-9
6.2.4 Other CST Parts and ServiCesiiiiini it [6-11
6.2.5 CST Layers SUMMAIYttt e e e 6-12
6.3 Framework APl .. . 6-15
6.3.1 Main CST TYPES - ottt it e et 6-15
6.3.2 S-RegISterS ... 6-16
6.3.3 Call Tree ... 6-17
6.3.4 Controlling CST Through Action Layer Interface 6-19
6.3.5 Standard and Custom Atomic Commandsccoviiineenn.n. 6-21
6.3.6 Command Execution at Different CST Layersccoviven.... 6-22
6.3.7 CSTActionInterface Usaget 6-24
6.3.8 CST DynamiC FUNCLIONSt et et 6-26
CST Framework COmMPONENtS e e et 7-1
This chapter provides detailed descriptions of all CST framework components, their interface,
and architecture.
7.1 CST SeIVICE LAYl ..ottt et e e e e e e 7-2
7.1.1 Files CSTService.c, CSTService.h ... 7-2
7.2 CST COMMANAEL . . .ttt et e e e e e e et 7-16
7.2.1 FilesCSTSReg.c, CSTSReg.h 7-16
7.2.2 Files CSTCommander.c, CSTCommander.h 7-26
7.2.3 Files CSTAtomic.c, CSTAtomic.h i 7-41

Xiv

Contents

7.3 CST ACHON . ot e 7-47
7.3.1 Unified CST ACtiON MESSAQgE vti ittt et 7-47
7.3.2 CSTAction Message Type Keyt 7-46
7.3.3 CSTAction Message Contentsouuiiiinineninnnnnnnn. 7-47
7.3.4 Brief Description of CST Action Function Interface 7-50
7.3.5 Using CST Action Interface, Practical Aspects 7-52
T4 CST AT PalSEr .ttt e e e 7-63
7.4.1 AT Command Line Parser i 7-63
7.42 AT Command EXECULIONt 7-64
7.4.3 Brief Description of AT Command Line Parser Interface 7-65
7.5 Memory Managementt 7-66
T.5. 1 OVEIVIBW .ottt e e e 7-66
7.5.2 Memory Manager Function Interface i i 7-67
7.5.3 Possible Memory Configurations i 7-68
7.5.4 More About Algorithm Creation and Deletion 7-74
7.6 Telephony Components Brief Specificationt 7-75
7.6.1 DataModem e 7-76
7.6.2 VOICE ProCeSSING . ..ottt 7-88
7.6.3 Telephony Signals Processingooviiiii i, 7-100
7.6.4 Telephony Components SUMMArYoutiinnieinanenenenn. 7-105
T 7 CST DIIVEIS . ottt e e 7-107
7.7.1 Overview, Interface Functions and Function Call Diagram 7-107
7.7.2 Peripheral Driver. Files CSTPeriph.h, EVM54CSTDrv.c, EVM54CSTDrv.h | 7-117
7.7.3 High-Level DAA Driver. Files DAADrv.c, DAADrv.hl 7-122
7.7.4 Brief Description of the Low-level I/O (LIO) Interface 7-126
7.7.5 Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c [7-130
7.7.6 Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c 7-140
7.7.7 Reloading DrivVers oot e e 7-146
C54CST Resources: Registers Conventions, Memory,and MIPS 8-1

A summary of important information about C54CST chip resources and their use by CST frame-
work and algorithms.

8.l OV IV B oottt 8-2
8.2 General Register CONVENLIONSottt e ettt 8-3
8.3 Program and Data Address Space Memory Mapcoiiiiiiiiiiian.n. 8-6
8.4 DSP Resource Usage for Each Algorithm and Framework 8-10
AT Command Set DesSCriptioNS oot 9-1
This chapter provides the user with description of AT commands, syntax, shielded codes, and
results tokens.
9.1 AT Command Set DesCriptiont e et 9-2
9.2 AT Command SetMOdest e 9-3
Contents XV

Contents

10

11

12

XVi

9.3 AT Command SYNTAXottt e e e 9-6
9.3.1 General AT Commands Conventionsouuiiirneenneennaenn. 9-6
9.3.2 Types of Commandsiuiiiii e 9-7
9.3.3 BasicSyntax Command Format i, 9-7
0.3.4 S-Parameters SYyNtaXot e 9-8
9.3.5 Extended Syntax Commandst 9-9
9.3.6 Command EXeCUtion 9-12
9.4 AT COMMANAS . ..ottt e et e e e e 9-13
9.4.1 General Commandsottt 9-13
9.4.2 CallerID Related Commandsc.coiitiiiiniii i 9-23
9.4.3 Modem Related Commandsc.co it 9-26
9.4.4 Voice Mode CommaNndscotiiitit 9-34
045 S-REQISIEIS . . 9-37
9.4.6 S-Registers Controlling DAA 9-40
9.5 Shielded CodesinVoice Mode 9-42
9.6 AT ResUlt TOKENS 9-44
9.7 AT Commands SUMMAIYttt ettt ettt 9-45
CST HOSt ULty ..o e e e e et e e e 10-1
This chapter provides the user with requirements and settings for running a CST host utility.
10.1 Minimum System ReqUIreMeNtSottt e e 10-2
10.2 CST HOSt SEtiNGS ... v vt e e e e e 10-3
10.2.1 COM POrt SEttiNgsS . ..ttt e e e e e 10-4
10.2.2 DAA International Settingst 10-5
10.2.3 Miscellaneous Settingsttt e e 10-6
10.3 Voice Playback and Recordt 10-7
10.3.1 CST Host Audio File Format o 10-8
10.3.2 Application Sequence “Playback Greeting and Record” 10-9
Product Installation Procedure ... 11-1
This chapter provides brief instructions on installation of the CST SDK, setup of the CST host
to communicate with the C54CST EVM, and the setup of windows to communicate with the
C54CST as a generic modem.
11.1 Installing CST SDK . ..ottt e e e et e 11-2
11.2 Description of Product and Document Directory Treeo, 11-3
11.3 Setting Up CST HOSLot e e e 11-4
11.4 Installing Modem Drivers for CST Chips in Windows™ 11-5
Chipset Mode Testing and Troubleshooting
This chapter provides descriptions of several test procedures available for troubleshooting and
functionality.
12,1 Testing UART ..o e e e 12-2
12,2 TesSting DAA . o 12-4
12.3 Troubleshooting Procedures e 12-7

10-1
10-2
10-3
10-4
10-5
111

CST Chip OVEIVIBW . . oo e e e e e e e et 3-2
General Hardware Setup of CST Chipo e 3-3
CST Framework Diagram e 4-3
Data Modem ObJeCtS o 4-6
Generic CST Flex Application e [5-14
CST Framework Controlled via AT Command Parserc.ccooiiiiinnn.... 6-3
CST Framework Controlled via CST ActionLayer, 6-4
Control Layers INteractiont e e e e 6-5
CST Service Periodic Thread e 6-10
Schematic Diagram of CST Periodic Thread Call Tree 6-18
Example of Command Execution at Different CST Layers 6-24
Fragmentsof Modem Call Code it i e 6-25
CST Solution Data Path 7-76
Modem Data FIOW 7-79
Modem Data Pump Operating Environment 7-81
V.42 Operating ENVIrONMENt o e 7-86
G726 and G711 Bitstream Formatt 7-91
CST Drivers Function Call Diagramttt [7-107
CST Solution MemMOrY Map ... ov it e e ettt 8-8
AT Parser State Diagramt e e 9-3
CST Host Settings Dialog oo v et e e et et e e 10-3
COM Port Settings Dialogot 10-4
DAA Settings Dialog oot 10-5
Voice Play/Record BULONSo e e 10-7
CST Host Processing FIOW oo e e e e 10-7
CST Documentation and Software Directory Tree, 11-3

Contents

XVii

Tables

7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29

XViii

Abbreviations and ACIONYMSttt i e 1-4
UART LINES .ottt e e e e e e e e e 3-6
Indication LEDS M@aNINGottt e ettt 3-7
CST ACtion ASSOCIALIONSttt et e e e e e e 5-6
Standard Callback FUNCLiON MESSAgeScvvi it e et et 5-8
Top-Level Interface FUNCLIONS o e [5-10
CST ACHIONS . ottt e 6-7
CST SeIVICE MESSAGE . . ot ittt ettt ettt et e ettt 7-3
Set of CST Service Tasks ... oo 7-4
Set of CST Service Message TYPeS . . oo v v ittt et ettt e ieen 7-5
CST Service Message SUMMANY . ..ottt ittt e et e e et 7-6
CST SEIVICE StatUS ..ottt ettt e e e e e e e 7-8
Set of CST Service Message Result Codes ... i 7-9
List of XDAIS Algorithms 7-10 |
CST Service Interface FUNCLIONS e 7-11
S-Register DESCIIPLOro 7-16
Set of Defined CST S-Registers e et 7-17
OO SBtNGS . ottt 7-21
Brief Description of CST S-Registers Function Interface 7-24
Simple Map StrUCTUIE e 7-24
S-Register Request DesCHptOr vt e 7-25
CST Dynamic FUNCLIONS ottt e e e e 7-27
CST Commander General Control Interface 7-37
Set of CST Commander MOdeSot e 7-37
Set of CST Commander External Message Events 7-38
Brief Description of CST Commander Function 7-40
Set of CST Commander Atomic Commandst 7-41
CST Commander Special Pauses i i et 7-44
Basic Predefined CST Commander Atomic Command Scripts 7-45
Unified CST ACHON MESSAQEt ti ettt e ettt et et et et 7-47
CST Action Message Type KeY ...ttt e e et et et e e 7-47
The tCSTConfigCommand Structuret 7-48
The tCSTStandardOperation Structurettt e 7-48
Set of CST Action Standard Operationsot 7-49
CST Action Function Interface i 7-50
AT Command DeSCHIPLOr . ..ottt e e e e e 7-63

7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38
7-39
7-40
7-41
7-42
7-43

7-44
7-45
7-46
7-47
7-48
7-49
7-50
7-51
7-52
7-53
7-54
7-55
7-56
7-57
7-58
7-59
7-60
7-61
7-62
7-63
7-64
7-65
7-66
8-1

8-3
8-4
9-1
9-2

Tables

Some of the AT Parser Interface FUNCLIONS i 7-65
Memory Manager Function Interface Types, 7-67
Basic Memory Configurations i 7-68
CST Memory Space Segment StrUCtUIe . ..ottt 7-70
CST BIOS Memory Space Segment StrucCture, 7-73
Data FIow Parameters 7-79
Brief Description of CST S-Registers Function Interface 7-81
Voice Controller Main Structure Definition i 7-89
Brief Description of Voice Controller Function Interface 7-90
Structure Definition 7-97
Detected CPT Signals . ..ot e e e 7-101
CPTD Configurationst e et et e 7-102
Generated CPT Signals Parameters 7-103
Relationship Between CST Algorithms, Service Tasks, Atomic Commands
ANA CST ACHIONS .« ottt e e e e e 7-105
CST DAA Interface FUNCLIONS o e 7-108
High-Level DAA Driver FUNCHIONSottt et e ee e 7-108
CST UART Interface FUNCLIONS it 7-112
Set of Peripheral Driver Commandsco it 7-117
Set of Events From the Peripheral Driver 7-119
Peripheral Driver Function Interface i 7-120
Set of Standard Operations of High-Level DAADriverccciiiiivnon.. 7-122
High-level DAA Driver Commands to Compose SCriptS 7-123
Set of Commands of High-Level DAADriver 7-123
High-Level DAA Driver Function Interface iy 7-125
LIO Function Table 7-127
LIO Open FUNCtion MOES oot e e 7-128
Multiple DAA Device Setup STrUCTUIeot e e 7-131
DAA Device Setup SIIUCLUIE e e e e e e 7-132
Initial DAA Device Registers Values 7-133
Bit Fields of the Task Parameter i e 7-134
DAA LIO Driver Commandso vttt e 7-138
DAA LIO Driver Parameter - Result Map ...ty 7-139
DAA LIO Driver Register Write Structuret e 7-139
UART Setup Function to Track Modem Escape Sequence Characters 7-140
Default Setup Settings of the UART Driverty 7-141
UART LIO Driver Commandsttt 7-144
UART LIO Driver Parameter - Result Map ...ttty 7-145
DSP Registers Used by CST Solution ... o e 8-3
CST RAM Areas DesCriptiont e e e et e 8-6
CST Algorithms ROM/RAM Characteristicsoii e 8-10
CST Algorithims MIPS CharacteristiCs e 8-11
Definition of AT Parser Modes e 9-5
CST AT Commands Syntax SPecifics e 9-6
Contents XiX

Tables

9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
10-1
12-1

XX

TE-ACK Signal Settings oot
DT-AS Detector Parameters e
FSK Demodulator Settingsot
Data Compression Subparametersiu it
V.42 Window Size Subparameterso i e
V.42 Frame Length Subparameters i
S-Registers Defined in CST-Solution
DAA REQISIErS SUMMANY . . .ottt et e ettt e e e e e e
Country Specific DAA Register Settingsot
CST AT Parser Voice Mode Shielded Codes Sent FromDTE
CST AT Parser Voice Mode Shielded Codes SenttoDTE,
CST AT Parser Result TOKeNSo e
Summary of Standard V.250 Commands Supported by CST
Summary of CST-Solution Proprietary AT Commands covon...
Summary of Commands by Categoriest
CST Host Parameter ReqUIrEmMEeNtst e
Troubleshooting Procedures i e e e

9-24

9-24

9-25

9-27

9-30

9-31

9-37

9-40

9-41

9-42

9-42

9-44

9-45

9-47

9-48

10-2

12-7

Notes, Cautions, and Warnings

Legal DisSClaimer ... o 1-7
Compiling Flex examples and Code Composer Studio 2-5
Use of Word “Action” and AT COMMAaNSottt e e 9-7
Running applications or demo exampleson EVM boards 10-3
Important notes for Code Composer Studio version 2.1 USersSvuiininannenen.. 11-2
Notice: TMS320C54CST chip and UART capabilities 11-5
Troubleshooting and TeStiNG oottt e e et et et e 12-7 |

Contents XXi

Chapter 1

Introduction to Client Side Telephony (CST)

This chapter provides a brief overview of the Client Side Telephony (CST) Chip
Software User’s Guide. It lists and explains abbreviations and terms used
throughout this document, and contains copyright information.

Topic

Page
1.1 CST OVEIVIEW - v oot et e
1.2 Abbreviations and ACIONYMSo,
1.3 Legal DIiSCIaiMert

1-1

CST Overview

1.1 CST Overview

CST Software consists of several eXpressDSP compliant telephony compo-
nents and a special CST Framework, which ties them together and provides
unified access to each of them. CST Software was ROM’ed into
TMS320C54CST DSP chip from Texas Instruments.

There are two main modes of CST Chip operation — Chipset mode and Flex
mode:

1 In Chipset mode, only CST software is running inside CST Chip, controlled
from outside via serial link by AT commands.

[In Flex mode, user code is running inside of CST Chip, controlling the CST
Software in ROM using several different control layers of CST Framework.

The following components are included in CST Software (as standalone
XDAIS algorithms):

(1 Data Modem (V.32bis/V.32, V.22bis/V.22, V.14, V.42, \.42his)

(1 Voice processing (ADPCM G.726, G.711, G.168 Echo Canceller, VAD,
CNG and AGC)

(] Telephony Signals Processing (DTMF, CPTD, CID)

Besides, CST algorithms portofolio can be extented via a set of very memory-
efficient CST Add-ons, supplied separately from CST chip:

(1 Fax G3 functionality (fax modem supporting V.17/V.29/V.27ter/V.21)
V.29 Fast Connect (for POS terminals)

(1 Standard vocoders (G.729AB — 8 kbps, G.723.1 — 5.3 and 6.3 kbps)
(] SPIRIT-proprietary 1200 bps vocoder

There is also an integration shell (CST Framework), which consists of several
layers and forms very flexible and configurable framework. Each framework
layer has its own intermediate interface, with its own level of abstraction. CST
Framework consists of the following parts (supplied in open source code):

(1 AT Command Parser (Data and Voice commands, used mostly in Chipset
mode)

CST Overview

(1 Several control layers (used in Flex mode only):

B CST Action layer (to give the user control over CST Solution as whole
through mapping all commands and messages to different CST sub-
layers; eliminates the need to use AT Parser)

B CST Commander layer (to give the user control over CST Solution
through set of special command sequences)

W CST Service layer (to provide data flow between different XDAIS com-
ponents and device drivers, and to give the user unified access to CST
XDAIS components through set of special messages)

(1 LIO- and CSL-compliant drivers and data flow controllers of UART and
DAA codecs

(1 Memory management and other system services

The Framework was organized to give the user maximal flexibility. To achieve
this, many Framework functions call one another via function pointers. This al-
lows the user to override these functions as well as driver routines. It is also
possible to create several instances of the framework.

The user can still directly use the standalone eXpressDSP compliant algo-
rithms regardless of the CST Framework or use the Framework partially.

Besides the CST Software, there is also a start up Bootloader and a core code
of DSP/BIOS ROM’ed into CST Chip.

Introduction to Client Side Telephony (CST) 1-3

Abbreviations and Acronyms

1.2 Abbreviations and Acronyms

The following abbreviations are used in this document:

Table 1-1. Abbreviations and Acronyms

Name Description

ADC Analog-digital converter

ADPCM Adaptive differential pulse code modulation. A type of waveform coding implemented in
G.726 codec.

AFE Analog front end. Hardware and/or software parts that convert signal waveform to a stream
of samples. Delay introduces by buffering or hardware part in AFE may affect modem
operation.

AGC Automatic Gain Control

ALGRF XDAIS algorithm creation/deletion functions (ALGorithm instantiation for Reference
Frameworks). See also XDAIS, IALG and RF3.

BIOS Used interchangeably with DSP/BIOS, see DSP/BIOS

CID Caller ID

Chipset Mode of CST Chip operation when it is controlled only externally, via AT commands sent

Mode over serial link.

CNG Comfort noise generator

CPTD Call progress tone detector

CSL Chip support library- TI's standard library to support on-chip hardware

CST Client side telephony, also means the CST Chip solution

CTS Clear-to-send. UART interface signal that indicates readiness to receive data in one
direction (see also RTS).

DAA Data access arrangement, hardware interface with telephone line

DAC Digital-analog converter

DARAM Dual access RAM

DCE Data communications equipment. Within the scope of this document it implies EITHER CST
chip when used in chipset mode receiving commands from external host, OR CST software
solution controlled by user-specific software inside CST chip.

DSP/BIOS TI's Real Time OS for DSPs

1-4

Abbreviations and Acronyms

Table 1-1. Abbreviations and Acronyms (Continued)

Name Description

DTE Data terminal equipment. Within the scope of this document it implies
EITHER a PC (or another host) sending commands to CST Chip via serial link, OR
user-specific software inside CST chip (flex application), sending commands to AT parser
via virtual UART,
OR software unit providing DTE functionality.

DTMF Dual-tone modulated frequency signal

EVM TMS320C54CST evaluation module supplied by spectrum digital.

FCS Frame check sequence

Flex Mode Mode of CST chip operation when it is controlled internally by a user program loaded into
internal or external memory of the CST Chip.

GSTN General switched telephone network

IALG Interface to define XDAIS algorithms’ memory requirements (see also XDAIS and ALGRF)

ISP Internet service provider

ISR Interrupt service routine

LIO “Low-level I/0” — TI's standard for drivers interface

MAU Minimum addressable unit, whose size is usually equal to sizeof(char) in C.

MCU Micro-controller unit

PCM Pulse code modulation. This term means representation of a waveform by quantized digital
signal using linear or logarithmic laws, rather than a modulation technique

PSTN Public switched telephone network

RF3 Reference framework level 3. Includes into itself: XDAIS, ALGRF, DSP/BIOS

RTS Request-to-send. UART interface signal that indicates readiness to receive data in another
direction (see CTS).

SDK Software development kit

SWI DSP/BIOS software interrupt

TAM Telephone answering machine

UART Universal asynchronous receiver/transmitter, the chip which allows data exchange over
serial link

UMTD Universal multi-tone detector

Introduction to Client Side Telephony (CST) 1-5

Abbreviations and Acronyms

Table 1-1. Abbreviations and Acronyms (Continued)

Name Description
VAD Voice activity detector
XDAIS eXpressDSPT™ Algorithm standard (also known as TMS320 DSP Algorithm Standard).

NOTICE on DAA part number: Throughout the document, Silicon Lab’s DAA is referred to as Si3016 or
Si3021 chip. Here is the explanation of part names:

Si3016 Line-side DAA, directly connected to telephone line. External chip.

Si3021 DSP-side DAA, connected to line-side only via capacitors. This part is on-chip in C54CST
chip.

Si3044 Compound part name, denoting Si3016 and Si3021 together.

NOTICE on C54CST part number: TMS320C54CST chip is a current version of the chip, having CST bundle
V2.0 in ROM, also referred as CST2.

TMX320VC54CST chip is a previous version of the chip, having CST bundle V1.0 in ROM, also referred as
CST1.

Throughout the document, C54CST name refers to CST bundle V2.0, unless noted otherwise.

1-6

Legal Disclaimer

1.3 Legal Disclaimer

Legal Disclaimer

The views, opinions and references expressed herein do not necessarily
state or reflect those of the companies cited in section 1.3. The
aforementioned companies in this User’s Guide are in no way affiliated
with SPIRIT CORP, or SPIRIT TECHNOLOGIES, INC.

Introduction to Client Side Telephony (CST) 1-7

Chapter 2

Getting Started

This chapter provides quick steps to allow the user to immediately begin using
a CST chip and its modes. Important notes concerning SDK installation proce-
dures are also provided.

Topic Page
2.1 OVEIVIBW . . ottt e et e e e e e et 2-2
2.2 Running a CST Solution: Standalone Chipset Mode 2-3
2.3 Running a CST Solution: Flex Mode 2-5

Overview

2.1 Overview

There are two main modes of CST Chip operation:

[Flex mode

1 Chipset mode

Please refer to section B.2 for more information concerning these modes.

To learn how to control CST Chip in Flex mode and to write your own program
for TMS320C54CST using CST solution, read the following chapters:

O Hardware Overview
O Flex Application Development Guidelines

O C54CST Resources: Register Conventions, Memory, and
MIPS

[CST Algorithm user guides found in Related Documentation from Texas
Instruments section of the Preface

[Client Side Telephony (CST) Chip Flex Mode Flex Examples Description
(SPRA862)

For instructions on learning to control CST Chip in Chipset mode, please con-
sult the following chapters:

O AT Command Set Descriptions

O CST Host Utility

O Chipset Mode Testing & Troubleshooting
[Client Side Telephony (CST) Chipset Mode (SPRA859)

To get yourself quickly acquainted with the CST Software, we strongly recom-
mend trying out several examples described in the Client Side Telephony
(CST) Chip Flex Mode Flex Examples Description (SPRA682). The fast way
to run these applications using TMS320C54CST chip is to use
TMS320C54CST EVM. You can also use the code of these examples, located
in Src\ Fl exExanpl es\, to quickly create your own application for Flex
mode. It's also recommended that you look through the supplied CST Frame-
work source code when learning the CST Framework components and other
CST internals.

For installation procedure, please refer to chapter 11 Product Installation
Procedure.

Running a CST Solution: Standalone Chipset Mode

2.2 Running a CST Solution: Standalone Chipset Mode

To run CST solution in standalone Chipset mode, the following steps should

be taken:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Connect and set up TMS320C54CST EVM, connect its COM port to
one of PC's COM ports (COM1 or COM2, for example), connect
EVM to telephone line and also to power supply, but do not power
it up yet.

Set jumpers on EVM as described in section

Start host terminal — specialized CSTHost\ CSTHost . exe, or
general-purpose HYPERTERMINAL or PROCOMM
communication programs and open the COM port to which EVM is
connected. Set this port for 115200 bps, 8 bits of data, 1 stop bit, no
parity, Hardware flow-control.

If running CSTHost, open terminal window at Fil e->CST
Term nal , and press Settings button. Choose COM port to
which EVM is connected, and press Conf i gure Port button. Set
the port according to the settings mentioned above, and press CK.

Turn on power for EVM.

Type “AT” in the terminal window, to tell CST bootloader to switch into
Chipset mode, OR load a patch (if necessary) via
Settings->Load Patch in CSTHost.

The LEDs should blink several times (which indicates that the CST
has successfully started in Chipset Mode) and the following greeting
should be output to the terminal window (if COM port was configured
correctly):

CST Bundle Rel 2.0
(c) SPIRI T CORP
Type AT$, AT$H or AT&V for help

Type AT$<Ent er > on the terminal — you should see help on the
available S registers and their settings.

Getting Started 2-3

Running a CST Solution: Standalone Chipset Mode

Step 7:

Step 8:

Step 9:

Step 10:

Type AT&V<Ent er > on the terminal — you should see current
settings of CST.

To test modem, type ATDTxxxX, where xxxX is the number you wish
to dial and connect. Once modem connects, it reports the rate at
which it connected.

To test voice capabilities, press Pl ay Greeting and Record
button on CST Host, and call the number to which EVM is connected
from another phone.

If something does not work properly, you may need to tune DAA
properly for the standards of your country by pressing Set ti ngs,
DAA International settings (read more about this in
), and also read Client Side Telephony (CST) Chipset
Mode (SPRA859).

Running a CST Solution: Flex Mode

2.3 Running a CST Solution: Flex Mode

Note:

Compiling Flex examples and Code Composer Studio

Before taking these steps, please, read carefully installation procedure in chapter 11
To correctly compile a Flex example, the include path in project file may require tun-
ing, and your Code Composer Studio may require a small update.

To run CST solution in user programmable Flex mode, the following steps
should be taken:

Step 1:

Step 2:
Step 3:
Step 4:
Step 5:

Connect and set up TMS320C54CST EVM, connect its COM port to
one of PC’s COM ports (if COM port is needed in your Flex mode ap-
plication), connect EVM to telephone line and also to power supply,
but do not power it up yet. Set jumpers on EVM described in section

Turn on power for EVM.
Start Code Composer Studio.
Load GEL file EVMBbACST. gel from Src\ GEL

Open appropriate project file in one of the folders:
1 Src\Fl exApp (for non-DSP/BIOS based applications)

or
[0 Src\Fl exAppBI CS (for DSP/BIOS based apps).

The project files are:
(1 CSTFl exApp. pjt

or
[CSTFI exAppBI CS. pj t, respectively.

Copy one of the Flex examples from folder
Sr c\ FI exExanpl es into either:

1 Src\Fl exApp

or
[Src\Fl exAppBI CS

renaming it to mai n. c, in order to substitute the existing
mai n. c file.

Getting Started 2-5

Running a CST Solution: Flex Mode

Step 6:

Step 7:

Step 8:

Step 9:

Compile the application and load it to EVM.
If compilation fails, please, refer to chapter [L1] on how to update CSL
files in Code Composer, and on how to tune project file include path.

Run the Program — EVM LEDs should blink several times, which indi-
cates that the program loaded and initialized CST in Flex mode cor-
rectly.

Call the number to which EVM is connected from another phone, and
test the application running in CST Chip (read CST Flex Mode Ap-
plication Note to learn more about Flex mode examples).

If something does not work properly, you may need to tune DAA
properly for the standards of your country by pressing Set ti ngs,
DAA I nternational settings (read more about this in chap-
ter), and also read Client Side Telephony (CST) Chip Flex Mode Flex
Examples Description (SPRA682).

Chapter 3

Hardware Overview

This chapter gives hardware overview of CST chip and C54CST EVM board
and its settings. It also describes the UART interface of the C54CST.

Section 3.6 provides an overview and instructions for adapting a C54CST Chip
to User-Specific Hardware.

Topic Page
3.1 Introduction tothe CSTChip 3-2
3.2 Main Modes of the CSTChip oo, 3-4
3.3 TMS320C54CST EVM Configuration 3-5
3.4 UART Hardware Flow Control 3-6
35 LED INiCatiONttt e et e 3-7
3.6 Adapting the C54CST Chip for User-Specific Hardware 3-8

3-1

Introduction to the CST Chip

3.1

Introduction to the CST Chip

Texas Instrument’s TMS320C54CST is a generic C54x DSP with UART and
Digital DAA integrated into it. It has 40 kW of RAM and 128 kW of ROM. Client
Side Telephony software was developed by SPIRIT and ROM’ed into this DSP
by TI, thus making it a TMS320C54CST device (see Figure 3-1).

Figure 3-1. CST Chip Overview

TMS320C54CST chip
Host | _| _ Analog
(optional) ~ [T UART DAA [o—> DAA
\ \
C54x core
\ \
) Internal Internal
Userscode LI "pam CST ROM
(optional) 40 kW 128 kW

The most generic hardware setup for CST Chip is shown in Figure 3-2.

On the telephone line side, CST Chip can be connected to the Analog DAA
chip from Silicon Laboratories, Si3016 (NOTE: CST chip can use any other
DAA or Codec; DAA driver in CST can be reloaded easily, see section
This provides galvanic de-coupling with the telephone line, and DSP is con-
nected to Analog DAA chip via two capacitors only.

On the host interface side, CST chip is connected to PC or any MCU controller
via serial asynchronous port (RS232C). Host controls CST chip via AT
command set both in data modem mode and in voice mode (most of the
functions of CST Chip are controllable via AT commands).

CST Chip does not require any external RAM or other hardware to run CST
tasks. At the same time, it is possible to load additional code to control CST
chip into the internal RAM of TMS320C54CST, and use CST software in ROM
as a library of XDAIS objects, thus eliminating the need for the host controller.

Introduction to the CST Chip

Figure 3-2. General Hardware Setup of CST Chip

Serial E[
Analog link : PC
DAA 4—"—» C54CST or
Si3016 chip = [Mo
o c—_

This document concentrates mostly on software aspects of 54CST chip. For
more information on hardware aspects read TMS320C54CST Client Side
Telephony DSP Data Manual, SPRS187.

Telephone
or
modem

Hardware Overview 3-3

Main Modes of CST Chip

3.2 Main Modes of CST Chip

There are two main modes of CST Chip operation — Chipset mode and Flex
mode.

In Chipset mode, only CST software is running inside CST Chip, controlled
from outside via serial link by AT commands. In this mode, the CST chip can
be used as standard data modem with voice features, including duplex voice
transfer (all standard functionality of CST Software is accessible via AT com-
mands).

In Flex mode, user code is loaded into and running inside of CST chip, using
the CST Software in ROM as a library. This mode gives the user more flexible
access to different levels of CST software, and allows the user to build applica-
tions using only CST Chip, without need for any host controller.

There are several ways to switch into Chipset mode from CST Bootloader:
1) High to low transition on the INT1 pin within 30 CPU cycles after reset;
2) Sending two symbols (“AT”) via UART, at 115200 bps, shortly after reset.

3) Writing a “magic” number 0x45 to memory location 0x7E via HPI inter-
face.

Even while in Chipset mode, the User still has possibility to load Flex applica-
tion (user code) into RAM using special CST AT command (AT#DATA, see
section P.4.1.29

If DSP starts in Chipset mode, it immediately runs CST solution from internal
ROM. Otherwise, it starts in Flex mode, and tries to load user’s program
through one of the external interfaces.

More information on CST Bootloader is given in section of this document
and the TMS320C54CST Bootloader Technical Reference Guide (SPRA827).

TMS320C54CST EVM Configuration

3.3 TMS320C54CST EVM Configuration

To run Spectrum Digital's EVM with TMS320C54CST processor, jumpers on
EVM should be set the following way (ON— pins 1 and 2 connected, OFF — pins
2 and 3 connected):

JP1 - OFF JP2 — OFF
JP3 — OFF JP4 — ON
JP5 — OFF JP6 — OFF

Initially EVM will start TMS320C54CST in Flex mode. Bootloader will run first,
and will be waiting for Flex application from several of external sources (see

section for details).

To start TMS320C54CST in Chipset mode, just type “AT” symbols via terminal,
connected to EVM’'s UART.

Hardware Overview 3-5

UART Hardware Flow Control

3.4 UART Hardware Flow Control

TMS320C54CST chip has only 2 dedicated pins for UART — RX and TX, the
rest of UART lines have to use general purpose /O lines of the chip, which are
combined with HPI pins.

The CST UART driver implies that these additional UART lines are connected
in the same way they are connected on EVM board (see the TMS320C54CST
Evaluation Module Technical Reference, Spectrum Digital, Inc.).

Table 3-1. UART Lines

Direction
UART Line External DSP Pin (for DSP) Comments

DTR HDO Input Controls CST behavior

RTS HD1 Input Used for HW flow control, tells CST that host is
ready to receive data

CTS HD2 Output Used for HW flow control, tells host that CST is
ready to receive data

DSR HD3 Output Not used by CST

DCD HD4 Output Reports modem online status

RI HD5 Output Reports RING event

If the user wants to connect UART lines to other pins or not to use these pins
at all, it is necessary to modify CST UART driver by reloading some or all of
its virtual methods in Flex mode (see section

LED Indication

3.5 LED Indication

C54CST chip uses its I/O Port #0 to output indication information about some
of the internal events. On Spectrum Digital’'s EVM this port is connected to 4
LEDs, DS3 through DS6.

The meaning of this indication is described in Table 3-2:

Table 3-2. Indication LEDs Meaning

Data Bit # CST's
in Port 0 EVM LED # LED# Meaning

0 DS3 LEDO Not enough MIPS for real-time operation

This LED is toggled every time a buffer in DAA driver or UART driver
overflows. Buffer overflow usually happens when some parts of the
code consume so many MIPS, that CST Framework consumes less
data from these buffers than it is supposed to, according to real-time
requirements (for example, 8000 samples per second from DAA).

1 DS4 LED1 Voice buffer underrun

Voice controller has a buffer, storing bitstream to be decoded and
played out in voice mode. This LED is toggled every time this buffer
underruns. This happens when Host does not send bitstream to be
played out fast enough, and this leads to interruptions in output voice
signal and sometimes even to incorrect decoding of further bitstream.

2 DS5 LED2 CTS (clear-to-send) circuit state

When CST’s UART driver receive buffer gets filled to % of its size
(capacity), the driver turns OFF CTS circuit telling the Host to wait and
not send data. When the buffer frees up to - of its size, the driver turns
CTS circuit back ON.

3 DS6 LED3 DSP in IDLE mode (power saving)

When Power saving mode is enabled (via ATP command), this LED
is turned on when DSP enters IDLE mode, and turned off when DSP
leaves IDLE mode. This LED allows the user to estimate roughly how
loaded the DSP is MIPS-wise: the darker this LED is, the more time
DSP spends processing CST'’s routines and less time it spends in
IDLE mode.

When Power saving mode is disabled, this LED should be off.

If the user needs to use I/O Port 0 for some other purposes, it is possible to
reload CST peripheral driver in Flex mode (see section and remove
any indication code, which writes to Port #0.

Hardware Overview 3-7

Adapting the C54CST Chip for User-Specific Hardware

3.6 Adapting the C54CST Chip for User-Specific Hardware

When going to User-specific hardware, CST software needs to be reconfi-
gured in order to fit the new hardware environment, in areas where it is different
from C54CST EVM.

This chapter gives only a brief overview of this topic, more information can be
found in other chapters of this document, and in appropriate application notes.

The following areas need to be taken into consideration:

1) DAA connection

2)

a)

b)

Using external SiLab’s Si3021+Si3016 DAA

CST DAA driver already includes support for an external Si3021 DAA,
and also for multiple DAAs of this type. So the User can connect multi-
ple DAAs to CST (either each DAA to each McBSP (which is what the
CST DAA driver supports), or several DAAs to one McBSP - con-
nected in daisy chain (for what a new DAA driver required)), and use
the same driver to control them all. Read sections , and

for details.

Using another external DAA

CST DAA driver can be reloaded and reconfigured to support any oth-
er external DAA. Again, multiple DAAs can be connected to CST.
Read sections [7.7.7.3 and [7.7.7.5 for details.

UART connection

a)

b)

Reconfiguring UART control lines

User may want to redefine the pins, which are used as UART control
lines (CTS/RTS, DSR/DTR, DCD, RI). By default, GPIO pins
HDO-HD5 are used for this purpose. To do this, some of the UART
driver virtual functions need to be reloaded. Read section for
detalils.

Using GPIO pins HDO-HD5 for other purposes

To configure CST UART driver not to use GPIO pins, see section
However, CST framework writes couple of more times into GPIO reg-
ister during initialization.

This happens in functions CST_DSPI ni t () and Tar get Boar dI -
nit () (they both set GPl OCRto 0).

So, if you want CST not to touch GPIO registers even during initializa-
tion, you have to reload functions CST_DSPI ni t () and Tar get -
Boardlnit().

c)

Adapting the C54CST Chip for User-Specific Hardware

Connecting with Host via UART

To connect host computer or Host CPU to C54CST via UART, it is not
required, although recommended, to use UART hardware flow control
lines. If flow control lines are not connected, the User needs to make
sure that 1) RTS line is tied to 1 (always high), so that CST would be
allowed to send data to Host; 2) Host never sends too much data to
CST chip, to prevent overflows of the internal UART buffer.

Also, C54CST’s UART is capable of operating at higher rates than
115200 bps (at least 16 times faster). This may be useful in some ap-
plications.

3) HPI connection

a)

Connecting with Host CPU via HPI

Host CPU can control CST via HPI port only. CST Bootloader supports
booting from HPI. UART traffic (AT commands and data) can be redi-
rected from UART to HPI. To make this redirection, the UART driver
needs to be reloaded (see

SPIRIT Corp. also is planning to provide a flex example on how to
switch CST into “HPI-controlled Chipset Mode”. Please, refer to the
CST support web site.

4) McBSP connection

a)

b)

Connecting TDM channels (T1/E1)

C54CST can process data coming from TDM channel just as it pro-
cesses data coming from DAA. In order to use CST framework in this
case, DAA driver needs to be reloaded, as described in section
To process several slots (PCM channels), multiple instances
of DAA driver and CST Framework should be created.

Connecting with Host CPU via McBSP

Host CPU can control CST via McBSP port only. CST Bootloader sup-
ports booting from McBSP. UART traffic (AT commands and data) can
be redirected from UART to McBSP. To make this redirection, the
UART driver needs to be reloaded (see

5) LEDs control

a)

CST Peripheral driver uses I/O Port #0 to output indication information
about some of the internal events using C54CST EVM LEDs. To con-
figure this indication differently, or to disable it, peripheral driver needs
to be reloaded, as described in section

Hardware Overview 3-9

Adapting the C54CST Chip for User-Specific Hardware

3-10

6)

7

Adding driver for a new device

a)

When adding a driver for a new device, the User can still benefit from
the reach functionality of CST framework, if that driver is added inline
with CST framework and driver concept.

Read sections [7.3.5.1 and [7.3.5.2 for details.

Using another clock for DSP

a)

b)

<)

Clock Frequency
If on-chip DAA is not used, C54CST can run at any frequency, up to
120 MHz.

Internal DSP clock multiplier can be set by calling function
TargetBoardlnit(...,int Miltiplier,..) with appropriate
parameter.

By default, on C54CST EVM, this parameter is equal to 8, which sets
DSP clock to 118 MHz with 14.7456 MHz input clock.

To run C54CST EVM at 59 MHz, change this parameter to 4.

Clock jitter

If DSP clock is used to clock DAA (for on-chip DAA, this is the case),
clock jitter needs to be very small, in order to enable robust modem
operation. For this reason, it is recommended to use crystals without
internal PLL, because otherwise crystal’s internal PLL in combination
with DSP’s PLL leads to high jitter.

Memory wait states considerations

When DSP clock is higher than access time to external RAM/ROM,
accesses to external memory are done with one or several wait states.
This is done by programming a wait state register, SWABR. CST pe-
ripheral driver does this in initialization function, that contains parame-
ter which specifies the amount of wait states for external memory -
TargetBoardlnit(...,...,int Ext\WaitStates).

By default, this parameter is equal to 2 wait states, which is applicable
for C54CST EVM with its 12 ns SRAM and when DSP is running at 118
MHz. If DSP is running at 59 MHz, this parameter should be equal to
1. For all port accesses (I/0), 7 wait states are set by Tar get Boar -
dl ni t (), and if this needs to be changed, this function has to be re-

loaded/overridden (see section

d)

Adapting the C54CST Chip for User-Specific Hardware

UART divisor considerations

On-chip UART is clocked from DSP clock. So, if DSP clock changes,
UART divisor needs to be changed to, to enable operation at standard
baud rate. For this purpose, UART driver has global parameters,
Uar t Par ans. baud and Uar t Par ans. cl kl nput . UART divisor is
set as multiple of these two values, DLAB=baud* cl kI nput . For ex-
ample, to set 115200 baud rate at 118 MHz DSP clock, these parame-
ters are baud=32 and cl kI nput =2.

8) Connecting to external SRAM

a)

Since C54CST device has a lot of internal RAM and ROM, and both
RAM and ROM need to be visible in program and data space for CST
software to function normally, external memory is visible/accessible
only via certain address areas, as described in section 8.3. In order
to map external SRAM to these areas of visibility, some external ad-
dress decoding & page access logic is required. Look for a hardware
application note on this on CST support web site.

9) Connecting to external ROM/Flash and booting from it

a)

b)

Connection of external parallel Flash can be done in the similar way
as it is done on Spectrum Digital's C54CST EVM (see schematics in
TMS320C54CST Evaluation Module Technical Reference, Spectrum
Digital, Inc.). Programming utility for C54CST EVM's Flash is provided
as an example in CST SDK, at Uti | i ti es\ Fl ex2Fl ash. Refer to
its readme file on how to use it.

Connection of other types of Flash and ROM chips is also possible.
Look for a hardware application note on this on CST support web site.

10) Adding new algorithm

a)

b)

Read section for details.

Remember, that CST algorithms portfolio can be extended via a set
of very memory-efficient CST Add-ons, supplied separately from CST
chip: Fax G3, V.29FC, G.729AB, G.723.1, 1200 bps vocoder.

Some of these topics will also be covered in upcoming application notes.

Hardware Overview 3-11

Chapter 4

Software Overview

This chapter explains the benefits of using the Flex mode to control a CST chip,

and gives an overview of two main CST software parts — CST Framework and
CST Telephony Components.

Topic

Page
4.1 Flex Mode Applications 4-2
4.2 Framework Componentsccoiiiiiiiiiinninnnn 4-3
4.3 Telephony Componentsiiiiiiaiaenan.. 4-5

4-1

Flex Mode Applications

4.1 Flex Mode Applications

There are two main modes of CST chip operation:
1 Chipset mode
1 Flex mode

In Flex mode, user code is loaded into and running inside of CST Chip, using
the CST Software in ROM as a library.

As an alternative for AT commands, CST offers a unified top-level software in-
terface — the main interface for flex mode applications. The unified high-level
interface - also called CST Action interface — fully covers and extends func-
tionality of AT command approach used during serial connection of DCE and
DTE.

CST Action interface can only be used in flex mode. The easy-to-use API of-
fers a number of additional features and dramatically reduces program size
and development time.

To design most of Flex applications, only the basic knowledge of CST architec-
ture is required. This is why the document mostly attends to CST Action inter-
face and main CST types.

When using the high-level interface, the whole development process can be
considered as a couple of standard stages.

Typically, the first stage includes preliminary design of application logical struc-
ture.

The second stage is basically implementing the algorithm as a combination of
main and callback functions.

A standard flex application roughly corresponds to a set of AT-command -
based standard applications. Multichannel and multi-codec applications, as
well as those with non-standard data flow, are considered non-standard flex
applications.

Such non-standard applications can use auxiliary options of CST Framework,
but in some cases it may be reasonable not to use CST Framework at all and
get down to XDAIS libraries instead.

Note that CST SDK contains a broad range of examples on implementing dif-
ferent applications, which makes it even easier to create User-specific Flex ap-
plications.

Main guidelines on Flex application development are given in chapter 5, Flex
Application Development Guidelines. Brief specifications of main CST types
are given in section Framework APl Overview.

Framework Components

4.2 Framework Components

All components of CST solution are tied together by a CST Framework, which
consists of several layers and forms very flexible and configurable framework.
Each framework layer has its own intermediate interface which allows DSP de-
velopers to work with the solution as a whole or get down to any level of ab-
straction most suitable for their purposes.

CST Framework includes:

(1 AT command parser (data and voice commands)

[CST Action control layer (to give the user control over CST solution as a
whole through mapping all commands and messages to different CST

sublayers)

(1 CST Commander control layer (to give the user control over CST solution
through a set of special command sequences)

[CST Service control layer (to provide data flow between different XDAIS
components and device drivers, and to give the user unified access to
CST XDAIS components through a set of special messages)

LIO compliant drivers for UART and DAA codec.

Memory management

DSP/BIOS core

Figure 4-1. CST Framework Diagram

AT command parser layer

Commander layer

Service layer

1aAke| uonoy

Software Overview 4-3

Framework Components

4-4

CST Framework has two alternative top layers and therefore, two alternative
top-level interfaces.

In Chipset mode, CST Framework interacts with host via AT commands. This
mode is used in Chipset mode and is configured as default.

However, the default status does not mean the preference of this interface for
user integration in flex mode because it enforces the user to imitate host termi-
nal, generate AT commands and decode responses, substitute a virtual UART
driver instead of existing one and so on.

As arule, standard CST Flex applications are not oriented on additional host
terminals. If firmware under development does not require modem-oriented
AT commands, it is not recommended to use AT parser for a top-level inter-
face.

The alternative to AT command interface is action-based interface. The basic
concept of this method is to eliminate AT parser and unify access to CST con-
trol layers.

CST Framework is a multichannel framework. All sub-service structures are
grouped into a global structure. CST defines a global instance of this structure
to be used for single channel applications.

CST Framework is OS-agnostic, in other words it can run under DSP/BIOS or
other RTOS, or without it.

In non-RTOS environment, CST Framework is running as single thread ap-
plication. However, CST fully supports multi-threaded mode, and if multi-
threading capability is provided (if the user is using some kind of RTOS), CST
Framework can benefit from it, by calling most of CST algorithms in a high-
priority periodic process and posting low priority standard threads to run back-
ground tasks (such as V.42bis compression). If there is no multithreading in
User’s environment, CST Framework will still operate OK, but the User will
have to be more careful about evenness of MIPS load distribution.

For more flexibility, some important CST functions are called via pointers.

To learn more about CST Framework, please refer to chapter b] Flex Applica-
tion Development Guidelines.

Telephony Components

4.3 Telephony Components

The CST solution integrates libraries of data communication, telephony
signaling, and voice processing algorithms. All components of the solution are
eXpressDSP compliant and share a standardized interface. All of these ob-
jects and device drivers are linked together by the CTS framework that pro-
vides unified access to the algorithms and eliminates compatibility and access

issues.

The following algorithms are included in the CST solution:

(1 Modem algorithms

V.32bis/V.22bis(up to 14.4 kbps)
V.42 error correction

® Embedded V.42bis compression
Modem integrator
® Embedded V.14 async-to-sync conversion

Fax G3, supporting V.17/V.29/V.27ter/\V.21 (up to 14.4 kbps) — as add-
on onlyl

V.29 fast connect (for POS terminals) — as add-on only?

(] Telephony algorithms

UMTG/UMTD (Universal multifrequency tone generator/detector)

m DTMF generation/detection
m Call progress tone generation/detection

Caller ID types 1 and 2

[Voice algorithms

G.168 line echo cancellation
G.726 ADPCM compression (16-40 kbps)

m Embedded G.711 PCM

G.729AB vocoder (8 kbps) — as add-on only?

G.723.1 vocoder (5.3 and 6.3 kbps) — as add-on only!
SPIRIT-proprietary 1200 bps vocoder — as add-on only?
Automatic Gain Control (AGC)

Voice Activity Detection (VAD)

Comfort Noise Generator (CNG)

1 This functionality can be added via a very memory-efficient CST Add-on, supplied separately from CST chip

Software Overview 4-5

Telephony Components

4.3.1 Data Modem

Data modem consists of several components, each implemented as a sepa-
rate XDAIS object. These objects are modem data pump (unifies ITU-T
V.22/V.22bis/V.32/V.32bis and automode modem procedure), V.42 error
correction protocol with embedded V.42bis data compression protocol, and a
Modem Integrator object, which unifies access to all other modem algorithms
(unified parameters, sample and data flows, extended status, etc), and inter-
connects them inside of itself.

Data Modem Controller (hereafter referred to DMController) is an upper layer
that integrates Modem Integrator object into CST Framework.

Figure 4-2. Data Modem Objects

4 DMController N

Modem Integrator

V.42 and

Data Pump V. 42bis

4.3.2 \Voice Processing

Voice processing includes several components — waveform codec (PCM and
ADPCM), line echo canceller, Automatic Gain Control (AGC) controlled by
Voice Activity Detector (VAD), Comfort Noise Generator (CNG). All compo-
nents have simple interface and operate with 14-bit 8 kHz samples.

CST's G726G711 component implements ITU-T G.726 adaptive differential
pulse code modulation (ADPCM) encoder and decoder of voice frequencies,
as well as G.711 logarithmic conversion. It supports A-law or p-law conversion
to/from uniform (linear) PCM according to G.711; and compresses/decom-
presses linear samples to/from bitstream, based on selected compression
rate — 16, 24, 32 or 40 kbps, according to G.726

CST’s Line Echo Canceller (LEC) is used for cancellation of electric echo
introduced by telephone hybrid, and conforms to G.165 and G.168 ITU recom-
mendations. It includes double talk detector and nonlinear processor. User
can set the value of maximum echo path equal to 16, 32 or 64 msec.

CST’s Voice Activity Detector (VAD) detects the presence of speech in the sig-
nal. It has special adaptive algorithm to automatically adjust to the level of the

Telephony Components

noise in the signal, in order to provide robust operation even in the noisy
speech. It has many user configurable parameters, allowing the algorithm to
optimally tune itself for a specific application. VAD also outputs several coeffi-
cients that characterize spectral envelope of the noise (when no speech is de-
tected), so that the regenerated noise would be similar to the original noise.

CST’'s Comfort Noise Generator (CNG) generates noise, distributed either
uniformly or shaped according to the spectral envelope coefficients, which can
be passed to CNG as parameters.

CST’s Automatic Gain Control (AGC) is designed specifically to amplify voice
signal, which has very non-stationary amplitude envelope. It operates much
better in conjunction with VAD, which can tell AGC when there is no speech
in the signal, so that AGC would not adapt in these periods.

4.3.3 Telephony Signals Processing

Telephony signals processing includes several components — UMTD (detects
DTMF and CPT signals), UMTG (generates DTMF and CPT signals) and Cli-
ent side Caller ID. All components have simple interface and operate with
16-bit 8 kHz samples (they have wider input dynamic range than voice proc-
essing components, which operate with 14-bit samples only).

CST includes Universal Multifrequency Tone Detector (UMTD) for detecting
DTMF, Call Progress Tones (CPT) and many other telephony signals.

In brief, UMTD detector filters input samples, estimates spectrum of input sig-
nal, checks the cadences and pauses and makes the decision about presence
of signaling tone. UMTD can be easily configured to fit the specific standard
of any country.

CST's DTMF Detector operates in compliance to ITU-T Q.24 Recommenda-
tion.

CST's CPT detector supports a wide range of call progress tones fitting the
standards of most countries according to Q.35 recommendation and some
signals that do not fit into Q.35 recommendation. It is also possible to describe
custom call progress tones.

CST includes Universal Multifrequency Tone Generator (UMTG) for DTMF,
CPT and many other telephony signals generation. It can be set to generate
tones according to the standards of different countries (tones’ frequencies and
cadences are adjustable).

UMTG-based DTMF Generator operates in compliance to ITU-T Q.23 Recom-
mendation.

Software Overview 4-7

Telephony Components

UMTG-based CPT generator produces output signals with cadences and fre-
guencies specified in UMTG settings.

CST's Client Side Caller ID Includes Type | and Type Il Caller ID signal
detection, compliant with standards of several providers and countries:
Bellcore GR-30-CORE, SR-TSV-002476; British Telecom SIN227 and
SIN242; ETSI ETS 300 659, ETS 300 778; Mercury Communications
MNR 19. Client side caller ID supports on call waiting operation and
parsing/converting the message into presentable format.

For more information see section Telephony Components Brief
Specification.

Chapter 5

Flex Application Development Guidelines

This chapter is design specifically to give a quick overview or quick start on de-
veloping a user-specific flex application, without overloading the User with lots
of specific information about CST framework and its components. We strongly
recommend to read this whole chapter before plunging into reading CST
framework API or into building your own flex application based on one of the
flex examples.

Section 5.1 explains the benefits of the Flex mode over Chipset mode for con-
trolling CST chip.

Section 5.2 elaborates a little bit more on this topic, explaining why AT com-
mands is not a convenient way to control modem- and voice-based applica-
tions when user code is inside the CST chip.

Section 5.3 describes three steps to build a user-specific flex application.

And finally, section 5.4 gives some specific details on how to actually compile
and load flex application.

Topic Page
5.1 Chipsetvs. Flex Mode i 5-2
5.2 AT Commands vs. Alternative Interfaces 5-3
5.3 Designing and Implementing Standard CST Applications .. .[5-5
5.4 Building and Loading Flex Applications 5-16

5-1

Chipset vs. Flex Mode

5.1 Chipsetvs. Flex Mode

5-2

CST is a multifunctional solution that can be used as an external modem chip,
as an embedded modem chip, or as a library of standalone XDAIS algorithms.
CST chip is a full-scale modem on a single crystal.

A CST chip can be connected to the serial port of a personal computer running
any terminal program. Using the default AT commands the user can test any
of the standard CST modes, including voice mode.

The user is not required to have any prior knowledge of ‘C54x architecture or
development tools in order to start using CST as an external modem chip.
However, this kind of firmware presumes a separate host processor con-
nected to CST via a serial port.

Software of the host processor should incorporate DTE interface of serial
asynchronous automatic dialing and control that includes data exchange via
serial port and flow control, algorithm for synchronization of AT commands,
data and shield codes (if required), AT commands coding and recognition.

Using CST as an embedded modem (i.e. flex mode) is somewhat similar to the
previous technique. Nearly each AT command corresponds to a CST APl com-
mand (CST Action).

In this case the host processor can be absent or can perform entirely different
functions. Program interface is simpler and more reliable than data transfer via
serial port using AT commands.

The user is not required to have any knowledge of CST architecture, XDAIS
algorithms, etc. in order to start using CST API, but basic knowledge of ‘C54x
architecture and related development tools is needed.

It is also necessary to note that CST framework is a real time system, and
therefore, the user may need to obtain some knowledge on real-time OS, for
example TI's DSP/BIOS.

In Flex mode, the user is able to utilize auxiliary features of CST, to modify pa-
rameters/functionality of various services and create non-standard applica-
tions. CST SDK (Software Development Kit) contains a large number of exam-
ples of CST usage in Flex mode.

Flex mode is also used to create patch-applications and to reconfigure CST
the way AT commands wouldn’t allow.

In the following chapters, we will review CST Flex mode exclusively.

AT Commands vs Alternative Interfaces

5.2 AT Commands vs Alternative Interfaces

DTE-DCE interface is logically implemented as a set of AT commands sent
by DTE to DCE (all commands and parameters are coded as lines of ASCII
characters) and DCE responses (the responses may be either verbal or nu-
meric).

Using the AT command interface (from hereafter, AT interface) allows to de-
sign equipment compatible with modems of different manufacturers, but this
is only true for the basic AT command set.

One should keep in mind that CST supports incomplete set of AT commands
and registers defined in V.250 standard, also providing additional features not
defined in scope of that standard.

The main problem of a classic DTE-DCE interface implementation is using the
same information channel (UART) for both data transfers and for control sig-
nals exchanging.

It is supposed that interpretation of data being exchanged is strictly related to
DCE state (off-line/on-line). This reduces flexibility of the interface significant-
ly. This disadvantage is due to the minimalist implementation of RS-232 inter-
face that is accepted as a standard.

However, certain modems (Comsphere from AT&T, DataLink from Penril) use
a separate physical port for control/diagnostic purposes. The problem be-
comes more aggravated when the amount of control data increases.

Sharing the UART channel results in a drastic complication of the exchange
protocol between DTE and DCE.

In general, simultaneous transfer of data and AT commands is impossible. An
attempt to do this can lead to a number of consequences, such as:

1 Lack of flexibility, especially obvious in voice and Caller ID applications

[Inability to control things continuously, inability to control at arbitrary in-
stants

(4 Inability to distinguish between data and commands in certain situations,
for example, if connection with a remote modem is broken prematurely

(1 Necessity for parsing the incoming data stream to separate the additional
status/control information (in voice applications)

Implementation of a protocol for intense data and command transmission is
a complicated issue in itself.

Flex Application Development Guidelines 5-3

AT Commands vs Alternative Interfaces

5-4

As an alternative for AT commands, CST offers a unified top-level software in-
terface, referred to as CST Action interface, which fully covers and even ex-
tends functionality of the AT command approach used for serial connection be-
tween DCE and DTE.

CST Action interface can only be used in flex mode. The easy-to-use API of-
fers a number of additional features and dramatically reduces program size
and development time.

Advantages of the CST Action interface arise from separation of data and con-
trol channels, easy implementation of complicated operations (such as non-
standard connection establishment scripts), automatic control and synchro-
nization of processes being executed, etc.

Flex mode allows to exploit all additional features of CST, including multi-chan-
neling, and considerably simplifies debugging.

Applications oriented on AT interface are easily transferable to CST Action in-
terface, as most of basic AT commands are reflected to standard CST Actions.

CST SDK contains a broad range of examples on implementing different algo-
rithms, which makes it even easier to create Flex applications.

Designing and Implementing Standard CST Applications

5.3 Designing and Implementing Standard CST Applications
With CST it is easy to create applications for a broad range of tasks, such as:

(1 Embedded data transfer modems. Can be used in various remote sensors
and security systems that require transfer of compressed digital data over
phone lines

(1 Voice menu systems with remote control option
[Call centers and answering machines
[Internet appliances

Designing of the vast majority of Flex applications requires only the basic
knowledge of the CST architecture. The whole development process can be
divided into two important distinct stages.

The first stage includes preliminary design of application logical structure.

The second stage is basically implementing the application’s algorithm as a
combination of main and callback functions.

This chapter gives some recommendations on what we consider to be the opti-
mal techniques for designing standard Flex applications.

A standard flex application roughly corresponds to a set of AT-command -
based standard applications.

Multichannel and multi-codec applications, as well as those with non-standard
data flow, are considered non-standard flex applications. Such non-standard
applications can use auxiliary options of CST Framework, but in some cases
it may be reasonable not to use CST framework at all and get down to XDAIS
libraries instead.

Definition of a non-standard application is based on the fact that the non-stan-
dard application requires functionality beyond a unified high-level interface as
described below.

Flex Application Development Guidelines 5-5

Designing and Implementing Standard CST Applications

5.3.1 Preliminary Application Design

Any Flex application algorithm should be represented as a set of elementary
states, such as waiting for a ring, initializing the modem, waiting for a connec-
tion to be established, sending data, closing the connection, etc.

Each algorithmic state is usually associated with a single command (CST Ac-
tion) sent to CST via the unified high-level interface. If a state of the User’s al-
gorithm requires performing multiple CST Actions, that state should be broken
up into several elementary states, so that each state is only associated with

a single CST Action.

Normally, each CST Action is associated with a single AT command. The most
common CST Actions are listed below:

Table 5-1. CST Action Associations

Similar
CST Action AT-command Note
Go off hook ATH1 Go off hook, run CPTD and DTMF detectors.
Run the Caller ID after a ring end - Usually runs automatically
Run the Caller ID after a line reversal - Usually runs automatically
Call a remote modem ATD Go off hook,
wait for a dial tone,
dial a number and run the modem in the originate
(calling) mode
(unless the “;” dial modifier is included in the
number).
Answer a call from a remote modem ATA Go off hook and run the modem in the answer
(response) mode.
Dial and switch to the voice mode ATD Go off hook,

in voice mode

ATA
in voice mode

Answer and switch to the voice mode

While in the voice mode, enable voice AT#VRX

receiving procedures

wait for a dial tone,
dial a number,
wait for a ring back signal appearance and then
disappearance

(only if the “@” dial modifier is included in the
number)
and enable voice mode

Go off hook and enable the voice mode (run Caller
ID Type 2)

Run the G.726/G.711 encoder and all signal
detectors (CPTD, DTMF).

5-6

Designing and Implementing Standard CST Applications

Table 5-1. CST Action Associations(Continued)

Similar
CST Action AT-command Note
While in the voice mode, enable voice ATHVTX Run the G.726/G.711 decoder and all signal

sending procedures

While in the voice mode, enable both ATHVRXTX Run the G.726/G.711 encoder, decoder and all signal

detectors (CPTD, DTMF).

the voice receiving and sending detectors (CPTD, DTMF).

procedures

While in the voice TX or RXTX <DLE><CAN> Turn off the G.726/G.711 encoder, decoder, keep the
modes, disable the voice receiving signal detectors on (CPTD, DTMF and Caller ID).

and sending procedures

Just make a call

ATDXxX; Go off hook, wait for a dial tone (if not disabled), and
dial a number

Shut down the current process ATH Correctly stop the current task, then turn off all other
correctly algorithms and go on hook.

Shut down the current process ATH Turn off all algorithms, go on hook. Also used to
immediately abort operation.

Send data

- Feed data to one of the transmitting algorithms
(DTMF generator, modem, G.726/G.711 decoder)

It is necessary to note that the developer is not limited by the set of standard
commands or actions described above. It is possible to create new Actions for
specific needs.

Any such Action implies performing a sequence of elementary operations that
can be interrupted, by the user or automatically, at any given time, but cannot
be modified once it is initiated.

Normally, it takes some time to perform a CST Action; therefore, CST will ig-
nore a new Action command if the current one is still being performed. Thus,
developers should always be prepared for the system to reject sent command
or data. In this case, the rejected command/data should be re-sent after some
pause?.

It is necessary to emphasize that CST provides full control over execution of
telephony tasks and it automatically synchronizes commands/data being sent
from the user with the current states of the CST processes, allowing the user
to concentrate on the higher-level design of the application.

2 Modification of process settings occurs instantaneously. However, in most cases, process settings modification does not
influence the process that is running already, and is not considered a standalone CST Action.

Flex Application Development Guidelines 5-7

Designing and Implementing Standard CST Applications

The currently executed atomic command can be canceled by a special user’s
command or automatically (when it cannot be executed successfully). In the
latter case, all unprocessed data is lost.

5.3.2 Detailed Application Design

Most of the data, coming from inside CST to the application, is transmitted in
special egress messages. The function that receives these messages is to be
provided by the developer. CST calls a function from CST services whenev-
er it is necessary. Therefore, in order to implement a proprietary application,
the developer needs to create only two functions:

1) Main function. This function contains the main logic of the application. Nor-
mally, the main function is implemented as a finite state machine. In each
of the states the function may possibly send data/commands to CST and
transit to a new state. Besides the state machine, the main function should
also call a standard CST process routine, which carries out the internal
CST processes.

2) Callback function. This function receives and processes messages com-
ing from the CST process routine and addressed to the application3.

The callback function receives messages from various CST services. The list
of standard messages follows:

Table 5-2. Standard Callback Function Messages

Message Type Description

Event detected by a peripheral Attached data contains a peripheral driver message, such as: ring
message, end of ring message, line reversal message.

Caller ID Attached data contains a Caller ID result code (success or error code,
such as time-out, invalid state, wrong check sum, illegal length,
unknown type)

Detected DTMF symbol Attached data contains a DTMF symbol

Detected call progress tone Attached data contains a CPTD tone, such as: dial tone, (fast) busy tone,
ring back tone and end of detected tone

Informs that modem just connected
Informs that modem just disconnected

Informs that voice just disconnected Voice data receiving and transmitting has stopped but the system is still
off-hook

3 Note that sending commands/data to CST Framework via unified high-level interface does not perform any immediate
actions and never leads to immediate calling of the user’s callback function.

5-8

Designing and Implementing Standard CST Applications

Table 5-2. Standard Callback Function Messages(Continued)

Message Type

Description

Voice data
Modem data

Auto turnoff request

Tick message

Attached data is an array of voice data bytes
Attached data is an array of modem data bytes

Attached data characterizes the reason for turnoff request (which may
be one of the following: Call Progress Tone Detection time-out, busy
detection, modem disconnection, failure to create an XDAIS algorithm)

Attached data is the number of DAA codec samples elapsed since the
last tick message

The callback function is a suitable place to make transitions between the states
of the main program’s state machine. This is due to some of the state transi-
tions being caused by messages that CST sends to the application. It is recom-
mended to place some of the state transition code to the callback function.

The developer should first outline the application’s logical structure and find
the elementary states and actions of the application. This includes finding the
correct sequence of state-to-state transitions and transition conditions. This
is the preliminary development stage.

Once the preliminary design stage has been completed, the developer may
turn his or her attention to CST and start developing the actual application. The
implementation of the application mainly consists of creating the application’s
main function and the callback function.

Both functions will work according to a previously designed application state
machine. The main function will send commands/actions to CST in the ap-
propriate states and transit between some of the application states. The call-
back function will receive and handle messages coming from CST and per-
form the rest of transitions between the application states.

Implementing a CST application, however, is not limited only to creation of the
code that sends commands to CST, receives messages from CST and han-
dles the application state machine. It may be necessary to add a custom sig-
nal-processing algorithm or use one of the CST algorithms directly, bypassing
the CST framework. It may be necessary to modify the behavior of CST, work
with additional and different hardware, etc.

This all is still about developing a CST application, although it may involve con-
siderably more effort than just creating the two functions as described above
and the application may no longer be considered as a standard CST Flex ap-
plication.

Flex Application Development Guidelines 5-9

Designing and Implementing Standard CST Applications

What CST offers to the user is a convenient global state machine that can be
used to unify a number of telephony algorithms and routines. Anything beyond
the standard CST functionality will require the appropriate changes to be made
in CST and the application.

5.3.3 Implementation

The second stage of flex application design process is implementation of the
application’s algorithm as a combination of the main and callback functions.
Most standard CST applications do not require re-configuring CST services.

In this case, it is feasible to implement the above functions by means of the
unified top-level interface provided by the CST Action Layer. The unified top-
level interface allows access to the lower layers and, if necessary, are control-
lable.

The unified top-level interface provided by CST Action layer is represented by
three functions:

Table 5-3. Top-Level Interface Functions

Name

Functionality

CSTAction_Init
CSTAction_Process

CSTAction

CST initialization (does not include hardware init)
Function to be called periodically

CST action execution. Sends a command or portion of data, and reads/
writes to configuration registers (S-registers)

The unified action-based interface is both BIOS- and single-thread ready. It
also supports multiple channels. However, to support multichannel I/O some
virtual functions in CST Framework have to be reloaded.

A generic single-threaded flex application, as well as a BIOS application, will
be similar to this code example:

#i ncl ude " Appr opri at ePat h\ Fr anewor k\ CSTChannel . h”

#i ncl ude ” Appr opri at ePat h\ Fr anewor k\ CSTAct i on. h”

/1 Sel ect single-thread or DSP/ Bl OS- based application
#define Bl OS_APPLI CATION 1

typedef enum {

as_STATE_1,
as_STATE 2,

5-10

Designing and Implementing Standard CST Applications

} tApplicationState;
t ApplicationState ApplicationState,;
/1 Prevent inproper conpilation
#i f 1 Bl OS_APPLI CATI ON
asm(”__sys_menory .usect \”".sysmem”,0");
#endi f //!BlI OS_APPLI CATI ON
asm(”__STACK_BEG NNI NG . usect \”.stack\”,0");
bool MyCal | back (tCSTChannel * pChannel ,
t CSTExt er nal MsgEvent CSTExt er nal MsgEvent,int Data,intl6 *pData)

switch (CSTExternal MsgEvent)
{

Appl i cati onSt at e=as_STATE_4;
}

return 1;

}
voi d MyPeri odi cThread ()

{
CSTActi on_Process (&Ch0);
NN
/1 USER S CCDE. .. /[
NN NN
switch (ApplicationState)

{

}

void Mylnitialization ()

{
NNy
//USER' S CCDE. .. //
LEELELEEErrrrrrre

}

#defi ne EVMBACST_118MHZ_MULT 8

void main ()

Flex Application Development Guidelines 5-11

Designing and Implementing Standard CST Applications

PEDTTILEEET i innnsd
/111 STANDARD | NI TI ALI ZATION:/ /11
NN NNy
#i f 1 Bl OS_APPLI CATI ON
/] Processor boot init.
CST_DSPInit ();
#el se
i ni tBi osConst();
#endi f // Bl OS_APPLI CATI ON
/1 CST internal data sections init.
CST_bsslnit ();
//Particular board init.
//You may need to change this according to your board specification
[1if it is different from standard EVM C54CST board
TargetBoardlnit (

Bl OS_APPLI CATI ON, /1 BIOS flag
EVMB4CST_118MHZ_MULT, // internal PLL nultiplier for external clock
2); /1 Wait states for external nenory

/1 CST Framework init.
CSTAction_lnit (&ChO, Bl OS_APPLI CATI ON, MyCal | back) ;
/llnitialize CSL
CSL_init();
[l Particular peripheral init.
/1You may need to change this according to your UART and codecs
[1if they are different from’ ' C54CST on-chi p UART and DAA
Target Peri phlnit (Bl OS_APPLI CATICN, 1) ;
#i f 1Bl OS_APPLI CATI ON
//Now it is safe to enable interrupts
asm (" rsbx INTM);
#endi f // Bl OS_APPLI CATI ON
[/ Performuser’s specific initialization
Myl nitialization ();
FEDTLTELELE i
/1] MAIN LOCAL LOOP...///]
FHDTLTELELE i

5-12

Designing and Implementing Standard CST Applications

#i f 1Bl OS_APPLI CATI ON

while (1)
{

MyPeri odi cThread ();

}

#endi f // Bl OS_APPLI CATI ON

The user’s code downloaded to the CST chip must contain a new function
mai n() . This function should perform all required hardware and software init-
ializations and periodically call the CST periodic function CSTAct i on_Pr o-
cess().

In chipset mode, the CST framework does not use DSP/BIOS functionality,
however, the DSP/BIOS core is available in the ROM and it may be used in
DSP/BIOS based applications.

In DSP/BIOS based applications, the user should periodically post an SWI that
runs the CSTAct i on_Process() function. An example of doing this is con-
tained in the file Bl OS\ CSTBI CS. c (this is a supplementary file for making
single-channel applications for DSP/BIOS). The function Bl OSDAADat a-
Cal | Back() posts the SWI periodically (once per a certain amount of input
DAA samples).

Thus, only Myl nitialization(), MCal |l back() and MyPeri odi c-
Thr ead() functions are to be extended by the user (only these three routines
are overridden in all CST Flex application examples in the SDK package).

Figure 5-1 represents a generic CST flex application.

Flex Application Development Guidelines 5-13

Designing and Implementing Standard CST Applications

Figure 5-1. Generic CST Flex Application

< Standard initialization >
CSTAction_Init
_Init) Unified high-level interface

P CSTAction_Process()

| Run periodic thread

CST periodic process
) CST calls back :
User’s callback - local state machines
@———{ |- user to pass—
procedure a messgge - xDAIS algos
- drivers (DAA, UART) —
¢ - Call directly or via SWI
Process passed info *
?WltCh (message) o Low priority tasks
. g') (modem and
Change @ voice only)
application state <
if needed 3
} / v
V CST controls
Main state machine ,/ p-| - run new script
switch (application state)/ Send command - inject new dgta
{ or data actions - change config. regs
CSTAction(...)
} If needed
CST periph. drivers
| A Access standard
If ne\eded CST peripheral » - UART ¥
- DAA/Codec
4
Access
non-standard
peripheral

Once the initialization is complete, interrupts should be enabled.

This moment marks the beginning of the main loop of the application. The main
loop must periodically call the function CSTAct i on_Process() . It can be
called as rarely as every 5 ms, but it is highly recommended to call it at least

several times more frequently.

5-14

Designing and Implementing Standard CST Applications

The function CSTAct i on_Pr ocess() runs all internal processes inside CST
and calls back the user’'s message processing function. CSTAct i on_Pr o-
cess() is a high priority thread function. Usage of DSP/BIOS allows adding
several auxiliary low-priority threads to utilize the processor resources more
efficiently. It is also possible to allocate a separate auxiliary threads for low-
priority modem and voice tasks (for example, for vocoders with large process-
ing frame size, such as G.723.1, G.729, etc.), and user’s control functions.

Three SWI's are defined in the file FI exAppBI OS\ CSTFI exAppBI CS. cdb.
The periodic thread corresponding to MyPer i odi cThread() is to be in-
voked via the high priority SWI. The other two are modem and voice low priority
SWI's.

Many of flex applications can be based on standard easy-to-read examples
included in the SDK to demonstrate certain capabilities of the CST algorithms.
Any CST flex application can run either under BIOS or in a single-threaded pro-
cess.

5.3.4 Chapter Summary

(1 CST features a unified top-level interface that provides a unified bi-direc-
tional stream of commands and data.

(1 CST features a set of predefined top-level actions to solve standard te-
lephony tasks.

[J CST features a global state machine for solving the standard telephony
tasks, and a number of independent system services.

(1 CST provides a reliable control over the process being executed. This
eliminates the need for the user to code additional logic that synchronizes
execution of standard telephony operations.

(1 Development of a standard CST application may be treated as develop-
ment of the main and callback functions. The main function usually serves
as the primary state machine for the application’s logic and it transfers
user’s data to CST algorithms. The callback function serves to process
messages sent by CST algorithms and contain data or control information
on state of the process being executed.

[CST allows developing both single-threaded and multi-threaded applica-
tions using DSP/BIOS.

1 Some multichannel, multicodec, and other non-standard applications re-
quire reconfiguration of some CST services. CST provides support for
that, however in some cases it may be reasonable not to use CST Action
Layer but get down to lower layers, even to XDAIS layer.

Flex Application Development Guidelines 5-15

Building and Loading Flex Applications

5.4 Building and Loading Flex Applications

This chapter gives some specific information on how to build a flex application,
and load it to CST chip.

If compilation fails, please, refer to chapter Production Installation
Procedure, for instructions on updating CSL files in Code Composer, and on
how to tune project file include path.

5.4.1 Projects for Building Flex Applications

All available flex examples are made in the same manner. As it mentioned in
section there is a suggested scheme for building a standard flex applica-
tion, single- or multithreaded. There are a few functions prepared for the devel-
oper to be completed according to the task in hand.

There are two standard project files for building any of the offered flex applica-
tion examples.

One is for single-threaded applications that will run without DSP/BIOS and the
other one is for multi-threaded applications that will run under DSP/BIOS.
Each of the two projects is already setup and tuned.

The developer only needs to create the main application C file (the project ex-
pects it to be mai n. c¢) or take the existing flex application example, put it into
the directory with the project file and build the project. Of course, if there are
extra files need to be included into the project, the project file may be altered.

The main files for the flex application examples are contained in the directory
Fl exExanpl es.

5.4.1.1 Project for Single-Threaded Applications

CSTFIl exApp. pj t
CSTFI exApp. cnd
Mai n. c

ROM CSTRom s54
ROMrts_ext.lib

5-16

A standard project for single-threaded flex applications consists of five files:

The project file for Code Composer Studio version 2.0 or higher
The linker command file

The main source code file of the flex application

The CST ROM reference file

TI's Runtime Library (the version which was used to build CST)

The linker command file (CSTFI exApp. cnd) specifies locations and sizes of
the application’s code and data sections. This file also contains sizes of the
heap and stack.

To accommodate the developer needs, the linker command file may be modi-
fied.

hexCST. bat
hex. cnd

hext obi n. exe

Building and Loading Flex Applications

After the project has been built, the produced out-file can be converted to a
binary image to be loaded into the CST chip via the serial port (if a JTAG is not
available).

To do this, run the file hexCST. bat , which will first obtain a hex file by running
the utility hex500. exe, and then a binary image by running the utility hext o-
bi n. exe.

The batch file, which runs hex500. exe, and then hext obi n. exe
The command file for hex500. exe
ASCII to BINARY file conversion utility

The project file, linker command file, batch file and conversion utility reside in
the directory FI exApp.

5.4.1.2 Project for Multi-Threaded Applications

CSTFI exAppBI CS. pj t
CSTFI exAppBI Cs. cnd
CSTFI exAppBI CS. cdb
Mai n. c

Bl OS\ CSTBI CS. ¢

Bl OS\ BI OSnemran. ¢
ROM CSTRom s54

ROMrts_ext.lib

A standard project for multi-threaded flex applications consists of the following
files:

The project file for Code Composer Studio version 2.0 or higher
The linker command file

The DSP/BIOS configuration file, preset for CST

The main source code file of the flex application

The DSP/BIOS support file

The CST wrapper for the DSP/BIOS memory manager

The CST ROM reference file, includes references to DSP/BIOS components in
ROM

TI's Runtime Library (the version which was used to build CST)

The DSP/BIOS configuration file (CSTFI exAppBI OS. cdb) specifies loca-
tions and sizes of the application’s code and data sections. This file also con-
tains sizes of the heap and stack.

To accommodate the developer needs, the DSP/BIOS configuration file may
be modified (see TMS320 DSP/BIOS User’s Guide (SPRU423B)).

After the project has been built, the produced out-file can be converted to a
binary image to be loaded into the CST chip via the serial port (if a JTAG is not
available).

To do this, run the file hexCST_BI CS. bat , which will first obtain a hex file by
running the utility hex500. exe, and then a binary image by running the utility
hext obi n. exe.

Flex Application Development Guidelines 5-17

Building and Loading Flex Applications

hexCST_BI CS. bat
hex_BI CS. cnd
hext obi n. exe

5.4.2 CST Bootloader

5-18

The batch file, which runs hex500. exe, and then hext obi n. exe
The command file for hex500. exe
ASCII to BINARY file conversion utility

The project file, linker command file, DSP/BIOS configuration file, batch file
and conversion utility reside in the directory FI exAppBI CS.

The CST bootloader is used to transfer code from an external source into inter-
nal or external memory following power-up.

The bootloader provides a variety of ways to download code to accommodate
different system requirements. This includes multiple types of both parallel bus
and serial port boot modes, UART boot mode, bootloading through the HPI,
and a special 54CST chipset boot mode. Bootloading in both 8-bit byte and
16-bit word modes are supported. To determine which boot mode to use, the
bootloader uses various control signals including interrupts, BIO, and XF.

The following is a list of different boot modes implemented by the bootloader,
as well as a summary of their functional operation:

1 54CST Chipset Boot Mode

This mode is used to start the 54CST device in the CST chipset mode.
Upon detection of this mode, the bootloader automatically passes the con-
trol to the 54CST chipset application. No code is copied in this mode.
There are several ways to switch into the Chipset mode from the CST
Bootloader:

1) High to low transition on the INT1 pin within 30 CPU cycles after reset;

2) Sending two symbols (“AT”) via UART, at 115200 bps, shortly after re-
set.

3) Writing a “magic” humber 0x45 to memory location Ox7E via HPI in-
terface.

Even while in the Chipset mode, the user still has the possibility to load a
Flex application (user code) into RAM using a special CST AT command
(AT#DATA, see section P.4.1.29

Host Port Interface (HPI) Boot Mode

The code to be executed is loaded into on-chip memory by an external
host processor via the Host Port Interface. Code execution begins once
the execution address loading is completed.

Building and Loading Flex Applications

(1 Parallel Boot Modes (8-bit and 16-bit supported)

The bootloader reads the boot table from data space via the external par-
allel interface bus. The boot table contains the code sections to be loaded,
the destination locations for each of the code sections, the execution ad-
dress once loading is completed, and other configuration information.

(1 Standard Serial Port Boot Modes (8-bit and 16-bit supported)

The bootloader receives the boot table from one of the multi-channel buff-
ered serial ports (McBSP) operating in standard mode, and loads the code
according to the information specified in the boot table. McBSPO supports
16-bit serial receive mode. McBSP1 supports 8-bit serial receive mode.

[0 UART Boot Mode (8-bit supported)

The bootloader receives the boot table from the on-chip UART and loads
the code according to the information specified in the boot table. Below are
the UART settings used:

W 38 data bits
B No Parity bit,
H 1 Stop Bit,
B No flow control
(] 8-Bit Serial EEPROM Boot Mode

The bootloader receives the boot table from a serial EEPROM connected
to McBSP1 operating in clockstop mode, and loads the code according to
the information specified in the boot table.

[/O Boot Mode (8-bit and 16-bit supported)

The bootloader reads the boot table from I/O port Oh via the external paral-
lel interface bus employing an asynchronous handshake protocol using
the XF and BIO pins. This allows data transfers to be performed at a rate
dictated by the external device.

The bootloader also offers the following additional features:

(1 Reprogrammable Software Wait State Register

In the parallel and I/O boot modes, the bootloader reconfigures the soft-
ware wait state register based on a value read from the boot table during
the bootload.

[0 Reprogrammable Bank Switching Control Register

In the parallel and I/O boot modes, the bootloader reconfigures the bank
switching control register based on a value read from the boot table during
the bootload.

Flex Application Development Guidelines 5-19

Building and Loading Flex Applications

(1 Multiple-Section Boot

The 54CST bootloader is capable of loading multiple separate code sec-
tions. These sections are not required to occupy a continuous memory
space as in some previous C54x bootloaders.

For more information on CST bootloader, please, refer to TMS320C54CST
Bootloader Technical Reference document (SPRA827).

5-20

Chapter 6

CST Framework and APl Overview

This chapter provides the user with overviews and descriptions of the different
CST layers, services, their API.

Topic

6.1 OVEIVIEW « . . e e et e e e e e e e e e e e e e e
6.2 CST Framework Layers

6.3 Framework APl 6-15 |

6-1

Overview

6.1 Overview

Besides standalone XDAIS algorithms, CST offers a hierarchy of services to
the user.

Generally, the CST services can be divided into two groups:

(] Basic, low-level, services:
B CST Service layer
B S-registers

B high-level DAA driver, peripheral driver, low-level DAA and UART driv-
ers, interrupt and memory management subsystems

(1 Advanced, high-level, services:
B AT Parser
B CST Action
B CST Commander layers.

The AT Parser is not used in standard flex applications.

The purpose of the CST Commander layer is executing a complex process
represented as a script, containing a sequence of commands, where each
command corresponds to an elementary operation to carry out. The CST
Commander interacts with the CST Service layer.

The CST Action layer supplements the CST Commander but it provides
virtually no additional functionality.

The CST Service layer is the foundation of CST. Its interface is similar to CST
Action layer but more XDAIS oriented.

The user can skip the advanced, high-level, services and instead work with the
basic, low-level, services directly.

CST Framework Layers

6.2 CST Framework Layers

CST Framework has two alternative top layers and therefore, two alternative
top-level interfaces.

In Chipset mode, CST Framework interacts with host via AT commands. This
mode is used in chipset mode and is configured as default. General view of
the CST Framework structure in initial configuration is shown in Figure 6-1.

Figure 6-1. CST Framework Controlled via AT Command Parser

USER

AT result A AT commands, |

tokens, data v data |

} UART driver } 1

X v

AT Parser o UART based e = Bootloader
high-level control |
f o
v v I Other services
| A
S-registers CST commnander } Cr(\lijgsuester?]ggje
[
e ——e Sy ;' N i _______ A
| Modem CST Servic |
: V.32bis/V.22bis DTME Det/Gen Echo canceller :
Error correction G.168
l V.42 l
| : ADPCM |
| Compression CPTD Det/Gen G.726/G.711 |
| V.42bis |
| - CallerlD VAD/AGC/CNG ||
Modem intergator
L L oo I
DAA driver ‘
CST solution

However, the default status does not mean the preference of this interface for
user integration in Flex mode because it enforces the user to imitate a host ter-
minal, generate AT commands and decode responses, substitute a virtual
UART driver instead of existing one and so on.

Usually, standard CST Flex applications are not oriented on additional host ter-
minals. If the developed firmware does not require modem-oriented AT com-
mands, it is not recommended to use the AT parser as the top-level interface.

An alternative to the AT command interface is the Action-based interface. The
basic concept of this method is to eliminate the AT parser and unify access to
sublayers.

CST Framework and API Overview 6-3

CST Framework Layers

Figure 6-2. CST Framework Controlled via CST Action Layer

User’s on-chip code

3 i T
[
CST Action } UART driver
% [
[
v v |
S-registers CST Commander } DEFENDS
‘ core
S —— I A
| Modem CST Service |
: V.32bis/V.22bis DTME Det/Gen Echo canceller :
| Error correction G.165 |
V.42
| ADPCM |
| Compression CPTD Det/Gen G.726/G.711 |
| V.42bis |
| ; CallerlD VAD/AGC/CNG ||
Modem intergator
e e e |
-
‘ DAA driver ‘

CST solutions

The action interface is based on interfaces of sublayers without essential mod-
ifications. The action interface allows the user to begin integration into the CST
Framework.

6-4

CST Framework Layers

Figure 6-3. Control Layers Interaction

USER

UART driver

b

AT parser

A s

script Re;]s

«g» CST Commander

?

messages

erep

uondvy 1S9O

<«———messages

e v et

CST Service

|
' |
g | Voice Telephony Modem
& 1 | components components components | |
' |
|

f ; f

________ - ___1

DAA driver

CST incorporates a wide range of services. The CST Framework provides:

1)
2)
3)

4)

5)
6)

7

8)

9)

Interrupt management
Own and BIOS memory management

LIO compliant UART and DAA codec drivers, high-level DAA driver and
peripheral driver (CST Service Layer)

A service that manages XDAIS object instances (XDAIS layer, CST Ser-
vice layer)

A service that ties XDAIS layer with the drivers (CST Service layer)

A service to control and reconfigure processes on XDAIS layer (CST Ser-
vice layer)

A service for unified digital data and control data flows organization (CST
Service layer)

A service for automatic consecutive execution of standard operations
needed for the telephony routines (CST Commander layer)

A service to handle CST Service messages (CST Commander layer) and
to redirect message information upward (to AT parser or CST Action layer
and then to the user)

CST Framework and API Overview 6-5

CST Framework Layers

10) A service for external user’s control (CST Commander layer, AT parser,
optional for Flex mode)

11) An implementation of CST Commander and UART interconnection (AT
parser, optional for Flex mode)

12) AT command parser (optional for Flex mode)

13) A high-level service providing a unified interface for the user to access
CST data and transfer commands (CST Action layer)

When controlling the solution from an external controller via a serial port, the
AT Parser is considered to be the most convenient, though simplified, control
tool. Standard AT commands provide control over all CST solution compo-
nents.

6.2.1 Action-Based Interface

The Action-based interface is an alternative to the AT parser to control the CST
solution. It is a unified interface between the whole CST and the CST user ap-
plication. The CST Action layer unifies all CST services being split to several
sublayers in order to offer the user the most powerful and easy way for fast
integration into the CST Framework. The CST Action layer interface is more
convenient than AT commands and, unlike the AT command interface, it does
not restrain the user from the direct access to other CST modules.

As it has been mentioned above, the CST Action layer is represented by the
three functions: CSTAction_Init(), CSTAction_Process(), and
CSTAction().

The function CSTActi on_I ni t () is used for initialization of the interface.
The function CSTAct i on_Process() runs the internal CST processes, and
is to be called periodically. The function CSTAct i on() is used for unified com-
mand/data delivery to CST services.

CSTAction performs actions of three types:

CST Framework Layers

Table 6-1. CST Actions

CST Action

Description

Configure CST settings

This action results in reading or writing of a given system
parameter mapped to one of the S registers (note that DAA
registers, which are also mapped to the S registers, can't be set
by the CSTAct i on() function).

The action of this type will be executed immediately.

Run one standard (typical) telephony This action results in preparing to execute a script consisting of a

operation

sequence of elementary operations called atomic commands. No
immediate action is performed.

The CST Commander later executes the atomic commands.

Transfer CST Service message Generally used for data transfer.

Therefore, the CST Action layer integrates elements of the three modules: the
S registers (configuring options), the CST Commander layer (running algo-
rithms successively), and the CST Service layer (transferring data).

6.2.2 CST Commander Layer

The middle CST layer - the CST Commander layer - is intended to perform
sequences of elementary operations and handling the internal state machine.
In general, the CST Commander provides interaction between the user and
the CST Service control layer by decoding user’s instructions into separate
atomic commands and transferring sequences of corresponding messages to
the CST Service layer. This allows controlling the CST solution as a single ob-
ject through standard and custom command scripts. The CST Commander
contains a set of predefined standard command scripts, which cover most of
standard operations needed for the telephony applications.

The CST Commander layer is an extendible layer that allows adding new func-
tionality at any time, without having to change internal CST code.

At any given moment, the CST Commander focuses on execution of a single
atomic command, which is active at the moment. If the command is executed
successfully, the next command of the script becomes active.

CST Framework and API Overview 6-7

CST Framework Layers

6-8

The main atomic commands are as follows:

d

U U uJ U oo dd

]

4
4

Send a message to the CST Service that will immediately turn off all active
algorithms

Send a command to CST peripheral driver

Sustain a pause

Wait for appearance of a call progress tone

Wait for disappearance or absence of a call progress tone

Dial a telephone number stored in a string

Send a message to the CST Service that will turn on the modem

Send a message to the CST Service that will turn on stand alone voice loop
(run echo canceller and activate voice path)

Send a message to the CST Service that will turn on the voice pumping
in rx or tx direction

Send a message to the CST Service that will turn off the voice pumping
in rx or tx direction

Wait for the modem to establish a connection
Send a message to the CST Service that will turn on the Caller ID

Send a message to the CST Service that will turn on an algorithm. No algo-
rithm specific parameters are included in the message. Used to run DTMF
or CPTD detector.

Correctly terminate the current task (usually it's used to disconnect the
modem).

Write to an S-register
Several system commands

Several special AT parser oriented commands

The CST Commander layer knows how to perform each command, what to do
in abnormal situations, including task cancellation. The ultimate purpose of the
Commander layer is interaction with the CST Service layer.

When developing a non-standard flex application, the developer can create
new custom atomic commands and scripts.

CST Framework Layers

In general, the CST Commander layer performs the following operations:
1) It processes the current atomic command of the current script

2) If the current command requires sending of a message to the CST Service
layer, it attempts to deliver that message to the Service layer, until the Ser-
vice layer will be able to accept it or until the task is aborted

3) It processes messages from the CST Service layer, which contain data
and control information

4) It also provides a service to handle CST Service messages and to redirect
message information upward (to the AT Parser or CST Action layer and
then to the user).

There are two important things to point out about the CST Commander:

1) The CST Commander does not support data transfers from the user to
CST Service layer.

2) The user can skip both the AT Parser or CST Action layer and start working
with the CST Commander directly, since the CST Commander does not
depend on these layers.

6.2.3 CST Service Layer

The CST Service layer is the lowest control layer of the solution. It performs
foreground processing by running XDAIS algorithms. Internally, the Service
layer ties separate XDAIS objects, analog and digital data flows and control
commands together. The CST Service and CST Commander layers interact
with each other by dedicated messages. This allows controlling specific ob-
jects within the CST solution via unified interface, which also has some error
protection capabilities.

Almost all control and data information between the CST Service and its user
(the CST Commander) is carried by dedicated CST Service messages. A CST
Service message is a multifunctional information packet. It can contain broad-
cast and dedicated control command, and data bytes. In case when a mes-
sage is sent to the Service layer, it is actually a request, which the service can
either accept or reject. At any time the Service layer can be executing only one
request. The message being sent from the service is to inform the higher layer
or submit a new portion of data. These messages are put into a small queue
that allows keeping several messages issued from different tasks.

CST Framework and API Overview 6-9

CST Framework Layers

Figure 6-4. CST Service Periodic Thread

CST Service periodic thread <

CSTServiceProcess()

DAA has
accumulated
10 samples

Yes
v

DAA codec I/O and voice tasks
Post or call low priority voice task;
CSTServiceProcesslOandVoice()

'

Other active algorithms

Post or call low priority modem task—Egress message

CSTServiceProcessCommonAlgos(

'

Callback higher level

CSTFxns.pCSTW

'

Call periodic functions of

Egress messages

Small
message
queue

Egress messages

peripheral drivers
CSTFxns.pPeriphProcess()

Try to send a message
to CST Service
CSTSendServiceMessage()

Ingress messag
User’s storage

y

I— New messag

Process pending message
CSTFxns.pProcessMessage()

Ingress messag

Service storag

6-10

-

C End)

There is no A
pending message:

1aAe| JaybiH

J

(Jasn ‘uonoy 1S9)

1aAe| JaybiH
(Jspuewwod 1S2)

J

CST Framework Layers

The CST Service layer is the foundation of CST. Its main periodic function is
CSTSer vi ceProcess(), which is called directly from CSTActi on_Pr o-
cess() . This function must be called from a high-priority periodical thread.
The maximum allowed interval between the calls is 5 ms (e.g. a call once per
40 samples at 8KHz sampling rate), but it is recommended to call it several
times more often. The CST Service control layer is synchronized with the DAA
codec operating at 8 KHz, and, normally, the CSTSer vi cePr ocess() peri-
odic function runs the internal processes if there are at least 10 new samples
(which corresponds to 1.25 ms), but if there are fewer samples the function will
do no processing. In multithreaded applications, CSTAct i on_Pr ocess()
may be called from the user’s periodic thread. In the file Bl OS\ CSTBI CS. ¢
a high-priority SWI is periodically posted in a special procedure called from the
DAA interrupt callback. This SWI calls the function CSTAct i on_Process() .

Similarly to the CST Commander, the user can work with the CST Service layer
directly, skipping the AT Parser, CST Action and CST Commander layers. This
is possible because the CST Service layer does not strongly depend on these
layers.

If all of the above control layers lack the needed functionality for a specific task
and a direct control over the CST objects is required, the XDAIS layer can be
used directly. This layer includes a set of eXpressDSP compliant objects and
standard XDAIS oriented framework (ALGRF) for correct operations with the
objects.

CST Framework is a multichannel framework; therefore, all services are multi-
channel as well.

6.2.4 Other CST Parts and Services

Besides the AT-command parser, CST Action, CST Commander, CST Service
and XDAIS layers, there are other parts in CST, namely: the S-registers ser-
vice, high-level DAA driver, peripheral driver, low-level DAA codec and UART
drivers.

The CST Framework supports a well-known modem S-registers interface. The
S-registers can be thought of as object properties. The S-register service
maps major CST configuration variables to the index-addressable parameter
list. That means that each S-register can be assigned to an existing 16-bit vari-
able. Writing or reading an S-register will result in writing or reading the vari-
able associated with the S-register. Each S-register is referenced by its num-
ber. When developing a non-standard Flex application, the developer can de-
fine his/her own S-registers.

Additionally, for convenience, all DAA hardware registers are mapped to S reg-
isters starting from S register #100, so the user can configure DAA internation-
al and other settings via S registers.

CST Framework and API Overview 6-11

CST Framework Layers

A more detailed specification of S-registers can be found in sections

b.45andp.4.6]

The high-level DAA driver is dedicated to perform the hardware-independent
portion of DAA operations such as going off- and on-hook, dialing a digit (in the
pulse mode), detecting rings and line reversals and more. The hardware inde-
pendence is achieved by indirectly calling the low-level DAA driver functions
through a well-defined LIO interface and the fact that the DAA hardware regis-
ter numbers and values aren’t hard-coded. This is why it has been possible to
make a large portion of the entire DAA driver hardware-independent. When
using a different DAA device or codec, the high-level DAA driver is not a sub-
ject to change.

For detailed information about the high-level DAA driver see section [7.7.3]

The peripheral driver is used to perform the hardware-specific initialization of
CST and handling the hardware specific for the EVM54CST (LED signaling).
The driver also overrides methods of the high-level DAA driver to extend them
with hardware specific functionality.

For detailed information about the peripheral driver see section [7.7.2]

The low-level DAA and UART drivers give the CST and user access to the ap-
propriate devices. The drivers export their functions through the unified LIO
interface. The interface makes it possible to integrate drivers for new devices,
override driver methods and alter their functionality, even at run time.

For detailed information about the low-level DAA and UART drivers see sec-

tions and The LIO interface is described in

6.2.5 CST Layers Summary

6-12

CST Framework consists of the following parts:
(1 AT command parser (data and voice commands, used in chipset mode)

[Several control layers (used in Flex mode):

W CST Action layer (to give the user control over CST solution as whole
through mapping all commands and messages to different CST sub-
layers; eliminates the need to use the AT parser)

B CST Commander layer (to give the user control over CST solution
through a set of special command scripts)

B CST Service layer (to provide data flow between different XDAIS com-
ponents and device drivers, and to give the user unified access to CST
XDAIS components through a set of special messages)

CST Service Layer

CST Framework Layers

(1 High-level DAA driver (to perform the hardware-independent portion of
DAA operations)

Memory management subsystem
Interrupt management subsystem

Peripheral driver (responsible for low-level, hardware-specific initializa-
tion of CST)

[Low-level (LIO) DAA and UART device drivers

CST will use DSP/BIOS functions for handling interrupts, memory allocation
and scheduling threads of different priorities if a Flex application is compiled
for DSP/BIOS.

The low CST layer (CST Service layer) performs foreground processing by
running XDAIS algorithms. The CST Service layer and the higher layer (the
CST Commander layers) interact with each other by dedicated messages.

CST Commander Layer

AT Parser

The middle CST layer is intended to perform sequences of elementary opera-
tions and handling the internal state machine. In any time the CST Command-
er layer can be executing a single command of a script. The CST Commander
knows how to perform each command, what to do in abnormal situations, in-
cluding task cancellation. The purpose of the Commander layer is to interact
with the CST Service layer.

An additional part of the CST Framework is the UART interconnection. It in-
cludes AT command parser and all related tasks such as modem escape se-
guence tracking (<pause> +++ <pause>), voice shielded (DLE) code process-
ing, data flow organization, etc. The CST AT parser is a simplified service with
reduced functionality. The AT parser and the high-level control functions repre-
sent an example of the user integration. The AT parser (as well as the Action
layer) does not have any especially useful logic. Only the AT parser is aware
of UART, it is the only layer using it.

CST Framework and API Overview 6-13

CST Framework Layers

CST Action Layer

6-14

The high-level CST Action layer represents a unified interface between the
whole CST and the CST user application. The main interface function of the
Action layer is CSTAct i on() . This layer does not add new functionality and
only unifies the CST Service and CST Commander layer interfaces. The layer
is an alternative to the AT command parser and UART interface. All data and
commands to CST are sent through a CST Action unified message. All data
and control information from CST is transferred through the only callback func-
tion (except for the modem and caller ID tasks). The CST Action layer is a very
small service, and it is a good example of working directly with the CST Com-
mander and CST Service layers.

6.3 Framework API

6.3.1 Main CST Types

Framework API

Main CST types:

Type Name

Description

tCSTAction

tCSTActionType

tCSTStandardOperationType

tSRegDefinition

tCSTExternalMsgEvent

tCSTAtomicCommand

tCSTServiceMessage

tCSTMessageResult

tCSTFxns

tCSTChannel

Unified CST Action message (the main structure of CST Action interface).
The message is a variant record, whose actual content depends on the

message type. See [7.3.1]

CST Action message type (the type key). Selects the actual type of the CST
Action message content. See

Set of CST Action standard operations. Most operations correspond to
standard AT commands, such as ATA, ATD etc. See

Set of defined CST S-registers. The S-registers configure CST settings
and serve for

(O XDAIS parameters setting (e.g. voice or modem speed)
(1 services parameters setting (e.g. voice gain, pause duration’s)
(4 \Various system parameters and controls

See

Set of CST Action (CST Commander) external event messages to be sent
to the user’s callback function. Either the AT parser or the user’s flex
application should receive and process such event messages. See

Set of CST Commander atomic commands. These commands, when put
together in a sequence, compose a script. Standard scripts correspond to
CST Action standard operations. See

CST Service message structure (the main structure of CST Service
interface). It is used for both messages addressed to CST Service and

messages originating from CST. See

Set of CST Service (and CST Action) message result codes. Contains
results of processing a message by the CST Service (or CST Action). See

CST dynamic functions. They allow the user to extend functionality of CST
services for non-standard Flex applications. All global dynamic functions
are grouped in the structure CSTFxns. See

A structure that keeps individual channel data. One such structure is
defined in CST: t CSTChannel Ch0. In multichannel applications there
will be a number of such structures.

CST Framework and API Overview 6-15

Framework API

6.3.2 S-Registers

6-16

Most services keep their variables (data) in separate structures. These struc-
tures are grouped together into a global structure t CSTChannel (defined in
CSTChannel . h).

Therefore, data of the services is individual for each channel instance. CST
defines a global variable Ch0 to be used for single channel applications (file
CSTChannel . c). At the same time, S-registers, DAA and UART drivers also
have channel dependent data structures for each channel instance.

Nevertheless, there is also some global data common for all channels. It in-
cludes dynamic function structure, S-register descriptors, algorithm initial pa-
rameters (except for those mapped on S-registers), DAA and UART drivers’
global data. This means that CST Framework can't be used for several differ-
ent applications running simultaneously on the same CPU, however, it is per-
fectly fine to have a single multi-channel flex application.

CST defines several dozens of S-registers (enum t SRegDefi niti on de-
fined in CSTSReg. h). Most of them may be split into the following semantic
groups:

(1 Registers specifying dial operation (srd_LONG DI AL_DELAY,
srd_DTM-_TONE_DURATI ON, srd_DEFAULT_DI AL_MODE and sev-
eral temporary registers for dial modifiers)

(1 Registers for modem settings (srd_V42, srd_V42BI'S, srd_MO>
DEM GAI N, srd_FAST_CONNECT, srd_DESI RED MODEM SPEED,
srd_TI ME_BEFORE_FORCED HANGUP and AT parser oriented register
srd_ESCAPE_PROVPT_DELAY)

[Registers for voice settings (srd_VO CE_GAI N, srd_ECAN,
srd VO CE BPS, srd VAD, srd_ACC, srd_DLECHAR)

Registers for other settings (srd_| NPUT_GAI N, srd_Cl D_MODE)

(I

Registers controlling AT parser behavior

(1 System indication registers (sr d_STATI STI CS_FLAGS, srd_AVAI L-
ABLE _ALGOS, srd_AVAI LABLE NMEMORY,
srd_STACK FREE_SI ZE, srd_PEAK M PS, srd_| NPUT_PONER)

When developing a non-standard application, the developer can add new S-
registers. As it has been mentioned earlier, all channel instances have a com-
mon list of S-registers, but the values are individual. Most of S-registers are
assigned to variables in t CSTChannel structure. New S-registers can be
linked to memory that is reserved for user in array t CSTChannel . aUser -
Reser vedWr ds.

6.3.3 Call Tree

Framework API

S-registers with humbers exceeding 100 are treated as physical peripheral
registers (CST maps Si3021 DAA registers to S-registers 100...119). User
should not access these registers via CST Action interface.

For more information about S-registers, read section [7.1.1]

All CST algorithms run in a high-priority periodic process. The entry point of
the periodic thread is defined as CSTAct i on_Pr ocess() . In multi-threaded
mode, the CST Service control layer posts a couple of low priority threads. The
user should not manually post them. During periodic thread execution, a num-
ber of internal CST routines are to be called and in between them the user’s
callback function is invoked. For more flexibility, some important CST functions
are called via pointers. Once initialized, the pointers never change. This allows
the user to redefine the virtual CST functions and, thus, alter or add functional-
ity of various services.

Most of the pointers for virtual/dynamic functions are defined in the global
structure CSTFxns (of the t CSTFxns type, declared and defined in CSTCom
mander . h, CSTConmmander . ¢). See sections 6.3.§ and [7.2.2.1)

A schematic diagram of the periodic thread call tree is shown in Figure 6-5.

CST Framework and API Overview 6-17

Framework API

Figure 6-5. Schematic Diagram of CST Periodic Thread Call Tree

6-18

User

—>

User periodically calls
CSTAction_Process()
which is alias for
CSTServiceProcess()

e b

Is there at least
10 available 10 samples in
DAA buffer?

CSTServiceProcessBuffer()
call active xDAIS algorithms

EVMPeriphProcess()

v

DAAProcess()

EVMPeriphDriver()

v

DAAPeriphDrive()

User’s callback
function

oy
CSTAction_UserOperation()
CSTCommander()
> srcipt processor
- - --ifneeded -+ ----- [4
if ne
CSTServiceSendMessage()
\ 4
CSTServiceProcessMessage
------------ feecececececaccacans XDAIS object creation,
data transfer
v
CSTAction_ServiceFeedBack} CSTServiceGetMessage()

CSTFeedBackMsgFunc()

Framework API

The key functions are painted in gray. Dotted arrows represent dynamic func-
tion calls, e.g. the functions are called through the CSTFxns pointers. The Ac-
tion, Commander, Service control layers, high-level DAA driver and the periph-
eral driver are presented by the following functions:

(1 CSTAction_Process(), CSTAction_UserOperation() and CSTAction_Ser-
viceFeedBack() belong to the CST Action control layer.

[CSTCommander() and CSTFeedBackMsgFunc() belong to the CST
Commander layer.

[CSTServiceProcess(), CSTServiceProcessBuffer(), CSTServiceSend-
Message(), CSTServiceProcessMessage(),CSTServiceGetMessage()
belong to the CST Service control layer

1 EVMPeriphProcess(), DAAProcess(), EVMPeriphDriver(), DAAPeriph-
Drive() belong to the peripheral and high-level DAA drivers.

The functions CSTServiceSendMessage(), EVMPeriphDriver() and CSTAc-
tion() (the last one is never called in the periodic thread) implement main con-
trol for respective layers. A call to any of these functions may initiate a process,
which will take some time to complete. Therefore, a subsequent call to the
function may not always be accepted, as there may still be an ongoing process
that hasn't finished yet. If a service cannot accept a user request, the user
should repeat the request during (or after) next periodic thread iteration.

For more information concerning this topic, please read about The Main Peri-
odic High-Priority Thread Function in

6.3.4 Controlling CST Through Action Layer Interface

The CST Action control layer unifies access to the three services: S-registers,
CST Commander and CST Service control layers. To access any of these ser-
vices, a CST Action message should be sent to the CST Action layer with the
function CSTAct i on() . There are four message type keys defined (enum
t CSTActi onType defined in CSTAction. h): cat_ SET REGQ STER,
cat GET_REG STER, cat_ STANDARD OPERATI ON and cat CSTSER-
VI CE_MESSAGE. Therefore, depending on the type of the message, the func-
tion CSTAct i on() will do one of the following: read/write an S-register, run
a script (a sequence of atomic commands) or send a message directly to the
CST Service layer (usually used to transfer data).

The CST Action can run both standard and custom user-defined scripts.

The set of standard scripts is defined by the enum t CSTSt andar dOper a-
ti onType (file CSTAct i on. h). Each of the set elements corresponds to a
standard script. The standard scripts may be split into the following semantic
groups (the parenthesis contain the applicable set elements):

CST Framework and API Overview 6-19

Framework API

6-20

(1 Scripts for standard modem operations (sot _ TURNON_MODEM CALL_ X,
sot _ TURNON_MODEM_ANS)

[Scripts for standard voice operations (sot _TURNON VO CE_CALL_X,
sot _TURNON_VO CE_ANS, sot _TURNON_VO CE_RXDATA,
sot _TURNON_VO CE_TXDATA, sot _TURNON_VO CE_RXTXDATA,
sot _TURNOFF_VO CE_DATA)

(1 Scripts for standard caller ID operations (sot _Cl D_AFTER _RI NGEND,
sot _Cl D_AFTER LI NE_REVERSAL)

[J Scripts for standard simple telephone operations (sot OFF HOOK,
sot _JUST_CALL_X)

(1 Scripts for task termination (sot SOFT_TURNOFF_ALL, sot TURN-
OFF_ALL)

Other standard scripts are sot _CSTSERVI CE_ TURNOFF_ALL, sot CUS-
TOM_ATOM C_CHAI N_Xand sot _SET_DI AL_STRI NG_X.

All of the identifiers with the postfix *_X' need an additional parameter (a dial
number string or the user-defined sequence of atomic commands, e.g. a user-
defined script). The additional parameter is also stored in the CST Action mes-
sage.

The internal CST processes, some of which may have been initiated by CST
Action messages, will eventually send event and data messages into the
user’s callback function. The Action based layer takes part in transferring
these messages.

The CST Action layer redirects the CST Commander’s feedback messages
to the user’s callback function.

The layer also sends periodic timer messages to the user’s callback. Addition-
ally, the CST Action layer defines a dedicated modem callback function to be
able to get the received data from the modem and pass the data as a message
to the user’s callback function. This is a default configuration. However, it is
recommended to use another modem callback function for intensive modem
data transmission, because the CST Action interface does not allow the user
to reject the received data. If the user can’t take the data, the data will be lost.

All these messages, which will be sent to the user’s callback, are defined in
enum t CSTExt er nal MsgEvent (file CSTComrmander . h).

The feedback messages for the user’s callback may be split into the following
semantic groups:

Framework API

(1 Messages with received information (eme_PERI PH_DATA,
eme_DTMF_DATA, eme_CPTD_DATA, eme_VO CE_DATA,
eme_MODEM DATA, ene_Cl D_DATA)

(1 Event messages (eme_TI CK, ene_MODEM CONNECT, ene_MO
DEM DI SCONNECT, ene_VO CE_DI SCONNECT)

[0 System data messages

Strictly speaking, the above lists are not exact. Even though the message
enme_Cl D_DATA should carry CID data, it does not. The reason for this is the
amount of CID data (which may exceed the size of the feedback message) and
their formatting. Therefore, the data is not attached to the message and other
functions should be used to read the CID data. The message ene_ Tl CK does
not carry any data except the time (measured in 8KHz samples) since the last
enme_TIl CK message. Because of that and the fact that this message is period-
ic (the period is related to the time between subsequent calls to CSTAc-
tion_Process() or, whatis the same, to CSTSer vi cePr ocess()), it may
be treated as an event message.

6.3.5 Standard and Custom Atomic Commands

The CST Commander control layer is designed to process complex scripts.
Each script is a sequence of atomic commands (see standard scripts in CSTA-

tom c. c). CST predefines approximately thirty atomic commands (enum
t CSTAt om cCommand defined in CSTAt omi c. h), which may be split into the
following semantic groups:

[Commands to turn on an algorithm and activate a Service task

(cac_TURNON VO CE_LOOCR, cac_TURNON VA CE_DATA X,
cac_TURNON_MODEM cac_TURNON CI D X, cac_TURNON_SI M
PLE_X)

[Commands to turn off one or several algorithms and deactivate one or
several Service tasks (cac_TURNOFF_ALL, cac_TURN
OFF_VO CE_DATA X, cac_SOFT_STOP_TASK)

(1 Conditional/unconditional pauses (cac_PAUSE_X,
cac_WAI T_CPTD_APPEARANCE XX, cac_WAI T_CPTD_DI SAPPEAR-
ANCE_X, cac_MODEM CONNECT_WAI T)

[Commands for standard telephone operations (cac_PERI PH_SI M
PLE_X, cac_DI ALI NG

1 A number of system commands

1 A number of AT parser oriented commands

CST Framework and API Overview 6-21

Framework API

Every script must end with a cac_NONE command. All of the identifiers with
the postfix ' _X expect an additional parameter placed in the next word. All of
the identifiers with the postfix *_ XX expect two additional parameters placed
in the next two words (again, see standard scripts in CSTAt oni c. c).

The developer can alter the behavior of the standard commands and add new
ones by extending the CSTConmander () function (see section

6.3.6 Command Execution at Different CST Layers

6-22

Let us consider processing of a basic command which dials the phone number
“532" and establishes a modem connection. In Chipset mode, this is initiated
by the ATDT532 command; in Flex mode it is initiated by CST Action message,
passed via the CSTAct i on(&Ch0, &Acti on) function, with the Acti on
message equal to:

[Action.ActionType = cat_STANDARD OPERATI ON,

(1 Action. Action. CSTSt andar dOper ati on. Oper ati onType
sot _TURNON_MODEM CALL_X;

(1 Action. Action. CSTSt andar dOper ati on. aDat a[0. . 3]
“532"; /'l pseudo- code

This message results in processing of a script in the CST Commander. The
script is contained in the array aTur nOnModental | [], which is selected by
the value sot _ TURNON_MODEM CALL_X (see this and other standard scripts
in CSTAt omi c. c). Following is the script with some commands being omitted:

const t CSTAt om cComand aTur nOnModental | [] =
{
/1 Make sure that CST Service has no task
cac_TURNCFF_ALL,
/1Send to peripheral driver (DAA) a conmand.
/1 Second word denotes the command type, "go off hook”.
cac_PERI PH_SI MPLE_X,
(t CSTAt om cComand) pdc_OFF_HOOK,
/1 Turn on CPTD (rx) algorithm This conmand perforns
initializing an al gorithm
/1 which does not require paraneter specification
/1 Second word contains the algorithm(task) IDin CST
Servi ce.

Framework API

cac_TURNON_SI MPLE_X,
(t CSTAt om cCommand) cst st _CPTD,
/Wit for dial tone detection.
/1 Second word specifies the tone type.
/1 Third word contains the pause value. If the value is
in the range of
/1 0 .. than csp_SPECI AL_PAUSE AMOUNT-1, it is
treated as an index in
/1 aCSTSpeci al Pauses array (the array of programmable
pause val ues).
cac_WAI T_CPTD_APPEARANCE_XX,
(t CSTAt om cCommand) | CPTDDET_DI AL,
(t CSTAt om cComand) csp_CPTD_DI ALTONE_TI MEQUT,
/1D al nunber. It takes nunber string from
abDi al Nunber .
cac_Dl ALI NG
[/ Turn on nodemtask. It takes several init.
paraneters from S-registers
cac_TURNON MODEM
//Wait until nodem connection established
cac_MODEM CONNECT_WAI T,
/1 End of script (atom c conmmand chain) end. Miust end
each script.
cac_NONE
i
The CST Commander processes each of these atomic commands. Some of
the commands transform to messages to the CST Service, some of the com-

mands transform to the peripheral driver commands, and some of them just
modify S-registers.

In turn, the CST Service messages are processed by the CST Service layer,
which results in running the XDAIS telephony algorithms/objects.

Considering the opposite direction of message flow, result codes from the pe-
ripheral drivers and XDAIS objects are processed by either CST Service or
CST Commander, which leads to some change in their state, such as moving
to next atomic command.

The process described above is shown in Figure 6-6

CST Framework and API Overview 6-23

Framework API

Figure 6-6. Example of Command Execution at Different CST Layers

AT-Cmds Action Commander
Symbols Action Messages Atomic Commands

Service
Service Messages

XDAS Obj
Function calls

DAA Drv

Level

go off
hook

ATDTS32 I *_delet thod:
cac_TURNOFF_ALL cstst_TURNOFF_ALL call*_delete() methods
for all objs
OR cat_STANDARD_OPERATION ¥
(sot_TURNON_MODEM_CALL_X, cac PERIPH SIMPLE X ‘
532") (pdc_OFF_HOOK) \ pdc_OFF_HOOK

cac_TURNON_SIMPLE_X
(cstst_CPTD)

%}‘ cstst_CPTD(cse_ON) }—»{ CPTDDET_create(...) ‘

CPTDDET_detect(pInput)
until DIALTONE detected

input
samples

cstst_CPTD(ICPTDDET_DIAL)

DTMFGEN_create(...)

cstst_DTMF(cse_DATA 5) }/'

DTMFGEN_tone(s,...)

ODTM FGEN_flush(pOutput)

cstst_ DTMF(cse_DATA,3)

DTMFGEN_tone(3,...)
DTM FGEN_flush(pOutput)

cstst_ DTMF(cse_DATA,2)

DTMFGEN_tone(2,...)

DTMFGEN_flush(pOutput)

DTMFGEN_delete(...)

cac_WAIT_CPTD_APPEARANCE_XX |
(ICPTDDET_DIAL)
‘ cac_DIALING

‘ cac_TURNON_MODEM

1»]

cstst. MODEM(cse_ON,...) }—»‘ DMCtrl_create(...) ‘

v

CONNECT | cac_MODEM_CONNECT_WAIT
eme_MODEM_CONNECTQ/ ¢

‘ cac_NONE

DMCtrl_io(pInput,pOutput)

<-Connection

cstst_ MODEM(cse_ON) Est abl i shed

cat_CSTSERVICE_MESSAGE |

OR ‘ (cstst_MODEM,cse_DATA,...) ‘

Output Data

cstst_MODEM(cse_DATA,pData)%’ DMCtrl_injectData(pData),

Input Data eme_MODEM_DATA(Count,pData)

awil.

Once again, either AT commands (usually, in Chipset mode) or CST Actions
(in Flex mode) are used. These are the two mutually exclusive ways to control

the CST solution.

6.3.7 CST Action Interface Usage

As it has been said earlier, the CST SDK contains a number of flex application
examples. All the examples are designed in a similar manner and propose to
implement the user’s code by filling bodies of the three functions: Myl ni -

User callback function

G

output
samples

output
samples

output
samples

input/output
samples

tialization(),MCallback() and MyPeri odi cThread().

For example, a modem flex application can be implemented by putting several

relatively standard pieces of code into the functions mentioned above:

6-24

Figure 6-7. Fragments of Modem Call Code

v

Framework API

L

Do all we need while connected

-«

voi d MyPeri odi cThread() > void MyPeriodi cThread()
o
. Lg CSTAct i on_Process(&Ch0) ; g CSTActi on_Process(&Ch0);

=. c
A =
N 53
mm //Try to run nodem task Q—g /1 Try to turnoff nodem task
= 8 if (DoStandardQOperation(I = if (DoStandardOperation(
Q = sot _TURNON_MODEM CALL_X, "532")) 9 g -8 sot _SOFT_TURNOFF_ALL, 0))
2 3 2 &g
S 2 /1 The process has been run o =3 /1 The process ceases

[=] S o

1= s o° .

=]

35| 3 T
a c e o
@ 3 o @
35 9 o |}

_____________________ : 4

= |2
|
\ 4 |
E bool MCal | back(t CSTChannel * pChannel , ! w bool MCal | back(t CSTChannel * pChannel ,
) t CSTExt er nal MsgEvent CSTExt er nal MsgEvent , | (] t CSTExt er nal MsgEvent CSTExt er nal MsgEvent ,
=3 int Data,intl6 *pData) | 3 int Data,intl16 *pData)
=
QD
2 switch (CSTExternal MsgEvent) ! > % switch (CSTExternal MsgEvent)
8 —
= g
o —
Q case ene_MODEM CONNECT: 8- case eme_AUTOTURNOFF_ALL:
3 /1 Connection established! =L case ene_MODEM DI SCONNECT:
> /1 Prepare enpty data nmessage 5 // Task terninated
v A o) .
n br eak; 0 br eak;
jo3] (7]
Q D
[} Q }
3

elep aAlI929Y

bool MCal | back(t CSTChannel * pChannel ,
t CSTExt er nal MsgEvent CSTExt er nal MsgEvent ,
int Data,intl6 *pData)

switch (CSTExternal MsgEvent)

case eme_MODEM DATA:

//Store data frompData[0 .. Data-1]

br éak;

voi d MyPeri odi cThread()

CSTAct i on_Process(&Ch0);

_|
=
>
; =
g //Try to send data)
= pTxDat a+=SendMbdenDat a(pTxDat a, Dat aLengt h) g
g /111 all data has been transmitted, 2
5’ //1et’s disconnect. 73
o
o
S
} (]
CST Framework and API Overview 6-25

Framework API

The picture represents several pieces of code of the functions MyCal | -
back() and MyPeri odi cThread(), corresponding to the standard tasks
highlighted in gray. Both unlisted static subroutines DoSt andar dOper a-
tion()and SendvbdenDat a(), which are used in several of the flex ap-
plication examples in the CST SDK, call the CSTAct i on() function with a
filled CST Action message. The message type is cat _STANDARD OPERA-
TI ON and cat _CSTSERVI CE_MESSACE respectively (for more details see
However, it is important to note that there may be an additional callback
mechanism (direct call from the data modem controller, see for intensive
modem data transfers in ARQ mode, because the CST Action interface does
not allow the user to reject the received data. If the user is unable to take the
data, the data will be lost.

6.3.8 CST Dynamic Functions

6-26

For more flexibility, several important CST functions are called through point-
ers. Once initialized, the pointers never change. Most of the pointers to dynam-
ic functions (e.g. functions to be called through pointers) reside in the global
structure CSTFxns (of t CSTFxns type, declared and defined in CSTCom-
mander.h, CSTCommander.c). However, several dynamic functions are de-
fined directly in XDAIS algorithm parameters or peripheral drivers (modem
callbacks and voice controller callbacks). Besides, several high-level interface
functions are never called directly inside CST, and thus, the developer can
create his/her own implementation of the top level CST methods based on the
open source code. The full list of dynamic functions is given below:

[Functions to be invoked in CST Flex mode:
B Dynamic functions to manage CST services

® The main callback function CSTFxns. pCSTEXxt er nal MsgEv-
ent.

m High-level functions at CST Action, Commander and Service lay-
ers (CSTFxns. pCSTUser Oper ati on, CSTFxns. pCSTFeed-
BackMsgFunc and CSTFxns. pProcessMessage respective-
ly). Overriding the functions allows to add or modify atomic com-
mands execution; DAA input/output sample processing (run a
new external algorithm); add/or modify processing of CST Ser-
vice messages (in both directions). Thus, the three dynamic
methods provide a standard way to run and control an external al-
gorithm.

m Peripheral driver functions (CSTFxns. pPeri phProcess,
CSTFxns. pPeri phDri ver). Overriding these functions allows
quick adaptation of CST Framework and user application to spe-
cific target platform.

Framework API

® Low-level drivers methods. The methods of the low-level UART
and DAA drivers are also accessible through pointers and may be
changed to make CST work with hardware different from the de-
fault CST hardware (e.g. internal UART and DAA, EVM54CST).

m Multithread-related functions (CSTFxns. pVCont r ol | er Post ,
CSTFxns. pVControl | er Process, CSTFxns. pLowPri ori -
t yModem DMContr ol | er Subf xns. pPreenpti onContr ol ,
Bl OSDAADat aCal | Back()). Multithreaded applications need
to override these routines. An example of this for DSP/BIOS is giv-
en in file Bl OS\ CSTBI CS. c.

m Other functions (CSTFxns. pVControl | er Sel ect Vocoder,
DMCont r ol | er Subf xns. pTr ansf er Dat a). These methods
allow adding an external vocoder and correctly getting intensive
data flow from a remote modem.

B Top-level CST methods called by user only (CSTAct i on(), CSTAc-
tion_Process() orCSTServiceProcess()).

(1 Functions intended for AT Parser (Chipset mode).

CST Framework and API Overview 6-27

Chapter 7

CST Framework Components

This chapter gives detailed description of each of the CST Framework compo-
nents, their interface and architecture.

First three sections describe CST control layers.
Section 7.4 describes AT parser implementation.

Section 7.5 describes the SPIRIT proprietary memory manager, used in CST
by default, and how to reload this manager with user-specific (from DSP/BIOS
or other).

Section 7.6 gives an overview of XDAIS components and describes modem
and voice controllers.

Section 7.7 describes CST drivers and how to reload existing/add new drivers
to CST.

Topic Page
7.1 CST Service Layer 7-2
7.2 CST Commanderoiiiiiiiiiiiinnnnenennn. 7-16
7.3 CSTACHON . ..ot 7-47 |
7.4 CSTAT PAISEr ...ttt e 7-63 |
7.5 Memory Managementoiiiiiiiiiii i 7-66 |
7.6 Telephony Components Brief Specification 7-75
7.7 CSTDIIVEIS ... e m

7-1

Files CSTSReg.c, CSTSReg.h

7.1 CST Service Layer

7.1.1 Files CSTSReg.c, CSTSReg.h

7.1.1.1 Exchanging Messages With CST Service Layer

The lowest CST layer (the CST Service layer) performs foreground processing
by running XDAIS algorithms. The CST Service and a higher control layer
(normally, the CST Commander layer) interact with each other by dedicated
messages.

In case when a message is sent to the Service layer, it is actually a request,
which the service can either accept or reject. At any time the Service layer can
be executing only one request. If the service cannot execute a new request
message immediately (e.g. there is a pending process) it keeps the message
as delayed. If there is already a delayed message, the new message request
will be rejected without any effect. That means, “Try again later”. The same
behavior is correct for data messages. Therefore, the CST Service layer
provides a protection logic that guards the correct order of command
execution. As an exception, there is the only message that can discard another
delayed message, terminate the pending process and turn off all algorithms,
i.e. reset the CST Service layer to idle state.

The message being sent from the service is to inform the higher layer or submit
a new portion of data. These messages are put into a small queue that allows
keeping several messages issued from different tasks. However, sending
messages from the service is not the only way to transfer data. For some
intensive data flows, a direct connection between an XDAIS algorithm and a
client can be used (in CST Framework, it is the case with the Modem
Controller).

Files CSTService.c, CSTService.h

7.1.1.2 CST Service Message

Description Almost all control and data information between the CST Service and its user
(the CST Commander) is carried by dedicated CST Service messages. A CST
Service message is a multifunctional information packet. It can contain
broadcast and dedicated control command, and data bytes.

Structure t ypedef struct tCSTServi ceMessage {

Table 7-1. CST Service message

Field Type Field Name Description

tCSTServiceTask Task Destination/source task or special broadcast command (see

bool IsItTxTask Selects receiver/transmitter if needed

tCSTSubEvent SubEvent Determines type of the message (see

intl6 DatalLength If SubEvent is equal to cse_DATA, this field sets the data
length

intl6 aData[] If SubEvent is equal to cse_DATA, this array contains the
data.

If SubEvent is equal to cse_ON, this array may contain task
dependent initialization parameters

} tCSTServi ceMessage;

Type t CSTSer vi ceMessage is defined in CSTService.h.

7.1.1.3 Set of CST Service Tasks

Description The type t CSTSer vi ceTask is used to denote a destination task if the
message is sent from outside (ingress message) the CST Service, or a source
task if the message is sent from the CST Service (egress message). A value
of the type t CSTSer vi ceTask is a task ID. Following are the task IDs used
in CST:

Enum Definition typedef enum t CSTServi ceTask {

CST Framework Components 7-3

Files CSTService.c, CSTService.h

Table 7-2. Set of CST Service Tasks

Name

Value

Description

cst st _NOTASK

cstst_PERI PH

cstst_TURNOFF_ALL

cstst_CID
cstst_CPTD
cstst_DTMF
cst st _MODEM

cstst_VA CE_LOOP

cstst_VO CE_DATA

cstst_PARAM DATA

0

2

Symbolizes a void message, serving for empty message return by
CSTSer vi ceGet Message() . This message can be sent to the service
and it will be accepted, but it will have no effect. (see

If CSTSer vi ceSt at us. Acti veTxTask is equal to cst st _NOTASK,
there is no active tx task. (see

A message with this task ID can be sent from the service only. aDat a[0]
contains an event detected by the peripheral hardware. (see

When sent to the service, a message with this task ID is addressed to all
algorithms and it is intended to turn them off. All other fields in the
message structure are ignored. The message with this command will be
executed immediately.

When sent from the service (upon message processing failure), a
message with this task ID reports that an algorithm could not be created.
Upon receiving of the message from the CST Service it is suggested to
terminate all active processes.

Caller ID

Call Progress Tone Detector (as well as generator)
Dial Tone Modulated Frequency

Data Modem

Handset — DAA full duplex loop (Handset is not present in CST chip, but
the User may want to add it as an external codec, and that's why CST
reserves some support for it). Voice loop and echo canceller (if enabled
via S register settings) are activated.

Voice data link

Special system task for loading external flex application image (data) into
CST chip. User should never use it

Type

7-4

} tCSTServi ceTask;
t CSTSer vi ceTask is defined in CSTService.h.

Files CSTService.c, CSTService.h

7.1.1.4 Set of CST Service Message Types

Description The CST Service message type determines the message meaning and tells
how to treat other message fields. Depending on the direction (ingress or
egress), the type values have different meanings. Standard type values are
described in Table 7-3:

Enum Definition typedef enum tCSTSubEvent {

Table 7-3. Set of CST Service Message Types

Name Value Description

cse_ON 0 For ingress case (e.g. for messages being sent to the CST Service) this is
a command to turn on a task. For egress case (e.g. for messages being from
the CST Service) this is a special natification, e.g. modem just connected

cse_COFF 1 For ingress case this is a command to turn off a task. For egress case this
is a special natification, e.g. modem just disconnected

cse_DATA 2 Defines a data packet (used in both directions). This message is usually
used in CST Action interface to carry user’s data. For cst st _DTM- task it
automatically creates and destroys the appropriate DTMF (UMTG) instance.

cse_OTHEREVENTS 3 Reserved

} t CSTSubEvent;

Type tCSTSubEvent is defined in CSTService.h.

CST Framework Components 7-5

Files CSTService.c, CSTService.h

7.1.1.5 CST Service Message Summary

Table 7-4 summarizes the CST Service message content. Notice, the mean-
ing of some fields depends on the content of preceding fields.

Table 7-4. CST Service Message Summary

CST Service Message Fields Direction Content Meaning
ISItTx-
Task (is it
for TX or aData[1..
Task RX Task?) SubEvent aData[0] DatalLength-1]
cstst NOTASK - - - - - Empty message
cstst_PERIPH - cse_DATA value - egress Event from peripheral
(There is driver
only Rx)
cstst. TURNOFF_ - - - - ingress Immediately turn off all
ALL algorithms
- value - egress Request failed
cstst_CID - cse_ON mode - ingress Turn on caller ID
(There is reception
only RX)
cse_OFF - - Turn off caller ID
reception
cse_DATA Error code or - egress Received caller ID data
a repeat
dummy code
cstst. CPTD False cse_ON - - ingress Turn on CPTD
(There is
only RX)
cse_OFF - - Turn off CPTD
cse_DATA value values egress Detected CPT
(unusual)
cstst. DTMF True cse_DATA DTMF symbols and durations ingress Turn on DTMF generator,

generate DTMF symbols,

(M) turn off DTMF generator
False cse_ON - - ingress Turn on DTMF detector
(RX)

cse_OFF - - ingress Turn off DTMF detector

7-6

Table 7-4. CST Service Message Summary (Continued)

Files CSTService.c, CSTService.h

CST Service Message Fields Direction Content Meaning
ISItTx-
Task (is it
for TX or aData[l..
Task RX Task?) SubEvent aData[0] Datal ength-1]
cse_DATA value values egress Detected DTMF
(unusual) symbol(s)
cstst. MODEM - cse_ON initialization parameters ingress Turn on modem
(Both)
cse_OFF - - Turn off modem
cse_DATA data A number of tx. data bytes
cse_ON - - egress Modem just connected
(handshake succeeded)
cse_OFF - - Modem just disconnected
cstst_VOICE_ - cse_ON echo - ingress Turn on voice loop
LOOP canceller
mode
cse_OFF - - Turn off voice loop
cstst_VOICE_ True (TX) cse_ON BPS - ingress Turn on voice tx path
DATA
False BPS - Turn on voice rx path
(RX)
True (TX) cse_OFF - - Turn off voice tx path
True (RX) - - Turn off voice rx path
True (TX) cse_DATA data A number of tx data bytes
False cse_OFF - - egress Both rx and tx paths
(RX) turned off
False cse_DATA data A number of rx data bytes
(RX)

CST Framework Components 7-7

Files CSTService.c, CSTService.h

7.1.1.6 CST Service Status

Description

The CST Service layer has an internal status, which is used by the service itself
and can be used by outsiders.

t ypedef struct tCSTServiceStatus {

Table 7-5. CST Service Status

Field Type Field Name Description
t CSTSer vi ceTask Acti veTxTask Current transmitting task (see
t CSTMessageResult MessageResul t Status/result code for the last message (see
This is a runtime information about message
performing.
i nt TxMessageCount er Amount of egress messages waiting in the queue for
delivery
bool | sRxDat aOver f | ow Flag signaling that the egress message queue
overflowed (at least once)
char DLEChar Value of the common DLE character (shield code),
mapped to S46 (see
i nt I nput Gai n Attenuator for input samples from the DAA. Permitted
range is [0 .. 30], which corresponds to a negative gain
of 0 .. -30dBm. Mapped to S31 (see
i nt I nput Power Averaged level of DAA input, dBm. Mapped to S65
(see
bool | sTxMessagel nUse Used in DSP/BIOS (multi-threaded) mode for correct
egress message handling
bool I sPendi ngLowPri ority Protects low priority tasks from premature destruction.
Task To be set/reset externally (see CSTBI CS. c).
bool | sProcessMsgNeeded Forces CST Service to process a message upon
completion of a low priority procedure, which helps to
terminate active CST algorithms and processes safely.
} tCSTServi ceSt at us;
Type tCSTServiceStatus is defined in CSTService.h.

7-8

Files CSTService.c, CSTService.h

7.1.1.7 Set of CST Service Message Result Codes

Description

Enum Definition

The set of CST Service message result codes inform about CST Service
availability for new message and, if the last message has been executed, the
result characterizes the effect of the message. The CST Service message
result type is used both as runtime CST Service message status and as an
immediate result of high-level CST Action (see Table 7-6).

typedef enum tCSTMessageResult {

Table 7-6. Set of CST Service Message Result Codes

Name

Value Description

cnr _EXECUTI NG

cnr _REJECT

cnr _RESULTOK
cnr _FAIL

cnt _TRY_AGAI N

0 The message (or high-level action) is in progress. Other messages, except
“turn off all”, will not be accepted.

1 The last message (or high-level action) has been rejected for some reason,
e.g. the destination task is inactive

2 The last message (or high-level action) has been successfully processed

3 The last message has failed, e.g. an algorithm could not be created

4 There is already a high-level action being processed at the moment, which
does not allow accepting a new message. This result is used in CST Action
layer only (see

Type

} tCSTMessageResul t;

tCSTMessageResult is defined in CSTService.h.

7.1.1.8 CST XDAIS Algorithms

All CST algorithms are eXpressDSP compliant (to learn about XDAIS, read
Using the TMS320 DSP Algorithm Standard in a Static DSP System
(SPRA577).

Most of pointers to CST algorithms are defined in the t CSTSer vi ce substruc-
ture. (see the file CSTSer vi ce. h). Pointers to G.726/G.729, VAD and AGC
instances are allocated in a separate structure t VCont r ol | er St r. Being
complex standalone tasks, the modem and voice modules are implemented
as separate controllers outside the file CSTSer vi ce. ¢, but only the voice
controller has a separate instance structure because it integrates several algo-
rithms, while the modem controller manages only one algorithm, Modem Inte-
grator, which in turn embeds a modem data pump and V.42/V.42bis algo-
rithms.

CST Framework Components 7-9

Files CSTService.c, CSTService.h

Table 7-7. List of XDAIS Algorithms

Name

Allocation and Description

UMIG_Handl e pDTMFGenHandl e

UMID_Handl e pDTMFDet Handl e

UMID_Handl e pCPTDDet Handl e

UMIG_Handl e pCPTDGenHandl e

Cl D_Handl e pCl DHandl e

EC_Handl e pECHandl e

MODI NT_Handl e pMODI NTHandl e

voi d *pVocoder

AGC_Handl e pAGC

CNG_Handl e pCNG

VAD_Handl e pVAD

DTMF generator. t CSTSer vi ce structure, defined in
CSTService. h

DTMF detector. t CSTSer vi ce structure, defined in
CSTService. h

Call Progress Tone Detector. t CSTSer vi ce structure, defined
in CSTServi ce. h

Call Progress Tone Generator. t CSTSer vi ce structure,
defined in CSTSer vi ce. h

Caller ID detector/receiver. t CSTSer vi ce structure, defined in
CSTService. h

Echo canceller. t CSTSer vi ce structure, defined in
CSTService. h

Modem Integrator (data pump, V.42 and V.42bis are
embedded). DMControl | er. c, tCSTServi ce structure,
defined in CSTSer vi ce. h

Voice G.726/G.711. VControl l er.c, tVControllerStr
structure, defined in VControl l er. h

Automatic Gain Control. t VCont rol | er St r structure, defined
inVController.h

Comfort Noise Generator. t VContr ol | er St r structure,
defined in VControl l er. h

Voice Activity Detector. t VCont r ol | er St r structure, defined
inVController.h

7-10

Files CSTService.c, CSTService.h

7.1.1.9 Brief Description of CSTService Function Interface

The most part of CST Service layer is implemented in the files CSTSer vi ce. ¢
and CSTSer vi ce. h. The main interface functions are the following:

Table 7-8. CST Service Interface Functions

Name Functionality

CSTServicelnit() CST Service layer initialization

CSTSer vi ceProcess| CandVoi ce() Called from CSTSer vi cePr ocessBuf f er () . Reads/writes a
number of DAA and potentially handset I/0O samples through the
data controllers. Runs voice algorithms and routes DAA and
potentially handset samples flows.

CSTSer vi cePr ocessComonAl gos() Called from CSTSer vi ceProcessBuf fer ().

Runs all other (non-voice) active XDAIS algorithms. Performs
single-byte oriented data exchanges via CST Service messages

CSTSer vi ceProcess() The main periodic high-priority thread function.
CSTSer vi cePr ocess() is self-synchronizing relative to DAA
interrupt. The function should be periodically called at least once
each 5 milliseconds.

CSTSer vi ceProcessBuf fer () A subroutine for CSTSer vi cePr ocess() . It runs all processes
for a timeframe of 10 I/O samples from the DAA.

CSTSer vi ceSendMessage() Attempts to send a new message to the Service tasks. The false
result means that the previous message has not been delivered
yet

CSTSer vi ceGet Message() Returns a new message from service tasks. If there are no new

messages, the method returns a message with the task ID
cstst. NOTASK

CSTSer vi ceProcessMessage() Main function for ingress message processing. Attempts to
process a pending message obtained by
CSTSendSer vi ceMessage() . Called by
CSTSendSer vi ceMessage() and
CSTSer vi ceProcessBuf f er () through the pointer
CSTFxns. pProcessMessage.

CSTSer vi ceProcessMessagelLow() Special Message Execution In Low Priority Task. Called from a
low priority task and attempts to execute a pending data
message obtained by CSTSendSer vi ceMessage() .

Initialization The CST Service layer initialization

Function void CSTServicelnit(tCSTChannel* pChannel);

CST Framework Components 7-11

Files CSTService.c, CSTService.h

Parameter(s)

pChannel Pointer to a global CST channel structure

Return Value None

DAA/Handset 1/O, Voice Operations

Called from CSTSer vi cePr ocess() . Reads/writes a number of DAA and
potentially handset IO samples. Runs voice algorithms and routes DAA and
potentially handset samples flows.

Function voi d CSTServi ceProcessl GandVoi ce(t CSTChannel * pChannel , i nt
*plnput,int *pQutput);
Parameter(s)
pChannel Pointer to a global CST channel structure
pl nput Pointer to a buffer of 10 input samples to be read from AFE and
processed (modified) by the voice (if active). The voice (if active)
includes the echo canceller and G.726/G.711 encoder/decoder
pCQut put Pointer to a buffer of 10 output samples (from the previous iteration)
to be written to AFE. After writing, the sample buffer is reset to zero
and regenerated by the voice encoder (if active)
Return Value None

Running PSTN Oriented Algorithms

Runs all other (non-voice) active XDAIS algorithms. Performs single-byte ori-
ented data exhanges via CST Service messages.

Function voi d CSTServi ceProcessComopnAl gos(t CSTChannel *
pChannel ,int *plnput,int *pQutput);

Parameter(s)
pChannel Pointer to a global CST channel structure
pl nput Pointer to a buffer of 10 valid input samples to be processed by
standard PSTN algorithms, which are DTMF, CPTD, Caller ID and
Data Modem.
pQut put Pointer to a buffer of 10 valid output samples to be updated by
those algorithms
Return Value None

7-12

Files CSTService.c, CSTService.h

The Main Periodic High-Priority Thread Function

Function

Parameter(s)

Return Value

The function CSTSer vi cePr ocess() is self-synchronizing relative to DAA
samples. The function should be periodically called at least once each 5 milli-
seconds. When called, it drives several different processes that can be split
into the following three semantic groups: drivers (low-level DAA driver, periph-
eral driver and high-level DAA driver), algorithm oriented operations and high-
level control operations. In order to achieve the maximum flexibility, many
functions are called through pointers. The main operation, which CSTSer vi -
ceProcess() performs, is processing a number of DAA I/O samples by run-
ning all active XDAIS algorithms. The synchronization between various CST
modules is achieved via a simple messaging mechanism that represents an
intermediate interface between the CST Service layer and the CST Com-

mander layer (see section

As it is shown in Figure 6-5, CSTSer vi cePr ocess() calls back a dedicated
function (the CSTActi on_User Qper ati on() function in the figure called
through the pointer CSTFxns. pCSTUser Oper at i on) that should perform
user-defined control operations and manage data flows (from the CST Service
layer’s point of view, the user is AT parser/CST Action and CST Commander
layers).

The CSTFxns. pCSTUser Oper at i on function processes UART data (not
shown on the picture since CST may not use UART in the Flex mode; by de-
fault, the function processes UART data only in the Chipset mode), processes
messaged data from XDAIS objects (the function CSTFeedBack-
MsgFunc() in Figure 6-5) and runs the CST Commander scripts. Figure 6-5
represents final call tree for standard Flex mode application.

In the Chipset mode CST is controlled by AT commands, and in the Flex mode
it is also possible to control the CST Framework operations and data flows
through the DTE emulation. This means that a flex application can be con-
trolled by the AT commands. However, it is strongly recommended not to
use the DTE emulation. The user can control the CST Framework legally
through the several CST interface layers. In both cases (DTE emulation and
legal CST control), the user can modify CST behavior by creating his/her own
implementation of some CST methods.

voi d CSTServi ceProcess(t CSTChannel * pChannel) ;

pChannel Pointer to a global CST channel structure

None

CST Framework Components 7-13

Files CSTService.c, CSTService.h

Subroutine Called From CSTSer vi cePr ocess()

Function

Parameter(s)

Return Value

This routine runs all processes for a block of 10 (I NPUT_QUTPUT _LENGTH)
I/O samples from the DAA.

voi d CSTSer vi cePr ocessBuf f er (t CSTChannel * pChannel , i nt
*plnput,int *pQutput);

pChannel Pointer to a global CST channel structure

pl nput Pointer to a buffer of 10 valid input samples to be processed by
standard PSTN algorithms, which are DTMF, CPTD, Caller ID and
Data Modem.

pQut put Pointer to a buffer of 10 valid output samples to be generated by

one of those algorithms

None

Sending Messages to CST Service

Function

Parameter(s)

Return Value

7-14

CSTSendServiceMessage() attempts to send a new message to the Service
tasks. The false result means that the previous message has not been deliv-
ered yet.

bool CSTServi ceSendMessage(t CSTChannel *
pChannel , t CSTSer vi ceMessage Message);

pChannel Pointer to a global CST channel structure
Message Universal CST Service message (see

Acceptance flag. The false result means that the message has not been
accepted and needs to be sent again.

Files CSTService.c, CSTService.h

Receiving Messages from CST Service

Function

Parameter(s)

Return Value

Returns a new message from the Service tasks. If there are no new messages,
the function returns a message with the task ID equal to cst st _NOTASK.

t CSTSer vi ceMessage CSTServi ceGet Message(t CSTChannel *
pChannel) ;

pChannel Pointer to a global CST channel structure

Universal CST Service message (see Outgoing messages are queued
in a small FIFO queue. If there are no messages, an empty message with the
task ID equal to cst st _NOTASK is returned.

Main Routine for Service Message Processing

Function

Parameter(s)

Return Value

Attempts to process a pending message obtained by CSTSendSer vi ceMes-
sage() .

voi d CSTServi ceProcessMessage(t CSTChannel * pChannel) ;

pChannel Pointer to a global CST channel structure

None

Message Processing in Low-Priority Threads

Function

Parameter(s)

Return Value

Attempts to execute a pending data message obtained by CSTSendSer vi -
ceMessage() . Called from a low priority thread function.

voi d CSTServi ceProcessMessagelLow(t CSTChannel * pChannel) ;

pChannel Pointer to a global CST channel structure

None

CST Framework Components 7-15

Files CSTSReg.c, CSTSReg.h

7.2 CST Commander

7.2.1 Files CSTSReg.c, CSTSReg.h

7.2.1.1 Set of S-Registers and Their Implementation

The CST Framework supports a well-known modem S-registers interface. The
S-registers can be thought of as object properties. The S-register service
maps major CST configuration variables to the index-addressable parameter
list. That means that each S-register can be assigned to an existing 16-bit vari-
able. Writing or reading an S-register will result in writing or reading the vari-
able associated with the S-register. Each S-register is referenced by its num-
ber. (see Table 7-10 and Table 9-9).

The CST Framework provides a set of S-registers that can be extended by the
developer. The CST Framework can operate with several arrays of S-register
descriptors (see Table 7-9). Each array should be provided with a handle of
the type tSinpleMap and registered by a dedicated function (see
Table 7-13).

The main array with S-register descriptors is located in the file CSTSReg. c,
its name is al nt er nal SRegAl i as[].

Each S-register’s descriptor has a pointer to a physical variable, in which S-
register’s contents is stored. Most of these variables are located in the struc-

ture t CSTSet t i ngs (see

t ypedef struct tlnternal SRegAlias {

Table 7-9. S-Register Descriptor

Field Type Field Name Description

int RegNunber Unique number of the S-register

int* pVal ue

char* pHi nt

Pointer to a physical variable, in which the contents of the S register is
stored

Pointer to a help string for this register being printed by the AT parser
upon request

Type

Enum Definition

7-16

} tlnternal SRegAli as;

tinternalSRegAlias is defined in CSTSReg.h.

t ypedef enum t SRegDefinition {

Files CSTSReg.c, CSTSReg.h

Table 7-10. Set of Defined CST S-Registers

No Name/Alias Points to Variable Description

-4 srd_I S_VO CE_RI NGBACK _ Internal temporary S-register — skips ring back signal
SKI P . appearance/disappearance detection. Default value 1.
CSTCommander Private. sV (Set automatically before a new script runs, reset by the ‘@’ dial
oi ceRi ngbackSki p modifier).

-3 srd_CALL_W THOUT_MODEM Internal temporary S-register — skips modem algorithm creation.
CSTCommander Private. |1 sC Default value 0.
al | Wt hout Modem (Reset automatically before a new script runs, set by the *;’ dial

modifier).

-2 srd_CURRENT_DI AL_MODE Internal temporary S-register — Current Dialing Mode:
CSTCommander Private. I sP 0 -tone mode, 1 — pulse mode. Automatically set to the value of
ul seMbde srd_DEFAULT_DI AL_MODE S-register before a new script runs.

-1 srd_IS_ORIG NATOR Internal temporary S-register to select whether it is an originating
CSTComander Private. |1 sO modem or not.
ri gi nator

(0) none Automatic Answer; does not affect CST behavior
CSTSet tings. SO

3 none Command Line Termination Character <CR>
CSTSettings. S3 By default, equal to 13.

4 none Response Formatting Character <LF>
CSTSettings. $4 By default, equal to 10.

5 none Command Line Editing Character, backspace <BS>
CSTSettings. S5 By default, equal to 8.

6 none Pause Before Blind Dialing, in seconds
aCSTSpeci al Pauses[csp_M In CST this register contains the duration of the delay inserted after
ODEM_START_PAUSE] going off-hook and before any other action. By default, equal to 1
.Duration sec.

(7) none Connection Completion Timeout, in seconds
CSTSet tings. S7 If a modem can’t establish a connection for the period of this

timeout. CST will stop connecting and will go on hook. By default,
equal to 60 sec.
Notes: 1) A register number in parenthesis means that the corresponding register is implemented only for compatibility and

its value does not affect CST behavior. S-registers with negative numbers are not printed out in help list, and are
not accessible via standard ATS command.

2) Some S-registers (labeled with Note 2) are referencing variables, which are not multichannel and are global for
the whole CST. All other variables are multichannel and should be accessed via Channel structure t CSTChan-

nel (see section

CST Framework Components 7-17

Files CSTSReg.c, CSTSReg.h

Table 7-10. Set of Defined CST S-Registers (Continued)

No Name/Alias Points to Variable Description

8 srd_LONG DI AL_DELAY Comma Dial Modifier pause duration, in seconds
aCSTSpeci al Pauses[csp_L Dialing string may contain the comma character, which sustains a
ONG_DI AL_PAUSE] pause in dialing for the specified amount of seconds. By default,

- Duration equal to 2 sec.

(10) none Automatic Disconnect Delay; does not affect CST behavior
CSTSet ti ngs. S10

11 srd_DTM-_TONE_DURATI ON DTMF tone/space duration, msec.

CSTSet tings. Dt nf ToneDur The duration of a DTMF tone and the pause between the DTMF
ation tones. By default, equal to 80.

12 srd_ESCAPE_PROMPT_DELAY Guard pause before and after ‘+++' (escape sequence) in 1/8th of
CSTSet ti ngs. EscapePronp msec
t Del ay Escape sequence is guarded with 2 periods of inactivity, when DTE

should not send anything to DCE. If these periods exist before and
after ‘+++' sequence, the AT Parser will consider the incoming
sequence as Escape Sequence, and will switch to the Modem
Online Command Mode. By default, equal to 8000 (1 sec).

26 srd_Vv42 Boolean flag enabling V.42 mode (when disabled, V.14 mode is
CSTSet tings. | sV42 used). See section for details. By default, equal to 1.

27 srd_V42BI S V.42bis compression selection. Bit 0 enables V.42bis compressor,
CSTSettings. | sV4A2bis bit 1 enables V.42bis decompressor. See section for

details. By default, equal to 3.

28 srd_MODEM GAI N Modem output signal attenuation in decibels (0..17 dB), treated as

CSTSet ti ngs. ModenGai n negative value. See section for details. By default, equal
to 9.

29 srd_FAST_CONNECT Enables the fast connect mode. See section for details. By
CSTSet tings. | sFast Conne default, equal to 0.
ct

30 srd_VOCE GAIN Output voice signal attenuation in decibels (0..30 dB), treated as
VControl | er. Voi ceGai n negative value. See section for details. By default, equal to

0.

31 srd_I NPUT_GAIN Common input signal attenuation in decibels (0..30 dB), treated as
CSTSer vi ce. CSTSer vi ceSt negative value. Used only in Voice mode. See section for
atus. | nput Gai n details. By default, equal to 0.

Notes: 1) A register number in parenthesis means that the corresponding register is implemented only for compatibility and

7-18

its value does not affect CST behavior. S-registers with negative numbers are not printed out in help list, and are
not accessible via standard ATS command.

2) Some S-registers (labeled with Note 2) are referencing variables, which are not multichannel and are global for
the whole CST. All other variables are multichannel and should be accessed via Channel structure t CSTChan-

nel (see section

Files CSTSReg.c, CSTSReg.h

Table 7-10. Set of Defined CST S-Registers (Continued)

No Name/Alias Points to Variable Description

37 srd_DESI RED MODEM SPEED The maximum desired modem rate. See section for
CSTSet ti ngs. MaxModenRat details.
eBc 0,1 — Automodem; 2 — V.22 1200; ... 8 — V.32bis 14400.

By default, equal to 0.

38 srd_TI ME_BEFORE_FORCED_ An extra pause before V.42 session completion, in seconds. The
HANGUP modem waits this amount of time before V.42 connection is
CSTSet ti ngs. Modenforced terminated, in order to flush data from internal buffers. By default,
HangUpDel ay equal to 2.

40 srd_DEFAULT_DI AL_MODE Default dialing mode: 0 - tone mode, 1 — pulse mode;

CSTSet tings. Di al i ngMbde Used when dialing string does not contain explicit dialing mode
modifier. See sections P.4.1.13 and P.4.1.21| for details. By default,
equal to 0.

41 srd_ECAN Line echo canceller mode:

CSTSet tings. EchoCancel | 0 - EC off; 1 — EC on without NLP; 2 — EC on with NLP. By default,
er Mode equal to 1.

42 srd_VO CE_BPS Voice Bit Per Second rate. Can be 2, 3, 4, 5 or 8, which
CSTSet tings. Voi ceBi t Per corresponds to rates 16, 24, 32 and 40 kbps for G.726 and 64 kbps
Sanpl e for G.711. See section for details. By default, equal to 8.

43 srd_Cl D_MODE Caller ID mode. Selects: 1 — formatted CID, 2 - unformatted CID
CSTSet ti ngs. Cl DEnabl i ng information printing; O - disables it. See section for details.
Mode By default, equal to 1.

44 srd_VAD Enables VAD in voice mode. By default, equal to 1.

CSTSet ti ngs. VADEnabl ed

45 srd_AGC Enables AGC in voice mode. By default, equal to 1.
CSTSet t i ngs. AGCEnabl ed

46 srd_DLECHAR Shield code value. By default, equal to 0x10 (<DLE>).
CSTSer vi ce. CSTSer vi ceSt
at us. DLEChar

47 srd_Cl D_CRCERROR BEHAVI Enable Caller ID report even if data have been received with
R incorrect CRC. By default, equal to 0.

CSTSet t i ngs. Cl DErr or Beh
avi or
Notes: 1) A register number in parenthesis means that the corresponding register is implemented only for compatibility and

its value does not affect CST behavior. S-registers with negative numbers are not printed out in help list, and are
not accessible via standard ATS command.

2) Some S-registers (labeled with Note 2) are referencing variables, which are not multichannel and are global for
the whole CST. All other variables are multichannel and should be accessed via Channel structure t CSTChan-

nel (see section

CST Framework Components 7-19

Files CSTSReg.c, CSTSReg.h

Table 7-10. Set of Defined CST S-Registers (Continued)

No Name/Alias Points to Variable Description

50 srd_AT_ECHO MCDE Boolean flag to enable AT Parser echo. See section for
CSTSet ti ngs. | sechoMode details.

51 srd_AT_AUTOBAUD Enables automatic adjustment of the UART baud rate. By default,
CSTSettings. | sAut oBaudO equal to 1 (auto baud enabled). The UART driver performs auto
n baud detection only during AT command input, based on “AT”

characters.

60 srd_STATI STI CS_FLAGS Statistics enable flags. Bit 0 enables MIPS measurement, bit 1
CSTStati stics. Fl ags enables heap free size measurement, and bit 2 enables stack free
Not e2 size measurement. By default, equal to 7 (all flags enabled).

61 srd_AVAI LABLE_ALGOS Contains a number of currently active (created) XDAIS algorithms.
CSTStati stics. Avail abl e Read only.
Al gos Not e2

62 srd_AVAI LABLE_NMEMORY Contains free heap size in words. Read only.
CSTStati stics. Avai |l abl e
Menor y Not e2

63 srd_STACK _FREE_SI ZE Contains free stack size in words. Read only.
CSTSt ati stics. StackFree
Si ze Not e2

64 srd_PEAK M PS Peak MIPS tracked since last reset (averaged on 4 msec block).
%Tgt atistics. PeakM PS Writing to this register a zero value resets it.

te

65 srd_| NPUT_POWNER Contains average value of input signal power, in dBm. Read only.
CSTSer vi ce. CSTSer vi ceSt
at us. | nput Power

70 srd_CHANNEL Active channel number. Not used.
CSTCur r ent Channel Note2
} tSRegDefinition;

Notes: 1) A register number in parenthesis means that the corresponding register is implemented only for compatibility and

its value does not affect CST behavior. S-registers with negative numbers are not printed out in help list, and are
not accessible via standard ATS command.

2) Some S-registers (labeled with Note 2) are referencing variables, which are not multichannel and are global for
the whole CST. All other variables are multichannel and should be accessed via Channel structure t CSTChan-

nel (see section

7-20

Type

7.2.1.2 CST Settings

Structure

Files CSTSReg.c, CSTSReg.h

tSRegDefinition is defined in CSTSReg.h.

The CST Framework does not provide boundary check when writing to S-reg-
ister. S-registers with number greater than 100 are treated as physical hard-
ware DAA registers (in CST Framework, they are mapped to Si3021 DAA reg-
isters) and are redirected (mapped) to the CST Peripheral module, and then
to the DAA Driver. The user should not access these registers via CST Action
interface, because in this interface reading/writing an S register is done imme-
diately by accessing a variable in the DSP memory, which is not possible for
SiLab’s DAA registers.

CST (particularly the CST Commander) holds global settings for such tasks
as voice, modem etc. The user can directly modify the settings and is responsi-
ble for correctness of this modification. Some of these settings are to be
passed as parameters during algorithm initialization or to be used internally,
e.g. for dialing. The settings are also accessible through AT commands, and
most of them are accessible via S-registers (see Table 7-11).

t ypedef struct tCSTSettings {

Table 7-11. CST Settings

Field Type Field Name S-Reg Description

int S3 S3 Command Line Termination Character <CR>
By default, equal to 13.

int 4 S4 Response Formatting Character <LF>
By default, equal to 10.

int S5 S5 Command Line Editing Character, backspace <BS>
By default, equal to 8.

i nt SO SO Automatic Answer; does not affect CST behavior

int S7 S7 Connection Completion Timeout, in seconds
If a modem can't establish a connection for the period
of this timeout. CST will stop connecting and will go
on hook. By default, equal to 60 sec.

i nt S10 S10 Automatic Disconnect Delay; does not affect CST
behavior

i nt DCEResponseMbde - AT Parser: Corresponds to the command ATV:
1-verbose result code, 0-numeric. See for
details. By default, equal to 1.

int Resul t CodeSupr essi on - AT Parser: Corresponds to the ATQ command:

1-supress result code. See 9.4.1.14 for details. By
default, equal to 0.

CST Framework Components 7-21

Files CSTSReg.c, CSTSReg.h

Table 7-11. CST Settings (Continued)

Field Type Field Name

S-Reg

Description

int Resul t CodeSel ecti on

int DTRbehavi our

int RSDbehavi our

t Di al i nghvbde Di al i ngMode

int | sEchoMbde

int | sAut oBaudOn

char* Manuf acturerlnfo

i nt EscapePr onpt Del ay

int MaxModenRat e

i nt MaxModenRat eB

int Modentai n

int | sV42

int | sV42bi s

S40

S50

S51

S12

S37

S28

S26

S27

AT Parser: Corresponds to the ATX command. See
for details. By default, equal to 4.

DTR (108/2) line control. See for details. By
default, equal to 2.

RSD (109) line control. See for details. By
default, equal to 1.

Default dialing mode: O - tone mode, 1 - pulse mode;
Used when dialing string does not contain explicit
dialing mode modifier. See sections and

for details. By default, equal to 0.

Boolean flag to enable AT Parser echo. See section

for details.

Enables automatic adjustment of the UART baud rate.
By default, equal to 1 (auto baud enabled).

Corresponds to ATI: manufacturer information
returned by ATI.

Guard pause before and after '+++' (escape
sequence) in 1/8th of msec

Escape sequence is guarded with 2 periods of
inactivity, when DTE should not send anything to
DCE. If these periods exist before and after "+++'
sequence, the AT Parser will consider the incoming
sequence as Escape Sequence, and will switch to the
Modem Online Command Mode. By default, equal to
8000 (1 sec).

The maximum desired modem rate. Can be 1200,
2400, 4800, 7200, 9600, 12000, 14400. By default,
equal to 14400. Changes along with MaxMbdenRat eB
variable.

Changes along with MaxMbdenRat e variable.

Modem output signal attenuation in decibels (0..17
dB), treated as negative value. See section
for details. By default, equal to 9.

Boolean flag enabling V.42 mode (when disabled,
V.14 mode is used). See section 9.4.3.10 for details.
By default, equal to 1.

V.42bis compression selection. Bit 0 enables V.42bis
compressor, bit 1 enables V.42bis decompressor. See
section for details. By default, equal to 3.

7-22

Table 7-11. CST Settings (Continued)

Files CSTSReg.c, CSTSReg.h

Field Type Field Name

S-Reg

Description

int | sFast Connect

t ECMode EchoCancel | er Mode

int Dt nf ToneDur ati on

int Modentor cedHangUpDel ay

int Voi ceBi t Per Sanpl e

t Cl DEnabl i ngMbde Cl DEnabl i nghbde

int Cl DEr r or Behavi or

char aDi al Nurber []

int VADEnabl ed

int AGCEnabl ed

S29

S41

S11

S38

S42

S43

S47

S44

S45

Enables the fast connect mode. See section
for details. By default, equal to 0.

Line echo canceller mode:
0 - EC off; 1 - EC on without NLP; 2 - EC on with
NLP. By default, equal to 1.

DTMF tone/space duration, msec.
The duration of a DTMF tone and the pause between
the DTMF tones. By default, equal to 80.

An extra pause before V.42 session completion, in
seconds. The modem waits this amount of time before
V.42 connection is terminated, in order to flush data
from internal buffers. By default, equal to 2.

Voice Bit Per Second rate. Can be 2, 3, 4,5 or 8,
which corresponds to rates 16, 24, 32 and 40 kbps for
G.726 and 64 kbps for G.711. See section for
details. By default, equal to 8.

Caller ID mode. Selects: 1 - formatted CID, 2 -
unformatted CID information printing; O - disables it.
See section for details. By default, equal to 1.

Enable Caller ID report even if data have been
received with incorrect CRC. By default, equal to 0.

Current dial number ASCII string for cac_DI ALI NG
(see). Allowed symbols are digits and characters ‘#’,
* ‘P’ (pulse dialing), ‘T’ (tone dialing), ‘W’ (wait for
dial tone), ‘,’ (long pause), '/’ (short pause), ‘" (flash),
‘R’ (response/answer mode), ‘;’ (don't initiate modem),
‘@’ (wait for ring back appearance and
disappearance).

Enables VAD in voice mode. By default, equal to 1.

Enables AGC in voice mode. By default, equal to 1.

} tCSTSettings;

Type

tCSTSettings is defined in CSTSReg.h.

CST Framework Components 7-23

Files CSTSReg.c, CSTSReg.h

7.2.1.3 Brief Description of CSTSReg Function Interface
Table 7-12. Brief Description of CST S-Registers Function Interface

Name Functionality

Sregisterslnit() Default S-register initialization

Sregi stersAdd() Adds an array of S-register descriptors (see Table 7-9)
Sregi sterSet () Attempts to set an S-register

Sregi sterGet () Attempts to read an S-register

Sregi stersFind() Searches for an S-register

Initialization

Default S-register intialization

Function voi d SRegi sterslnit(tCSTChannel * pChannel);
Parameter(s) pChannel Pointer to a global CST channel structure
Return Value None

Add New S-register Array

Adds an array of S-register descriptors.

Function voi d SRegi st ersAdd(t CSTChannel * pChannel , const tSi npl eMap
*pSReg) ;

Parameter(s) pChannel Pointer to a global CST channel structure
pSReg Pointer to a handler, containing a pointer to the array of

S-register descriptors (see Table 7-13 and Table 7-9)

Return Value None
t ypedef struct tSinpleMap {

Table 7-13. Simple Map Structure

Field Type Field Name Description

const void * npMap Pointer to a map/array of units, which have some fixed size
and can be indexed by an integer. Type “void” is because this
structure is universally used with maps/arrays of different type

size_t nmnit Si ze Size of a single unit in the map
i nt nLengt h Total number of units in the map
} tSinpl eMap;
Type tSimpleMap is defined in CSTstd.h.

7-24

Set S-Register

Function

Parameter(s)

Structure

Files CSTSReg.c, CSTSReg.h

Attempts to set an S-register.

bool SRegi st er Set (t CSTChannel * pChannel , t SRegRequest
*pSRegRequest)

pChannel Pointer to a global CST channel structure

pSRegRequest Pointer to a request structure

t ypedef struct tSRegRequest {

Table 7-14. S-Register Request Descriptor

Field Type Field Name Description

i nt RegNumber S-register number

i nt Bi t Nunber Selects bit to be read or written. If the bit number is negative,
the whole register is to be read or written.

intl6 Val ue 16-bit value, if bit number is negative, or one bit value in MSB
if bit number is positive

} t SRegRequest;
Type tSRegRequest is defined in CSTSReg.h.

Return Value

Read S-Register

Function

Parameter(s)

Return Value

Completion flag. The false result means that it is necessary to call this function
again to push the process (this may happen when writing to peripheral
registers). The function does not return false if the S-register does not exist.

Attempts to read an S-register (“Attempts” because some of the register’s val-
ues, such as DAA-mapped S registers, may not be read immediately, and that
is why the user should call this function several times until it returns “true” and
the value can be read).

bool SRegi st er Get (t CSTChannel * pChannel , t SRegRequest
*pSRegRequest) ;

pChannel Pointer to a global CST channel structure
pSRegRequest Pointer to a request structure (see Table 7-14)

Completion flag. The false result means that it is necessary to call this function
again to push the process (this may happen when reading from peripheral
registers). The function does not return false if the S-register does not exist.
The read value is returned in the request structure.

CST Framework Components 7-25

Files CSTCommander.c, CSTCommander.h

Search for S-Register

Function

Parameter(s)

Return Value

Searches for an S-register.

tI nternal SRegAl i as* SRegi st ersFi nd (t CSTChannel *
pChannel , i nt RegNunber) ;

pChannel Pointer to a global CST channel structure
RegNunber Number of the S-register to be searched

Pointer to the descriptor of the S-register or zero if the register does not exist.

7.2.2 Files CSTCommander.c, CSTCommander.h

7.2.2.1 CST Dynamic Functions

Structure

7-26

To make the CST Framework configuration more convenient and to allow max-
imum re-use of the code in ROM, some important functions are called through
pointers.

All these pointers to dynamic functions are grouped together in the following
global structure CSTFxns:

t ypedef struct tCSTFxns {

Table 7-15. CST Dynamic Functions

Files CSTCommander.c, CSTCommander.h

Params Type

Params Name

Description

void (*)

(t CSTChannel * pChan-
nel ,

intl6 *pln,

intl6e *pQut,

i nt Armount OF 8KHz Sam
pl es)

void (*)
(t CSTChannel * pChan-
nel)

void (*)

(t CSTChannel * pChan-
nel,

t CSTSer vi ceMessage
*pMessage)

void (*)

(t CSTChannel * pChan-
nel ,

i nt Amount OF 8KHz Sam
pl es)

pCSTUser Qper ati on

pCSTSer vi ceFeedBack

pCSTFeedBackMsgFunc

pCSTUser Moni t or

User’s (overridden by the AT Parser or CST Action
layers) callback function called from the CST
Service. Desired area to make extra operations with
1/0 samples, time measurement and all control
operations that are beyond the CST Service (e.g.
user-defined control operations and data flow
management)

In the Chipset mode, the default value is

CSTUser Oper at i on() . In the Flex mode, the
default value is CSTAct i on_User Cper ati on() .
In the Chipset mode, this function interconnects the
CST Service with UART stream being treated as AT
commands and data stream.

The routine is called from CSTUser Oper ati on()
or CSTAct i on_User Oper ati on() . It gets a new
message from the CST Service and calls
pCSTFeedBackMsgFunc method to process the
message.

In the Chipset mode, the default value is
ATPar ser _CSTSer vi ceFeedBack() . Inthe
Flex mode, the default value is

CSTAct i on_Servi ceFeedBack() .

A good heritable method intended to process CST
Service egress messages.

Called from ATPar ser _CSTSer vi ceFeedBack()
in the Chipset mode and from

CSTAct i on_Servi ceFeedBack() in the Flex
mode.

The default value is CSTFeedBackMsgFunc() .

The routine is called from CSTUser Oper ati on()
and can be used for additional control monitoring.
The parameter is a time stamp in 8KHz samples,
which is the time passed since last call to this
function.

The default value is CSTUser Moni t or () . Unused
in Flex mode.

CST Framework Components 7-27

Files CSTCommander.c, CSTCommander.h

Table 7-15. CST Dynamic Functions (Continued)

Params Type

Params Name

Description

bool (*)

(t CSTChannel * pChan-
nel ,

t CSTExt er nal MsgEvent
CSTExt er nal MsgEvent ,
int Data,

int16 *pDat a)

t CSTPeri phEvent (*)
(t CSTChannel * pChan-
nel ,

i nt Amount OF 8KHz Sam
pl es)

l'ong (*)

(t CSTChannel * pChan-
nel,

t Peri phDri ver Conmand
Conmand,

int Paramtl,

i nt ParanR)

void (*)
(t CSTChannel * pChan-
nel)

void (*)

(t CSTChannel * pChan-
nel ,

char Data)

void (*)
(t CSTChannel * pChan-
nel)

pCSTEXxt er nal MsgEvent

pPeri phProcess

pPeri phDri ver

pCSTG obal Reset

pUARTRxMoni t or

pProcessMessage

The routine is usually called from
CSTFeedBackMsgFunc() to pass obtained data to
the client (to AT parser in the Chipset mode and to
the user in the Flex mode).

In the Chipset mode, the default value is
CSTExt er nal MsgEvent () . In the Flex mode it
has to be initialized by the user’s callback function.

The routine is called from the CST Service and
should perform all hardware related background
operations.

The default value after CST Service initialization is
DAAPer i phProcess() , however, EVM board
specific initialization overloads it to

EVMPer i phProcess() .

Attempts to perform a hardware-related operation.

The default value after CST Service initialization is
DAAPer i phDri ver (), however, EVM board
specific initialization overloads it to

EVMPer i phDri ver ().

Reset the whole CST solution (called upon the ATZ
command in the Chipset mode) — “soft restart”.

The default value is CSTGlobalReset().

The user may want to overload this method in order
to control exactly how CST restarts, for example, to
keep pre-loaded patch code at software reset.

Inform a client (AT parser) about a new byte
obtained from UART.

In the Chipset mode, the default value is
UARTRxMbni t or (), which keeps a track of modem
escape character sequences. In the Flex mode, the
default value is CSTAct i on_UARTRxMbni tor (),
which does nothing.

CST Service message processing.

The default value is
CSTSer vi cePr ocessMessage()

7-28

Files CSTCommander.c, CSTCommander.h

Table 7-15. CST Dynamic Functions (Continued)

Params Type Params Name Description

void (*) pLowPri orityModem Called from CST Service to post a low priority
(t CSTChannel * pChan- modem thread function. Used in multi-threaded
nel) applications only.

The default value is NULL (undefined). In
DSP/BIOS-oriented applications, it should be
initialized with a real function address (see

CSTBI C8S. ¢)
void (*) pVControl | er Hi gh High priority voice processing method.
(t CSTChannel * pChan- PriorityProcess .
nel | The default value is
int16 *pln, VControl | erH ghPriorityProcess ().
intl6é *pQut,
i nt Count)
void (*) pVControl | er Sel ect Vocoder selection function.
(t CSTChannel * pChan- Vocoder .
nel | The default value is
int param VCont rol | er Sel ect Vocoder ()
void (*) pVControl | er Process Low priority voice processing method.
* _
E]telc)STChanneI pChan The default value is VCont r ol | er Process().
In DSP/BIOS-oriented applications, it can be
reinitialized with another function (see CSTBI CS. c)
} t CSTFxns;
Type tCSTFxns is defined in CSTCommander.h.

See also memory management dynamic functions defined in section [7.5 and
sections devoted to the low-level drivers: [7.7.4][7.7.7) and [7.7.7.3 in general.

CST Framework Components 7-29

Files CSTCommander.c, CSTCommander.h

Callback Function Called From CST Service

Function

Parameter(s)

Return Value

User’s (overridden by the AT Parser or CST Action layers) callback function
being called from the CST Service. This is a good place to make extra opera-
tions with 1/0 samples, time measurement and all control operations that are
beyond the CST Service (e.g. user-defined control operations and data flow

management)

In the Chipset mode, the default value is CSTUser Oper at i on() . In the Flex
mode, the default value is CSTAct i on_User Oper ati on() . In the Chipset
mode, this function interconnects the CST Service with UART stream being

treated as AT commands and data stream.

void (*pCSTUser Qperation)
(t CSTChannel * pChannel
intl6 *pln,
intl6 *pQut,
i nt Amount OF 8KHz Sanpl es)

pChannel Pointer to a global CST channel structure
pln Pointer to a buffer of valid input samples
pQut Pointer to a buffer of valid output samples

Amount Of 8Khz Sanpl es Amount of samples in the buffers

None

Getting Egress Message From CST Service Message

Function

Parameter(s)

Return Value

7-30

The routine is called from CSTUser Oper ati on() or CSTAct i on_User Op-
eration(). It gets a new message from the CST Service and calls

pCSTFeedBackMsgFunc method to process the message.

In the Chipset mode, the default value is ATPar ser _CSTSer vi ceFeed-
Back(). In the Flex mode, the default value is CSTActi on_Servi ce-

FeedBack() .

void (*pCSTServi ceFeedBack)
(t CSTChannel * pChannel)

pChannel Pointer to a global CST channel structure

None

Files CSTCommander.c, CSTCommander.h

Processing CST Service Egress Message

Function

Parameter(s)

Return Value

A good heritable method intended to process CST Service egress messages.
Called from ATPar ser _CSTSer vi ceFeedBack() inthe Chipset mode and
from CSTAct i on_Servi ceFeedBack() inthe Flex mode.

The default value is CSTFeedBackMsgFunc() .

void (*pCSTFeedBackMsgFunc)
(t CSTChannel * pChannel
t CSTSer vi ceMessage *pMessage)

pChannel Pointer to a global CST channel structure
pMessage The message from the CST Service
None

Additional Monitor Function

Function

Parameter(s)

Return Value

The routine is called from CSTUser Oper ati on() and can be used for addi-
tional control monitoring. The parameter is a time stamp in 8KHz samples,
which is the time passed since last call to this function.

The default value is CSTUser Moni t or () . Not used in Flex mode.

void (*pCSTUser Monitor)
(t CSTChannel * pChannel ,
i nt Amount OF 8KHz Sanpl es)

pChannel Pointer to a global CST channel structure
Amount Of 8Khz Sanpl es A time stamp in 8KHz samples that informs the
time passed since last call

None

CST Framework Components 7-31

Files CSTCommander.c, CSTCommander.h

User’s Callback Function to Process CST Commander Messages

Function

Parameter(s)

Return Value

The routine is usually called from CSTFeedBackMsgFunc() to pass obtained
data to the client (to AT Parser in the Chipset mode and to the user in the Flex
mode).

In the Chipset mode, the default value is CSTExt er nal MsgEvent () . In the
Flex mode it has to be initialized by the user’s callback function.

bool (*pCSTExt er nal MsgEvent)

(t CSTChannel * pChannel ,

t CSTExt er nal MsgEvent CSTExt er nal MsgEvent ,
int Data,

int16 *pData)

pChannel Pointer to a global CST channel structure

CSTExt er nal MsgEvent Event info (see [7.2.2.4)

Dat a Depending on the event, it can be data byte or length of data
bytes in pDat a buffer or nothing

pDat a Depending on the event, it can be data buffer or nothing

The false value means that the message event needs to be repeated again.
The false value cancels a possible switch to another atomic command script
caused by the corresponding CST Service message and sends a special
repeat event USER_REPEAT _DATA to itself. This is also used in the AT Parser
to output the Caller ID message information in parts.

Peripheral Background Periodic Function

Function

Parameter(s)

Return Value

7-32

The routine is called from the CST Service and should perform all hardware
related background operations.

The default value after CST Service initialization is DAAPer i phProcess(),
however, EVM board specific initialization overloads it to EVMPer i phPr o-
cess().

t CSTPeri phEvent (*pPeri phProcess)
(t CSTChannel * pChannel
i nt Amount OF 8KHz Sanpl es)

pChannel Pointer to a global CST channel structure

Amount Of 8Khz Sanpl es Time stamp in 8KHz samples that informs the
time passed since last call

A peripheral event (see

Files CSTCommander.c, CSTCommander.h

Peripheral Driver Command Function

Function

Parameter(s)

Return Value

Attempts to perform a hardware-related operation.

The default value after CST Service initialization is DAAPer i phDri ver (),
however, EVM board specific initialization overloads it to EVMPer i phDri v-

er().

long (*pPeriphDriver)
(t CSTChannel * pChannel ,
t Peri phDri ver Command Conmand,

int Paramd,

i nt ParanR)
pChannel Pointer to a global CST channel structure
Command Peripheral command (see
Par aml First auxiliary parameter for the command
Par an? Second auxiliary parameter for the command

Result of the command execution. Zero means that the command has not yet
finished executing (the user has to send the command again to push the
process). Nonzero result means that the execution has completed. For
example, when the user sends pdc_PULSE _GEN command to dial a digit in
pulse mode, the driver will return zero until the dialing of this digit is completed.

If the command is to read a DAA hardware register (pdc_READ REG), the re-
turned 32-bit integer value will contain the result of the execution in the high
word and the read register value in the low word. If the high and low words are
equal to zero, the register has not been read yet. Otherwise, the high word be-
comes non-zero and low word contains the register value.

CST Framework Reset Function

Function

Parameter(s)

Return Value

Reset the whole CST solution (called upon the ATZ command in the Chipset
mode) — “soft restart”.

The default value is CSTG obal Reset () .

The user may want to overload this method in order to control exactly how CST
restarts, for example, to keep pre-loaded patch code at software reset.

void (*pCSTA obal Reset)
(t CSTChannel * pChannel)

pChannel Pointer to a global CST channel structure

None

CST Framework Components 7-33

Files CSTCommander.c, CSTCommander.h

UART Byte Monitor Function

Function

Parameter(s)

Return Value

Inform a client (AT Parser) about a new byte obtained from UART.

In the Chipset mode, the default value is UARTRxMbni t or () , which keeps a
track of modem escape character sequences. In the Flex mode, the default
value is CSTAct i on_UARTRxMbni t or (), which does nothing.

voi d (*pUARTRxMbni t or)
(t CSTChannel * pChannel

char Dat a)

pChannel Pointer to a global CST channel structure
Dat a UART byte
None

Note: This function informs AT Parser of the bytes that are received right away,
before putting these bytes into a buffer, so that in case data is stuck in the buffer
(when modems are in retrain mode, for example), escape sequence (“+++"
with guard periods) could still be received and processed by AT Parser.

At the same time, the AT Parser aksks the UART driver to perform auto-baud
detection if the AT Parser is in the Command Mode.

Processing CST Service Ingress Messages

Function

Parameter(s)

Return Value

7-34

Processes messages coming to the CST Service.
The default value is CSTSer vi cePr ocessMessage()

voi d (*pProcessMessage)
(t CSTChannel * pChannel)

pChannel Pointer to a global CST channel structure

None

Files CSTCommander.c, CSTCommander.h

Posting Low Priority Modem Thread

Function

Parameter(s)

Return Value

Called from CST Service to post a low priority modem thread function. Used
in multi-threaded applications only.

The default value is NULL (undefined). In DSP/BIOS-oriented applications, it
should be initialized with a real function address (see CSTBI CS. ¢)

void (*pLowPriorityMdem
(t CSTChannel * pChannel)

pChannel Pointer to a global CST channel structure

None

High Priority Voice Processsing Function

Function

Parameter(s)

Return Value

The default value is VCont r ol | er Hi ghPri orityProcess().
For more details on this function, read section

void (*pVControllerH ghPriorityProcess)
(t CSTChannel * pChannel ,

intl6é *pln,

intl6é *pQut,

i nt Count)

pChannel Pointer to a global CST channel structure
pln Pointer to a buffer of valid input samples
pQut Pointer to a buffer of valid output samples
Count Amount of samples in the buffers
None

CST Framework Components 7-35

Files CSTCommander.c, CSTCommander.h

Vocoder Selection Function

Function

Parameter(s)

Return Value

The default value is VCont r ol | er Sel ect Vocoder ()
For more details on this function, read section

void (*pVControll erSel ect Vocoder)
(t CSTChannel * pChannel

int param
pChannel Pointer to a global CST channel structure
par am Bit Per Sample

None

Low Priority Voice Processing Function

Function

Parameter(s)

Return Value

7-36

The default value is VCont r ol | er Process() .

In DSP/BIOS-oriented applications, it can be reinitialized with another function
(see CSTBI CS. ¢)

For more details on this function, read section

voi d (*pVControll erProcess)
(t CSTChannel * pChannel)

pChannel Pointer to a global CST channel structure

None

Files CSTCommander.c, CSTCommander.h

7.2.2.2 Main Control Fields of CST Commander

The CST Commander control interface consists of several important fields,
which determine the state of the CST Framework.

t ypedef struct tCSTConmander General {

Table 7-16. CST Commander General Control Interface

Field Type Field Name Description

t CSTAt omi cConmand* pCSTAt oni cConmrand Pointer to the current atomic command (see
Zero means that there is no command currently being
executed.

t CSTCommandMbde CommandMbde The CST Commander mode (see mostly used
by the AT-command parser. The CST Commander has
an atomic command to change this field.

i nt CLSMbde The AT Parser’'s mode. The CST Commander never
reads this field internally, but can reset it when
ConmandMode becomes ccm STANDARD COMVAND.
Nevertheless CLSMode is included in the structure as an
important CST Framework variable.

} t CSTCommander Gener al ;
Type tCSTCommanderGeneral is defined in CSTCommander.h.

7.2.2.3 Set of CST Commander Modes

One of the CST Commander’s control fields, CommandMode, defines the glob-
al state of the CST Framework as a whole. This state is mostly used by the AT
command parser. Possible command modes are listed in the following table.

Enum Definition typedef enum t CSTCommandMode {

Table 7-17. Set of CST Commander Modes

Value Name Description
0 ccm_STANDARD _ Standard command mode. CST Framework is neither pumping data
COMMAND nor connecting. AT Parser recognizes and accepts standard AT

commands only

1 ccm_ONLINE_ CST Framework is in online command mode. Modem stays connected
COMMAND_MODE to the line, while the user has the possibility to enter AT commands
2 ccm_VOICE_MODE CST Framework is in voice command mode. Voice AT commands are
permitted

3 ccm_ANYKEY_BREAK_ Modem connection establishment is in progress. Any incoming byte
MODEM from UART causes break of connection and switches the framework
back to standard command mode

CST Framework Components 7-37

Files CSTCommander.c, CSTCommander.h

Table 7-17. Set of CST Commander Modes (Continued)

Value Name

Description

4 ccm_ANY-
KEY_BREAK_VOICE

5 ccm_MODEM_DATA

6 ccm_VOICE_DATA

7 ccm_PARAM_DATA

Voice connection in progress. Any incoming byte from UART causes
break of connection and switches the framework back to standard
command mode

CST Framework is pumping modem data

CST Framework is pumping voice data.

Note that this mode disables auto turnoff upon busy detection. Thus, 'voice data’
command state affects not only AT Parser behavior, but CST Commander as
well.

Special system mode for loading external flex application image (data) into CST
chip

} t CSTComuandMode;

Type tCSTCommandMode is defined in CSTCommander.h.

CST command mode field can be viewed as a shared interface between the
CST Commander layer and AT Parser (in Flex mode it is used too). It repre-
sents three main CST Framework modes: standard command, connecting
and voice/modem data transfer.

7.2.2.4 CST Commander Extended Message Events

Upon message reception from the CST Service, the CST Commander pro-
cesses this message itself and partially converts the information into another
kind of messages to be passed to the CST Commander user (AT Parser in the
Chipset mode). Some message events contain an additional data byte or data

array. (see section

Enum Definition typedef enum t CSTExt er nal MsgEvent {

Table 7-18. Set of CST Commander External Message Events

Value Name

Description

0 eme_NONE

1 eme_ PERIPH_DATA

2 eme_CID_DATA

3 eme DTMF_DATA

No event

Event detected by the peripheral driver. Attached data contains peripheral

driver message (see

Caller ID result code. Attached data contains Caller ID result code (see
sections [7.6.2.3 and P.4.2.4)

Recognized DTMF symbol. Attached data contains DTMF symbol

7-38

Files CSTCommander.c, CSTCommander.h

Table 7-18. Set of CST Commander External Message Events (Continued)

Value Name Description
4 eme_CPTD_DATA Detected Call Progress Tone. Attached data contains CPTD tone.
5 eme_MODEM_ Informs that the modem just connected (no attached data)
CONNECT
6 eme_MODEM_ Informs that the modem just disconnected (no attached data)
DISCONNECT
7 eme_VOICE_ Informs that voice just disconnected (i.e. turned off in both directions, no
DISCONNECT attached data)
8 eme_VOICE_DATA Voice data. Attached data is an array of voice data bytes (in each 16-bit
word only lower 8 bits are used)
9 eme_PARAM_DATA Special system message for loading external flex application image (data)
into CST chip. It just echoes back loaded bytes
10 eme_PARAM_DATA_ Special system message informing the AT parser that loading of external
TURN flex application is over
11 eme_AUTOTURNOFF_ CST Commander message event being generated upon auto switch to the
ALL aTurnOf f Al | script (see Attached data is a unique 1D indicating
the reason for turnoff request (belongs to at k_CPTD_TI MEQOUT,
at k_BUSY, at k_MODENMDI SCONNECT, at k_ALGCREATE_FAI L).
User can cancel (refuse) turning off by returning false (zero).
12 eme_MODEM_DATA Modem data. Attached array is modem data bytes (in each 16-bit word
only lower 8 bits are used). This event is used by CST Action layer only.
Note that it is not very suitable way for intensive data reception in ARQ
mode. (see section
13 eme_TICK Tick message (used by CST Action layer only). Attached data contains
number of processed DAA codec samples since last eme_TICK.
} t CSTExternal MsgEvent;
Type tCSTExternalMsgEvent is defined in CSTCommander.h.

CST Framework Components 7-39

Files CSTCommander.c, CSTCommander.h

7.2.2.5 Brief Description of CST Commander Function Interface

Table 7-19. Brief Description of CST Commander Function

Name Functionality
CSTCommander I nit () CST Commander initialization
CSTCommander Sof t Reset () Reset some runtime varriables
CSTCommander () The main CST Commander function
Initialization CST Commander initialization
Function void CSTCommander | nit (tCSTChannel * pChannel);
Parameter(s)
pChannel Pointer to a global CST channel structure
Return Value None

Reset Runtime Variables

Reset some runtime varriables to be ready to start a new script of atomic com-

mands.
Function voi d CSTCommander Sof t Reset (t CSTChannel * pChannel) ;
Parameter(s)

pChannel Pointer to a global CST channel structure
Return Value None

7-40

Files CSTAtomic.c, CSTAtomic.h

The Main CST Commander Function

Function

Parameter(s)

Return Value

The purpose of the function is to execute the current atomic command being
pointed to by the pCSTAt omi cComand pointer (see To be more pre-
cise, this function kind of “attempts” to execute an atomic command, until it
succeeds, because there may be some other pending tasks/commands to be
completed, or because execution of an atomic command takes time.

The function is inherited by the AT Parser.

voi d CSTCommander (t CSTChannel * pChannel ,int
Amount OF 8KHz Sanpl es) ;

pChannel Pointer to a global CST channel structure

Anmount Of 8KHz Sanpl es Time stamp in 8KHz samples that indicates the time
passed since last call

None

7.2.3 Files CSTAtomic.c, CSTAtomic.h

7.2.3.1 CST Commander Atomic Commands

Enum Definition

The CST Commander is always attempting to perform a control operation, an
atomic command. After the current command has been executed, the CST
Commander increments pCSTAt oni cConmmand pointer (see to se-
lect the next atomic command in a script, which is a sequence of atomic com-
mands. There is a couple of exceptions: the cac_NONE command stops the
script execution and must be the last command in the script; the cac_DI AL-
I NG command may temporarily interrupt execution of the script, where it has
been encountered, and force the CST Commander to start execution of anoth-
er script, which must not contain another cac_DI ALI NG command. Some
commands require an extra word or two as their parameters.

t ypedef enum t CSTAt omi cConmand {

Table 7-20. Set of CST Commander Atomic Commands

Value Name

Description

0

cac_NONE Marks the end of an atomic command script. If there is an
interrupted script, it is resumed. Otherwise, if there’s no interrupted
script, further atomic command execution is stopped by setting
pCSTAt om cComand to zero.

cac_TURNOFF_ALL Sends a cst st _TURNOFF_ALL message to the CST Service that

will immediately turn off all active algorithms (see the
cst st _TURNOFF_ALL message). (see section

CST Framework Components 7-41

Files CSTAtomic.c, CSTAtomic.h

Table 7-20. Set of CST Commander Atomic Commands (Continued)

Value Name Description
2 cac_PERIPH_SIMPLE_X Executes a peripheral driver command (see the command
is passed as a parameter in the next word. The next atomic
command will be processed only after successful execution of this
peripheral command.
3 cac_PAUSE_X Sustains a pause, whose duration is passed as a parameter in the
next word. If the parameter is less than
csp_SPECI AL_PAUSE_AMOUNT, it is treated as an index into the
aCSTSpeci al Pauses array that contains real pause duration
values and scales (seeTable 7-21). Otherwise, the parameter
contains immediate pause value in milliseconds.
4 cac_SET_COMMAND_ Sets CommandMbde to a new value (see passed as a
MODE_X parameter in the next word.
5 cac_WAIT_CPTD_ Waits for appearance of a Call Progress Tone signal, whose type is
APPEARANCE_XX passed as a parameter in the next word. Detection timeout is
passed in the second parameter, having the same format as
cac_PAUSE_X. Waiting for a call progress tone should be done
after CPTD object is created using the cac_TURNON_SI MPLE_X
command.
6 cac_WAIT_CPTD_ Waits for disappearance or absence of a call progress tone signal,
DISAPPEARANCE_X whose type is passed as a parameter in the next word.
7 cac_TURNON_VOICE_ Sends a cst st _VO CE_LOOP message to the CST Service to turn
LOOP on a stand alone voice loop (enable echo canceller and Caller ID
for "on call waiting’ mode) (see [7.1.1.3 and [7.1.1.5)]
8 cac_TURNON_VOICE_ Sends a cst st _VO CE_DATA message to the CST Service to turn
DATA X on the voice pumping in direction, defined by a parameter in the
next word (the parameter is a value of | sl t TxTask field/ (see
9 cac_TURNOFF_VOICE_ Sends a cst st _VO CE_DATA message to the CST Service to turn
DATA X off the voice pumping in direction, defined by a parameter in the
next word (the parameter is a value of | sl t TxTask field, (see
10 cac_LOAD_PARAM_DATA _ Special system command to start loading an external flex
LOOP application image (data) into the CST chip
11 cac_LOAD_PARAM_DATA Special system command for loading an external flex application
image (data) into the CST chip
12 cac_DIALING Dials a complete telephone number, defined by ASCII string in the

abDi al Nunber field (see

7-42

Files CSTAtomic.c, CSTAtomic.h

Table 7-20. Set of CST Commander Atomic Commands (Continued)

Value Name Description

13 cac_TURNON_MODEM Sends a cstst MODEM message to CST Service to turn on the
modem (see [7.1.1.3 and [7.1.1.5)

14 cac_MODEM_CONNECT _ Waits for a modem connection. The next atomic command will be

WAIT accepted only after the modem has established a connection.

15 cac_TURNON_CID_X Sends a message to the CST Service to turn on the Caller ID in a
mode, defined by a parameter in the next word. The parameter is
of t Cl DSt dSeq type and selects a scenario of expected Caller ID.

16 cac_TURNON_SIMPLE_X Sends a message to the CST Service to turn on an algorithm (see
defined by a parameter in the next word. No algorithm
specific parameters are included in the message. Used to start
running DTMF and CPTD detectors.

17 cac_SOFT_STOP_TASK Correctly terminates the current task. If the current algorithm is a
modem, it calls the MODI NT_di sconnect method (see section
)-

18 cac_OPERA- Sets an S-register, whose number is specified as a parameter in

TIVE_WRITE_SREG_XX the next word, to a value, specified by another parameter in the

second word.

19 cac_BRANCH_IF_SREG_XX Skips a number of words/commands in the script (the number is
passed as a parameter in the next word) if the value of an
S-register (specified by a parameter in the second word) is
nonzero.

22 cac_RESET Resets the whole CST solution (called upon the command ATZ) —

“soft restart”. The pointer pCSTA obal Reset points to the
function to be called
(by default, it points to CSTA obal Reset ()).

NOTE: All the following commands are meaningful only for the AT Parser. The CST Commander is not aware

of them.

20

21

23

24

25

26

cac_READ_S_REG
cac WRITE_S_REG
cac_PRINT_RESPONSE

cac_PRINTING_INTER-
NAL_SREG_ALIAS_START

cac_PRINTING_
INTERNAL_SREG_ALIAS

cac_PRINTING_CMD_START

Reads an S-register
Writes an S-register
Prints a final response

Starts printing an S-registers table (AT$)

Continues printing the S-registers table

Starts printing the AT commands list (AT$H)

CST Framework Components 7-43

Files CSTAtomic.c, CSTAtomic.h

Table 7-20. Set of CST Commander Atomic Commands (Continued)

Value Name Description

27 cac_PRINTING_CMD Continues printing the AT commands list

28 cac_PRINTING_SET-
TINGS_START

Starts printing the current settings of the AT commands (AT&V)

29 cac_PRINTING_SETTINGS Continues printing the current settings of the AT commands

} t CSTAt omi cConmand;

Type tCSTAtomicCommand is defined in CSTAtomic.h.

The CST Commander supports 12 (csp_SPECI AL_PAUSE_AMOUNT) differ-
ent special pauses, which are set in the t SpecPauseDescr aCSTSpe-
ci al Pauses[csp_SPECI AL_PAUSE _AMOUNT] array. Each record of the
array contains two fields: time duration and time scale in milliseconds.

Enum Definition t ypedef enum t CSTSpeci al Pauses {

Table 7-21. CST Commander Special Pauses

Value Name Description
0 csp_LONG_DIAL_PAUSE Pause for the comma ‘,’ character in a dial number, in
seconds. The default value is 2 sec
1 csp_SHORT_DIAL_PAUSE Pause for the slash /" character in a dial number, in
milliseconds. The default value is 125 ms
2 csp_MODEM_START_PAUSE Pause before the modem calls/answers and a voice call
starts. The default value 1 sec
3 csp_FLASH_ONHOOK _ Pause duration for the on hook state during the flash
PAUSE procedure. The default value is 300 ms
4 csp_FLASH_OFFHOOK _ Pause duration for the off hook state during the flash
PAUSE procedure.
The default value is 0 ms
5 csp_CPTD_DIALTONE_ Timeout for dial tone detection. Timeout results in the
TIMEOUT abortion of the current process.
The default value is 10 sec
6 csp_CPTD_RINGBACK _ Timeout for ringback detection. Timeout results in the

TIMEOUT

abortion of the current process.
Default value is 60 sec

7-44

Files CSTAtomic.c, CSTAtomic.h

Table 7-21. CST Commander Special Pauses (Continued)

Value Name Description
7-11 cps_FREE_PAUSE_1 - Reserved for the User
cps_FREE_PAUSE_5
12 csp_SPECIAL_PAUSE _ Amount of special pauses in aCSTSpeci al Pauses array.
AMOUNT
} t CSTSpeci al Pauses;
Type tCSTSpecialPauses is defined in CSTCommander.h.

7.2.3.2 Basic Predefined CST Commander Atomic Command Scripts

The CST Commander layer contains a big set of predefined atomic command
scripts that allow the user to perform standard telephone operations easily.
The relevant subset follows:

Table 7-22. Basic Predefined CST Commander Atomic Command Scripts

Name

Functionality

aOr f Hook

aCl DAf t er R ngEnd

aCl DAft er Li neRever sal

aTur nOnModental |

aTur nOnMbdemAns

aTur nOnVoi ceCal |

aTur nOnVoi ceAns

aTur nOnVoi ceRxDat a

Go off hook, run the CPTD and DTMF detectors, don't run the Caller ID (to run
the Caller ID, use special scripts, described below). Corresponds to the ATH1
command.

Run the Caller ID after a ring end
Run the Caller ID after a line reversal

Go off hook, wait for a dial tone, dial the number and run the modem in the
originating (calling) mode. The semicolon ;" dial modifier disables running the
modem after the number has been dialed. Corresponds to the ATD command.

Go off hook and run the modem in the answer (called) mode. Corresponds to
the ATA command.

Go off hook, wait for a dial tone, dial the number, wait for a ring back signal
appearance/disappearance (only if the ‘@’ dial modifier found) and run the
voice pump (echo canceller and Caller ID). Corresponds to the ATD command
in the voice mode.

Go off hook and run the voice pump (echo canceller and Caller ID).
Corresponds to the ATA command in the voice mode.

Run the G.726/G.711 encoder and all signal detectors (CPTD, DTMF).
Corresponds to the AT#VRX command.

CST Framework Components 7-45

Files CSTAtomic.c, CSTAtomic.h

Table 7-22. Basic Predefined CST Commander Atomic Command Scripts (Continued)

Name Functionality

aTur nOnVoi ceTxDat a Run the G.726/G.711 decoder and all signal detectors (CPTD, DTMF).
Corresponds to the AT#VTX command.

aTur nOnVoi ceRxTxDat a Run the G.726/G.711 encoder, decoder and all signal detectors (CPTD,
DTMF). Corresponds to the AT#VRXTX command.

aTur nOF f Voi ceDat a Turn off the G.726/G.711 encoder, decoder, do not turn off signal detectors
(CPTD, DTMF). Corresponds to the <DLE><3> sequence in the AT-parser
stream.

aJust Cal | Go off hook, wait for a dial tone, dial the number. Corresponds to the ATDxx;
command

aSof t TurnOF f Al | Correctly stop the current task, then turn off all other algorithms and go on

hook. Corresponds to the ATH command.

aTurnOff Al Turn off all algorithms, go on hook. Corresponds to the ATH command. Also
used for abort operation.

aCSTServi ceTur nOf f Al | Turn off all algorithms without going on hook.

The predefined atomic scripts are defined in CSTAtomic.c.

7-46

CST Action Message Type Key

7.3 CST Action

7.3.1 Unified CST Action Message

A CST Action message combines several interface messages and commands
into a single packet.

Structure typedef struct tCSTAction {

Table 7-23. Unified CST Action Message

Field Type Field Name Description

t CSTAct i onType Acti onType CST Action type key (see
uni on Action{

t CSTConf i gConmand CSTConf i gComand Corresponds to cat. CONFIG_COMMAND. To
configure CST settings. The CST Action message
of this type will be executed immediately (see

t CSTSt andar d CSTSt andard Corresponds to cat STANDARD_OPERATION. To
Operation Qper ation run one standard (typical) operation which belongs

to tCSTStandardOperationType (see

t CSTSer vi ceMessage CSTSer vi ceMessage Corresponds to cat CSTSERVICE_MESSAGE. To
transfer CST Service message (see
directly via CSTSendServiceMessage() method
(see

} t CSTAction;
Type tCSTAction is defined in CSTAction.h.

7.3.2 CST Action Message Type Key

The key type selects the actual type of the CST Action message content.

Enum Definition typedef enum t CSTActionType {

Table 7-24. CST Action Message Type Key

Value Name Description

0 cat _SET_REG STER Indicates that the rest of the Action message is described by
the CSTConf i gCommand structure (see

1 cat _GET_REG STER Indicates that the rest of the Action message is described by
the CSTConf i gCommand structure (see

CST Framework Components 7-47

CST Action Message Contents

Table 7-24. CST Action Message Type Key (Continued)

Value Name Description

2 cat _STANDARD_OPERATI ON Indicates that the rest of the Action message is described by
the CSTSt andar dQper at i on structure (see

3 cat _CSTSERVI CE_MESSAGE Indicates that the rest of the Action message is described by
the CSTSer vi ceMessage structure (see

} tCSTActionType;
Type tCSTActionType is defined in CSTAction.h.

7.3.3 CST Action Message Contents

7.3.3.1 Configuration Commands

Correspondstocat SET_REG STERandcat GET_REQ STERtypes, used
to set and get CST settings through the S-registers. The CST Action message
of this type will be executed immediately.

Structure t ypedef struct tCSTConfigConmand {

Table 7-25. The t CSTConf i gConmand Structure

Field Type Field Name Description
i nt I nt er nal SReg S-register number to be read/set
i nt Val ue Retrieved value/New value to be set

} t CSTConfi gConmand;
Type tCSTConfigCommand is defined in CSTAction.h.

7.3.3.2 Standard Commands

Correspond to cat _ STANDARD OPERATI ON, used to run one standard (typi-
cal) operation of the type t CSTSt andar dOper at i onType. This action is in-
tended to run or configure an atomic command script.

Structure t ypedef struct tCSTStandardQOperation {

Table 7-26. The t CSTSt andar dQper at i on Structure

Field Type Field Name Description

t CSTSt andar dOper ati onType Operati onType Select the operation type (see Table 7-27)

ui nt8 aDat a[] Attached data depending on the standard
operation

7-48

Type

Enum Definition

CST Action Message Contents

} t CSTSt andar dQper ati on;

tCSTStandardOperation is defined in CSTAction.h.

typedef tCSTStandardOperationType {

Table 7-27. Set of CST Action Standard Operations

Value Name Description
0 sot_ OFF_HOOK Corresponds to the aCf f Hook script (see for this
and all remaining values of Table 7-27)
1 sot_CID_AFTER_RINGEND Corresponds to the aCl DAf t er R ngEnd script
2 sot_CID_AFTER_LINE_ Corresponds to the aCl DAf t er Li neRever sal script
REVERSAL
3 sot_ TURNON_MODEM_CALL_X Corresponds to the aTur nOnModentCal | script. The aDat a
field should contain the dialing number
4 sot_ TURNON_MODEM_ANS Corresponds to the aTur nOnMbdenmAns script
5 sot_ TURNON_VOICE_CALL_X Corresponds to the aTur nOnVoi ceCal | script. The aDat a
field should contain the dialing number
6 sot_ TURNON_VOICE_ANS Corresponds to the aTur nOnVoi ceAns script
7 sot_ TURNON_VOICE_RXDATA Corresponds to the aTur nOnVoi ceRxDat a script
8 sot_ TURNON_VOICE_TXDATA Corresponds to the aTur nOnVoi ceTxDat a script
9 sot_ TURNON_VOICE_ Corresponds to the aTur nOnVoi ceRxTxDat a script
RXTXDATA
10 sot_ TURNOFF_VOICE_DATA Corresponds to the aTur nOf f Voi ceDat a script
11 sot_ JUST_CALL_X Corresponds to the aJust Cal | script
11 sot_SOFT_TURNOFF_ALL Corresponds to the aSof t Tur nOf f Al | script
12 sot TURNOFF_ALL Corresponds to the aTur nOf f Al | script
13 sot_CSTSERVICE_TURN- Corresponds to the aCSTServiceTurnOffAll script
OFF_ALL
14 sot_CUSTOM_ATOM- Custom atomic command script. The script is coded directly
IC_CHAIN_X in the aDat a field
15 sot_SET_DIAL_STRING_X Just set a new dialing number being given via aDat a field.
This operation (if accepted) is executed immediately
} tCSTSt andar dQper ati onType;
Type tCSTStandardOperationType is defined in CSTAction.h.

CST Framework Components 7-49

Brief Description of CST Action Function Interface

7.3.4 Brief Description of CST Action Function Interface

Table 7-28. CST Action Function Interface

Name Functionality

CSTAction_lnit() Standard CST initialization (does not inlude any hardware initialization)
CSTAct i on() CST Action execution

CSTActi on_Process() The main high-priority thread function. Should be called periodically

7.3.4.1 CST Initialization

CST initialization (does not inlude hardware init). This function performs a re-
quired set of operations to correctly initialize the CST Service , CST Com-
mander and CST Action layers. The full CST initialization can be done as fol-
lows:

Tar get Boardl ni t
CSTAction_Init
Tar get Peri phlni t

Function void CSTAction_Init
(t CSTChannel * pChannel ,
bool | sBI CSUsed,
bool (*pUserCall back) (tCSTChannel* pChannel,
t CSTExt er nal MsgEvent CSTExt er nal MsgEvent ,
int Data,
int1l6 *pData));

Parameter(s)

pChannel Pointer to a global CST channel structure

| sBI OSUsed Single threaded/multi-threaded (DSP/BIOS) mode
selection

pUser Cal | back The user callback function to be called by the CST
Framework. The function performs transfer of data and
control information from the CST Commander (see
description of the pCSTExt er nal MsgEvent function in
section The CST Action, however, may also
transfer modem data from the CST Service through this
function. The function should normally return true.

Return Value None

7-50

Brief Description of CST Action Function Interface

7.3.4.2 CST Action Execution

Function

Parameter(s)

Return Value

The main interface function of the Action layer is CSTAct i on() . Similarly to
the CST Service message, the CST Action message can be accepted or re-
jected. The configuration command (cat _ CONFI G_COMVAND) is to be accept-
ed immediately. The standard operation (cat _STANDARD OPERATI ON) is
accepted, if there is no other pending operation. Acceptance of the standard
operation usually starts a process, which will not allow accepting the next com-
mand or a direct CST Service message being passed, until the process is
done.

The message cat CSTSERVI CE_MESSAGE means an attempt to send a
message directly to the CST Service, bypassing the command layer. For ex-
ample, it can be a data message. If the CST Service refused the message due
to another message being processed at the moment, cnr _TRY_AGAI N result
would be returned.

t CSTMessageResul t CSTAct i on(t CSTChannel *
pChannel , t CSTActi on *pAction);

pChannel Pointer to a global CST channel structure
pActi on Pointer to a CST Action message (see

Immediate result (see In case of cat _GET_REG STERkey type, the
result is S-register value.

7.3.4.3 Main High-priority Thread

Function

Parameter(s)

Return Value

The main high-priority thread routine (periodically called function). It is self-
synchronized with respect to DAA interrupts. In fact, it just calls CSTSer vi ce-
Process() function (see The routine should be periodically called
at least once each 5 milliseconds, but it is strongly recommended to call it sev-
eral times more often.

inline void CSTActi on_Process (tCSTChannel * pChannel);

pChannel Pointer to a global CST channel structure

None

CST Framework Components 7-51

Using CST Action Interface, Practical Aspects

7.3.5 Using CST Action Interface, Practical Aspects

7.3.5.1 Standard Applications

7-52

This chapter illustrates use of the CST Action interface by a set of practical ex-
amples. Section has illustrated implementation of an algorithm making
a modem call, sending and receiving data and disconnecting. The implement-
ed algorithm includes the following subtasks:

[Originating a call: dialing a number (say, 532) and running the modem
This operation is similar to ATD532 command and implies going off hook,
sustaining a pause, waiting for dial tone, dialing the number, detecting
busy tones, turning on the modem and waiting for connection establish-
ment. The whole process can be run as follows:

B Starting the process
The following code should a be part of the function MyPer i odi c-
Thr ead() . It sets all necessary Action fields, sends the Action mes-
sage and checks whether the message has been accepted. If the
message was rejected, the operation should be repeated again.

t CSTActi on Acti on;

Action. Acti onType = cat_STANDARD_OPERATI ON,
Action. Acti on. CSTSt andar dOper ati on. Operati onType = sot_TUR
NON_MODEM CALL_X;

Action. Acti on. CSTSt andar dOper at i on. aDat a[0]
Action. Acti on. CSTSt andar dOper ati on. aDat a[1]
Action. Acti on. CSTSt andar dOper at i on. aDat a[2]
Action. Acti on. CSTSt andar dQper ati on. aDat a[3]

(TR TR
o -
TN @ g

if (CSTAction (&ChO, &Action) == cmr _TRY_AGAI N)
/| Repeat agai n!

el se
//Process has started. Wait for connect.

B Waiting for the connection
The following code should be a part of the function MyCal |l -
Back() (CSTExt er nal MsgEvent is a parameter of the function).
The function analyzes the message from the CST Service and sees if
the message is a connect or disconnect/termination event. Note that
this code should remain active even after the connection establish-
ment.

Using CST Action Interface, Practical Aspects

if (CSTExternal MsgEvent == erme_MODEM CONNECT)
// Modem successful |y connect ed!

if ((CSTExternal MsgEvent == ene_AUTOTURNOFF_ALL) ||
(CSTExt er nal MsgEvent == ene_MODEM DI SCONNECT))
/] Connection failed. Al operations aborted

W Preparing a static CST Action message for data sending
The following code should be a part of the function MyPer i odi c-
Thr ead() . It initializes a data message to be filled by transmitted
data.

static t CSTAction DataAction;

Dat aActi on. Acti onType = cat _CSTSERVI CE_MESSACE;

Dat aActi on. Acti on. CSTSer vi ceMessage. Task = cst st_MODEM

Dat aActi on. Acti on. CSTSer vi ceMessage. | sl t TxTask = 1;

Dat aActi on. Acti on. CSTSer vi ceMessage. SubEvent = cse_DATA;

Dat aActi on. Acti on. CSTSer vi ceMessage. Dat aLength = 0; //enpty
// Now we are ready to send and receive data

[Sending and receiving data
Now that the connection has been established and we are ready to send
and receive data. Here it is assumed that the user has data to be sent and
expects data to be received. Just in this particular example, data will be
sent byte by byte.

B Sending a data byte
The following code should be a part of the function MyPer i odi c-
Thr ead() . It fills the data message and tries to transfer current con-
tent into CST. If the message was accepted, all contained data has
been copied into CST local memory and is being sent. This means that
the Dat aAct i on variable can be filled again by next data.

t CSTMessageResult ActionResul t;

if (DataAction. Action. CSTServi ceMessage. Dat aLengt h < CST_MAXDA-
TALENGTH)
Dat aAct i on. Acti on. CSTSer vi ceMessage. aDat a[
Dat aAct i on. Acti on. CSTSer vi ceMessage. Dat aLengt h++] = <next
byte to be sent>;

ActionResult = CSTAction (&ChO, &at aAction);
if ((ActionResult == cnr_RESULTOK) || (ActionResult == cnr_EX-
ECUTI NG)

Dat aAct i on. Acti on. CSTSer vi ceMessage. Dat aLength = 0;
/] Send next data byte

CST Framework Components 7-53

Using CST Action Interface, Practical Aspects

7-54

B Receiving data bytes
The following code should be a part of the function MyCal | Back()
(CSTExt er nal MsgEvent, pData and Data are parameters of
the function). The CST Action interface forces the user to take all re-
ceived data. To be able to take the received data partially, use a direct
callback from the modem integrator (see

int DataCount = Data;

if (CSTExternal MsgEvent == ene_MODEM DATA)
while (DataCount--)
<pointer to a static buffer>++ = *pDat a++;

(1 Disconnecting
Having sent and received all data, the modem should terminate the con-
nection. This operation is similar to the ATH command and it implies a soft
modem disconnection and going on hook. The whole process can be exe-
cuted as follows:

M Accurate disconnection
The following code should be a part of the function MyPer i odi c-
Thr ead() . It sets all necessary Action fields, sends the Action mes-
sage and checks whether the message has been accepted.

t CSTAction Action;

Action. Acti onType = cat_STANDARD_OPERATI ON,
Act i on. Acti on. CSTSt andar dOper ati on. Operati onType = sot _SOFT_TURN
OFF_ALL;

if (CSTAction (&ChO, &Action) == cnr _TRY_AGAI N)
/ | Repeat agai n!
el se
//Go to initial state and expect ene_MODEM DI SCONNECT or
// eme_AUTOTURNOFF_ALL events
B Going to the initial state
The modem has started disconnecting. However, the process may
take a while depending on V.42 activity and the value of the
srd_TI ME_BEFORE_FORCED_ HANGUP S-register. So, there may be
a delay between disconnection initiation and actually going to the ini-
tial state.

It is important to note again, that there may be an additional callback mecha-
nism (direct call from the data modem controller, see for intensive mo-
dem data transfers in ARQ mode, because the CST Action interface does not
allow the user to reject the received data. If the user is unable to take the data,
the data will be lost.

Using CST Action Interface, Practical Aspects

The following example illustrates a simple voice mail:

[Initial state
It is a default on-hook state. Upon detection of a number of consecutive
rings, the voice mail should be activated.

W Waiting for aring
The following code should be a part of the function MyCal | Back()
(CSTExt er nal MsgEvent and Dat a are parameters of the func-
tion). It analyzes the message from the CST Service and sees ifit's a
peripheral event message for ring (or, for example, ring end) event.

if (CSTExternal MsgEvent == enme_PERI PH DATA) && (Data ==
cpe_RING)

/11f nobody takes the handset for a while (e.g. for three
rings)

/1go of f hook and run voice nmail

B Going off hook
The following code should be a part of the function MyPer i odi c-
Thr ead() . It sets all necessary Action fields, sends the Action mes-
sage and checks whether the message was accepted.

t CSTAction Action;

Action. Acti onType = cat_STANDARD_ OPERATI ON,;
Action. Acti on. CSTSt andar dOper ati on. Oper ati onType =
ns_G0 OFF_HOOK;

if (CSTAction (&ChO, &Action) == cnmr _TRY_AGAI N)
/| Repeat agai n!

el se
//Run voice nuil

(1 Running voice mail (playing the greeting)
Now we are going to play a greeting stored in external memory.

B Selecting a coder?
The following code should be a part of the function
MyPer i odi cThread() . Prior to activation of the voice path, let's
select the G.726 waveform coder at 16K rate (economical bit rate).
The resulting bit per sample rate is equal to 2.
4 All CST algorithms and integration services can be configured before initialization. Most important parameters are
channel-dependent, in other words each channel (in case of multichannel application and several instances of CST

Framework) contains its own set of settings mapped to S-registers. All other parameters are stored in global
channel-independent structures, in other words they are applicable for all channels, and can be modified directly.

CST Framework Components 7-55

Using CST Action Interface, Practical Aspects

7-56

t CSTActi on Acti on;

Action. Acti onType = cat_SET_REQ STER;

Action. Acti on. CSTConf i gComand. | nt er nal SReg = srd_VO CE_BPS;
Action. Acti on. CSTConf i gComand. Val ue = 2;

CSTActi on (&ChO, &Acti on);

/1Ck, let’s run playback

Running the G.726 decoder and related services

The following code should be part of MyPer i odi cThr ead() func-
tion. It sets all necessary Action fields, sends the Action message and
checks whether the message was accepted. If the message was re-
jected, the operation should be repeated next time.

t CSTActi on Acti on;

Action. Acti onType = cat_STANDARD_OPERATI ON,
Action. Acti on. CSTSt andar dQper ati on. Operati onType = sot_TUR
NON_VO CE_TXDATA;

if (CSTAction (&ChO, &Action) == cmr _TRY_AGAI N)

/| Repeat agai n!
el se

//Voice tx. path activated. Prepare a static nessage for
data sending

Preparing a static CST Action message for data sending
The following code is a part of the function MyPer i odi cThread() . It
initializes a data message to be filled by data to be sent.

static tCSTAction DataAction;

Dat aActi on. Acti onType = cat CSTSERVI CE_MESSACE;

Dat aActi on. Acti on. CSTSer vi ceMessage. Task = cstst_VO CE_DATA
Dat aActi on. Acti on. CSTSer vi ceMessage. | sl t TxTask = 1;

Dat aActi on. Acti on. CSTSer vi ceMessage. SubEvent = cse_DATA;

Dat aActi on. Acti on. CSTSer vi ceMessage. Dat aLength = 0; //enpty
//Now we are ready to send voice data

(1 Playing the greeting
Now we are ready to send voice data. Just in this particular example, data
will be sent sent byte by byte.

Using CST Action Interface, Practical Aspects

B Sending a data byte
The following code should be a part of the function MyPer i odi c-
Thr ead() . It fills the data message and tries to transfer the current
contents into CST. If the message is accepted, all contained data will
be copied into CST local memory and it will be sent. This means that
the Dat aAct i on variable can be filled again by the next portion of
data.

t CSTMessageResul t Acti onResul t;

if ((Dat aActi on. Acti on. CSTSer vi ceMessage. Dat aLengt h <
CST_MAXDATALENGTH))
Dat aActi on. Acti on. CSTSer vi ceMessage. aDat a[
Dat aActi on. Acti on. CSTSer vi ceMessage. Dat aLengt h++] = <next
byte to be sent>;

ActionResult = CSTAction (&ChO, &at aAction);

if ((ActionResult == cnr_RESULTOK) || (ActionResult ==
cnt _EXECUTI NG)

Dat aActi on. Acti on. CSTSer vi ceMessage. Dat aLength = 0;

/1 Send next data byte

/11f greeting has been played, stop playing

H Auto hang up control
The following code should be a part of the function MyCal | Back()
(CSTExt er nal MsgEvent is a parameter of the function). It ana-
lyzes the message from the CST Service by looking for an auto turnoff
event (auto hang up). It will happen if the abonent hangs up. Note that
this code should be active during both greeting playback and mes-
sage recording.

if (CSTExternal MsgEvent == ene_AUTOTURNOFF_ALL)
/1 Connect fail. Al operations aborted

B Stopping the playback
The following code should be a part of the function MyPer i odi c-
Thr ead() . It sets all necessary Action fields, sends the Action mes-
sage and checks whether the message was accepted. If the message
is rejected, the operation should be repeated again.

t CSTActi on Acti on;

Action. Acti onType = cat_STANDARD_OPERATI ON,

CST Framework Components 7-57

Using CST Action Interface, Practical Aspects

7-58

Action. Acti on. CSTSt andar dOper ati on. Operati onType = sot_TURN
OFF_VO CE_DATA;

if (CSTAction (&ChO, &Action) == cmr _TRY_AGAI N)
/] Repeat it again!

el se
//Let’s start recording

(1 Recording a voice message
Now we are going to record the incoming voice. Recording can be stopped
manually or automatically upon busy tone detection.

W Running the G.726 encoder and related services

The following code should be a part of the function MyPer i odi c-
Thr ead() . It sets all necessary Action fields, sends the Action mes-
sage and checks whether the message was accepted. If the message
is rejected, the operation should be repeated again.

t CSTActi on Acti on;

Action. Acti onType = cat_STANDARD_OPERATI ON,
Action. Acti on. CSTSt andar dOper ati on. Operati onType = sot_TUR
NON_VO CE_RXDATA;

if (CSTAction (&ChO, &Action) == cmr _TRY_AGAI N)
/] Repeat it again!
el se
//Voice rx path activated. Let’s catch voice datal

Receiving data bytes

The following code should be a part of the function MyCal | Back()
(CSTExt er nal MsgEvent, pData and data are parameters of
the function). The user should store all passed data. Unlike the mo-
dem, voice throughput is known and data is passed in chunks of even
size.

int DataCount = Data;

if (CSTExternal MsgEvent == ene_VO CE_DATA)
while (DataCount--)
<pointer to a static buffer>++ = *pDat a++;
/11f max allowed tine el apsed, stop nmessage record

Using CST Action Interface, Practical Aspects

B Stopping recording and going on hook

The following code should be a part of the function MyPer i odi c-
Thr ead() . It sets all necessary Action fields, sends the Action mes-
sage and checks whether the message was accepted. If the message
is rejected, the operation should be repeated again.

t CSTActi on Acti on;

Action. Acti onType = cat_STANDARD_OPERATI ON,
Action. Acti on. CSTSt andar dOper ati on. Operati onType = sot_TURN
OFF_ALL;

if (CSTAction (&ChO, &Action) == cnmr _TRY_AGAI N)
/! Repeat it again!

el se
/1A'l operations will be stopped

Going to the initial state
The process will stop shortly and the voice mail device will go on hook.

7.3.5.2 Non-Standard Applications

In a non-standard application the user may need to add his/her own algo-
rithms, change the behavior of certain CST Services and so on. As it has been
mentioned in section and section , CST provides a set of dynamic
functions to be overridden by the user if necessary. Some typical reasons for
the dynamic function overloading are listed below:

Adding New Algorithms

The user can add his/her own algorithm and run it together with standard CST
algorithms. In most cases it is enough to overload the function CSTAc-
tion_User Qperation() thatallows the user to process I/O samples from
the DAA.

voi d MyUser Qper ati on(t CSTChannel * pChannel, int16* pln,intl6
*pQut, i nt Anmpbunt OF 8KHz Sanpl es)

{

}

CSTActi on_User Qperati on (pChannel, pl n, pQut, Anbunt O 8KHzSanpl es) ;

<My al gorithm /O processi ng> (pln, pQut, Amount O 8KHzSanpl es) ;

InMyl nitialization() the user should include the following code:

CSTFxns. pCSTUser Oper ati on = MyUser Qper ati on;

CST Framework Components 7-59

Using CST Action Interface, Practical Aspects

Running Several Audio Channels

7-60

The CST framework is multichannel-ready, though implementation of a multi-
channel application involves some adjustments in the CST framework. Since
TMS320C54CST contains only one on-chip DAA, a number of external co-
decs may be connected to McBSPO and McBSP2 or to the other peripherals
(HPI, GPIO etc). There can be various input/output techniques. To connect the
user’s I/O stream to the CST framework, the following steps should be taken:

(] Reload hardware drivers

If you want to use the existing DAA and add to this additional DAAs (or co-
decs) or want to use other than the Silicon Lab’s DAA peripherals, you will
need to reload the DAA driver and the peripheral driver. The same applies
to the UART driver. It will need to be reloaded if there will be additional
UARTSs used or some other peripherals will replace the UART. For more
information on CST drivers and reloading them read section specifi-
cally subsection 7.7.7]

(] Create and initialize additional CST channels
To create an additional CST channel structure, define a structure of the
type t CSTChannel or allocate memory dynamically by calling the
memory manager allocation function as follows:

pChl = (t CSTChannel *) CSTMenmVanager . al | ocat e(CST_DE-
FAULT_MEM SPACE, si zeof (t CSTChannel), 1);

To initialize the additional CST channel, use the following function CSTAc-
tion_I nit_For ExtraChannel (). Note that this initialization should
be done after initialization of the channel 0 (Ch0).

voi d CSTAction_I nit_For ExtraChannel (tCSTChannel* pChannel)
{

CSTAction_I ni t For Si ngl eThread (pChannel, 0, CSTFxns.pCSTExter -
nal MsgEvent) ;

pChannel - >CSTSer vi ce. | sMbdenPreenpti on = ChO0. CSTServi ce. | sM-
denPreenpti on;

}

(1 Overload dynamic and overloadable functions if need be
create your own CSTSer vi ceProcess() and CSTSer vi ceProcess-
Buf f er () functions. A new function, combined of these two functions,
may look like this:

voi d MyCSTSer vi ceProcess (tCSTChannel * pChannel)

Using CST Action Interface, Practical Aspects

i nt Anpunt Of 8KHz Sanpl es;
/1 Process only if enough sanples accunul at ed
Amount Of 8KHzSanpl es = DAAAvai | (pChannel - >DAAChanHandl e) ;
whil e (Anmbunt OF 8KHz Sanpl es>=1 NPUT_OUTPUT_LENGTH)
{
Amount O 8KHz Sanpl es- =1 NPUT_OUTPUT_LENGTH;
{
t CSTSer vi ce* pCSTService = &cChannel - >CSTSer vi ce;
t CSTPer i phEvent Peri phEvent;

/1 Get the new portion of anal og input sanples
/1 and put the previous portion of output sanples
mencpy (al nput, pCSTService->aCQutput, | NPUT_OUTPUT_LENGTH);
DAAReadW i te (pChannel ->DAAChanHandl e, al nput, | NPUT_QUT-
PUT_LENGTH) ;

CSTSer vi ceProcessl GandVoi ce (pChannel, al nput, pCSTSer -
vi ce->aCut put) ;
CSTSer vi ceProcessCommonAl gos (pChannel, al nput, pCSTSer -
vi ce->aCut put) ;
CSTFxns. pCSTUser Operati on (pChannel, al nput, pCSTSer -
vi ce- >aCut put, | NPUT_OUTPUT_LENGTH) ;
Per i phEvent =CSTFxns. pPer i phProcess (pChannel, | NPUT_OUT-
PUT_LENGTH) ;
if (PeriphEvent!=cpe_NONE)
CSTServi cePri v_Put Dat al nt oMessage (pChannel, cstst_PER-
| PH, Peri phEvent);
CSTFxns. pProcessMessage(pChannel) ;

if (pChannel ->CSTServi ce. CSTSer vi ceSt at us. | sProcessMsgNeeded)
{

CSTFxns. pProcessMessage (pChannel);

pChannel - >CSTSer vi ce. CSTSer vi ceSt at us. | sProcessMsgNeeded=0;

The above is mostly a copy of the original CST Service functions CSTSer -
Vi ceProcess() and CSTSer vi ceProcessBuf f er (). If you need to
modify voice and other CST Service algorithm processing, you may do this
here, as this is the place, where the CST Service processing functions are

CST Framework Components 7-61

Using CST Action Interface, Practical Aspects

called.

Note that if you want to use a custom CSTServiceProcess(), like the
above, the original functions CSTAct i on_Pr ocess() and CSTSer vi -
ceProcess() must not be called anymore in the application.

1 BIOS
Modify the functions DMControl | er LowPri orit yModenSW () and
VCtrl LowPriorityProcessSW() (see BIOCS\CSTBICS. ¢ and
Bl OS\ CSTBI CS. h). The functions must be made multichannel.

Running Several Modem Channels

7-62

The technique is the same as for voice channels. However, V.32bis usage lim-
its the maximum local loop delay (a delay, in which transmitted sample ap-
pears as near echo at the input of a modem). Therefore, the user should make
the local loop delay as short as possible. Finally, the user should measure the
local loop delay and update the corresponding parameter in the modem initiali-
zation structure (see section). If V.42bis is used and the modem is run-
ning in single thread (which is not recommended), the user should overload
the function called by the DMCont r ol | er Subf xns. pl sReal ti meShort -
age pointer. (See section

An example Flex application that works with two modems is described in sec-

tion

AT Command Line Parser

7.4 CST AT Parser

The AT Commands parser is partially supplied in open source code in C lan-
guage. It is located in the folder CST\ Sr c\ Fr anewor k in the files ATPar -
ser.c, ATExtended.c, CSTSReg.c (see[7.1.1)]

The AT parser can be considered as an example of controlling the CST Frame-
work through the CST Commander, although it usually should not be used in
standard Flex applications. The AT parser consists of the AT command line
parser, small UART controller and an integrator of these parts with the CST
Commander layer, CST service layer and peripherals.

The AT parser is an extendable service that allows the user to add his own AT
commands and S-registers, and modify the application’s behavior, but such
operations are not described and it is suggested not to reconfigure the AT pas-
er interior without a real need.

It has been mentioned that the AT parser is not used together with CST Action
layer. Therefore using AT commands is uncommon for typical Flex applica-
tions.

7.4.1 AT Command Line Parser

Structure

The AT parser keeps AT command strings in a list of arrays of dedicated des-
criptors of the type t ATPar anet er.

typedef struct tATParaneter {

Table 7-29. AT Command Descriptor

Field Type Field Name Description

i nt A unique ID of the type tATStringType combined with flags defined in
ast_XXX constants, which defines the type of the AT command and its
properties. This ID is used as reference in additional tables, which describe
when the AT command is applicable and associated with it CST
Commander atomic command script (see

char* AT command sub-string (the “AT” prefix is omitted)

int* pPar anet er Pointer to an integer parameter that can be set (or read) by the command.

union d {}:

NULL means absence of integer variable.

If the ast field includes the bit-attribute ast_LIST set (e.g. (ast & ast_LIST)
I= 0), then the address is treated as the address of an array of integer
parameters. Amount of the parameters in the array is stored in the array’s
very first element. The union d defines the allowed values of the
parameter(s).

CST Framework Components 7-63

AT Command Execution

Table 7-29. AT Command Descriptor (Continued)

Field Type Field Name Description

i nt limts Defines the boundary values of the integer parameter. The upper 8 bits
define the maximum value; the lower 8 bits define the minimum value. If the
value of the upper bits is the same as the value of the lower bits, it is the
default value

int* range Defines the values range of the integer parameter. This pointer points to an
array containing a number of subranges. For example, the array {3, 2,5, 8,8,
10,12} of integers would define a range, which is a union of 3 subranges:
2...5,8...8 and 10...12. E.g. the resulting range would include the values:
2,3,4,5,8,10, 11 and 12.
Note, the field range is used only if (ast & ast RANGE) != 0. Otherwise the
field limits is used.

} tATParaneter;
Type tATParameter is defined in ATParser.h.

The user can add his/her own arrays of the AT command descriptors, but can-
not modify the existing ones. Thus, the AT parser is not fully extendable. All
extended arrays of AT command descriptors are treated as always applicable
regardless of CormandMbde (see Besides, the AT parser does not
support any mechanism for external linkage of reference tables and cannot
automatically run a user’s process associated with an AT command. Thus,
adding a new AT command is not a trivial operation in general, however, it is
easy to add AT commands that just set or read some variables.

The AT parser is active and can consume ASCII characters when the function
| SUARTt oATPar ser Ready() returns a nonzero result. It means that an
ASCII character can be passed to the function ATAddChar ToCrdLi ne() to
be added to the end of the current line. When the end of line character / car-
riage return character is entered, line parsing and command processing start.

7.4.2 AT Command Execution

7-64

Each AT command can start execution of only one atomic command script.
The script is selected by the ast field of the AT command descriptor (see

The AT parser extends the main CST commander function (see in or-
der to change execution of some existing atomic commands and to add proc-
essing of a number of new ones not supported by the CST commander layer.
In the code it is implemented in the function AT _CSTConmander () , which in-
herits the CST commander main function. The function AT _CSTComrand-

Brief Description of AT Command Line Parser Interface

er () is called from the function CSTUser Qper at i on(), which, in turn, is
called through the pointer CSTFxns. pCSTUser Qper at i on. To print execu-
tion result token, the cac_NONE termination atomic command is used (see
whose processing is different when using the AT parser.

7.4.3 Brief Description of AT Command Line Parser Interface

Table 7-30. Some of the AT Parser Interface Functions

Name Functionality

CSTATParserlnit() AT parser initialization

CSTATPar ser Add() Add an array of new AT command descriptors

AT_CSTConmander () Inherited CSTCommander () method. It redefines execution of some atomic

commands and adds several new ones (see

7.4.3.1 AT Parser Initialization

Initializes the AT parser.

Function voi d CSTATParserlnit (tCSTChannel * pChannel);
Parameter(s)

pChannel Pointer to a global CST channel structure
Return Value None

7.4.3.2 Adding New AT Commands

Adds new AT commands. The examples of this procedure can be found in the
AT parser’s source code files, ATPar ser . ¢ and ATExt ended. c. The main
function for the CST Chipset mode (see the file ROM mai n. ¢) adds extended
AT commands to the standard set.

Function voi d CSTATPar ser Add
(t CSTChannel * pChannel, const tSi npl eMap*
pExt endedATConmands) ;

Parameter(s)
pChannel Pointer to a global CST channel structure
pExt endedATCommands A pointer to a handler, initialized with an address
of the new AT command table being added, total
number of commands in the table, and size of a
single command (see Table 7-13).
Return Value None

CST Framework Components 7-65

Overview

7.5 Memory Management

7.5.1 Overview

7-66

The CST Framework provides a memory manager that can be used by both
the framework itself and the user. The memory manager functions are accessi-
ble through pointers, which makes it possible to reload the original memory
manager functions by the DSP/BIOS memory manager functions or other
user-defined memory management functions.

The memory management subsystem in the CST Framework has the follow-
ing features:

[0 The memory management functions can be reloaded as they’re accessed
in the framework indirectly through a set of dedicated pointers. This makes
it possible to use the DSP/BIOS memory management functions or user-
defined memory manager functions.

(1 The available heap memory size can be estimated.

L

The user may change the default heap size and location.

[The user may define several separate memory segments/heaps mapped
to physically different RAMs (e.g. DSP internal DARAM and external data
RAM).

Creating and deleting XDAIS algorithms, which is done by the functions
ALGRF create() and ALGRF _del ete(), involves calling the memory
manager functions through the pointers (see also

The C standard functions mal | oc(), cal l oc(),free() andreal |l oc()
are redefined in the CST memory manager so that they also call the actual
memory manager functions through the pointers.

Thus, all memory allocation in CST is carried out by the memory manager,
whose functions are accessible through the dedicated pointers.

Memory Manager Function Interface

7.5.2 Memory Manager Function Interface

The memory management functions are accessible through the pointers in the
structure t CSTMenivanager CSTMemvanager (see mal | oc. h).

t ypedef struct {

Table 7-31. Memory Manager Function Interface Types

Type Name Description

void* (*) (| ALG MenfSpace, size_t, allocate Virtual function to allocate

size_t) memory

voi d (*) (1 ALG_Mentpace, voi d*, free Virtual function to free memory

size_t)

size t (*)() getAvailableMemory Virtual function to estimate free
memory size

} t CSTMemvanager ;

7.5.2.1 Memory Allocation

This memory allocation function returns a pointer to an aligned memory block
(according to the al i gnnent parameter, its size and memory space).

Function voi d* (*all ocate) (1ALG MenSpace space,
size_t alignnent,
size_t size);

Parameter(s)
space Memory space, where allocated block should be placed.
Available memory spaces types are defined in file
CST\ Fr amewor k\ XDAS\ i al g. h. The default CST
memory space is CST_DEFAULT_MEM _SPACE, which is
equal to | ALG_DARAM. This corresponds to the DSP
internal DARAM (see
al i gnnent Memory block alignment in MAUSs.
si ze Size of allocated block is in MAUs.
Return Value Address of allocated memory block or NULL on failure.

7.5.2.2 Memory Deallocation

This function is invoked to free a memory block that has been previously allo-
cated by the al | ocat e() function, defined in .

Function void (*free) (IALG MenSpace space,
voi d *menory,
size_t size);

CST Framework Components 7-67

Possible Memory Configurations

Parameter(s)

space Memory space, where allocated block should be placed. Available
memory spaces types are defined in file
CST\ Fr amewor k\ XDAS\ i al g. h. The default CST memory space
is CST_DEFAULT_MEM SPACE, which is equal to | ALG_DARAM.
This corresponds to the DSP internal DARAM (see

nenory The address of a previously allocated memory block.

si ze Size of the allocated block is in MAUs.
The value of this parameter is not required by default. The
parameter is used mainly to make the function interface close to
that of DSP/BIOS’ MEM free().

Return Value None

7.5.2.3 Free Memory Size Estimation

This function is used to get an estimate of the free memory.

Function size t (*getAvail abl eMenory)();
Parameter(s) None
Return Value Returns an estimate of free heap memory in MAUs. The returned value is a

sum of the free sizes of all heaps (there may be several heaps, up to 6). Note
that in multithreaded applications this value can't be relied on. That's because
the current thread may be preemted by another thread, which, in turn, may
change the memory allocation state.

7.5.3 Possible Memory Configurations

There are 3 basic memory configurations supported by the CST solution. In
any of these configurations, the user has to make sure that the size of memory
available for CST algorithms satisfies requirements listed in Table 8-4. Other-
wise, some functionality may become unavailable.

Table 7-32. Basic Memory Configurations

Configuration Initialization Usage Restrictions

CST Memory Manager Used by All

1 Preset heap table with available [j ROMed functions:
memory segments, if needed mal | oc()

. cal | oc()
memory Init the CST
a Ini e memory manager real | 0c()

manager i
CSTMenvanager | ni t () free()

See ALGRF _create()

ALGRF_del ete()

7-68

Possible Memory Configurations

Table 7-32. Basic Memory Configurations (Continued)

User Memory Manager Used by All

g Perform initialization of user-defined
memory manager

User
memory
manager

] Redefine dynamic methods in
CSTMenianager to redirect alloca-
tion requests

] Disable CST Memory Manager

See

DSP/BIOS Memory Manager Used by All

ROMed functions:
mal | oc()

cal | oc()

real |l oc()
free()

ALGRF _create()
ALGRF _del ete()

Any proprietary user
functions

1 Preset heap table with available ROMed functions:

memory segments, if needed mal | oc()
i . . cal l oc()
1 Redefine dynamic methods in real | oc()
CSTMenManager to redirect alloca- free()

tion requests ALGRF_creat e()

O Disable CST Memory Manager ALGRF_del et e()

MEM al | oc()
3 MEM free()
See [7.5.3.3 —
MEM st at ()

7.5.3.1 Using CST Memory Manager

The CST memory manager is used by CST in the Chipset mode. This same
memory manager can still be used in the flex mode for both CST Framework
and a user’s Flex application. The CST memory manager is normally used in
a non-BIOS environment. In the DSP/BIOS environment, the DSP/BIOS
memory manager should be used (see

In a standard Flex application, which uses the CST Action layer, the heap loca-
tion and size is set up automatically. The function CSTActi on_Init () (see
CSTAct i on. h) initializes the very first entry in the array t CSTMenSpace
CSTMentpace[6] (see mal | oc. h, Table 7-33) with the base address of the
heap and its size. The memory manager uses this array to find the memory
that is used for the heap. The address and size of the standard heap become
available at link time. A linker command file should specify the location and
size of the heap. See the example project and linker command files for stan-
dard single-threaded Flex applications (more info on this can be found in
If your application needs different location and/or size of the heap, the
linker command file may be adjusted appropriately.

CST Framework Components 7-69

Possible Memory Configurations

Creating Second Heap

If your application needs to use two different heaps, for example, one heap is
located in the DSP internal DARAM, while the other is located in the external
data RAM connected to the DSP, you must initialize the next entry in the array
t CSTMenSpace CSTMentpace[6] manually. That is, the function CSTAc-
tion_Init() wilinitialize CSTMentSpace[0] for the first heap (whose ad-
dress and size would be specified in the linker command file). The user will ini-
tialize CSTMentpace[1] for the second heap. This initialization should be
done before the call to the function CSTAct i on_I ni t () because this func-
tion calls the CST memory manager initialization function, CSTMeniVanager -
Init().

t ypedef struct {

Table 7-33. CST Memory Space Segment Structure

Type Name Description
voi d* base Base address of a contiguous memory segment
size_t si ze Size of the memory segment in MAUs
| ALG_MenfSpace space Space descriptor (see XDAIS core file CST\ Fr anme-
wor k\ XDAS\ i al g. h for options). The default CST memory
space is CST_DEFAULT_MEM SPACE, which is equal to
| ALG_DARAMD. This corresponds to the DSP internal DARAM
(see section
The external memory may be denoted as | ALG_EXTERNAL.
} t CSTMenfpace;
Type tCSTMemSpace is defined in malloc.h.

7-70

Hence, a portion of the Flex application initialization code will look something
like this instead of a single call to CSTActi on_Init():

CSTMentspace[1] . base = (voi d*) OxA000; // external data
menory starts at OxA000

CSTMentpace[1] . si ze = 0x2000; // external data nenory size
is 0x2000

CSTMentpace[1] . space = | ALG EXTERNAL; // denotes external
data nenory

CSTAction_Init (&h0, 0, MCall back);

Possible Memory Configurations

7.5.3.2 Using User-Defined Memory Manager

To use a user-defined instead of the CST memory manager, just a few simple
steps should be taken:

(1 Initialization of the user-defined memory manager
1 Reloading of the pointers to the memory manager functions (see

(1 Clearing of the array CSTMemSpace[6] to prevent the CST memory man-
ager from any heap initializations

Therefore, a portion of the Flex application initialization code will look some-
thing like this instead of a single call to CSTAction_Init():
M/MemVanagerInit(...); // Init the user-defined nmenory
manager

CSTMemvanager . al | ocate = MyMenManager Al | ocate; // rel oad
functions

CSTMemvanager . free = MyMenManager Fr ee;

CSTMemvanager . get Avai | abl eMenory = MyMemvanager CGet Avai | a-
bl eMenory;

memset (&CSTMenBpace[0], 0, sizeof (CSTMensSpace)); // dis-
abl e CST nenory manager

CSTAction_Init (&h0, 0, MCall back);
7.5.3.3 Using DSP/BIOS Memory Manager

To use the DSP/BIOS memory manager with CST, the user should take the
following steps:

[Reload the pointers to the memory manager functions

[Clear the array CSTMenSpace|[6] to prevent the CST memory manager
from any heap initializations

In a standard Flex application, which uses the CST Action layer, the heap loca-
tion and size is defined in a DSP/BIOS configuration file. The heap is created
in a data memory section and assigned the heap identifier label, _ SEQD that
will be used when calling the DSP/BIOS memory manager functions MEM al -
loc(),MEM free() and MEM st at () (see TMS320C5000 DSP/BIOS Ap-
plication Programming Interface (API) Ref Guide (SPRU404)). During the init-
ialization of the Flex application, the function CSTAction_Init() (see
CSTAct i on. h) reloads the pointers to the new memory manager functions
and stores the address of the heap identifier SEQ) for later use.

The address and size of the heap become available at link time when the DSP/
BIOS configuration file is compiled. See the example project and configuration
files for standard multi-threaded Flex applications (more info on this can be
found in section If your application needs different location and/or size
of the heap, the DSP/BIOS configuration file may be adjusted appropriately.

CST Framework Components 7-71

Possible Memory Configurations

Wrapper Functions

7-72

During initialization, the function CSTAct i on_I ni t () invokes the function
CSTBI GSMemvanl ni t () , which makes the pointers to point to the wrapper
functions CSTBI OSAI | ocat e(), CSTBI CSFree() and CSTBI OSCet A-
vai | abl eMermory() (see the files Bl OS\ CSTBI OSmenman. ¢ and
Bl OS\ CSTBI Csnmemman. h). The wrapper functions eventually call the DSP/
BIOS memory manager functions to allocate, free and count memory.

These wrapper functions initially were introduced to solve the following two
problems:

(1 Preemption of the DSP/BIOS memory management functions
[0 Need to keep/remember the size of each allocated block for MEM f r ee()

The first problem arises because the DSP/BIOS memory manager functions
are to be called from DSP/BIOS tasks only and they may cause a task/context
switch. This is undesirable for CST because the CST Service, which is to be
run in a high-priority SWI, dynamically allocates memory for XDAIS algorithms
and some data.

The second problem, which is much less severe, required rewriting portions
of the code that could call the standard C f r ee() function or the CST memory
manager function CSTMenmVainager . f r ee() with just a pointer to the allo-
cated block but not the block size.

The preemption problem was solved by disabling the software interrupts
(SWIs) before calling the functions MEM al | oc(), MEM free() and reenab-
ling them afterwards. The wrapper functions took care of this disabling and en-
abling of SWIs. It was not long before the CST release when this problem was
solved on the DSP/BIOS side. The DSP/BIOS introduced two new functions:
MEM regi ster_I ock() and MEM r egi st er _unl ock(), which are spe-
cific for the C54CST chip. The functions let the DSP/BIOS memory manager
know which functions to call to prevent context switching during memory allo-
catioin/deallocation processes. The function CSTBI CSMenmvanl nit () sets
SW _di sabl e() and SW _enabl e() (see TMS320C5000 DSP/BIOS Ap-
plication Programming Interface (API) Ref Guide (SPRU404)) functions as
such lock/unlock functions.

The allocated block size problem was solved by allocating larger memory
blocks than requested and storing the size in this additionally allocated
memory. This is the second purpose of the wrapper functions. This modifica-
tion enabled to call the standard C function f r ee() without the size. However,
the CST Framework was modified as well to call the memory manager function
CSTMemvanager . free() with the correct size.

Possible Memory Configurations

To learn more about the wrapper functions, see the files Bl OGS\ CSTBI OSnem
man. ¢ and Bl OS\ CSTBI OSrrenman. h.

Creating Second Heap

It is possible to have two heaps, if your application must use two different
heaps. For example, one heap is located in the DSP internal DARAM, while
the other is located in the external data RAM connected to the DSP. You must
create an additional heap in the DSP/BIOS configuration file and assign it the
heap identifier label, _SEGI that will be used when calling the DSP/BIOS
memory manager functions MEM al | oc(),MEM free() and MEM st at ().
Having done this, the user will also need to let the wrapper functions know
about this second heap. This is done by modifying the array t CSTBI OSMem
Space CSTBI OSMenfspace[6] (see Bl OS\ CSTBI OSmenman. c,
Table 7-34). The very first entry in this array (index 0) is initialized by the func-
tion CSTAct i on_I nit () and it corresponds to the heap in the DSP internal
DARAM. The next entry should be initialized by the user prior to calling the
function CSTAction_lnit().

t ypedef struct {

Table 7-34. CST BIOS Memory Space Segment Structure

Type Name Description
I nt* psegi d Pointer to a DSP/BIOS heap segment ID.
| ALG_MenfSpace nSpace Space descriptor (see XDAIS core file CST\ Fr ane-

wor k\ XDAS\ i al g. h for options). The default CST memory
space is CST_DEFAULT_MEM SPACE, which is equal to

| ALG_DARAMD. This corresponds to the DSP internal DARAM
(see section 8.3).

The external memory may be denoted as | ALG_EXTERNAL.

Type

} t CSTBI OSMenfSpace;

tCSTBIOSMemSpace is defined in BIOS\BIOSmemman.h.

Therefore, a portion of the Flex application initialization code will look some-
thing like this instead of a single call to CSTAction_Init():

CSTBI OsMenSpace[1] . psegi d = &SEGL; // external data nenory
heap

CSTBI OSMenspace[1] . nSpace = | ALG EXTERNAL; // denotes ex-
ternal data nenory

CSTAction_Init (&0, 1, MCall back);

CST Framework Components 7-73

More About Algorithm Creation and Deletion

7.5.4 More About Algorithm Creation and Deletion

7-74

The CST Framework includes XDAIS algorithm creation/deletion functions,
also known as ALGRF library (ALGorithm instantiation for Reference Frame-
works), having the following features:

4

4

The following ALGRF functions are in CST ROM:
ALGRF_create(),
ALGRF_delete()

The ALGRF functions in CST ROM do not support scratch memory (if the
scratch support is required, the user can use the functions from the files
ALGRR\algrf_creScratchSupport.c & algrf_delScratchSupport.c).

The creation function ALGRF_create() uses a stack-based memTab]]
array, in order to avoid heap fragmentation, and thus it is limited to only 16
memory records during algorithm creation (parameter ALGRF_MAX-
MEMRECS is equal to 16 in ROM). So, an algorithm should not request
more than 16 memory records.

CST Framework accesses the ALGRF functions only via stub-functions
ALG_create_wrapper() and ALG_delete_wrapper(). The functions
CSTsStatisticsOnCreateAlg() and CSTStatisticsOnDeleteAlg() are called
from those stub-functions upon successful algorithm creation and upon al-
gorithm deletion, for collecting statistics on the amount of existing algo-
rithms.

Statistics report supports up to 20 algorithms existing simultaneously

To find out more about algorithm creation and deletion, IALG and ALFGRF,
please read Reference Frameworks for eXpressDSP Software: API Refer-
ence (SPRA147).

Telephony Components Brief Specification

7.6 Telephony Components Brief Specification
The following components are included in CST software:

Data Modem (V.32bis/V.32, V.22his/V.22, V.14, V.42, V.42bis)
G.726/G.711 encoder/decoder

G.168 Echo Canceller

VAD, CNG and AGC

UMTD (DTMF and CPTD) detector/generator

CID receiver

Uooood

Detailed description for each of the software components can be found in the
corresponding documentation (User Guides and Product Annotations for spe-
cific components). This chapter gives only a brief overview of these compo-
nents.

Besides, CST algorithms portofolio can be extented via a set of very memory-
efficient CST Add-ons, sold separately from CST chip:

O Fax G3 (V.17/V.29/V.27ter/V.21) and V.29FastConnect (for POS-term.)

[J Standard vocoders (G.729AB abd G.723.1) and SPIRIT-proprietary 1200
bps vocoder

Description of these CST add-ons is beyond the scope of this document.

The interconnection of XDAIS algorithms inside the CST Service layer is
shown in Figure 7-1.

CST Framework Components 7-75

Data Modem

Figure 7-1. CST Solution Data Path

Encode
»| VAD
Adaptation

’—/ G.726 Enc
O
| acc L]
CST Solution G.711 Enc
Data Path

1 » Ext. vocoder
User User
| |
»J—H;F‘L Jﬂ;/cm,,f’ DTMF Det
to remove D(G.168 Loy CPTD
UMTD
Phone
‘ CID >
Line Messager
m Data Modem|e >
UMTG
DTMF Gen |= Zon
CPTG < Y
Decode
CNG
< G.711 Dec
< G.726 Dec
Ext. vocoder

The user can control the way components are connected inside the CST
framework and what components are currently active via AT commands or, in
flex mode, via messages to one of CST control layers.

7.6.1 Data Modem

The data modem consists of several components, each implemented as a
separate XDAIS object. These objects are modem data pump (MDP), V.42 er-
ror correction protocol with embedded V.42bis data compression protocol and
a Modem Integrator object, which unifies access to all other modem algorithms
(unified parameters, sample and data flows, extended status, etc), and inter-
connects them inside of itself.

The data modem controller (from hereof, DMController) is the upper layer that
integrates the modem integrator object into the CST framework.

In brief, the modem integrator performs the following operations and has the
following features:

7-76

I W W

a
4
a

Data Modem

Implicitly creates all required XDAIS objects and performs their prelimi-
nary linking to each other. Depending on parameters, one of the three con-
figurations is available: MDP + V.14 only, MDP + V.14/V.42 and MDP +
V.14/V.42/\.42bis.

Modem data pump auto rate and retrain control
V.14 based asynchronous-to-synchronous conversion
V.14/V.42 switch, connect and disconnect condition report

V.42bis can be configured both in the symmetric (standard) mode and in
the asymmetric mode

Both single- and two-threaded mode support
Fast connect capability

Unified data flow, unified status

During the initialization, the user can configure the following important param-
eters of this object:

d

d

General options:
B Single threaded/multithreaded (preemption) mode
B Answering or originating mode

W A few callback functions for data transfers, preemption control (op-
tional) and real-time control (optional)

Data pump related options:
B Fast connect mode
B AFE delay (to produce correct V.32bis start up timing).

W Output transmit level (can also be adjusted via S-register S28 or via
AT command AT%. in chipset mode, see section P.4.3.13

B Maximum supported round trip delay in milliseconds (influences the
amount of memory reserved for far echo bulk delay). In most cases the
round trip delay does not exceed 100 ms. The amount of memory re-
served for the far echo bulk delay buffer is calculated as follows: Sup-
ported_Far_Echo_Delay ms*2.4. For example, for 100 ms, 240
words are required.

However, for satellite connections the far echo delay may reach up 2
sec, and in such cases this parameter has to be set appropriately.
The round trip delay can also be adjusted in the chipset mode, by the

command AT+ARTD (see section 9.4.3.12

B Speedup and slowdown initiation permission

CST Framework Components 7-77

Data Modem

1 V.42 related options:
B Heap size (for storing received and sent packets)
B Window size (number of stored last sent data packets)
W System timeouts

W 32bit FCS

(1 V.42bis related options
B Dictionary size
B Maximum string length

B Compressor and decompressor enabling/disabling

When the fast connect is enabled (can be set via S-register S29 or by the AT
command AT#F, see section the modem will not transmit nor will it
wait for the answer tone (2100 Hz tone in the beginning of modem connection),
and training time for V.32bis/V.32 modem echo canceller will be reduced to
minimum (0.5 sec).

It is important to emphasize that the Modem Integrator supersedes the Data
Pump/V.42/V.42bis interfaces, therefore, the user should interact with the Mo-
dem Integrator only.

The Data Modem Controller (DMController) finally integrates the modem into
the CST framework. Since receiving compressed data may result in decom-
pression of a large portion of data bytes, a special callback mechanism is used
to transfer the received data to the user. Error correction also affects receiving
the data since it may introduce some irregularity because of data rerequests.

7-78

Data Modem

7.6.1.1 Data Flow

The data modem can run in two modes: single-threaded and multi-threaded
mode. The multithreaded mode makes it possible to move the compression
procedures into a dedicated low-priority thread. The data flow is shown in
Figure 7-2.

Figure 7-2. Modem Data Flow

2 o Modem Integrator
Q
@ g & ——Commands ~P> Control logi
——Data .. %‘QT« @~ 5 Status ontrol logic
-1 g
NI o A A
+ 2]
8
¢ Inject data in =3
3 low prli:)nty—b . g Digital layer
= I |
tas p V.14, Data bits Data Pump
) V.42 with V.42bis
——Pass data via callback———~

| Optional DC
filter

XxDAIS object

<):‘[> Synchronous flow

<¢—P Asynchronous flow

Codec

As it has been mentioned, the modem passes the decoded data through a call-
back function. Besides this data callback function, there are two other (option-
al) callback functions to be implemented by user.

typedef struct | MODI NT_d i ent Subfxns {

Table 7-35. Data Flow Parameters

Params Type Params Name Description
Int (*) pTransferData Passes the decoded data from the remote
. . modem. It is the only mandatory function to be
XDAS_Voi d* pdient, .
(_ V! pH ! implemented by the user. To set the address of

I nt instancel D,
XDAS Ul nt 8* pBuffer,
Int count)

called function, use the function
DMCont rol | er _set Transf er Dat aFunc() .

CST Framework Components 7-79

Data Modem

Table 7-35. Data Flow Parameters(Continued)

Params Type Params Name Description

XDAS Bool (*) pPreenption Requests to temporarily disable or reenable

(XDAS_Voi d* pd i ent, Control possible sv_v!tcr;lng to the hlgh-_zrlo\rllti/zt/r\llrif;(;._ It

Int instancel D, XDAS_Bool protects crltlga operaﬂgn; inside V. -42bis

i sPernitted) modules. This method is invoked in multithread

mode only, assuming V.42 is active.

XDAS Bool (*) pl sReal tine Asks if the V.42bis compression/decompression

Short age should be continued for the next byte. This

(XDAS_Voi d* pd i ent,

Int instancel D) function is intended to prevent missing real-time. It

is invoked in the single-threaded mode only.
However it does not guarantee that burst
activation of V.42bis would not cause real-time
loss. This is because of big time slices in V.42bis
iterations.

} 1 MODI NT_dQ i ent Subf xns;
Type IMODINT_ClientSubfxns is defined in imodint.h.

7-80

Data Modem

7.6.1.2 Brief Description of Data Modem Contrroller Interface (File DMController.c)

Table 7-36. Brief Description of CST S-Registers Function Interface

Name

Functionality

DMControl | er _create
DMControl | er _del ete
DMControl ler_io

DMControl | er _
set Tr ansf er Dat aFunc

DMCont rol | er _i nj ect Dat a

Creates a Modem Integrator instance (including all related algorithms)

Delete a Modem Integrator instance (and all related algorithms)

Process a number of I/O samples (high-priority thread function)

Set user’s callback function to pull received data

Push a portion of the user’s data into the modem

Creation

Function

Parameter(s)

Return Value

Deletion

Creates a modem instance

bool DMControl |l er_create(tCSTChannel * pChannel,

I nt MaxSpeed,

Int TxLevel,

bool |sOriginator,
bool 1sV42,

int 1sV42bi s,

bool isFast Connect);

pChannel

Max Speed
TxLevel
IsOrigi nat or
| s\v42

I sV42bi s

i sFast Connect

Success/fail result

Deletes a modem instance

Pointer to a global CST channel structure
Maximum permitted speed (BPS)
Output signal amplitude in absolute units
Originator/answerer mode
Enable V.42
Enable V.42bis:

0 — V.42bis disabled

1 — enable compressor only

2 — enable decompressor only

3 — enable both compressor and decompressor

Reduce the connection time

CST Framework Components 7-81

Data Modem

Function

Parameter(s)

Return Value

voi d DMControl | er _del et e(t CSTChannel * pChannel);

pChannel Pointer to a global CST channel structure

None

Modem Process Function

Function

Parameter(s)

Return Value

Processes a number of /O samples (high-priority thread function)

voi d DMControl | er _i o(t CSTChannel * pChannel ,

intl6 *pln,

intl6 *pQut,

int Count);

pChannel Pointer to a global CST channel structure
pln Pointer to a buffer of valid input samples
pQut Pointer to a buffer of valid output samples
Count Amount of samples in the buffers
None

Set Callback Function to Pull Received Data

Function

Parameter(s)

Return Value

Push Data

7-82

Sets the user’s callback function to pull the received data

voi d DMControl | er _set Transf er Dat aFunc(t CSTChannel *
pChannel ,
Int (*pTransferData)
(XDAS Voi d* pdient,int, XDAS U nt8*,Int));

pChannel Pointer to a global CST channel structure
pTransferDat a Address of the user’s callback function
None

Push a portion of the user’s data into the modem

Function

Parameter(s)

Return Value

Data Modem

int DMController_injectData(tCSTChannel * pChannel ,
ui nt 8 *pDat a,

int Count);

pChannel Pointer to a global CST channel structure
pDat a Pointer to the data buffer

Count Total number of data bytes

Number of taken bytes

7.6.1.3 V.32/V.32bis and V.22/V.22bis Data Pump

The modem data pump is implemented according to the ITU-T recommenda-
tions V.32bis/V.32 and V.22bis/V.22, and supports all their features and op-
tions, including retrain, rate renegotiation request and automodem for inter-
operability. It is a member of a family of SPIRIT complete fax/data modem data
pumps, and includes unified implementation of these protocols.

It has a simple interface and can be easily connected to an analog line (8 kHz
16-bit samples) and to an HDLC client (e.g. V.42/V.42bis). The interface is fully
compatible with other SPIRIT data pumps and HDLC clients.

In brief, the V.22his/V.32bis module performs the following operations:

[Processing of a number of samples from ADC and generation of new sam-
ples to be output to DAC

(1 Sending and receiving data bits through callback functions to the high-lev-
el client (modem integrator)

(] Accepting and executing a number of control commands
[Reporting status and informing the client about status changes

Figure 7-3 represents typical V.22bis/V.32bis modem data pump operating
environment.

CST Framework Components 7-83

Data Modem

Figure 7-3. Modem Data Pump Operating Environment

i digital AFE samples
Digital layer | data ,| Modem data ,| ADCIDAC,
(V.14, V.42 etc) bitstream pump optional DC filter
bytes and T
flow status and control
control information
\ 4 L
UART driver Controller
or user (protocol switch, status
control, retrain initiation etc)

After the initialization, the user can send a command (in Flex Mode) to the data
pump, telling at what maximum rate the pump may try to connect with a remote
modem. The maximum rate can also be selected by the ATB<0- 8> command

(see section .4.3.14

The Modem Integrator encapsulates and integrates the V.32/V.32bis,
V.22/V.22bis and the data pump objects inside itself. Thus, when using the Mo-
dem Integrator, the user should not interact with the pump directly. All interac-
tion should be done through the Modem Integrator interface.

7.6.1.4 Asynchronous to Synchronous Data Conversion, V.14

7-84

This protocol is implemented inside the Modem Integrator object. When the
V.42 protocol is disabled or fails to connect with a remote counterpart, the Mo-
dem Integrator uses the protocol V.14 instead to provide conversion from
asynchronous data flow from serial port to synchronous data flow, required by
the modem data pump.

The V.14 protocol can be forced by setting the S-register sr d_ V42 to zero (see

or by issuing the command AT\ NO (see section 9.4.3.10

If the V.42 operation is enabled (see but the remote modem does not
support V.42 or the V.42 handshake falls throuhg, the modem falls to the V.14
asynchronous mode anyway.

The Modem Integrator implements and integrates the V.14 protocol. There are
no means to access V.14 functions directly.

Data Modem

7.6.1.5 Error Correction, V.42

The CST's V.42 component implements an ITU-T V.42 compliant HDLC client
and provides an error correction protocol between a software-emulated unbuf-
fered DTE and a V-series duplex data pump.

The Modem Integrator incorporates into itself the data pump and it also repre-
sents the DTE. Thus, when using the Modem Integrator, the user should not
interact with the V.42 instance directly.

In brief, the V.42 module features the following functions and properties:

d

(I E I T

]

a
a

Embedding the V.42bis compression/decompression module (see
Figure 7-4 below)

Getting the byte stream from the DTE (the Modem Integrator);
Compressing it by the internally linked V.42bis module;
Packing the bytes into frames;

Converting the frames into the bit stream ready to be transmitted by the
synchronous DCE (the modem data pump);

Resending the frames (within the frame buffer) on demand, providing flow
control, error correction and stream integrity;

Receiving the bit stream from the synchronous DCE and converting it into
frames;

Parsing the frames and unpacking them into bytes;
Decompressing the bytes by the internally linked V.42bis module;

Sending the byte stream to the DTE.

The Modem Integrator interconnects the V.42 module to the data pump and
an analog of a DTE driver (see Figure 7-4). As it has been mentioned above,
the user can optionally disable the V.42 module in whole or in part.

CST Framework Components 7-85

Data Modem

Figure 7-4. V.42 Operating Environment

7-86

|
|
Modem Integrator :
DCE !
Codec
(data pump) 1
T : V.42 compatible modem
‘ |
V.42/V.42bis |
|
V.42bis compression module [~ :
V.42 module :
V.42bis decompression module | |
1
|
1
; | I
_______________ |
| : =1
\ DTE driver UART + =
CST Framework | : V=
: 1 Local Terminal

During initialization, the user has to tell the V.42 module how much memory
to use for its internal heap (which is mostly used for storing received and sent
packets so that V.42 could resend them upon a request). Normally, the V.42
has to store at least 15 sent packets (this number is a changeable parameter),
each 133 bytes long. There are several other buffers that the V.42 has to store
as well. Typically, the V.42 needs around 1.5 kW of dynamic memory (1 kW
minimum) for its internal heap (this is a changeable parameter), plus about 0.8
kW for the V.42 object itself.

This internal heap memory size can also be set by sending the command
AT+EHEAP to the AT parser (see section The greater the size of this
heap is, the more efficiently the V.42 module will do the error correction.

Some of the AT commands related to V.42 operations are introduced only for
compatibility reasons with the V.250 standard (see ITU-T Recommendation
V.250. Serial asynchronous automatic dialing and control, 07/97), but do not
actually affect anything. These commands are: +EB, +ER, +ES, +ESR (see

sections through

The V.42 protocol is enabled by setting the sr d_V42 S-register to a non-zero
value (see or by issuing the command AT\ N1 (see section 9.4.3.10

Data Modem

7.6.1.6 Data Compression V.42bis

The CST’s V.42bis component is integrated into the V.42 module and imple-
ments an ITU-T V.42bis compliant data compression/decompression func-
tions and is designed to operate with an HDLC client, such as V.42.

In brief, the V.42bis module performs the following operations:

(1 Compressing (or decompressing) bytes to/from bit stream with code-
words;

[Accepting and processing special control primitives like C_INIT and
C_FLUSH.

The V.42bis module is already connected to V.42 module as shown in
Figure 7-4.

The CST’s V.42 module can use the V.42bis component in several modes:
completely disabled, compression for TX only, decompression for RX only,
and both compression and decompression. Note that some modems do not
correctly support the asymmetric mode.

These modes can be selected by setting the S-register srd_V42BI S (see

or by the command AT%C<0- 3> (see section 0.4.3.11) or by the com-

mand +DS (see

ATY0 No compression/decompression; V.42bis disabled
ATUC1 Only compresses transmitted data

ATUC2 Only decompresses received data

ATYC3 Both compression and decompression enabled

During initialization, it's possible to set the dictionary size for V.42bis. There’'s
a parameter for that. The greater the size of the dictionary is, the more efficient-
ly V.42bis can compress the data.

In the Chipset Mode, this parameter is equal to 512, and it is impossible to
make the size greater. This is due to the memory organization in the Chipset
Mode, which initially has been configured with 16KW DARAM in mind. As it
turned out, the C54CST chip got 40KW of internal DARAM, so the above limi-
tation holds only for the unchanged chipset CST application. It is possible to
initialize V.42bis in the Flex Mode with a greater dictionary size (or load a spe-
cial patching flex application that will reconfigure CST chipset application), and
thus make the compression more efficient. For each direction (for compres-
sion or decompression), the memory size needed for the dictionary is calcu-
lated as Di cti onary_Si ze*3+256 words.

CST Framework Components 7-87

Voice Processing

Disabling V.42bis saves about 2.6 kW of memory during modem connection,
and it is even recommended to disable V.42bis, if higher level protocols have
their own compression enabled, or if low-compressible data is to be trans-
ferred.

7.6.2 Voice Processing

Voice processing includes several components — waveform codec (PCM and
ADPCM), line echo canceller, Automatic Gain Control (AGC) controlled by
Voice Activity Detector (VAD), Comfort Noise Generator (CNG). All compo-
nents have simple interfaces and operate with 14-bit 8 kHz samples.

The CST Solution also has a simple voice controller, partially supplied in open
source code, which provides voice bit stream packing/unpacking, continuous
voice play-out and ADPCM encoder/decoder creation/deletion.

The CST Service layer includes the voice controller for easy connection of
XDAIS algorithms for voice processing. The voice controller performs data
flow/exchange control (to/from the CST Service layer).

All of the CST voice controller functions are contained in the file VCont r ol -
| er. c. Inthe AT parser, voice commands become accessible only in the voice
mode, which is turned on by the command AT#CLS=8. The command AT#VRX
starts recording a signal from the telephone line, the command AT#VTX starts
playing-out a signal to the line, and the command AT#VRXTX starts duplex
voice exchange (see section for details). The voice bitstream, trans-
ferred between the host and CST chip via the serial link, consists of bits packed
into bytes. Control events (such as “stop play-out”, or “DTMF Digit 7 detected”,
or “BUSY signal detected”) are transferred as special shielded codes (see sec-
tion 0.5 for details) inside this bytes stream.

The LPC coefficients and other parameters for the Comfort Noise Generator
(CNG packets) are transferred along with with PCM/ADPCM packets,
shielded with corresponding DLE symbols. This is applicable for the Flex
Mode too.

7.6.2.1 Files VController.c, VController.h

Voice Controller Main Structure Definition

7-88

The voice controller has an internal structure, which contains the controller’s
current state and can be useful for outsiders.

typedef struct tVControllerStr {

Voice Processing

Table 7-37. Voice Controller Main Structure Definition

Field Type Field Name Description

voi d* pUser Dat a Pointer to user’s data.

bool | sCoder This flag shows voice encoder availability.

bool | sDecoder This flag shows voice decoder availability.

i nt BPS This field stores the vocoder’s bit rate.

t CSTFI FO UARTI ngressData Circular buffer (FIFO) to store ingress packed voice samples
(from UART or HPI).

t CSTFI FO Voi cel ngressDat a Circular buffer (FIFO) to store ingress voice samples.

t CSTFI FO Voi ceEgressDat a Circular buffer (FIFO) to store egress voice samples.

voi d* pVocoder Pointer to vocoder object instance.

AGC_Handl e pAGC Automatic gain control object handle.

CNG_Handl e pCNG Comfort noise generator object handle.

VAD_Handl e pVAD Voice activity detector object handle.

t Vocoder Fxns*

pVocoder Fxns

Pointer to virtual function table, containing pointers to vocoder
create, delete, encode, decode wrapper functions.

t DLEPar ser DLEPar ser DLE parser structure.

eVCrl| DLE Last DLE Last DLE symbol processed by the voice controller.

int [CNG_ CNGPar anBuf f er Buffer for receiving CNG parameters

PARAM LEN]

i nt CNGPar anml ndex Temporary variable to store current position in CNG
parameters buffer while receiving CNG parameters.

i nt LPCStr Si ze Calculated size of CNG parameters to receive.

bool CNGPar ansReady This flag is set when CNG parameters received.

i nt LPCOr der Current order (amount) of LPC coefficients. This value is used
only when VAD is enabled.

i nt Voi ceGai n Output voice gain.

} tVControllerStr;
Type tVControllerStr is defined in VController.h.

CST Framework Components 7-89

Voice Processing

7.6.2.2 Brief Description of Voice Controller Function Interface

The most of the CST voice controller is implemented in the files VCont r ol -
| er.cand VControl | er. h. The main interface functions are the following:

Table 7-38. Brief Description of Voice Controller Function Interface

Name Functionality
Vcontrol lerlnit() Voice controller initialization.
Vcontrol | erlnjectData() Tries to put ingress packed voice data into the dedicated

circular buffer (FIFO).

Vcontrol | er Process() Performs voice encoding and decoding.

In single-threaded mode is called from

Vcontrol | erHi ghPriorityProcess(). Incase of
two-threaded mode should be called in a software interrupt
(SWI), which is to be posted from a hardware interrupt

(HWI/ISR).
Vcontrol | er Del et eRx() Deletes voice-encoding path.
Vcontrol | erDel et eTx() Deletes voice-decoding path.
Vcontrol | er Creat eRx() Creates voice-encoding path.
Vcontrol | erCreat eTx() Creates voice-decoding path.
Vcontrol | erl sVoi ceDat a() Verifies if a vocoder instance is created.

Vcontrol | erHi ghPriorityProcess() This functions should be called from a high-priority thread. It
stores voice samples to the ingress circular buffer (FIFO) and
gets decoded voice samples from the egress voice circular
buffer (FIFO).

Vcontrol | er Sel ect Vocoder () Default function for selecting a vocoder. Sets the pointer to the
virtual function table to point to the G726 and G711 vocoder
wrapper functions.

Vcontrol | er Al l ocBuf fers() Tries to allocate memory for the circular buffers. Should be
called from the vocoder’s virtual create function.

Vcontrol | er FreeBuf fers() Deallocates memory previously allocated for the circular
buffers.

Should be called from the vocoder’s virtual delete function.

VControl | er Get AndSendLPC() This function gets CNG parameters and send them as a byte
array.
Initialization Initialization of the voice controller

7-90

Voice Processing

Function void VControllerlnit(struct tCSTChannel* pChannel);
Parameter(s)

pChannel Pointer to a channel structure.
Return Value None

Packed Voice Data Reception

Receives ingress packed voice data and places it to the vocoder’s buffer. The
format of the bit stream for vocoders G726 and G711 is as follows:

Figure 7-5. G726 and G711 Bitstream Format
vocoder vocoder | <DLE> | n ! count of L!PC coefs | noise mz!-,l nitude | LP(f éoefs | vocoder vocoder | (
bitstream | bitstream i ! i i :g Y bitstream | bitstream

Each vocoder (any kind of PCM coder) frame, as well as a “noise” (CNG)
frame, covers the same time interval.

G.726 bitstream is composed of packed ADPCM results (minimum 120 dibits
per frame, maximum 120 pentabits per frame, i.e. from 30 to 75 bytes per
frame, depending on the vocoder’s bitrate).

G.711 bitstream is composed of encoded PCM bytes (120 bytes per frame).

The structure of a CNG frame is shown in the above figure.

Function int VcontrollerlnjectData
(t CSTChannel * pChannel ,
ui nt 8 *pDat a,
int Count);
Parameter(s)
pChannel Pointer to a channel structure.
pDat a Pointer to a byte array, containing packed voice data.
Count Amount of samples in array pointed by pDat a.
Return Value Function returns the number of data bytes it has taken from the array.

CST Framework Components 7-91

Voice Processing

High Priority Processing

This function should be called from a high priority thread. It stores voice sam-
ples to ingress circular buffer and gets decoded voice samples from the egress
voice circular buffer. In the single-threaded mode it calls the function Vcon-
trol | er Process() to process samples, in case of two-threaded mode it
should post a software interrupt (SWI) for background processing.

Function voi d Vcontrol |l erH ghPriorityProcess
(t CSTChannel * pChannel ,
int16 *pl nput,
int16 *pQutput,

int Count);

Parameter(s)
pChannel Pointer to a channel structure.
pl nput Pointer to an array of input voice samples.
pQut put Pointer to an array for output voice samples.
Count Amount of samples in each array.

Return Value None

Low Priority Processing

This function is called from the function Vcont r ol | er Hi ghPri ori t yPr o-
cess() directly (in single-threaded mode) or posted from it via SWI (in two-
threaded mode). It executes virtual wrapper functions for voice encoding and
decoding when available.

Function voi d VControl |l erProcess (tCSTChannel * pChannel);
Parameter(s)

pChannel Pointer to a channel structure.
Return Value None

7-92

Voice Processing

Vocoder Selection

This function is used to select a vocoder. By default it selects G726 and G711
coders. When adding extra vocoders, the user should override this function
and sett VControl | er Str. pVocoder Fxns pointer to its own vocoder’s
wrapper functions structure.

Function void VControllerSel ect Vocoder (tCSTChannel* pChannel,int
param ;

Parameter(s)
pChannel Pointer to a channel structure.
par am This parameter is used to select a vocoder.

Return Value None

Transferring Compressed Voice Samples to CST Service Layer

This function transfers data from the vocoder to the CST Service layer. It per-
forms DLE stuffing and noise frames marking by using DLE symbols.

Function voi d Vcontrol |l er Transf er Voi ceDat a
(t CSTChannel * pChannel ,
ui nt 8 *pDat a,
i nt Count,
tVCrl DLE Type);

Parameter(s)
pChannel Pointer to a channel structure.
pDat a Pointer to byte array.
Count Size of byte array.
Type The type of transmitted samples (voice data or noise
parameters).
Return Value None

CST Framework Components 7-93

Voice Processing

Sending CNG Parameters

This function retrieves LPC coefficients from the VAD object and sends them
using the function VCont r ol | er Get AndSendLPC() . The Gai n parameter
is used to correct the noise magnitude.

Function void VControllerGet AndSendLPC (tCSTChannel* pChannel,int
Gai n) ;

Parameter(s)
pChannel Pointer to a channel structure.
Gain Current AGC gain coefficient.

Return Value None

Buffers Allocation for Vocoder

This function is used to allocate memory for buffers to be used by a vocoder
for samples/bitstream buffering.

It also handles exception conditions.

Function bool VcontrollerAllocBuffers
(t CSTChannel * pChannel ,
i nt 1ngressUARTSI ze,
i nt 1 ngressVoi ceSi ze,
i nt EgressVoi ceSi ze);

Parameter(s)
pChannel Pointer to a channel structure.
I ngr essUARTSI ze Size of the buffer for packed voice data.
I ngr essVoi ceSi ze Size of the buffer for ingress voice samples.
Egr essVoi ceSi ze Size of the buffer for egress voice samples.
Return Value Returns nonzero value when all buffers are allocated successfully.

7-94

Voice Processing

Buffers Deallocation for Vocoder

Function

Parameter(s)

Return Value

This function is used to free the memory allocated for buffers, used by a vocod-
er for samples/bitstream buffering.

voi d VControl |l erFreeBuffers (tCSTChannel * pChannel,
int 1ngressUARTSI ze,
i nt 1ngressVoi ceSi ze,
i nt EgressVoi ceSi ze);

pChannel Pointer to a channel structure.

I ngr essUARTSI ze Size of the buffer for packed voice data.

I ngressVoi ceSi ze Size of the buffer for received voice samples.
Egr essVoi ceSi ze Size of the buffer for transmitted voice samples.
None

Voice Encoder Creation

Function

Parameter(s)

Return Value

This function tries to create vocoder encoder path in case it has not been
created earlier.

bool VControll erCreateRx (t CSTChannel * pChannel , i nt
Coder BPS) ;

pChannel Pointer to a channel structure.
Coder BPS Bitrate.

Returns nonzero value when the voice encoder is created and ready for use.

Voice Decoder Creation

Function

Parameter(s)

Return Value

This function tries to create vocoder decoder path in case it has not been
created earlier.

bool VControl | er Creat eTx (t CSTChannel * pChannel , i nt
Decoder BPS) ;

pChannel Pointer to a channel structure.

Decoder BPS Bitrate.

Returns nonzero value when the voice decoder is created ready for use.

CST Framework Components 7-95

Voice Processing

Voice Encoder Deletion

This function deletes the vocoder instance if the decoder is marked as unused.
Otherwise it just marks the encoder as unused.

It also deletes the VAD and AGC instances, if they have been created earlier.

Function voi d VControl | erDel eteRx (tCSTChannel * pChannel);
Parameter(s)

pChannel Pointer to a channel structure.
Return Value None

Voice Decoder Deletion

This function deletes the vocoder instance if the encoder is marked as unused.
Otherwise it just marks the decoder as unused.

It also deletes the CNG instance, if it has been created earlier.

Function voi d VControll erDel eteTx (tCSTChannel * pChannel);
Parameter(s)

pChannel Pointer to a channel structure.
Return Value None

7-96

7.6.2.3 Wrapper Functions

Voice Processing

The user may change all wrapper function pointers in case he/she wants to use
different coders (for example, G.723 or G.729 vocoder).

t ypedef struct tVocoderFxns {

Table 7-39. Structure Definition

Return Value Function Name First Parameter Type Description

voi d* *pfCreate t CSTChannel * Creates vocoder object instance

i nt *pf Encode t CSTChannel * Voice encoding function

i nt *pf Decode t CSTChannel * Voice decoding function

voi d *pfDel ete t CSTChannel * Vocoder instance deletion function

} tVocoder Fxns;

Wrapper for Creation Function

This wrapper function should call the function VControl | er Al | ocBuf -
f er s() to allocate memory for circular buffers.

It can allocate an additional memory block for private use (t VContr ol -
| er St r.pUser Dat a can store a pointer to this block).

Having allocated the buffers, the function may finally create a vocoder object

instance.
Function voi d* (*pfCreate) (t CSTChannel * pChannel);
Parameter(s)

pChannel Pointer to a channel structure.
Return Value Vocoder handle (successful creation) or NULL (failure).

CST Framework Components 7-97

Voice Processing

Wrapper for Deletion Function

This wrapper function should call the function VCont rol | er FreeBuffers
to free memory allocated for the circular buffers. It should also free all allocated
additional memory blocks (if any). And finally, it should delete the vocoder ob-
ject instance.

Function voi d (*pfDelete) (t CSTChannel * pChannel);
Parameter(s)

pChannel Pointer to a channel structure.
Return Value None

Wrapper for Encoding Function

This wrapper function should wait until the needed amount of samples is avail-
able for processing in the ingress voice buffer. When there’s enough samples,
it should process the samples and send packed voice data using the function
VControl | er Transf er Voi ceDat a() .

Function int (*pfEncode) (t CSTChannel * pChannel);
Parameter(s)

pChannel Pointer to a channel structure.
Return Value Not used now.

Wrapper for Decoding Function

This wrapper function should wait until the needed amount of packed samples
is available and until the voice egress buffer has enough space to receive an
unpacked voice frame. When there’s enough samples and space, the function
should process the samples and store the output to the voice egress buffer.

Function int (*pfDecode) (t CSTChannel * pChannel);
Parameter(s)

pChannel Pointer to a channel structure.
Return Value Not used now.

7-98

Voice Processing

7.6.2.4 ADPCM/PCM Encoder/Decoder G.726/G.711

The CST's G726G711 component implements the ITU-T G.726 adaptive dif-
ferential pulse code modulation (ADPCM) encoder and decoder of voice fre-
guencies, as well as G.711 logarithmic conversion.

In brief, the G726G711 module performs the following operations:

(1 Optional converting of an A-law or p-law PCM input signal to uniform (lin-
ear) PCM or vice versa according to G.711;

(1 Optional compressesing/decompressesing of linear samples to/from bit-
stream, based on the selected bit rate — 16, 24, 32 or 40 kbps, according
to G.726

This algorithm is designed to process a signal sample by sample, not in the
frame-based manner. However, its external interface allows to process sam-
ples by blocks of any length.

The user can either use only G.711, or only G.726, or both of these algorithms
to process the voice signal.

The bitstream may contain 2 to 8 bits per sample. The voice controller does
packing of these bits into bytes as well as it does unpacking.

Compression ratio can be selected by the command AT#VBS<2, 3, 4, 5, 8>
(see section which chooses 16, 24, 32, 40 kbps G.726 or 64 kbps
PCM p-law respectively.

7.6.2.5 Echo Canceller G.168

The CST's Line Echo Canceller (LEC) is used for cancellation of the electric
echo created by the telephone hybrid. The LEC conforms to the G.165 and
G.168 ITU recommendations. It includes a double talk detector and a nonlin-
ear processor. The user can set the value of the maximum echo path equal to
16 or 32 msec.

For correct operation of the LEC, the input samples should be linear PCM sam-
ples with absolute values less than 8159 (this is the maximum value for linear
samples after p-law expansion). The CST Service performs the scaling need-
ed for LEC automatically.

The echo canceller can be enabled/disabled in the CST Framework voice path
by the command AT#VEC (see section

CST Framework Components 7-99

Telephony Signals Processing

7.6.2.6 VAD, CNG and AGC

The CST's voice activity detector (VAD) detects the presence of speech in the
signal. It has a special adaptive algorithm to automatically adjust to the level
of the noise in the signal, in order to provide robust operation even in the noisy
speech. It has many user configurable parameters, allowing the algorithm to
optimally tune itself for a specific application. The VAD also outputs several co-
efficients that characterize the spectral envelope of the noise (when no speech
is detected), so that the regenerated noise would appear similar to the original
noise.

The CST’s Comfort Noise Generator (CNG) generates noise, distributed ei-
ther uniformly or shaped according to the spectral envelope coefficients, which
can be passed to the CNG as parameters.

The CST'’s Automatic Gain Control (AGC) is designed specifically to amplify
the voice signal, which has very non-stationary amplitude envelope. It oper-
ates much better in conjunction with the VAD, which can tell the AGC when
there is no speech in the signal, so that the AGC would not adapt in these peri-
ods.

In the Chipset Mode, the VAD may report about speech absence and send the
noise spectral envelope coefficients via special shielded codes, included in the
voice data. Either vocoded (wave form coded) digital data or the VAD/CNG pa-
rameters are produced for each coded timeframe. The CNG can be enabled
or disabled also via special shielded codes, received over the serial link (from
the Host to CST). Read section P.5 about these shielded codes.

7.6.3 Telephony Signals Processing

Telephony signals processing includes several components — UMTD (detects
DTMF and CPT signals), UMTG (generates DTMF and CPT signals) and cli-
ent side Caller ID. All components have simple interfaces and operate with
16-bit 8 kHz samples (they have wider input dynamic range than voice proc-
essing components, which usually operate with 14-bit samples only).

7.6.3.1 Universal Multifrequency Tone Detector (DTMF/CPT/etc.)

7-100

CST includes the Universal Multifrequency Tone Detector (UMTD) for detect-
ing DTMF, Call Progress Tones (CPT) and many other telephony signals.

In brief, the UMTD detector filters the input samples, estimates the spectrum
of the input signal, checks the cadences and pauses and makes the decision
about presence of signaling tones. The UMTD can be easily configured to fit
the specific standard of any country.

DTMF Detector

CPT Detector

Telephony Signals Processing

The CST's DTMF Detector operates in compliance to ITU-T Q.24 Recommen-
dation.

The CST's DTMF has good talk-on performance, detecting the tone even in
noisy signal, and good talk-off performance, avoiding false detection in the
presence of speech or music. Good talk-off performance allows turning the
DTMF detector on right away when going off hook and turning it off only when
going back on hook. In the Chipset Mode, the DTMF detector is activated only
in the voice mode of the AT parser, and detector results are sent to the Host
via special shielded codes (see section .5 for details).

The CST's CPT detector, in default configuration, accepts a wide range of call
progress tones fitting the standards of most countries and detects the following
signals/events:

Table 7-40. Detected CPT Signals

Configuration Signal Freq., Hz Durations, sec
Q.35 dialtone 340-500 Continuous, more than 2.6
busy 340-500 [0.07-0.70]-[0.01-0.80]
ringback 340-500 [0.67-2.50]-[3.00-6.00]
longtone 340-500 Continuous, more than 1
Q.35 extended dialtone 340-500 Continuous, more than 2.6
busy 340-500 [0.07-0.70]—[0.01-0.80]
340-500 [0.70—0.80]—[0.70—0.80]
ringback 340-500 [0.67—2.50]—[2.00—6.00]
340-500 [0.35-0.55]—[0.15-0.30]—[0.35—0.55]-[1.95-6.05]
longtone 340-500 Continuous, more than 1

CST contains two default configurations, which are defined in the array
CPTD_Configurations[4] (see the files untd_signals.h and
urt d_si gnal s. c). The first configuration detects all signals strictly accord-
ing to the Q.35 recommendation. The second configuration detects all signals
according to the Q.35 recommendation and some signals that do not fit the
Q.35 recommendation (see Table 7-41). The third and fourth configurations
are left empty by default, and the user can attach his/her own configurations
here.

CST Framework Components 7-101

Telephony Signals Processing

In the Chipset Mode, the current configuration can be selected by the com-

mand AT+CNTRY (see section 9.4.1.31)

Table 7-41. CPTD Configurations

Country Configuration Country Configuration
Argentina Q.35 Italy Q.35 ext.
Australia Q.35 ext. Japan Q.35 ext.
Austria Q.35 Korea Q.35 ext.
Belgium Q.35 Netherlands Q.35
Brazil Q.35 Norway Q.35
Canada Q.35 ext. Singapore Q.35 ext.
China Q.35 Sweden Q.35
Denmark Q.35 Switzerland Q.35
Finland Q.35 Taiwan Q.35 ext.
France Q.35 United Arab Emirates Q.35 ext.
Germany Q.35 United Kingdom Q.35 ext.
Great Britain Q.35 ext. United States Q.35
Israel Q.35

In the modem mode of the AT parser, the CPT detector’s behavior can be con-
trolled by the command ATX (see section for details). Use ATX1 to
disable, and ATX4 to enable both busy and dial tone detection.

In the voice mode, the CPTD events are sent to the Host via special shielded
codes (see section 0.5 for details).

7.6.3.2 Universal Multifrequency Tone Generator (DTMF/CPTD/etc.)

CST includes the Universal Multifrequency Tone Generator (UMTG) for
DTMF, CPT and many other telephony signals generation. It can be set to gen-
erate tones according to the standards of different countries (tones’ frequen-
cies and cadences are adjustable).

7-102

DTMF Generator

CPT Generator

Telephony Signals Processing

The UMTG-based DTMF Generator operates in compliance to ITU-T Q.23
Recommendation.

The UMTG-based DTMF generator produces output DTMF tones with the
duration and pause specified by the user. During initialization, the user may
also enable output the bandpass filter to remove clicks at the beginning and
end of generated tones.

In all modes of the AT parser, the DTMF generator is controlled by the com-
mand ATDT (see section for details). The duration of DTMF tones and
pauses is controlled by the register S11 (the value is in milliseconds).

The UMTG-based CPT generator produces output signals with cadences and
frequencies specified in UMTG settings.

The following CPT signals are generated, with the following characteristics by
default:

Table 7-42. Generated CPT Signals Parameters

Signal Freq, Hz Durations, sec
dial 350+440 continuous
busy 480+620 0.5-0.5

fast busy 480+620 0.3-0.3
ringback 440+480 2.0-4.0

The user can add new signals, and change their frequencies and cadences,
so the CPT generator can be tuned to a standard of virtually any country. The
CPT generator can be controlled only in the Flex Mode.

7.6.3.3 Client Side CID

The CST's Client Side Caller ID includes Type | and Type Il Caller ID signal
detection, compliant with standards of several providers and countries
(Bellcore, British Telecom, ETSI (European Countries), Australia, China, etc.).
It has the following features:

(1 Complies with Bellcore GR-30-CORE, SR-TSV-002476; British Telecom
SIN227 and SIN242; ETSI ETS 300 659, ETS 300 778; Mercury Commu-
nications MNR 19

CST Framework Components 7-103

Telephony Signals Processing

7-104

(1 Supports Caller ID On Call Waiting operation

Supports Single, Multiple Data Message Formats and VMWI

]

[Delivers completely decoded CID messages at a presentation layer, in-
cluding forwarding call information, network operator messages, etc. The
message parser is supplied in open source code, see the file
CST\CST\ Cl D\ Cl DPar ser. c.

1 Supplied with simple high-level state machine wrapper (in open source
code, see the file CST\ CST\ Cl D\ Cl DW apper . ¢) to make integration
and control easier.

(1 Can be switched to several different states by the user:
DT-AS (CAS) signal detector,
FSK carrier detector,
FSK message detector,
TE-ACK signal generator

[Allows the user to configure the software at run time, including carrier
thresholds, signal levels, etc.

In the Flex Mode of the CST chip, there are many parameters for each signal
detected or generated by CID, which can be adjusted.

The detailed description of the Client Side CID is given in the “Caller ID User’s
Guide”. Please, be aware that the CST ROM contains this object with limited
functionality (for example, only the Client Side is implemented, PBX side is not
implemented).

It is also possible to tune some parameters of some CID signals: DT-AS,
TE-ACK and FSK by using AT commands (see section

In the CST Framework, the CID is enabled after each RING signal, detected
by the DAA driver, and after going off hook (to detect CID On Call Waiting). To
disable CID, use the command AT#Cl DO (see section for details). To
enable the CID and turn the formatted output on, use the command AT#Cl D1.

To parse a CID message, the CST Framework temporarily reserves a
442-words-long buffer.

7.6.4 Telephony Components Summary

Telephony Components Summary

The following table illustrates a relation between integrated CST algorithms,
CST Service tasks, CST Commander atomic commands and CST Action
standard operations.

Table 7-43. Relationship Between CST Algorithms, Service Tasks, Atomic Commands

and CST Actions

Corresponding

Corresponding CST

Corresponding CST Action

Algorithm CST Service Task Commander Atomic Command Standard Operations

Modem data cstst. MODEM cac_TURNON_MODEM sot. TURNON_MODEM_CALL_X,
{)/HZrTZ];)V.ZZbiS, sot_ TURNON_MODEM_ANS
V.32/V.32bi

Error correction,
data compression
V.42/V.42bis

ADPCM codec
G.726

PCM codec
G.711

Electrical echo
canceller
G.168

VAD/AGC/CNG

UMTG/D (DTMF)

cstst_VOICE_DATA(rx/tx)

cstst_VOICE_LOOP

cstst_VOICE_DATA

cstst_ DTMF(rx)

cstst. DTMF(tx) with
cse_DATA(...)

cac_TURNON_VOICE_DATA_X

cac_TURNON_VOICE_LOOP

cac_TURNON_VOICE_DATA_X

cac_TURNON_SIMPLE_X(cstst_
DTMF)

cac_DIALING

sot_TURNON_VOICE_RXDATA,
sot_ TURNON_VOICE_TXDATA,
sot_TURNON_VOICE_RXTXDATA

sot_TURNON_VOICE_CALL_X,
sot_TURNON_VOICE_ANS,
sot_TURNON_VOICE_RXDATA,
sot_TURNON_VOICE_TXDATA,
sot_TURNON_VOICE_RXTXDATA

sot_TURNON_VOICE_RXDATA,
sot_TURNON_VOICE_TXDATA,
sot_TURNON_VOICE_RXTXDATA

sot_OFF_HOOK,
sot_TURNON_VOICE_RXDATA,
sot_TURNON_VOICE_TXDATA,
sot_TURNON_VOICE_RXTXDATA

sot_ TURNON_MODEM_CALL_X,
sot_TURNON_VOICE_CALL_X,
sot_JUST_CALL_X

CST Framework Components

7-105

Telephony Components Summary

Table 7-43. Relationship Between CST Algorithms, Service Tasks, Atomic Commands
and CST Actions (Continued)

Corresponding Corresponding CST Corresponding CST Action
Algorithm CST Service Task Commander Atomic Command Standard Operations
UMTD (CPTD) cstst._ CPTD(rx) cac_TURNON_SIMPLE_X(cstst_ sot_OFF_HOOK,
CPTD), sot_ TURNON_MODEM_CALL_X,
C?&_ WAIT_CPTD_APPEARANCE sot TURNON_VOICE_CALL_X,
sot_TURNON_VOICE_RXDATA,
sot_ TURNON_VOICE_TXDATA,
sot_ TURNON_VOICE_RXTXDATA,
sot_JUST_CALL_X
Caller ID cstst_CID cac_TURNON_CID_X sot_CID_AFTER_RINGEND,

sot_CID_AFTER_LINE_REVERSAL

7-106

Overview, Interface Functions and Function Call Diagram

7.7 CST Drivers

7.7.1 Overview, Interface Functions and Function Call Diagram

There are several drivers used in CST: a high-level DAA driver, a low-level
(LIO) DAA driver, a low-level (LIO) UART driver, and a peripheral driver. The
high-level DAA driver is hardware-independent and it is a part of the CST
Framework. The other drivers are hardware-specific.

The CST Framework defines prototypes for a few peripheral drivers’ functions
and contains a number of interface functions to access to the low-level (LIO)
DAA and UART drivers from the CST Framework itself.

Figure 7-6 illustrates the CST Framework and the CST driver subsystem and
their interconnections. The arrows denote the calls between the functions and
function blocks.

Figure 7-6. CST Drivers Function Call Diagram

CST Framework Layers

CST DAA
Interface and High- Peripheral Driver TargetBoardinit() CST UART
Interface

-Level DAA Driver
DAAPeriphDriver() < EVMPeriphDriver() EVMPeriphProcess()
DAAProcess() 4 % TargetPeriphinit()

DAAOpen() P
/‘ EVM54CST_DAA_setup()

SetIntVect()

» UartProcess()

> UartOpen()

DAACodeclnit() EVM54CST_UART_setup()

UartReset()
\ DAADrvILIO UARTDrvILIO / UartReadAvail()

v teAvai
UartWriteAvail()
DAAReadWrite() open csL DAA cst U.ART open
DAAAvail) Sosel 7| functons funcions_[¥3~1 0820 Uartwrie(
DAADelay() submit() A submit() UartAutoBaudCtrl()
DAARegRead() cancel() cancel() UartSetCTS()
DAARegWrite() ctl) csL csL ctrl() UartisRTS()
DAADelayDone() DAA_isr() UartSetDCD()
DAARegReadDone() DAALIO UART LIO UartSetRI()
DAARegWriteDone() Driver / \ Driver UartSetDSR()
UartlsDTR()
DAACtrICallBack() ‘ ‘ DAADataCallBack() ‘ ‘ UartISR()

Each of the drivers shown on the diagram is described in the later sections of
this document.

CST Framework Components 7-107

Overview, Interface Functions and Function Call Diagram

7.7.1.1 CST DAA Interface Functions. Files DAADrv.c, DAADrv.h

The CST Framework defines a number of interface functions to access to the
low-level (LIO) DAA driver. These functions are provided mainly to simplify in-
vocation of the LIO driver functions (see section inside the CST Frame-
work. These functions do not contain any extra logic and serve as a bridge to
the LIO driver functions.

Table 7-44. CST DAA Interface Functions

Function Description

DAAOpen Opens a DAA I/0O channel

DAAReadW i te Reads and writes a number of samples from/to the DAA channel

DAAAvai | Returns count of samples that can be read/written from/to the DAA channel
DAADel ay Starts a delay in the DAA driver

DAARegRead Starts a DAA device hardware register read

DAARegW i te Starts a DAA device hardware register write

DAADel ayDone Checks if the delay completed

DAARegReadDone Checks if the DAA device hardware register read completed and returns the

register value

DAARegW i t eDone Checks if the DAA device hardware register write completed

The other 3 DAA functions belong to the high-level DAA driver and are de-
scribed in a greater detail in section

Table 7-45. High-Level DAA Driver Functions

Function Description

DAACodecl ni t High-level DAA driver initialization. It does not include hardware inititalization.
DAAPr ocess Performs periodic background DAA operations.

DAAPer i phDri ver Executes a peripheral command

7-108

DAAOpen function
Function

Parameter(s)

Type

Return Value

Overview, Interface Functions and Function Call Diagram

voi d t pVoi d DAAOpen (tpVoi d DaaChanHandl e) ;

DaaChanHandl e Pointer to an LIO channel object.

t pVoi d is a pointer to void, defined in CSTConmon. h.

Channel handle, pointer to the channel state object/structure (the same value
as DaaChanHandl e) on success. NULL if function failed.

See also EVMb4CSTDr v. C.

DAAReadWrite Function

Function

Parameter(s)

Return Value

DAAAvail Function
Function

Parameter(s)

Return Value

bool DAAReadWite (tpVoid DaaChanHandle, int *pbuf, int
count);

DaaChanHandl e Channel handle, returned by DAAOpen()

pbuf Pointer to the user buffer. The buffer must contain count
samples to be output through the DAA. If the function is
accepted, the buffer will be filled with newly obtained
samples from the DAA. This is because input and output
through the DAA are synchronous processes, SO we can
use the same buffer for 1/O.

count Amount of samples to be input/output
Nonzero, if the operation has been accepted and there’re new samples in the

buffer. Zero, if the operation has been denied (e.g. there’s not enough samples
to read from the DAA) and the user should try again later.

i nt DAAAvail (tpVoid DaaChanHandl e);

DaaChanHandl e Channel handle, returned by DAAOpen()

Number of samples that can be read off the DAA and written to the DAA by the
DAAReadW it e() function. It's not necessary to call this function before
DAAReadW it e() since the latter function makes sure there’s enough
samples to be read off the DAA before accepting the user’s buffer.

CST Framework Components 7-109

Overview, Interface Functions and Function Call Diagram

DAADelay Function

Function

Parameter(s)

Return Value

This function starts a delay of specified number of samples in the DAA driver.
This delay does not affect the I/O process, nor does it sit in a tight loop. It just
starts the process, counting samples. Upon passing of the specified number
of samples (in either direction) through the DAA, the delay will be completed.
To find out if the delay completed, use the DAADel ayDone() function.

bool DAADel ay (tpVoid DaaChanHandl e, int count);

DaaChanHandl e Channel handle, returned by DAAOpen()

count Number of samples, making up the delay time

Nonzero, if the delay started. Zero, if the delay can’t be started because of
another delay being in progress.

DAARegRead Function

Function

Parameter(s)

Return Value

bool DAARegRead (tpVoi d DaaChanHandl e, unsigned int reg);

DaaChanHandl e Channel handle, returned by DAAOQpen()
reg DAA hardware register number

Nonzero, if the register read started. Zero, if the read can't be started because
there is another register read or write in progress.

DAARegWrite Function

Function

Parameter(s)

Return Value

7-110

bool DAARegWite (tpVoid DaaChanHandl e, unsigned int reg,
unsi gned int val ue);

DaaChanHandl e Channel handle, returned by DAAOQpen()
reg DAA hardware register number
val ue New value for the register

Nonzero, if the register write started. Zero, if the write can't be started because
there is another register write or read in progress.

Overview, Interface Functions and Function Call Diagram

DAADelayDone Function

Function bool DAADel ayDone (tpVoid DaaChanHandl €);

Parameter(s)
DaaChanHandl e Channel handle, returned by DAAOpen()

Return Value Nonzero, if the delay, initiated by DAADel ay(), has completed. Zero,
otherwise.

DAARegReadDone Function

Function i nt DAARegReadDone (tpVoi d DaaChanHandl e);
Parameter(s)
DaaChanHandl e Channel handle, returned by DAAOpen()
Return Value Nonnegative value, the value of the register, if the register read has completed.

Negative value otherwise.

DAARegWriteDone Function

Function bool DAARegW i teDone (tpVoid DaaChanHandl e);
Parameter(s)

DaaChanHandl e Channel handle, returned by DAAQpen()
Return Value Nonzero, if the register write has completed. Zero otherwise.

CST Framework Components 7-111

Overview, Interface Functions and Function Call Diagram

7.7.1.2 CST UART Interface Functions. Files UartDrv.c, UartDrv.h

The CST Framework defines a number of interface functions to access to the
low-level (LIO) UART driver. These functions are provided mainly to simplify
invocation of the LIO driver functions (see inside the CST Framework.
These functions do not contain any extra logic and serve as a bridge to the LIO
driver functions.

Table 7-46. CST UART Interface Functions

Function Description
Uart Open Opens input and output UART channels
Uart Reset Resets one or both channels

Uar t ReadAvai |
Uart Wit eAvai |
Uar t Read
UartWite

Uart Process

Uar t Aut oBaudCtr |

Uart Set CTS
Uart | sRTS
Uart Set DCD
Uart Set RI

Uart Set DSR

Uart | sDTR

Returns count of characters that can be read from the input channel
Returns count of characters that can be written to the output channel
Reads a number of characters from the input channel

Writes a number of characters to the output channel

Periodic UART process function. Takes care of the hardware control flow and
related to it functions.

Enables/disables the autobaud function. The autobaud function helps to set up a
correct baud rate if the baud rates of the two connected UARTs mismatch

Sets the CTS pin to a specified state
Reads and returns the state of the RTS pin
Sets the DCD pin to a specified state

Sets the RI pin to a specified state

Sets the DSR pin to a specified state

Reads and returns the state of the DTR pin

7-112

Overview, Interface Functions and Function Call Diagram

UartOpen Function

Function voi d Uar t Open (t pVoi d* pUar t RcChanHandl e, t pVoi d*
pUar t TxChanHandl e) ;

Parameter(s)
pUar t RxChanHandl e Pointer to a pointer to an LIO UART input channel
object
pUart TxChanHandl e Pointer to a pointer to an LIO UART output channel
object
Type t pVoi d is a pointer to void, defined in CSTConmon. h.
Return Value None

See also EVMb4CSTDr v. C.

UartReset Function

Function voi d Uart Reset (tpVvoid Uar t RxChanHandl e, t pVoi d
Uart TxChanHandl e) ;

Parameter(s)

Uar t RxChanHandl e Pointer to an LIO UART input channel object if the
input channel needs to be reset, NULL if the reset is
not needed.

Uar t TxChanHandl e Pointer to an LIO UART output channel object if the
output channel needs to be reset, NULL if the reset
is not needed.

Return Value None

UartReadAvail Function

Function i nt Uart ReadAvail (tpVoid UartRxChanHandl e);
Parameter(s)

Uar t RxChanHandl e Pointer to an LIO UART input channel object
Return Value Number of characters that can be read from the input UART channel.

CST Framework Components 7-113

Overview, Interface Functions and Function Call Diagram

UartWriteAvail Function

Function int UartWiteAvail (tpVoid Uart TxChanHandl €);
Parameter(s)

Uar t TxChanHandl e Pointer to an LIO UART output channel object
Return Value Number of characters that can be written to the output UART channel.

UartRead Function

Function int UartRead (tpVoid UartRxChanHandle, unsigned char
*pbuf, int count);
Parameter(s)
Uar t RxChanHandl e Pointer to an LIO UART input channel object
pbuf Pointer to the user’s buffer
count Number of characters to be read and put into the
buffer
Return Value Zero if there are no count characters available yet, the user’s buffer is empty

and the user should try calling this function again later. Nonzero if count
samples have been written to the user’s buffer.

UartWrite Function

Function int UartWite (tpVoid UartTxChanHandl e, const wunsigned

char *pbuf, int count);
Parameter(s)

Uar t TxChanHandl e Pointer to an LIO UART output channel object
pbuf Pointer to the user’s buffer
count Number of characters in the user’s buffer to be out-
put

Return Value Zero if there is no room for count characters available yet in the driver’'s FIFO,

and the user should try calling this function again later. Nonzero if count
samples have been written to the user’s buffer.

7-114

Overview, Interface Functions and Function Call Diagram

UartProcess Function

Function voi d Uart Process (tpVoid Uar t RxChanHandl e, t pVoi d
Uart TxChanHandl e) ;
Parameter(s)
Uar t RxChanHandl e Pointer to an LIO UART input channel object
Uar t TxChanHandl e Pointer to an LIO UART output channel object
Return Value None

UartAutoBaudCtrl Function

Function i nt Uar t Aut oBaudCtr | (tpVoid Uar t RxChanHandl e, i nt
enabl e) ;

Parameter(s)
Uar t RxChanHandl e Pointer to an LIO UART input channel object
enabl e 1 to enable the autobaud function or 0 to disable the

autobaud function

Return Value Nonzero on success, zero on failure.

UartSetCTS Function
Function voi d Uart Set CTS (tpVoid Uart RxTxChanHandl e, int state);
Parameter(s)

Uar t RxTxChanHandl e Pointer to an LIO UART input or output channel object

state 1 to set the pin high, 0 to set the pin low
Return Value None
UartlsRTS Function
Function int UartlsRTS (tpVoid UartRxTxChanHandl e) ;
Parameter(s)
Uar t RxTxChanHandl e Pointer to an LIO UART input or output channel
object
Return Value Zero if pin state is low, nonzero if pin state is high.

CST Framework Components 7-115

Overview, Interface Functions and Function Call Diagram

UartSetDCD Function
Function voi d Uart Set DCD (tpVoi d Uart RxTxChanHandl e, int state);
Parameter(s)

Uar t RxTxChanHandl e Pointer to an LIO UART input or output channel object

state 1 to set the pin high, 0 to set the pin low
Return Value None
UartSetRI Function
Function void UartSetRl (tpVoid Uart RkTxChanHandl e, int state);
Parameter(s)
Uart RxTxChanHandl e Pointer to an LIO UART input or output channel object
state 1 to set the pin high, 0 to set the pin low
Return Value None

UartSetDSR Function
Function voi d Uart Set DSR (tpVoi d Uart RxTxChanHandl e, int state);
Parameter(s)

Uar t RxTxChanHandl e Pointer to an LIO UART input or output channel object

state 1 to set the pin high, 0 to set the pin low
Return Value None
UartlsDTR Function
Function int UartlsDTR (tpVoid UartRxTxChanHandl e) ;
Parameter(s)
Uar t RxTxChanHandl e Pointer to an LIO UART input or output channel object
Return Value Zero if pin state is low, nonzero if pin state is high.

7-116

Peripheral Driver. Files CSTPeriph.h, EVM54CSTDrv.c, EVM54CSTDrv.h

7.7.2 Peripheral Driver. Files CSTPeriph.h, EVM54CSTDrv.c, EVM54CSTDrv.h

7.7.2.1 Task of the Peripheral Driver

The peripheral driver is dedicated to carrying out the basic peripheral functions
such as managing the hook state of the DAA (going off-hook/on-hook and dial-
ing a digit (in pulse mode)), detecting ring signals and line reversals and more.
The peripheral driver makes it easy to perform these generic telephony func-
tions. The peripheral driver is also used to perform the hardware-specific init-
ialization of CST and handling the hardware specific for the EVM54CST (LED
signaling).

7.7.2.2 Set of Commands For Peripheral Driver

Enum Definition

The CST Service peripheral driver interface provides the user with a set of
standard commands to be executed in a background task. The Service can
execute only one peripheral command at a time. If the user wants to send a
new command to CST Service Peripheral Driver, he needs to continually try
to push the command until the driver accepts it. Available peripheral driver
commands are defined in the t Per i phDri ver Cormand enumeration.

t ypedef enum t Peri phDri ver Command {

Table 7-47. Set of Peripheral Driver Commands

Value Name Description

0 pdc_OFF_HOOK Go off hook.
No parameters

1 pdc_ON_HOOK Go on hook.
No parameters

2 pdc_ON_HOOK_LINE_ Go to special phone line monitor state for Caller ID (in this state,

MONITOR DAA can listen to phone line signal while staying on-hook).

No parameters

3 pdc_PULSE_GEN Dial a digit in pulse mode.
18t parameter — digit to dial, from 0 to 9

4 pdc_READ_REG Read DAA hardware register.

18t parameter — register number, from 0 to 18.

Detailed description of DAA registers is given in the documents
TMS320C54CST Client Side Telephony (SPRS187) and Si3044
User Guide. 3.3 V ENHANCED GLOBAL DIRECT ACCESS
ARRANGEMENT, Silicon Laboratories, 2000.

CST Framework Components 7-117

Peripheral Driver. Files CSTPeriph.h, EVM54CSTDrv.c, EVM54CSTDrv.h

Table 7-47. Set of Peripheral Driver Commands (Continued)

Value Name Description

5 pdc_WRITE_REG Write DAA hardware register.
18t parameter — register number, from 0 to 18.
2nd parameter - value to write to the register
Detailed description of DAA registers is given in TMS320C54CST
Client Side Telephony (SPRS187).

6 pdc_LED_SIGNAL Indicate some event by LEDs on EVM board (this command is
specific for C54CST EVM).
18t parameter — event, defined in t LedSi gnal Event s
enumeration. Can be one of the following:

Ise_BOOT_ILLUMINATION Blink all LEDs at power on; not
implemented yet.

Ise_ DAA_HANDSET_RESET Indicate DAA or Handset codec
buffer overflow

Ise_UART_RX_RESET Indicate UART RX buffer reset

Ise_UART_TX_RESET Indicate UART TX buffer reset

Ise_UART_CTS_OFF CTS circuit turned off (Host should
wait)

Ise_UART_CTS_ON CTS circuit turned on (Host can
send data)

Ise_VOICE_UNDERRUN Voice buffer underrun in voice
controller

Ise_IDLE_START DSP entered IDLE1 mode

Ise_IDLE_END DSP left IDLE mode

6 pdc_GET_UART_ Reserved. Not used in the current version

STATUS_LINES

} tPeriphDriver Comrand;

Type tPeriphDriverCommand is defined in CSTPeriph.h.

7-118

Peripheral Driver. Files CSTPeriph.h, EVM54CSTDrv.c, EVM54CSTDrv.h

7.7.2.3 Set of Events From Peripheral Driver

Enum Definition

Upon detection of an event (for example, a ring), the CST Service generates
a message originating from the cst st _PERI PH task (see section
Available peripheral driver events are defined in the t CSTPer i phEvent enu-
meration and described in Table 7-48.

typedef enum tCSTPeriphEvent {

Table 7-48. Set of Events From the Peripheral Driver

Value Name Description
0 cpe_NONE No event
1 cpe_RING Ring signal detected
2 cpe_RING_END Ring signal lost
3 cpe_AUTO_RING_END Automatic ring-end event generated upon going off-hook.
4 cpe_LINE_REVERSAL Line reversal detected

} tCSTPeri phEvent;
Type tCSTPeriphEvent is defined in CSTPeriph.h.

7.7.2.4 Peripheral Driver Function Interface

The CST Framework declares several platform-specific peripheral driver func-
tions to be called along with the whole CST initialization. The CSTAc-
tion_lnit() function (see performs an internal platform-indepen-
dent CST initialization. The user is responsible for the specific hardware initial-
ization, implementing and setting interrupt service routines, etc. The CST
Framework offers an example of such platform-specific peripheral driver func-

CST Framework Components 7-119

Peripheral Driver. Files CSTPeriph.h, EVM54CSTDrv.c, EVM54CSTDrv.h

tions for the following hardware: TMS320C54CST chip and EVM board. These
functions are described in Table 7-49.

Table 7-49. Peripheral Driver Function Interface

Name Functionality

Tar get Boar dl ni t To be implemented according to hardware specifics. Intended for primary
hardware initialization.

Tar get Peri phlnit To be implemented according to hardware specifics. Intended for final
hardware initialization.
In the CST Framework it initializes interrupt management, DAA and UART
peripheral and data controllers.

Set | nt Vect Set new interrupt service routine

Primary Hardware Initialization

To be implemented according to hardware specifics. Intended for primary
hardware initialization.

Function void TargetBoardlnit (bool IsBIOSUsed, int Miultiplier, int
Ext Wai t St at es) ;

Parameter(s)

| sBI OSUsed Tells this function not to initialize DSP peripheral registers
(CLKMD, BSCR, SWCR, SWWSR). Should be non-zero if
DSP/BIOS is used as these registers are normally
configured through the DSP/BIOS configuration.

Mul tiplier Multiplier for DSP Clock PLL (external clock applied to
DSP will be multiplied by this value, and DSP will run at
the resulting frequency). The function presets the CLKMD
DSP register.

For C54CST's DAA to operate properly, input clock
should be 14.7456 MHz. The multiplier should be 4 or 8,
resulting in 59 or 118 MHz CPU clock.

Ext Wai t St at es Amount of wait states to access external memory, both in
program and data space (the amount of wait states to
access to 1/0O space is not affected by this parameter and
it is set to 7). The function presets the SWWSR DSP
register.

Return Value None

7-120

Peripheral Driver. Files CSTPeriph.h, EVM54CSTDrv.c, EVM54CSTDrv.h

Final Hardware Initialization

Function

Parameter(s)

Return Value

Setting an ISR

Function

Parameter(s)

Return Value

To be implemented according to hardware specifics. Intended for final hard-
ware initialization. In the CST Framework it initializes interrupt management
subsystem, DAA and UART peripherals and overrides CSTFxns.pPeriphPro-
cess and CSTFxns.pPeriphDriver methods (see sections 6.3.§ and [7.2.2.1))

voi d Target Peri phlnit (bool |sBI OSUsed, int TinmerToBeUsed;

| sBI OSUsed Tells this function not to initialize the interrupt-related
registers, interrupt vector table and service routine.
Should be non-zero if DSP/BIOS is used as all interrupt
management is normally configured by the DSP/BIOS
configuration.

Ti mer ToBeUsed Select timer for optional system functions (MIPS
measurement): 1 - timer 1; 0 - timer O; -1 - disabled.
These timer-related system functions are available in a
non-BIOS environment only.

None

Set a new Interrupt service Routine. Used only in non-DSP/BIOS mode.

When DSP/BIOS is used, interrupts should be set through a DSP/BIOS config-
uration.

voi d SetlntVect (int Nunber, void (*plntVector) ());

Nurber Interrupt vector number (0 to 31)

pl nt Vect or Address of the Interrupt service Routine. The routine
should not be declared as i nt er r upt , because the CST
software provides a single interrupt entrance for all vec-
tors.

None

See also EVMb4CSTDrv. ¢, EVMB4ACSTDr v. h.

CST Framework Components 7-121

High-Level DAA Driver. Files DAADrv.c, DAADrv.h

7.7.3 High-Level DAA Driver. Files DAADrv.c, DAADrv.h

7.7.3.1 Task of the High-Level DAA Driver0

DAA operations can be split in to two parts: hardware-specific and hardware-
independent. The independent part is provided by the high-level DAA driver.
The CST Service calls only the high-level DAA driver functions. In other words,
the Service never interacts directly with the low-level hardware DAA driver. It
is the high-level DAA driver that interacts with the low-level hardware driver via
low level 1/O interface (LIO). The high-level DAA driver can execute a set of
standard operations by processing special command scripts. The scripts
specify sequences of commands; each sequence is hardware specific, as its
commands may read/write/analyze different DAA hardware registers (see
TMS320C54CST Client Side Telephony (SPRS187)).

7.7.3.2 Set of Standard Operations

Each operation corresponds to a standard script to be supplied by the low-level
DAA driver. See also

Enum Definition typedef enum t DAASt dRequest {

Table 7-50. Set of Standard Operations of High-Level DAA Driver

Value Name Description
0 dsr_ON_HOOK_LINE_ Go on hook, but enable line monitoring
MONITOR
1 dsr_ON_HOOK Go on hook
2 dsr_OFF_HOOK Go off hook
3 dsr_RING_DETECTION Check ring
4 dsr_BEGIN_PULSING Begin pulsing for a digit (assuming first part of inter-digit pause)
5 dsr_SINGLE_PULSE Single pulse
6 dsr_END_PULSING End pulsing for a digit (assuming second part of inter-digit pause)

} t DAASt dRequest ;
Type tDAAStdRequest is defined in DAADrv.h.

7-122

High-Level DAA Driver. Files DAADrv.c, DAADrv.h

7.7.3.3 Set of commands

There is a set of commands the high-level DAA driver can execute. These
commands compose the scripts, specifying how to perform the high-level DAA
driver standard operations. Most of the commands have a parameter.

Structure typedef struct {

Table 7-51. High-level DAA Driver Commands to Compose Scripts

Type Name Description
t CodecDrvStageSwitch Switch Command code
i nt Par am Parameter

} tCodecDrvStage;

Type tCodecDrvStage is defined in DAADrv.h.
Addresses of the scripts should be put into an array, whose address should be
stored in a global pointer, t CodecDr vSt age ** pDAASt dRequest s (see
DAADr v. ¢ and DAADx v. h). By default, the scripts (for the C54CST's DAA)

are contained in the array t CodecDr vSt age *apDAASt dRequest s[] and
pDAASt dRequest s is made pointing to it during initialization (see

Enum Definition typedef enum tCodecDrvStageSwitch {

Table 7-52. Set of Commands of High-Level DAA Driver

Value Name Description

0 cdss_READ_REG Read a hardware DAA register (Rx) to a working register (X)
—The working register is just a variable. The old value of the
working register (e.g. value before reading DAA register) is
saved into another variable (X 1) for other uses. The
parameter (x) contains the DAA register number:

X. 1= X
X =Rx

1 cdss_WRITE_REG Write a hardware DAA register from the working register, the
parameter (x) contains the DAA register number:
Rx =X

2 cdss_SAVE_REG_VALUE Copy the working register into a 'saving’ array. The parameter
(x) contains the index into the ‘saving’ array:
Save[x] = X

3 cdss_RESTORE_REG_VALUE Copy a value from the 'saving’ array into a working register.

The parameter (x) contains the index into the ‘saving’ array:
X = Save[x]

CST Framework Components 7-123

High-Level DAA Driver. Files DAADrv.c, DAADrv.h

Table 7-52. Set of Commands of High-Level DAA Driver (Continued)

Value Name Description

4 cdss_DO_IF_MASK Calculate bitwise AND of the working register and a mask
defined in the parameter (mask). The working register stays
unchanged. If the result of the calculation is zero, the script
execution terminates:
if ((X & mask) == 0) then break

5 cdss_AND_MASK Bitwise mask the working register. The parameter (mask)
defines the mask value:

X &= mask

6 cdss_OR_MASK Set bits in the working register according to a mask. The
parameter (mask) defines the mask value:
X |= mask

7 cdss_SET_MASK Set the working register to a value. The parameter (mask)
defines the value:
X = mask

8 cdss_WAIT Unconditional wait. The parameter defines the time in 8KHz
samples to wait before a next command will start.

9 cdss_WAIT_DIFFERENCE Repeat previous command (normally, cdss_READ REG) and
wait until the previous (X 1) and current values (X) of the
working register differ or there’s a timeout. If there’s a timeout,
the script execution terminates:
repeat until timeout or X.; ==X
if timeout break

10 cdss_SET_RESULT Set the result of execution of the script but don't terminate the
script yet

11 cdss_PDC_READ_REG Special implementation of cdss_ READ_REG for the
peripheral driver's command pdc_READ_REG (see
X =Rx

12 cdss_PDC_WRITE_REG Special implementation of cdss_ WRITE_REG for the
peripheral driver's command pdc_READ_REG (see
Rx =X

13 cdss_NONE Script terminator. Must end each script

} tCodecDrvStageSwitch;
Type tCodecDrvStageSwitch is defined in DAADrv.h.

7-124

High-Level DAA Driver. Files DAADrv.c, DAADrv.h

Note that the only allowed numbers of DAA registers are 0 through 18, that is,
the high-level DAA driver supports maximum or 19 registers.

See also DAADr v54CST. c, DAADr v54CST. h, Si 3044St ages. c,
EVVMBbACSTDr v. C.

7.7.3.4 High-Level DAA Driver Function Interface

Table 7-53. High-Level DAA Driver Function Interface

Name Functionality
DAACodecl ni t High-level DAA driver initialization. It does not include hardware inititalization.
DAAPr ocess Performs periodic background DAA operations such as ring detection, hook

DAAPer i phDri ver

control, etc. Returns a peripheral event (see This routine is dynamically
called via pPer i phPr ocess method (see

Executes a peripheral command (see and returns a result of the
execution. This routine is dynamically called via pPer i phDri ver method (see

Initialization

Function
Parameter(s)

Return Value

High-level DAA driver initialization. It does not include low-level hardware DAA
initialization.
voi d DAACodecl nit (tCSTChannel * pChannel);

pChannel Pointer to a global CST channel structure

None

DAA Periodic Routine

Function

Parameter(s)

Return Value

Performs periodic background DAA driver operations. Returns a peripheral
event (see This routine is called from EVMPer i phProcess(),
which, in turn, is dynamically called via pPeri phProcess method (see

t CSTPeri phEvent DAAProcess (tCSTChannel* pChannel, int
Amount OF 8KHz Sanpl es) ;

pChannel Pointer to a global CST channel structure
Amount O 8KhzSanpl es Time stamp in 8kHz samples that
informs the time passed since last call

A peripheral event (see

CST Framework Components 7-125

Brief Description of the Low-level 1/0 (LIO) Interface

DAA Driver Command Execution

Function

Parameter(s)

Return Value

Executes a peripheral command and returns a result of the execution.This rou-
tine is called from EVMPer i phDri ver (), which, in turn, is dynamically called
via pPer i phDri ver method (see

| ong DAAPeri phDriver (tCSTChannel * pChannel,
t Peri phDri ver Conmand Conmand, int Paraml, int ParanR);

pChannel Pointer to a global CST channel structure

Command A peripheral command (see commands from 0 to 5)
Par aml First auxiliary parameter for the command

Par an? Second auxiliary parameter for the command

Result of the command execution. Zero means that the command has not yet
finished executing (the user has to send the command again to push the
process). Nonzero result means that the execution has completed. For
example, when the user sends pdc_PULSE _GEN command to dial a digit in
pulse mode, the driver will return zero until the dialing of this digit is completed.

If the command is to read a DAA hardware register (pdc_READ REG), the re-
turned 32-bit integer value will contain the result of the execution in the high
word and the read register value in the low word. If the high and low words are
equal to zero, the register has not been read yet. Otherwise, the high word be-
comes non-zero and low word contains the register value.

7.7.4 Brief Description of the Low-level 1/0O (LIO) Interface

Structure

7-126

This section contains information on the LIO interface used in the CST device
drivers. This information is key to understanding the CST drivers. Additional
information on the LIO interface and writing device drivers for block I/O can be
found in Writing DSP/BIOS Device Drivers for Block I/O (SPRA802).

The LIO interface is intended to be a simple uniform interface for drivers. The
interface makes it easy to integrate drivers for new devices, override driver
methods and alter their functionality, even at run time.

The LIO interface is defined by a function table, which consists of 5 function
pointers. Each pointer points to a dedicated function and can be changed.

The function table’s structure is shown in Table 7-54.

typedef struct LIO Fxns {

Brief Description of the Low-level 1/0 (LIO) Interface

Table 7-54. LIO Function Table

Function Type Function Name Description

LI O _Tcancel cancel Cancels all I/O jobs started by the submit() function.

LI O _Tcl ose cl ose Closes an I/O channel.

LI O Tctrl ctrl A control function to carry out implementation-specific operations.
LI O_Topen open Opens an 1/O channel.

LI O _Tsubmi t submi t Submits a buffer for /0O and starts an 1/O process. A completion

notification will be delivered to a callback function registered by the
open() function.

Type

LIO Open Function

Function

Parameter(s)

Enum Definition

} LI O _Fxns;
LIO_Fxns is defined in LIO.h.

The function initializes a channel object for specified direction of data flow (in-
put vs. output), handles the name parameter and implementation-specific ar-
gument, stores the callback function address and callback function argument
in the channel object and marks the channel object as in use.

Once the channel has been opened, it may then be used for I/O with the sub-
m t () function. Normally, after the processing initiated by submni t () com-
pletes, the callback function will be called with the callback function argument
to notify the user.

The channel may be closed when there’s no need to continue I/O. This is done
by the cl ose() function.

Ptr open (String nane, LI O Mode node, Arg arg,
LI O _Tcal | back cb, Arg cbArg);

name Can be used to specify channel ID

node Specifies mode (input vs. output) of the channel

arg Implementation-specific argument

ch A callback function to be called with cbAr g argument when
I/O operation completes

cbArg An argument to be used when calling the callback function

Note that the types Voi d, Bool , Stri ng, Uns, Arg and Pt r are defined in
the file st d. h.Uns is some unsigned integer type, Pt r is a void pointer, Ar g
is a type that is big enough to hold either of an integer and a pointer.

t ypedef enum LI O_Mode {

CST Framework Components 7-127

Brief Description of the Low-level 1/0 (LIO) Interface

Table 7-55. LIO Open Function Modes

Name Value Description
LIO_INPUT 0 Open channel in input mode
LIO_OUTPUT 1 Open channel in output mode
} LI O _Mbde;
Type LIO_Mode is defined in LIO.h.

Return Value

LIO Close Function

Function

Parameter(s)

Return Value

Channel handle, pointer to the channel state object/structure, or NULL if
function failed.

The function closes a previously opened channel and marks the channel ob-
ject as not in use. The channel may be opened with open() once again after
it has been closed by cl ose() .

Bool close (Ptr chanp);

chanp Channel handle, previously returned by open() .

TRUE on success, FALSE if failed.

LIO Submit Function

Function

7-128

The function takes the user buffer to be output (or input to) and starts the 1/0
process. Upon completion of the process, the callback function (which has
been previously registered in the open() function) will be called to notify the
user.

The ongoing I/O process may be stopped by the cancel () function.

The submi t () function should be callable from an ISR.

Bool submit (Ptr chanp, Ptr buf, Uns nnaus);

Brief Description of the Low-level 1/0 (LIO) Interface

Parameter(s)
chanp Channel handle, previously returned by open() .
buf User’s buffer with or for data
nmaus Size of the buffer in MAUs. MAU is a minimum addressable
unit, whose size is usually equal to sizeof(char) in C.
Return Value TRUE if the request has been taken and the I/O process started, FALSE if the

request can’t be satisfied.

L1O Cancel Function

The function is intended to stop an ongoing I/O process, initiated by the sub-
m t () function.

Function Bool cancel (Ptr chanp);
Parameter(s)
chanp Channel handle, previously returned by open() .
Return Value TRUE if the job initiated by subni t () has been successfully stopped or

cancelled, FALSE otherwise.

L1O ctrl Function

The function is dedicated to carry out implementation-specific operations. Any
driver functions that are beyond the interface of the open(), close(), submit()
and cancel() functions should be done through the use of this function.

For example, for a DAA device it would be logically to implement hardware reg-
isters reading and writing in this function.

If the operations implemented in this function are needed inside of the other
LIO functions, it may be desirable to call this control function via a pointer from
the driver’s LIO function table (see Table 7-54).

Function Bool ctrl (Ptr chanp, Uns cnd, Arg arg);

CST Framework Components 7-129

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

Parameter(s)
chanp Channel handle, previously returned by open() .
cmd Implementation-defined command parameter
arg Implementation-defined argument parameter
Return Value TRUE if the implementation-defined command has been successfully

accepted, FALSE otherwise.

LIO User’s Callback Function

The user of the LIO driver should provide the callback function to find out when
the 1/0 processes complete.

Normally, the callback function is called from the driver’s ISR. The function
should do whatever is required to start getting the newly obtained data (if the
channel is in input mode) or prepare new data to be sent (if the channel is in
output mode).

The function and its argument (the first function argument) are registered in
the open() function when opening the channel. The function will be called
with the registered argument.

Function Voi d cal | back (Arg arg, Uns nmaus);

Parameter(s)
Arg Registered argument, may be the address of the data buffer
nnmaus size of data in MAUs. MAU is a minimum addressable unit,

whose size is usually equal to sizeof(char) in C.

Return Value None

7.7.5 Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

7.7.5.1 Task of the Low-level DAA Driver

The low-level DAA driver does the actual work with the underlying hardware,
in our case C54CST'’s DAA. The driver exports its functions through the Low-
level I/O (LIO) interface. The driver makes use of the CSL DAA functions (see
TMS320C54x Chip Support Library APl Reference Guide (SPRU420)).

7-130

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

7.7.5.2 Scripts for High-Level DAA Driver. File Si3044Stages.c

The scripts, corresponding to the high-level DAA driver standard operations
(see are defined in the file Si 3044St ages. c. These scripts are spe-
cific to the C54CST’s DAA. The pointers to the scripts are contained in the
t CodecDr vSt age *apDAASt dRequest s[] structure. The scripts contain
register numbers specific to the C54CST’s DAA and logic specific to process-
ing their values.

7.7.5.3 Low-Level DAA Driver Hardware Setup Function. Files DAADrv54CST.c,
DAADrv54CST.h

Function

Parameter(s)

Return Value

Structure

The hardware setup function is intended to perform the initialization of the DAA
devices, e.g. to set up the DAA sample rate, preset analog rx/tx gain/attenua-
tion and international registers, set up the appropriate McBSP, initialize non-
static LIO channel objects, etc. This function just calls the CSL DAA _set up()
function.

This function is to be called prior to use of any of the LIO functions (see
of the driver.

voi d EVMb4CST_DAA setup (DAA Setup *daaSetupStruct);

daaSet upStruct A pointer to a CSL multiple DAA device structure
(Table 7-56). The structure contains number of devices
to initialize and a pointer to an array of pointers to indi-
vidual device setup structures.

None
A good example of using this function is available in the file EVMb4CSTDr v. C.

t ypedef struct {

Table 7-56. Multiple DAA Device Setup Structure

Field Type Field Name Description

Ui nt 16 nunmDevs Number of devices to be set up

DAA_DevSet up **dev Pointer to array of device setup structure pointers (see Table 7-54)
} DAA Set up;

Type

Structure

DAA_Setup is defined in csl_daa.h.

t ypedef struct {

CST Framework Components 7-131

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

Table 7-57. DAA Device Setup Structure

Field Type Field Name Description

DAA Par ans *par ans Pointer to a structure with DAA device parameters (initial register
values, see Table 7-58, TMS320C54CST Client Side Telephony
(SPRS187) and, Si3044 User Guide. 3.3 V ENHANCED GLOBAL
DIRECT ACCESS ARRANGEMENT.© Silicon Laboratories,
2000)

DAA Handl e daaHandl e Pointer to a DAA device state object created by the user

Ui nt 16 ntbspPort Number of an McBSP port the DAA device is connected to
(MCBSP_PORT?2 for internal DAA)

Int16 *pCi r cBuf Pointer to a circular buffer that will contain samples for 1/O

Ui nt 16 circBuf Si ze Circular buffer size

Ui nt 16 circBuf O f set Initial circular buffer offset (write pointer offset of the read pointer).
Also used as the multiple of samples to skip when
overflowing/underflowing, which may be crucial for modem
applications.

Ui nt 16 dat aLengt h Callback data size. The data callback will be called if there are
this many samples available to read/write.

voi d *pl D Some pointer to channel ID. In CST, this pointer points to a CST

DAA_Cal | Back

DAA_Cal | Back

dat aCal | Back

ctrl Cal | Back

global channel structure of type t CSTChannel (see
associated with this device.

Pointer to data callback function

Pointer to control callback function

DAA_Rst Fxn reset Pointer to DAA device hardware reset control function.
} DAA DevSet up;
Type DAA_DevSetup is defined in csl_daa.h.
Structure t ypedef struct {

7-132

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

Table 7-58. Initial DAA Device Registers Values

Field Type Field Name Description

Ui nt 16 t XAtt enuati on Analog transmit attenuation value, “OR”ed with r xGai n
defines value of the TX/RX Gain Control register (see
TMS320C54CST Client Side Telephony (SPRS187))

Ui nt 16 rxGin Analog receive gain value, “OR"ed with t XAt t enuat i on
defines value of the TX/RX Gain Control register

Ui nt 16 sanpl eRat eReg7 Sample Rate Control Register 7 value

Ui nt 16 sanpl eRat eReg8 Sample Rate Control Register 8 value

Ui nt 16 sanpl eRat eReg9 Sample Rate Control Register 9 value

Ui nt 16 sanpl eRat eReg10 Sample Rate Control Register 10 value

Ui nt 16 ictrll International Control Register 1 value

Ui nt 16 ictrl2 International Control Register 2 value

Ui nt 16 ictrl3 International Control Register 3 value

} DAA Par ans;
Type DAA_Params is defined in csl_daa.h.

DAA CSL Callback Functions

The low-level DAA driver creates two callback functions, a data callback, and
a control callback. These functions will be called from the CSL ISR.

The data callback is used to notify the user of data samples availability, e.g.
when it's OK to read/write a new portion of samples.

The control callback is used to notify the user of completion of device register
reads and writes. The read notification also delivers the value of the register
just read. There're two other control notifications, one for notifying the user of
the circular buffer overflow (which may happen when the system goes off the
real-time) and another one is for notifying the user when a delay completed
(the delay function is important for going off-hook and on-hook because this
takes a certain amount of time (or samples to pass through) before the new
hook state becomes valid).

The DAA device setup structure (see Table 7-57) should have pointers to
these callback functions.

CST Framework Components 7-133

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

CSL DAA Callback Function Prototype
void Call Back (void* pID, U ntl6 task, U ntl6 arg);

Function

Parameter(s)
pl D
t ask
arg

Pointer to channel ID, given in the DAA device setup structure
(see Table 7-57). In CST, this pointer points to a CST global
channel structure of type t CSTChannel (see 6.3.1) associated
with this device.

For data callback:

0 DAA_DATA — there're samples ready to be read/written
For control callback:

A bit field with the following bits set/reset:

1 DAA OVERFLOW - the circular buffer overflowed
notification

0 DAA_REG_READ - a DAA device register read completed
1 DAA_REG_WRITE — a DAA device register write completed
0 DAA_DELAY - a delay completed

For data callback:

Pointer to a DAA device state object created by the user. The
pointer of type DAA_Handl e typecast to Ui nt 16.

For control callback:
Register value just read, if (t ask & _DAA REG READ)! =0

Table 7-59. Bit Fields of the Task Parameter

Bit Field Name Bit Field Mask Value
_DAA_REG READ 0x0001
_DAA REG WRI TE 0x0002
_DAA_DATA 0x0004
_DAA_DELAY 0x0010
_DAA_OVERFLOW 0x0020

The bit fields are defined in csl _daa. h.

Return Value None

These CSL DAA callbacks are implemented in the functions DAADat aCal | -
Back() and DAACtrI Cal | Back() .

7-134

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

DAA CSL Device Hardware Reset Control Function

During the initialization of the DAA devices, the reset control functions are
used to put the devices into the reset state and take them back out of the rest
as part of normal initialization procedure. The CSL provides one reset function
for the internal C54CST DAA device. This is function DAA reset () anditis
a part of the CSL. In case there are external Si3021 DAAs connected to the
CST chip, the individual DAA hardware reset functions should be provided for
the extra DAAs.

The DAA device setup structure (see Table 7-57) should have a pointer to this
function.

7.7.5.4 CSL DAA Device Hardware Reset Control Function Prototype

Parameter(s)

voi d DAA RstFxn (Ui nt16 flag);

flag Nonzero value puts the device into the reset state; zero value
takes the device out of the reset state.

7.7.5.5 LIO Functions of Low-Level DAA Driver. Files DAADrv54CST.c, DAADrv54CST.h

The 5 LIO functions (see are exported in the LI O Fxns DAADrvI LI O
structure of the driver.

DAA LIO Open Function

Function

The function initializes a channel object and opens a channel for I/O of the DAA
samples. In CST, this function is called just once during the final hardware init-

ialization (see

Ptr open (String nane, LI O Mode node, Arg arg,
LI O Tcal | back cb, Arg cbArg);

CST Framework Components 7-135

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

Parameter(s)

name Can be used to specify channel ID. Ignored.

node Specifies mode (input vs. output) of the channel. Ignored (and may
be either of L1 O_| NPUT and LI O_QUTPUT), because the DAA device
is a synchronous device, which inputs and outputs data samples at
the same rate. Therefore, the implementation of the submit ()
function is made such that the function takes a buffer filled with
samples to be output and upon completion of the function, this same
buffer will be filled with new input samples. That is, output samples
are taken and replaced by new input samples.

arg Implementation-specific argument. Currently, this argument is used
to pass a pointer to the LIO channel object to the function. This helps
to avoid unwanted allocation of static data and to make the driver fully
multichannel.

ch A callback function to be called with cbAr g argument when 1/O
operation completes. Ignored, because CST usually asks the driver
if there're enough samples to be read/written.

cbArg An argument to be used when calling the callback function. Ignored,
by the same reason as the above parameter.

Return Value Channel handle, pointer to the channel state object/structure (the same value
as ar g), or NULL if function failed.

DAA LIO Close Function

The function closes a previously opened DAA channel and marks the channel
object as not in use. This function is never called in CST.

Function Bool close (Ptr chanp);
Function

chanp Channel handle, previously returned by open() .
Return Value TRUE on success, FALSE if failed.

7-136

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

DAA LIO Submit Function

Function

Parameter(s)

Return Value

The function takes a buffer filled with samples to be output and upon comple-
tion of the function, this same buffer will be filled with new input samples. That
is, output samples are taken and replaced by new input samples. This is be-
cause the DAA device is a synchronous device, which inputs and outputs data
samples at the same rate.

Bool submit (Ptr chanp, Ptr buf, Uns nnmaus);

chanp Channel handle, previously returned by open() .

buf Pointer to the user’s buffer with data samples to be output by
the device. Upon completion of the function the buffer is filled
with new input samples.

nmaus Size of the buffer in MAUs. MAU is a minimum addressable
unit, whose size is usually equal to sizeof(char) in C. On
C54xx DSPs si zeof (char) ==si zeof (i nt) ==1. So, this
parameter specifies number of samples to be read/written.

TRUE if the request has been accepted and the buffer processed, FALSE if
the request can't be satisfied (request was early or nmaus==0).

DAA LIO Cancel Function

Function

Parameter(s)

Return Value

Even though, this function should stop an ongoing I/O process, initiated by the
submi t () function, it does not do so. This is because CST always continu-
ously inputs and outputs samples and never stops.

Bool cancel (Ptr chanp);

chanp Channel handle, previously returned by open() .

FALSE

CST Framework Components 7-137

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

DAA LIO ctrl Function

The function is dedicated to carry out implementation-specific operations. Any
driver functions that are beyond the interface of the open(), close(), submit()
and cancel() functions should be done through the use of this function. There
are a few of such specific operations...

Function Bool ctrl (Ptr chanp, Uns cnd, Arg arg);
Parameter(s)
chanp Channel handle, previously returned by open() .
crmd Command parameter (see Table 7-60)
arg Optional argument parameter, whose meaning depends on
cnd.
Enum Definition typedef enum t DAADrvCd {

Table 7-60. DAA LIO Driver Commands

Name Value Description

DAA_IOAVAILABILITY 0 Command to find out how many samples can be read/written at the
moment.

DAA_REG_READ 1 Command to start reading from a DAA device hardware register.

DAA_REG_WRITE 2 Command to start writing to a DAA device hardware register.

DAA_DELAY 3 Command to start a delay. The delay does not stop samples 1/0O nor

does it affect reading and writing of the device registers. It's more
like an alarm clock or a timer.

DAA_REG_READ_DONE 4 Command to get a value of the register, if already available.
DAA_REG_WRITE_DONE 5 Command to see if the register write completed.
DAA_DELAY_DONE 6 Command to see if the delay completed.
} t DAADr vCOd;
Type tDAADrvCmd is defined in DAADrv.h.
Return Value Depends on the cnd parameter. FALSE if the command has not been
recognized.

The following table summarizes all commands, describes the meaning and
use of the optional parameter ar g and associated returned value of the
ctrl () function:

7-138

Low-level (LIO) DAA Driver. Files DAADrv54CST.c, Si3044Stages.c.

Table 7-61. DAA LIO Driver Parameter - Result Map

arg Used for,

cmd Treated as arg Use Returned Value
DAA_IOAVAILABILITY Output, *(Intl6*)arg is assigned a count TRUE
" of samples that can be read/writ-
Int16
ten at the moment
DAA_REG_READ Input, arg is the number of the register TRUE, if register
Uint16 to be read read started; FALSE

if not (another read/
write is in progress)

DAA_REG_WRITE Input, *(tDAADrvRegWriteArg*)arg TRUE, if register
. . contains the register number to write started; FALSE
IDAADIVRegWriteArg be written to and its new value if not (another read/
(see Table 7-62) write is in progress)
DAA_DELAY Input, ar g is the number of TRUE, if delay
Int16 samples that make up the started; FALSE if not
delay time (another delay is in
progress)
DAA_REG_READ_DO Output, *(Int16%*)arg is assigned to the TRUE, if read com-
NE Int16* register value just read pleted; FALSE if not.
DAA REG_WRITE_D Nothing None TRUE, if write com-
ONE pleted; FALSE if not.
DAA_DELAY_DONE Nothing None TRUE, if delay com-
pleted; FALSE if not.
Structure t ypedef struct tDAADrvRegWiteArg {

Table 7-62. DAA LIO Driver Register Write Structure

Field Type Field Name Description
unsi gned int Reg DAA device hardware register number
unsi gned int RegVal ue Value to be written to the register

} t DAADrvRegW i t eArg;
Type tDAADrvRegWriteArg is defined in DAADrv.h.

DAA LIO Callback Function

CST does not use LIO callback functions for DAA because CST usually asks
the driver if there’re enough samples to be read/written.

CST Framework Components 7-139

Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c

7.7.6 Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c

7.7.6.1 Task of the Low-Level UART Driver

The low-level UART driver does the actual work with the underlying hardware,
in our case C54CST's UART. The driver exports its functions through the Low-
level I/0 (LIO) interface. The driver makes use of the CSL UART functions (see
TMS320C54x Chip Support Library API Reference Guide (SPRU420)).

7.7.6.2 Low-Level UART Driver Hardware Setup Function. Files Uart550Drv.c, Uart550Drv.h

The hardware setup function is intended to perform the initialization of the
UART device, e.g. to set up the UART baud rate, character size, parity set-
tings, control flow and initialize non-static LIO channel objects. This function
calls the CSL UART _i ni t () function.

This function is to be called prior to use of any of the LIO functions (see
of the driver.

Function voi d EVMBACST_UART setup (tUart DrvSet upStruct
uart DrvSet upStruct);
Parameter(s)
uart DrvSet upStruct This structure contains the address of the function
that tracks modem escape sequence characters
(see
An example of using this function is available in the file EVMbACSTDr v. C.
Structure typedef struct {

Table 7-63. UART Setup Function to Track Modem Escape Sequence Characters

Field Type Field Name Description

t UARTUser Fxn User Fxn This structure contains the address of the function that tracks
modem escape sequence characters

} tUartDrvSetupStruct;

Type tUartDrvSetupStruct is defined in UartDrv.h.
Return Value None

Default setup settings of the UART driver are summarized in the following
table:

7-140

Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c

Table 7-64. Default Setup Settings of the UART Driver

Setting Value

Baud rate 115200 (bit/s)
Character size 8 (bits)
Number of 1

stop bits

Parity None, disabled

These default settings are contained in the variables UART_Par ans Uart -
Par ans and t Uar t Aut oBaud Uar t Aut oBaudPar ans of the driver. And if
the defaults need to be changed, the changes should be made in the men-
tioned variables prior to calling the driver hardware setup function.

UART Rx Monitor/Escape Sequence Tracking Function

Function

Parameter(s)

Return Value

This function is called each time a new character from the UART is received.
The function is intended to track special character sequences (modem escape
sequences). These sequences are used to switch a modem between the data

and online command modes (see

void UARTUserFxn (struct tCSTChannel* pChannel, char
dat a) ;

pChannel Pointer to a global CST channel structure
dat a Received character
None

CST Framework Components 7-141

Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c

7.7.6.3 LIO Functions of Low-Level UART Driver. Files Uart550Drv.c, Uart550Drv.h

The 5 LIO functions (see are exported inthe LI O_Fxns UartDrvI LI O
structure of the driver.

UART LIO Open Function

Function

Parameter(s)

Return Value

The function initializes a channel object and opens a channel for input or output
of the UART characters. In CST, this function is called just once during the final

hardware initialization (see

Ptr open (String nane, LIO Mde node, Arg ignored,
LI O Tcal | back cb, Arg cbArg);

name Can be used to specify channel ID. Ignored.

node Specifies mode (input vs. output) of the channel. Possible
values are: LI O_| NPUT, LI O_OUTPUT.

i gnor ed Implementation-specific argument. Ignored.

ch A callback function to be called with cbAr g argument when

I/O operation completes. Ignored, because CST usually asks
the driver if it's possible to read/write a certain amount of
characters.

cbArg An argument to be used when calling the callback function.
Ignored, by the same reason as the above parameter.

Channel handle, pointer to the channel state object/structure, or NULL if
function failed.

UART LIO Close Function

Function

Parameter(s)

Return Value

7-142

The function closes a previously opened UART channel and marks the chan-
nel object as not in use. This function is never called in CST.

Bool close (Ptr chanp);

chanp Channel handle, previously returned by open() .

TRUE on success, FALSE if failed.

Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c

UART LIO Submit Function

Function

Parameter(s)

Return Value

The function takes a buffer from the user and either fills it with received data
characters (if the channel is configured for input) or takes from it data charac-
ters to be sent (if the channel is configured for output).

Bool submit (Ptr chanp, Ptr bufp, Uns nmaus);

chanp Channel handle, previously returned by open() .

buf p Pointer to the user’s buffer with/for data characters. This
pointer is treated as a pointer to an array of characters, in
other words, unsi gned char*.

nmaus Size of the buffer in MAUs. MAU is a minimum addressable
unit, whose size is usually equal to sizeof(char) in C. On
C54xx DSPs si zeof (char) ==si zeof (i nt) ==1. So, this
parameter specifies number of characters to be read/written.
The characters are not packed, even though a char is 16-bit
wide and may keep more information. The most significant 8
bits of the characters are simply ignored.

TRUE if the request has been accepted and the user buffer processed, FALSE
if the request can't be satisfied (reasons: there’s no room for that many
characters in the driver’s FIFO, there’re not enough characters in the driver’s
FIFO).

Note: in the current implementation of the driver, the FIFO size is fixed and
equal to 298 characters. E.g. subni t () will not take more than 298 charac-
ters to be output nor will it return more than 298 input characters.

UART LIO Cancel Function

Function

Parameter(s)

Return Value

The function is intended to stop an ongoing I/O process. The function resets
the channel FIFO. For input channel it also reinitializes the hardware flow con-
trol so the host may start sending data again. For output channel it stops an
ongoing transmission of characters.

Bool cancel (Ptr chanp);

chanp Channel handle, previously returned by open() .

TRUE if the function has been successfully executed, FALSE otherwise.

CST Framework Components 7-143

Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c

UART LIO ctrl Function

The function is dedicated to carry out implementation-specific operations. Any
driver functions that are beyond the interface of the open(), close(), submit()
and cancel() functions should be done through the use of this function. There
are a few of such specific operations...

Function Bool ctrl (Ptr chanp, Uns cnd, Arg arg);
Parameter(s)

chanp Channel handle, previously returned by open() .

crmd Command parameter (see Table 7-65)

arg Optional argument parameter, whose meaning depends on cnd.
Enum Definition typedef enumt Uart DrvCnd {

Table 7-65. UART LIO Driver Commands

Name Value Description

UART_RESET 0 Command to reset the channel FIFO. For an input channel, this also
reinitializes the hardware control flow so the host may start sending
data again. For an output channel, this stops an ongoing character
transmission as well.

UART_| QAVAI LABI LI TY 1 Command to find out how many characters can be read (for input
channel) or written (for output channel) at the moment.

UART_AUTOBAUD_FLAG 2 Enables the autobaud function (applicable for an input channel only).
The autobaud function tries to find and set the correct baud rate if the
baud rates of the two connected UARTs mismatch. By default, the
autobaud function is disabled and to enable it this command should be
explicitly given to the driver.

UART _PROCESS 3 Command to perform background UART processes: hardware flow
control related functions. This includes restarting transmission when
the host sets RTS high again and setting CTS high when there’s
enough space in the input FIFO again.

UART_CTS_PI N 4 Sets the CTS pin high or low.
UART_RTS_PI N 5 Returns the state of the RTS pin.
UART_DCD_PI N 6 Sets the DCD pin high or low.
UART_RI _PIN 7 Sets the RI pin high or low.
UART_DSR PI' N 8 Sets the DSR pin high or low.
UART_DTR PI'N 9 Returns the state of the DTR pin.

7-144

Type

Return Value

Low-Level (LIO) UART Driver. Files Uart550Drv.c, UartAutoBaud.c

} tUartDrvCrd;

tUartDrvCmd is defined in UartDrv.h.

Depends on the cnd parameter. FALSE if the command has not been
recognized.

The following table summarizes all commands, describes the meaning and
use of the optional parameter ar g and associated returned value of the
ctrl () function:

Table 7-66. UART LIO Driver Parameter - Result Map

arg Used for,

cmd Treated as arg Use Returned Value
UART_RESET Nothing None TRUE, if
successful reset;
FALSE otherwise.
UART_IOAVAILABILITY Output, *(Intl6*)arg is assigned a count TRUE
" of characters that can be read (if
Int16 . . .
input channel) or written (if
output channel) at the moment
UART_AUTOBAUD _ Input, if (arg==ENABLE) enables the TRUE, if
FLAG tUartDrvCmdArg a_utobaud_ function, otherwise succe_ssful_ _
disables it enabling/disabling;
FALSE otherwise.
UART_PROCESS Nothing None TRUE
UART_CTS_PIN Input, if (arg==PIN_ON) sets the CTS TRUE
tUartDrvCmdArg pin high, otherwise sets it low
UART_RTS_PIN Nothing None RTS pin state
UART_DCD_PIN Input, if (arg==PIN_ON) sets the DCD TRUE
tUartDrvCmdArg pin high, otherwise sets it low
UART_RI_PIN Input, if (arg==PIN_ON) sets the Rl pin TRUE
tUartDrvCmdArg high, otherwise sets it low
UART_DSR_PIN Input, if (arg==PIN_ON) sets the DSR TRUE
tUartDrvCmdArg pin high, otherwise sets it low
UART_DTR_PIN Nothing None DTR pin state

See also Uar t Aut oBaud. c, Uar t Aut oBaud. h.

CST Framework Components 7-145

Reloading Drivers

UART LIO Callback Function

CST does not use LIO callback functions for UART because CST usually asks
the driver if it can give or take a certain amount of characters.

7.7.7 Reloading Drivers

Reloading the CST drivers is normally an easy procedure. The following sec-
tions contain information about reloading the standard CST UART, DAA and
peripheral drivers as well as using multiple DAA devices in multi-channel CST
flex applications.

7.7.7.1 Reloading the UART Driver

To reload the existing CST UART driver, the user should first create his own
driver for UART or whatever device will be used to replace the C54CST's
UART.

The following steps should be taken:

1) An LIO channel object type should be defined for both input and output
channels. The channel object/structure should contain the state variables
of the channel (an example of the structure is available in file
Uart550Drv.h, type tUARTChanObj). Let's say, it will be tMyUartChanObj.

2) A function analogous to EVMbACST_UART_set up() should be imple-
mented (see Let’s say, it will be function My_UART _set up() .

3) All5 LIO functions should be implemented. Their implementation is hard-
ware specific but these functions have to behave the same way as the
original CST UART driver’s LIO functions. Remember that the UART LIO
submi t () function works with 8-bit characters, which are not packed

(see

It is important that the new driver accepts all of the commands (through the
LIOctrl () function) listed in the . Even if there're no certain UART lines
like DTR and RI or the autobaud function is not available, the commands
that correspond to these unavailable functions have to be simulated. and
the code of the original UART LIO driver will help to understand how to sim-
ulate the commands. A template for the UART driver can be found in the
files DriversTenplates\MyUartDrv.c and DriversTem
pl at es\ MyUart Drv. h.

7-146

4)

5)

Reloading Drivers

The LIO function addresses should be put into a variable:
LI O Fxns MyUartDrvI LI O =
{

&cancel ,

&cl ose,

&ctrl,

&open,

&submi t
b
This structure will be copied to the structure UartDrvl LI O (see
Uar t 550Dr v. ¢) in the beginning of the new peripheral driver’s final hard-
ware initialization function. If any of the LIO functions need to call the other
one, they should do that by reference through the pointers of the Uar t Dr -
vl LI Ostructure.

An ISR function specific to the hardware should be implemented and it
should use the LIO channel objects either directly (if they're statically allo-
cated in the driver as in Uar t 550Dr v. ¢) or the ISR function should take
their addresses as arguments. In this latter case, a voi d(voi d) wrapper
function may be needed to call the actual ISR with the appropriate argu-
ments.

So, there’re two options, direct and indirect access to the channel objects:
/1 direct access:

NN NNy

/'l channel objects defined inside the UART driver:

t MyUar t ChanCbj MyRxUart ChanCbj, MyTxUart ChanQbj ;

void MyUartlsr() // executed upon interrupt

{
/'l Use MyRxUart ChanCbj and MyTxUart ChanObj here

}

/] indirect access:

LELTTELELErrrrrrrrrd

void MyUartlsr (tMUartChanObj* pMyRxUart ChanQbj,
t MyUar t ChanCbj * pMyTxUart ChanQhj)

{
/'l Use *pMyRxUart ChanCbj and *pM/TxUart ChanCbj here

}
/'l channel objects defined outside the UART driver:

t MyUart ChanCbj MyRxUart ChanCbj, MyTxUart ChanQj ;
void MyUartlsrWapper() // executed upon interrupt

{
MyUartlsr (&WRxUart ChanQbj, &WTxUart ChanQbj);

CST Framework Components 7-147

Reloading Drivers

6) Finally, a new peripheral driver will be needed to initialize the new hard-
ware, set the ISR and open UART channels for 1/0. For example, a new
MyTar get Peri phl nit () function (analogous to Tar get Peri phl -
nit(), see EVMbACSTDr v. ¢) may look like this (important parts are in
bold):
voi d MyTarget Periphlnit (bool IsBlIOSUsed, int TimerTo-
BeUsed)

/1 if TinmerToBeUsed<0, no tinmer will be used for MPS
neasur ement s

{
tUart DrvSet upStruct Uart DrvSet upStruct;
/* Override the PeriphProcess and PeriphDriver func-
tions */
CSTFxns. pPeri phProcess=MyPeri phProcess;
CSTFxns. pPeri phDri ver=MyPeri phDri ver;
if (!1sBICSUsed)
{
/* Initialize the | SR handling code */
Intlnit();
i f(Ti mer ToBeUsed>=0)
{
#undef | RQ _EVT_TI NT1
#define | RQ_EVTI_TINT1 (24)
/* Init the tinmer and install the timer ISR */

CSTTinerlnit(Ti mer ToBeUsed?Tl MER_DEV1: TI M
ER_DEVO) ;

Set I nt Vect (Ti nerTo-
BeUsed?l RQ EVT_TI NT1: | RQ EVT_TI NTO, &CSTTi nerl SR);

}

}
/* Initialize the UART driver */

/1 default settings (115200, 8Nl) are already in place,
t hough:

/*
Uar t Aut oBaudPar ans. d kl nput = Uart Par ans. cl kl nput
UART_CLK_ | NPUT_117;

Uar t Aut oBaudPar ans. Aut oBaudRat e = Uart Par ans. baud
UART_BAUD 115200;

*/
Uart DrvSet upStruct . User Fxn = CSTFxns. pUARTRxNbni t or;
/1 Copy LIO function table

7-148

Reloading Drivers

UartDrvliLIO = MyUartDrvl LI G
/'l 1SR accesses UART LI O channel objects directly:
NNy
if (!1sBICSUsed)
{

/* Install the UART ISR */

Set I nt Vect (UART_I NTERRUPT_VECTOR NUMBER, &My Uar -

tlsr);

}

/* Initialize the UART hardware device */
My_UART_setup (UartDrvSetupStruct);

/* Qpen both Rx and Tx channels (LIO */

Uart Open (&ChO. Uart RxChanHandl e, &ChO0. Uart TxChan-

Handl e) ;

/[* Initialize the DAA driver */

7.7.7.2 Reloading UART Flow Control Functions

To prevent the UART driver from using the GPIO pins HDO-HD5 for UART con-
trol lines (CTS/RTS, DSR/DTR, DCD, RI) the tUARTDrvCtrl Fxns
Uart DrvCt r | Fxns structure (see the file Uar t 550Dr v. ¢) should be modi-
fied. This structure contains pointers to functions that set and read the states
of the mentioned UART lines. An example of redefining these function is avail-
able as an almost empty flex application example in the file mai n11 (re-
| oadi ng UART).c.

7.7.7.3 Reloading the DAA Driver

To reload the existing CST DAA driver, the user should first create his own driv-
er for DAA or whatever device will be used to replace the C54CST'’s DAA.

The following steps should be taken:

1)

2)

An LIO channel object type should be defined for the input/output channel
(there’s a single channel for both input and output, see The chan-
nel object/structure should contain the state variables of the channel (an
example of the structure is available in file DAADrv54CST.h, type tDAA-
ChanObj). Let's say, it will be tMyDAAChanObj.

A function analogous to EVMbACST_DAA set up() should be imple-
mented (see Let’s say, it will be function My_DAA set up() .

CST Framework Components 7-149

Reloading Drivers

7-150

3)

4)

5)

All'5 LIO functions should be implemented. Their implementation is hard-
ware specific but these functions have to behave the same way as the
original CST DAA driver’s LIO functions.

It is important that the new driver implements all of the commands (through
the LIO ctrl () function) listed in Table 7-65 and Table 7-66 and the
code of the original DAA LIO driver will help to understand how to imple-
ment the commands. A template for the UART driver can be found in the
files Dri versTenpl at es\ MyDAADr v. c and DriversTem
pl at es\ MyDAADr v. h.

The LIO function addresses should be put into a variable:
LI O Fxns MyDAADrvI LI O =
{

&cancel ,

&cl ose,

&ctrl,

&open,

&subni t
H
This structure will be copied to the structure DAADrvI LI O (see
DAADr v54CST. c¢) in the beginning of the new peripheral driver’s final
hardware initialization function. If any of the LIO functions need to call the
other one, they should do that by reference through the pointers of the
DAADr vI LI Ostructure.

An ISR function specific to the hardware should be implemented and it
should use the LIO channel object either directly or the ISR function should
take their addresses as arguments. In this latter case, a voi d(voi d)
wrapper function may be needed to call the actual ISR with the appropriate
arguments (an example of such a wrapper is the function DAAI SRW ap-
per () in EVMbACSTDx v. c).

So, there’re two options, direct and indirect access to the channel objects:

/1 direct access:
NNy
/'l channel object defined inside the DAA driver:
t MyDAAChanGhj MyDAAChanObj ;
voi d MyDAAIsr() // executed upon interrupt
{
/'l Use MyDAAChanObj here
}
/1 indirect access:
LEETTELELErrrrrrri

6)

7

Reloading Drivers

voi d MyDAAI sr (t MyDAAChanOhj * pMyDAAChanj)
{
/'l Use *pMyDAAChanChj here
}
/'l channel objects defined outside the DAA driver:
t MyDAAChanGhj MyDAAChanObj ;
voi d MyDAAI sr Wapper () // executed upon interrupt
{
MyDAAI st (&My DAAChanj) ;
}

Implement DAA scripts (see [7.7.3.2 and [7.7.5.2) specific to your DAA de-
vice. Store the pointers to the scripts in the array t CodecDr vSt age
* MyapDAASt dRequest s[7] . This array will be copied to the array ap-
DAASt dRequest s[] (see Si 3044St ages. ¢) in the beginning of the
new peripheral driver’s final hardware initialization function. A template file
for the DAA scripts is available in the file Dri ver sTenpl at es\ MyDAAS-
t ages. c.

Finally, a new peripheral driver will be needed to initialize the new hard-
ware, set the ISR and open the DAA channel for I/0. For example, a new
MyTar get Peri phl ni t () function (analogous to Tar get Peri phl -
nit(),see EVMb4CSTDr v. c) may now look like this (important parts are
in bold):

voi d Target Periphlnit (bool |sBIOSUsed, int TinerTo-
BeUsed)

[/ if TimerToBeUsed<0, no tinmer will be used for MPS
neasur ement s

{
tUart DrvSet upStruct Uart DrvSet upStruct;

/* Override the PeriphProcess and PeriphDriver func-
tions */

CSTFxns. pPeri phProcess=MyPer i phProcess;
CSTFxns. pPeri phDri ver=MyPeri phDri ver;
if (!'lsBl OSUsed)

{
/* Initialize the | SR handling code */
Intinit();
i f(Ti mer ToBeUsed>=0)
{

#undef | RQ EVT_TI NT1

CST Framework Components 7-151

Reloading Drivers

7-152

#define | RQ EVT_TINT1 (24)
/* Init the tinmer and install the tiner ISR */

CSTTinerlnit(Ti mer ToBeUsed?Tl MER_DEV1: TI M
ER _DEVO) ;

Set I nt Vect (Ti ner To-
BeUsed?l RQ EVT_TI NT1: | RQ EVT_TI NTO, &CSTTi nerl SR);

}

}
/[* Initialize the UART driver */

/* Initialize the DAA driver */
/1 Copy LIO function table
DAADr vI LI O = MyDAADr vI LI O,

/'l Copy scripts pointers

mencpy (&apDAASt dRequest s[0], &WapDAASt dRequest s 0],
si zeof (MyapDAASt dRequest s)) ;

/1 1SR accesses DAA LI O channel object indirectly,

/1 and MyDAAChanCbj and MyDAAI sr W apper () shoul d be
al ready defi ned:

FEEEEEEEEEr bbb bbb bbb
HEEErrrrrrnn

/* Initialize the DAA hardware devices */
My_DAA setup (...);
/* Open DAA channels (LIO */
Ch0. DAAChanHandl e = DAACpen (&WDAAChanObj);
if (!1sBICsSUsed)
{

/* Install the DAA I SR */

Set I nt Vect (DAA | NTERRUPT_VECTOR _NUMBER, &M/ DAAI sr -
W apper) ;

}

/* Initialize the high-level DAA driver state nachine
(for channel 0) */

DAACodecl nit (&ChO);
}

Note, when implementing the scripts and the LIOct r| () function, remember
that the high-level DAA driver supports a maximum of 19 registers with num-
bers 0 through 18. If there are more than 19 registers, see if you really need
only 19 or fewer of them or may multiplex the registers.

Reloading Drivers

7.7.7.4 Replacing the Peripheral Driver Functions

In all cases, when the UART or DAA driver is reloaded, the default peripheral
driver (see files EVMb4CSTDr v. ¢, EVMB4CSTDr v. h) needs to be replaced.
An example of the function Tar get Peri phl ni t () has been given in the pre-
ceding sections describing reloading of the UART and DAA drivers.

Besides the Tar get Peri phl ni t () function, the static function EVMPer -
i phDri ver () will also need to be replaced, if the target board does not have
the LEDs connected to the DSP in the same way as on the C54CST EVM
(again, see the file EVMbACSTDrx v. ¢). The companion static function EVM
Peri phProcess() will need to be replaced as well, but this is mainly be-
cause the new peripheral driver can't access the old static function EVMPer -
i phProcess() from another module.

The Tar get Boar dl ni t () function is likely to be replaced as well. The rea-
son for that may have to do with LEDs, port 0, GPIOCR register and wait state
settings, which are hardware-specific.

After creating all of the replacements for the peripheral driver functions, make
sure that the mai n() function of your application calls the new peripheral driv-
er’s functions, for example, My Tar get Boar dl ni t () and MyTar get Perii -
phlnit () functions.

A template for the peripheral driver is available in the files Dri ver sTem
pl at es\ MyBoar dDrv. c and Dri ver sTenpl at es\ MyCSTPer i ph. h.

7.7.7.5 Multiple Channels in CST With Multiple DAA Devices

It is easy to create a multi-channel flex application that would use two DAA de-
vices. The hardware setup consists of a standard C54CST EVM and a Texas
Instruments DAA Daughter Card with a single DAA device mounted on it. The
daughter card should be connected to the EVM.

The CSL library for the C54CST chip has been made supporting external DAA
devices such as Si3021. So, it is possible to use the same CSL and LIO code
as a driver for the external DAA as well.

A complete two-channel flex example application is available in the directory
Fl exAppMul t i chan. The example application uses a new CST peripheral
driver to set up the two DAAs, C54CST's internal and daughter card’s external.
The new peripheral driver is contained in the files EVMb4CSTDr v2DAA. ¢ and
MyCSTPeri ph. h. The main application file is main.c. The files
CSTBI OS2. ¢, CSTBI OS2. h and CSTFI exAppBI OS2. cdb are supplemen-
tary to compile the application for the DSP/BIOS environment.

CST Framework Components 7-153

Chapter 8

C54CST Resources:
Registers Conventions, Memory, and MIPS

This chapter is a summary of important information about C54CST chip re-
sources and their use by CST Framework and algorithms.

Topic Page
8.1 OVEIVIEW © . .o ettt e e e e e e e e e
8.2 General Register CONVENtioNSooueinenenn...
8.3 Program and Data Address Space Memory Map
8.4 DSP Resource Usage for Each Algorithm and Framework .| 8-10

8-1

Overview

8.1 Overview

This chapter summarizes the most important information on the C54CST chip
resources, their use by the CST Framework and algorithms. This information
includes general register conventions (important for creating flex applications
that will use CST), detailed memory address space layout (important when re-
solving memory-related problems), and memory/MIPS requirements of the
CST Framework and the CST XDAIS algorithms.

General Register Conventions

8.2 General Register Conventions

In flex mode, for developer’s code to be able to use the CST solution and co-
exist with CST code, it is important that the developer would follow some con-
ventions when using DSP registers.

The CST solution was developed with intent to use as little DSP registers as
possible. Table 8-1 lists the registers, which are used by some of the CST
modules, and their values, which are important for CST solution.

Table 8-1. DSP Registers Used by CST Solution

Registers CST Usage and Conventions File, Function
ST0=0 Boot routine, initialization of DP and ARP Boot.s54
CSTChipsetEntry()

ST1,INTM=1 Boot routine, disable all interrupts in the very beginning of boot Boot.s54

function in order to initialize DSP correctly CSTChipsetEntry()
ST1, Boot routine, preset all these flags according to C conventions Boot.s54
CPL=1 .
OVM = 0 CSTChipsetEntry()
SXM =0
C16=0
CMPT =0
FRCT=0

PMST, MP/MC =0

PMST, DROM =1

PMST, OVLY =1

Boot routine, turn on “MicroComputer” mode, when internal ROM Boot.s54

is enabled. CST_DSPInit()
The user must keep this bit equal 0 in order to be able to use the

CST solution!

Boot routine, map internal ROM into data space in order to Boot.s54
access CST's section “.const”. CST_DSPInit()

The user must keep this bit equal 1 in order to be able to use the
CST solution, or the user should connect external memory to data
space of CST chip and copy CST's section “.const” into this
external memory, because CST algorithms and framework keep
their constants in ROM and need to have them visible in data
memory space.

Boot routine, maps the internal RAM into the program address Boot.s54
space, so that CST's interrupt table would always be mapped to CST_DSPInit()
the program address space.

The user must keep this bit equal 1 in order to be able to use the
CST solution and CST interrupt processing!

CbH4CST Resources: 8-3

General Register Conventions

Table 8-1. DSP Registers Used by CST Solution (Continued)

Registers CST Usage and Conventions File, Function
PMST, Boot routine, preset all these flags according to C conventions Boot.s54
AVIS=0 and hardware requirements CST_DSPInit()
CLKOFF =0
SMUL =0
SST=0
IMR=0 Boot routine, disable all interrupt in interrupt mask register Boot.s54
CST_DSPInit()
SWCR =1 Boot routine, enable wait states multiplier 2 in order to be on a Boot.s54
safe side when operating with external memory CST_DSPInit()
SWWSR = Ox7fff Boot routine, turn on maximum amount of wait states in order to Boot.s54
be on a safe side when operating with external memory CST_DSPInit()
GPIOCR =0 Boot routine, disable all general purpose I/O pins Boot.s54
CST_DSPInit()
BSCR =2 Boot routine, configure external bus operation mode Boot.s54
CST_DSPlInit()
PMST, bits 7-15 Interrupt initialization routine. int.s54
Sets these bits to the upper address bits of al nt Ent r ance IntInit()
interrupt vector table
DAA accessed via Low-level DAA driver DAADrv54CST.c
McBSP2 and CSL
BSCR, bit 3 EVM driver, sets DAACLK bit (bit 3) EVM54CSTDrv.c
if DSP clock is 118 MHz TargetBoardinit()
BSCR, bit 4 Low-level DAA driver, reset DAA CSL
DAA_reset()
UART registers Low-level UART driver Uart550Drv.c,

USAR, USDR

GPIOSR, bits 0, 1,
2,3,4,5

GPIOCR = 0x3C

Low-level UART driver (hardware flow control)
bit 0 — input, DTR

bit 1 — input, RTS (from host point of view, CTS)
bit 2 — output, CTS (from host point of view, RTS)
bit 3 — output, DSR

bit 4 — output, DCD

bit 5 — output, RI

UART driver, configure UART pins according to assignment
defined in section .

UartAutoBaud.c,
CSL

Uart550Drv.c,
CSL

Uart550Drv.c,
CSL

UART_FlowCtrlInit()

8-4

General Register Conventions

Table 8-1. DSP Registers Used by CST Solution (Continued)

Registers CST Usage and Conventions File, Function
GPIOCR =0 EVM driver, reset all general purpose I/O pins at initialization EVM54CSTDrv.c
TargetBoardinit()
Clock PLL register EVM driver, set appropriate DSP clock multiplier (4 or 8) EVM54CSTDrv.c
CLKMD SetDSPClockFreq()
SWCR =0 EVM driver, reset wait state EVM54CSTDrv.c
TargetBoardinit()
SWWSR EVM driver, set user-defined wait states for external memory EVM54CSTDrv.c
access TargetBoardinit()
1/0O Port 0, bits 0-3 EVM driver, LED indication EVM54CSTDrv.c
BrdLEDToggle()
I/O Port 0, bits 6, 7 EVM driver, Flash/RAM configuration EVM54CSTDrv.c
TargetBoardinit()
Timer O registers EVM driver, optionally initialize Timer O for CST statistics EVM54CSTDrv.c,
CSL
TargetPeriphinit()
Timer 1 registers EVM driver, optionally initialize Timer 1 for CST statistics EVM54CSTDrv.c,
CSL
TargetPeriphinit()
ST1, INTM =0 Main function in chipset or flex mode, enables interrupts main.c
main()
IMR Device drivers enable specific interrupts DAADrv54CST.c

Uart550Drv.c, CSL

If the user’s application requires that the CST solution do not access certain
DSP registers, the user may redefine one or more of the CST drivers (see sec-

tions [7.7.3 and [7.7.7)]

To disable use of some registers by CST, however, it may be enough to change

some parameters during CST initialization.

For example, to tell CST not to use any DSP timers for MIPS measurement,

it is enough to call function Tar get Peri phl ni t (bool

| sBl OSUsed,

i nt Ti mer ToBeUsed) with second parameter being negative:

TargetPeriphlnit(xxx, -1);

CbH4CST Resources: 8-5

Program and Data Address Space Memory Map

8.3 Program and Data Address Space Memory Map

For detailed description of C54CST chip generic memory map, please, refer
to TMS320C54CST Client Side Telephony DSP (SPRS187). This section de-
scribes mostly CST software-specific memory map distribution.

The CST solution occupies around 120 kW of TMS320C54CST’s ROM. This
ROM consists of 4 pages (residing from 0x6000 to OxFFFF, 0x18000 to
Ox1FFFF, 0x28000 to Ox2FFFF and 0x38000 to Ox3DFFF. Some memory in
Page 0 of ROM is occupied by a core code of DSP/BIOS (from 0xB200 to
0xBB1F), and some — by the start up bootloader (from 0xBB20 to OXBFFF).
The rest of the ROM is occupied by the CST code.

TMS320C54CST has 40 kW of internal DARAM (dual access RAM), residing
from 0x80 to OX9FFF.

The external RAM is visible in data address space from 0xA000 to OxFFFF,
however the CST solution has its . const section in the ROM Page 0, that
is why it needs to have the ROM Page 0 mapped to the data address space,
from OxC000 to OXFFFF. For this reason the DROM bit should be set to 1.

Also, in order to have the interrupt vectors table in internal RAM and be able
to use it even in Far mode of DSP, the CST solution operates with the OVLY
bit equal to 1 (in this case the DSP’s internal RAM is mapped to the program
address space, from 0x80 to OX5FFF).

Table 8-2 describes data address space of CST chip, and shows overview
of program and data memory space.

Table 8-2. CST RAM Areas Description

Area Type Location Sections and Explanation
Reserved for CST only. The user 0x60 to 0x6B CSTTrap,
should not use it. 0x7B to OXEF CSL and DSP/BIOS reserved area;
OxFO to OxFF CST Interrupt Processing
0x100 to Ox17F CST Interrupt Vectors Table
0x180 to OxC7F CST BSS

Reserved for CST, but the user may 0xC80 to OXx3AFF CST Heap
share both of them with CST. 0x3B00 to OX3FFF CST Stack

This area can be used to allocate user’s
data and program memory.

Since OVLY==1, all internal RAM up to the
address Ox5FFF is mapped to the program
address space, and thus the user’s program
can be loaded here.

If CST Stack area is moved from its original
location, disable stack statistics.

Program and Data Address Space Memory Map

Table 8-2. CST RAM Areas Description (Continued)

Area Type Location Sections and Explanation

Internal RAM 0x4000 to OX9FFF Not used by the CST software in chipset
mode (update patch uses it though),
available for the user

External Memory 0xA000 to OXBFFF User’s external RAM

Map of ROM Page 0 0xCO000 to OxFFFF CST needs this ROM page mapped to data
space in order to have access to its .const

.const resides from
section, which resides in ROM.

0xCO000 to OxFFO0O0

CbH4CST Resources: 8-7

Program and Data Address Space Memory Map

Figure 8-1. CST Solution Memory Map

Memory belong to:

BIOS or Bootloader .
SPIRIT CST

User or SPIRIT CST [1]

O

User |:|
0x20000
Mapped Internal
RAM (OVLY=1)
or
External
(OVLY=0)
0x28000
ROM Page2
CST Code
Part 3
Ox2FFFF

0x0000 >
0x0060 0x0000
Mapped Internal
0x006C User’s Scratch DARAM
0x007B > (OVLY=1)
gxgizg CST Int Process é 0x4000
<
0X0180 CST Int Vectors | = X e
X < Mapped Internal
CST BSS
0x0C80 B DARAM
CST Heap a - (OVLY=1)
3 (flexible) < -~
0x3800° 17T Stack g 0x6000
0X4000 [--r-mmeia =l e
Internal DARAM - -
for User Apps ROM Page0
37 kW
CST Code
Part 1
0xA000
External 0xB200
0xC000 - OxCO00
Mapped ROM CST Const
Page 0 (DROM=1) Page 0 (DROM=1)
OXFFFO External OXFFFO Reserved
OxFF80 OxFF80
OXFFFF
DROM=1
Program Space
0x30000 0x40000
Mapped Internal Mapped Internal
RAM (OVLY=1) RAM (OVLY=1)
or or
External External
(OVLY=0) (OVLY=0)
0x38000 0x48000
ROM Page3
CST Code
Part 4 External
0x3E000
External
OX3FFFF Ox4FFFF

Data Space

Program Space

0x10000

0x14000

0x18000

OX1FFFF

MP/MC=0 OVLY=1

0x7F0000

0x7F8000

OX7FFFFF

Mapped Internal
RAM (OVLY=1)

or

External
(OVLY=0)

ROM Pagel
CST Code
Part 2

Mapped Internal
RAM (OVLY=1)

or

External
(OVLY=0)

External

In chipset mode, if update patch is not loaded, CST uses only 16 kW of internal
RAM of C54CST chip (from 0x60 to Ox3FFF). After update patch is loaded,
CST starts using all 40 kW of available internal RAM.

In flex mode, the User is free to use all the internal DARAM from 0xC80 to
Ox9FFF, with several requirements to be met to enable correct operation of
CST Framework:

Program and Data Address Space Memory Map

[Atleast 0x500 words stack size should be reserved. If stack location is dif-
ferent from its original chipset mode location (from 0x0x3B0O to Ox3FFF),
stack statistics should be disabled (this is done by default when CSTAc-
tion_Init() is called; can also be done by CSTSt ati sti cs. Fl ags
&= ~sf _STACK_MEMCRY;) to avoid unpredictable problems.

[CST memory manager has to be told what dynamic memory areas are
available (again, by default it is done when CSTAction_Init() is
called). The original size of CST’s heap can be either decreased or in-
creased, depending on the needs of the User application.

See and use flex example’s cmd-file at CST\ Sr c\ FI exApp and flex example
DSP/BIOS configuration at CST\ Sr c\ Fl exAppBI CS as a template for flex
mode memory configuration.

Since internal DARAM is mapped into program space (OVLY==1), from 0x80
to OX5FFF, it is possible to place user’s program space sections into it (like
.text,.cinit,.swtchandsoon).

Internal DARAM from 0x6000 to OX9FFF can be used only for data (dynamic
memory, stack, . bss, . const), because this portion is not visible in program
space when on-chip ROM is enabled.

To reference CST solution’s objects residing in ROM, you have to include
CSTRom s54 file into your project, which contains references to all global
identifiers of CST. Additionally, it contains all global identifiers of DSP/BIOS
components residing in ROM.

CbH4CST Resources: 8-9

DSP Resource Usage for Each Algorithm and Framework

8.4 DSP Resource Usage for Each Algorithm and Framework

Table 8-3. CST Algorithms ROM/RAM Characteristics

Algorithm ROM, W CONST, W BSS, W
V.32bis/V.32/V.22bis/V.22 17 822* 3704" 24
V.42/V.42bis 13412 162 40
Modem Integrator + V.14 3129 26 81
UMTD 2342 64 69
DTMF configuration 19 204 17
CPTD configuration 19 169 17
UMTG 1122 219 79
DTMF configuration 14 158 10
CPTD configuration 27 67 21
Caller ID Type l and Il 2159 248 32
CID Message Parser 740 595 19
G.168 2354 0 29
G.726+G.711 2152 502 29
G.723* RAM 0.9K - 8
G.729AB™ RAM 0.5K - 2
LBR 1200™ RAM 2.3K - 4
AGC 440 0 33
VAD 1992 130 37
CNG 346 2 24
Common Library 1367 74 0
CST Framework:
AT-commands 4755 1892 1036
CST Commander 1291 289 28
CST Service 2788 104 72
Voice Controller 2454 8 18

8-10

DSP Resource Usage for Each Algorithm and Framework

Table 8-3. CST Algorithms ROM/RAM Characteristics (Continued)

Algorithm ROM, W CONST, W BSS, W
DAA Driver 1311 11 11
UART Driver 1792 1 691
DSP Driver 2834 45 104
Memory manager 781 0 26
BIOS parts in CST 274 0 12
Misc (Periph, Int, Alg) 2828 15 64
CST Bootloader 78 0 0
RTS 456 0 0
CST Bundle ver. 2.0 101 422 15 740 2613

* This number also includes some portions of Fax G3 and V.29 fast connect add-ons

** This algorithm is provided as an Add-on for CST chip, and requires small additional portions of program

memory in RAM

Table 8-4. CST Algorithims MIPS Characteristics

Buffer
Length, MIPS
8kHz
Algorithm Configuration/Parameters ~ Samples Peak Average Heap, W
UMTD DTMF 10 9.5 1.8 140
100 1.6 1.5
CPTD 10 4.9 1.1 100
100 0.9 0.7
UMTG DTMF 10 0.8 0.4 28
100 0.1 0.1
CPTG 10 1.2 0.4
100 0.2 0.1
Caller ID 10 3.8 1.7 44+
C54CST Resources: 8-11

DSP Resource Usage for Each Algorithm and Framework

Table 8-4. CST Algorithims MIPS Characteristics(Continued)

Buffer
Length, MIPS
8kHz
Algorithm Configuration/Parameters ~ Samples Peak Average Heap, W
100 1.4 1.4 255*
VAD 10 11.7 1.1 372
100 1.0 1.0
AGC adaptation enabled 10 0.7 0.7 20
100 0.6 0.6
disabled 10 0.5 0.5
100 0.4 0.4
CNG without filtering 10 1.6 1.6 37
100 1.6 1.6
with 10 LPC 10 1.9 1.9
100 1.8 1.8
G.168 127 taps 10 6.0 4.6 439
100 5.6 54
255 taps 10 8.8 7.1 825
100 8.3 7.4
511 taps 10 14.2 11.9 1591
100 13.7 12.8
G.711 encoder 64 kbps 80 0.9 0.8 10
decoder 80 0.9 0.8
G.726 encoder u/A-law 80 6.5 5.8 10
linear 80 5.9 5.3
decoder u/A-law 80 7.4 6.6
linear 80 5.2 4.7

8-12

DSP Resource Usage for Each Algorithm and Framework

Table 8-4. CST Algorithims MIPS Characteristics(Continued)

Buffer
Length,
8kHz
Algorithm Configuration/Parameters ~ Samples Peak Average Heap, W
G.723 encoder 5.3 kbps 240 25.9 23.6 950+
1280**
HP filter 240 24.0 23.1
HP filter, 240 24.3 6.7
VAD
6.3 kbps 240 24.2 24.0
HP filter 240 24.4 23.2
HP filter, 240 24.3 6.6
VAD
decoder 5.3 kbps 240 1.2 1.2
post filter 240 2.3 1.7
6.3 kbps 240 1.2 1.2
post filter 240 2.4 23
G.729 encoder 8 kbps 80 10.2 10.1 1846+
980*
VAD 80 10.2 4.4
decoder 80 25 2.4
LBR encoder 320 11 - 1920+
1200 1200***
decoder 320 4.5 -
Data V.32bis 14400 100 ms far 10 14.6 13.6 2284
pump echo bulffer,
APP on
V.42]/ V.42 only heap size = 100 1.9*2 1.4%2 2308
V.42bis 1500

CbH4CST Resources: 8-13

DSP Resource Usage for Each Algorithm and Framework

Table 8-4. CST Algorithims MIPS Characteristics(Continued)

Buffer
Length,
8kHz
Algorithm Configuration/Parameters ~ Samples Peak Average Heap, W

MIPS

V.42 + heap size = n/a***x 30 or more 4936
V.42bis 1500, duplex
(duplex) compression

with

dictionary

512

Full modem (V.32/V.42/V.42bis + 100 ms far 10 n/a***x 30 or more 7460
modem integrator) echo bulffer,
APP on,
heap size =
1500, duplex
compression
with
dictionary
512

* Allocated for parse message
** scratch
*** stack

**** nfa - MIPS value depends on the load ov V.42bis, and should be limited by the User via real-time
feedback to Modem Integrator, or via running V.42bis in lower priority thread

8-14

Chapter 9

AT Command Set Descriptions

This chapter provides the user with description of AT commands, syntax,
shielded codes, and results tokens

Topic Page
9.1 AT Command Set Descriptionoiiiiiinn . 9-2
9.2 AT Command Set Modesc.ccoiiiiiiiiiiinnnnn.. 9-3
9.3 AT Command Syntaxcouuiiiiiinannniiininn
9.4 AT COMMANGSt e 9-13
9.5 Shielded Codes in Voice Mode 9-42
9.6 AT Result TOKENS e 9-44
9.7 AT Commands SUMMaArYouuieiriiinnuneeneennann 9-45

AT Command Set Description

9.1 AT Command Set Description

SPIRIT CST AT command set supports a subset of standard AT-commands,
allowing access to all the algorithms in CST solution. Some features of this
CST AT command set, however, are proprietary and go beyond the scope of
standard AT-commands, in order to give richer functionality (such as duplex
voice mode, extended result tokens, control of CST hardware and software).

In chipset mode of CST chip, AT commands allow user to control the chip com-
pletely via serial link, eliminating the need for any other external interfaces with
the chip for high level control. User can use standard Windows’9x drivers (for
generic 14400 modem) to control CST chip and connect via it with convention-
al ISPs. Example of how to use AT commands in CST chip is given in CST
Chipset Mode Application Note.

CST host program supplied with CST chip demonstrates how to control CST
by using AT commands in chipset mode.

In flex mode, user may still want to use AT commands to control CST chip from
some external device or even from inside of the chip (user’s code inside CST
chip can control CST software via AT commands sent to AT parser as if they
came from UART). In this case, the user can use AT parser object from CST
framework, or, since SPIRIT CST AT command parser is supplied with CST
Software in open source code, the user can modify the code of AT parser and
add or remove any functionality that they want, and then load it to CST chip
in flex mode. Read more on AT parser open code in section

AT Command Set Modes

9.2 AT Command Set Modes

AT commands parser operates in several modes depending on the command
issued and on some other events:

Standard Command Mode

Call and Connection Setup Mode
Modem Data Transfer Mode
Modem Online Command Mode
Voice Command Mode

Call Setup Mode

Voice Data Transfer Mode

Uoooood

In each of the command modes, all data received from DTE (UART or user
code) is passed to AT parser for processing.

In different Data Transfer modes, all data is passed to modem or to voice proc-
essing tasks.

The diagram of transactions between these modes is shown in Figure 9-1.

Figure 9-1. AT Parser State Diagram

Modem

Voice data

online
transfer
command
mode
mode <DLE><EXT>

ATHVRXTX,
#VTX, #VRX

AT#CLS=8

Modem
data
transfer
mode

\oice
command
mode

Standard
command
mode

NO CARRIER

AT#CLS=0
or on-hook

ATD, ATA ATD, ATA

Connection

Connection User Abort or established

established call & NO DIALTONE or or abort
connection NO CARRIER Ca::osg;up
setup mode

After initialization, AT parser is in standard command mode. If ATD or ATA com-
mand is issued, it will start dialing, and will be in call and connection setup
mode until connection is established, and then will move to modem data trans-

AT Command Set Descriptions 9-3

AT Command Set Modes

fer mode. If, however, DTE sends any character while in call and connection
setup mode, or CPTD does not detect dial tone before dialing or detects Busy
signal after dialing (recognition of this signals is controlled by ATX command,
see call mode will be aborted and AT parser will switch back to stan-
dard command mode.

While in modem data transfer mode, AT parser is searching the incoming data
for the escape control sequence (<Guar d_Pause>+++<Cuar d_Pause>),
which switches AT parser back to command mode (in this case called “modem
online command mode”), even while modem is still connected. The user can
use only a limited amount of AT commands in this mode. To return back to mo-
dem data transfer mode, ATO command should be issued. To terminate con-
nection and return to standard command mode — ATH command.

To switch to voice command mode, DTE should issue “AT#CLS=8" command.
This allows usage of all other voice mode commands. To switch back to stan-
dard command mode, DTE should issue ATH or AT#CLS=0 command.

To switch to voice data transfer mode, DTE should issue one of the following
commands:

AT#VRX - To start recording samples from phone line
AT#VTX - To start transmitting samples to phone line
AT#VRXTX - To start full-duplex samples exchange

While in voice data transfer mode, AT parser processes so called “shielded”
codes (codes that start with <DLE>5 symbol, described in section) to enable
transfer of some control information inside of the voice data stream (like ter-
mination command or DTMF and CPTD detectors result codes).

To return to voice command mode from voice data transfer mode, DTE should
send characters <DLE><ETX>6 (if voice data transfer mode was entered by
AT#VRX command, it is enough to send any character).

The summary definition of AT parser modes is given in Table 9-1.

5 <DLE> is a symbol from ASCII table equal to 0x10
6 <ETX> is a symbol from ASCII table equal to 0x03

9-4

AT Command Set Modes

Table 9-1. Definition of AT Parser Modes

Mode Name

Definition

Command Mode

Voice Mode

Online Command
Mode

Voice Receive Mode

Voice Transmit Mode

Voice Duplex Mode

The DCE (in our case, CST solution) is not operating in the voice mode, the DCE is not
communicating with a remote station, and the DCE is ready to accept commands. Data
signals from the DTE are treated as command lines and processed by the DCE, and
DCE responses are sent to the DTE. The DCE enters this mode upon power-up, and
when a call is disconnected.

The overall DCE mode of operation that performs voice functions by accepting special
commands (voice commands), and providing voice and call discrimination event
reports to the DTE.

In online command mode, the DCE is communicating with a remote station, but treats
signals from the DTE as AT commands and sends responses to the DTE as AT result
codes. Data received from the remote station during Online command mode is
discarded until Online data mode is once again entered (by ATO command from the
DTE). Data previously transmitted by the local DTE and buffered by the DCE is
discarded. Online command mode may be entered from online data mode (modem
data transfer mode) via special escape control sequence.

The DCE enters the voice receive mode upon #VRX command. In this mode, the DCE
digitizes the analog signal from the line, converts the analog signal into binary data,
compresses the data, and transfers it to the DTE.

The DCE enters the voice transmit mode upon #VTX command. In this mode, the DCE
receives the digitized data from the DTE, uncompress and converts them into analog
signal, and transmits the analog signal to the line.

The DCE enters the voice duplex mode upon #VRXTX command. This mode provides
full duplex voice data processing. This command is a direct combination of Voice
transmit mode (#VTX command) and voice receive mode (#VRX command).

AT Command Set Descriptions 9-5

AT Command Syntax

9.3 AT Command Syntax

Syntax of AT commands basically complies with ITU-T Recommendation
V.250: Serial asynchronous automatic dialing and control, 07/97, except for
the following:

Table 9-2. CST AT Commands Syntax Specifics

CST AT Commands Syntax Specifics:

Each bit of S-register can be addressed using dot delimiter
String parameters values are not used

Extended commands have at least one subparameter
Optional subparameters cannot be omitted

Space characters are filtered completely and they are ignored both in commands
and parameter values

S3, S4, S5 registers cannot be equal to 0

Parameter ranges for V.250 compatible commands are within the limits re-
quired by this Recommendation.

9.3.1 General AT Commands Conventions

A command line is made up of three elements: the prefix, the body, and the
termination character. AT parser is case-insensitive and accepts 7-bit sym-
bols.

The command line prefix consists of the characters "AT” or characters "A/ ".
When command line starts with prefix “AT”, then a command or several com-
mands should follow it, and should end with terminator character (S3 register).
If the prefix "A/ " is encountered, the AT-parser immediately executes once
again the body of the previous command line.

To edit command line, backspace character (S5) can be used to delete last in-
put symbol.

The maximum length of command line is limited to 78 characters (without first
“AT” characters).

The body is made up of individual commands as specified later. Space charac-
ters are ignored and may be used whenever you need.

Any control characters with ACSII codes 0 through 31, inclusive, except for the
characters defined by S3 and S5 registers, are ignored by the AT-parser.

9-6

AT Command Syntax

AT-parser echoes characters received from the DTE during command mode
and online command mode back to the DTE, depending on the setting of the
ATE command.

AT-parser considers lower-case characters to be the same as their upper-case
equivalents (in other words, AT-parser is case-insensitive).

9.3.2 Types of Commands

There are two types of commands: action commands and parameter com-
mands.

Action commands execute (invoking a particular function of the equipment),
or test availability whether or not the equipment implements the action com-
mand, and, if subparameters are associated with the action, the ranges of sub-
parameter values that are supported.

Parameter commands may "set” (to store a value or values for later use),
"read” (to determine the current value or values stored), or "test” (to determine
whether or not the equipment implements the parameter, and the ranges of
values supported).

Note: Use of Word “Action” and AT Commands

Use of the word “action” in this chapter applies only to AT commands. In the
rest of the document, this word has a different meaning.

9.3.3 Basic Syntax Command Format

The format of basic syntax commands is as follows:
<command>[<nunber >]

where <command> is either a single character, or one of the commands listed
in, or added by user. Characters used in <conmand> are from the set of alpha-
betic characters or one of the following characters: * & , ‘#, ‘'$’.

Parameter <number > may be a string of one or more characters from "0”
through "9” representing a decimal integer value. If a command expects
<nunber > and it is missing (<command> is immediately followed in the com-
mand line by another <command> or the termination character), the value "0”
is assumed. If a command does not expect a <nunber > and a number is pres-
ent, an ERROR result code is generated. All leading zeroes in <numnber > are
ignored by AT-parser.

Additional commands may follow a command (and associated parameter, if
any) on the same command line without any character required for separation.

AT Command Set Descriptions 9-7

AT Command Syntax

The actions of some commands can cause the remainder of the command line
to be ignored (e.g. ATA, ATDL, etc.).

If the maximum number of characters that the AT-parser can accept in one line
(78 characters) is exceeded, only those commands which fit into first 78 char-
acters will be executed.

9.3.4 S-Parameters Syntax

Commands that begin with the letter "S” constitute a special group of parame-
ters known as "S-parameters”. They differ from other commands in some im-
portant respects. The number following the "S” indicates the "parameter num-
ber” being referenced. If the number is not recognized as a valid parameter
number, an ERRCOR result code is issued. If a dot (*.’) follows the number of S-
parameter, the next number is treated as referenced bit number (from 0 to 15)
in this parameter to be tested, set or cleared.

Either a "?” or "=" character shall appear immediately following this number (or
bit number correspondingly). "?” character is used to read the current value of
the indicated S-parameter; "=" character is used to set the S-parameter to a
new value.

Execution of S-parameter related command can be delayed and the result
code is returned only after all associated events will be processed (e.g. DAA-
driver requests, such as reading a hardware DAA register).

9.3.4.1 Set S-Parameter

9-8

Definition:
S<par amet er _nunber >[. <bi t _nunber >] =[<val ue>]

If the "=" sign is used, the new value to be stored in S-parameter is specified
in decimal following the "=" sign. If no value is given (i.e. the end of the com-
mand line occurs or the next command follows immediately), the S-parameter
specified will be set to 0. The ranges of acceptable values are given in the de-
scription of each S-parameter.

If <par anet er _nunber > refers to a bit of S-register, this bit is set to 1 if <val-
ue> is not equal to O, or cleared otherwise.

AT Command Syntax

9.3.4.2 Testing S-Parameter
Definition:
S<par amet er _nunber >[. <bi t _nunber>] ?

If the "?” sign is used, the AT-parser transmits a single line of information text
to the DTE. For most S-parameters, the text consists of exactly three charac-
ters, reporting the value of the S-parameter in decimal, with leading zeroes in-
cluded. However, if the returned value can not be represented by 3 digits and
exceeds 999, AT-parser outputs a number in decimal format without any lead-
ing zeroes.

If <par amet er _number > refers to a bit of S-register, the bit value (0 or 1) is
returned.

9.3.5 Extended Syntax Commands

Both action commands and parameter commands names typically begin with
the "+" character, but other leading characters can be used also. The first char-
acter following the ” +” shall be an alphabetic character in the range of " A"
through " Z" . This first character generally implies the application in which a
command is used or the standards committee defined in ITU-T Recommenda-
tion V.250: Serial asynchronous automatic dialing and control, 07/97. The
command may also include specification of a value or values. This is indicated
by the appearance of <value> in the descriptions below.

Action commands may have more than one subparameter associated with
them, and parameters may have more than one value. These are known as
"compound values”, and their treatment is the same in both actions and pa-
rameters.

9.3.5.1 Action Execution Command Syntax

The following syntax is used for actions that have two or more subparameters:
+<nane>[=<conpound_val ue>]

If the named action is supported and other relevant criteria are met (e.g. the
CST-software is in the proper state), the command is executed with indicated
subparameters. If <name> is not recognized, the AT-parser issues the ERROR
result code and terminates processing of the command line. An ERRCRis also
generated if a subparameter is specified for an action that does not accept sub-
parameters, if too many subparameters are specified, if a mandatory subpara-
meter is not specified, if a value is specified of the wrong type, or if a value is
specified that is not within the supported range.

AT Command Set Descriptions 9-9

AT Command Syntax

9.3.5.2 Action Test Command Syntax

The DTE (host) may test if an action command is implemented in the CST solu-
tion by using the syntax:

+<nane>=?

If the AT-parser does not recognize the indicated name, it returns an ERROR
result code and terminates processing of the command line. If the DCE does
recognize the action name, it will return an OK result code. If the named action
accepts one or more subparameters, the AT-parser sends an information text
response to the DTE, prior to the OK result code, specifying supported range
of values for each such subparameter. The format of this information text is de-
fined for each action command; general formats for specification of sets and
ranges of numeric values are described in

9.3.5.3 Parameter Set Command Syntax

The following syntax is used for parameters that accept a single value:

+<nanme>=[<val ue>]

The following syntax is used for parameters that accept more than one value:

+<nane>=[<val ue_1>][, <value_2>]...[, <val ue_N>]

If a parameter is implemented and all values are valid according to the defini-
tion of the parameter, the specified values are stored. If <name> is not recog-
nized, one or more values are outside the permitted range, the parser issues
the ERROR result code and terminates processing of the command line. An
ERROR s also generated if too many values are specified. In case of an error,
all previous values of the parameter are unaffected.

9.3.5.4 Parameter Read Command Syntax

9-10

The DTE may determine the current value or values stored in a parameter by
using the following syntax:

+<nanme>?

If a parameter is implemented, the current values stored for the parameter are
sent to the DTE in an information text response. The format of this response
is described in the definition of the parameter. Generally, the values will be sent
in the same form in which they would be issued by the DTE in a parameter set-
ting command,; if multiple values are supported, they will generally be sepa-
rated by commas, as in a parameter setting command.

AT Command Syntax

9.3.5.5 Parameter Test Command Syntax

The DTE may test if a parameter is implemented in the DCE, and determine
the supported values, by using the syntax:

+<nane>=?

If the AT parser does not recognize the indicated name, it returns an ERROR
result code and terminates processing of the command line. If the parser
recognizes the parameter name, it returns an information text response to
the DTE, followed by an OK result code. The information text response indi-
cates the supported values for each such subparameter. The format of this
information text is defined for each parameter; general formats for specifi-
cation of sets and ranges of numeric values are described below.

In general, the format of information text returned by extended syntax com-
mands is specified in the definition of the command.

When the action accepts a single numeric subparameter, or the parameter
accepts only one numeric value, the set of supported values may be pre-
sented in the information text as an ordered list of values. The list is pre-
ceded by a left parenthesis "(", and is followed by a right parenthesis ”)". If
only a single value is supported, it appears between the parentheses. If
more than one value is supported, then the values may be listed individual-
ly, separated by comma character, or, when a continuous range of values is
supported, by the first value in the range, followed by a hyphen character
“-" followed by the last value in the range.

When the action accepts more than one subparameter, or the parameter
accepts more than one value, the set of supported values is presented as a
list of the parenthetically-enclosed value range strings described above,
separated by commas.

For example, the information text in response to testing an action that ac-
cepts three subparameters, and supports various ranges for each of them,
could appear as follows:

(0) Only value 0 is supported

(0, 8) Values 0 and 8 are supported only

(1-3) Values 1 through 3 are supported

(0),(1-3), This indicates that the first subparameter accepts only

(0,4-6,9,11-12) value 0, the second accepts any value from 1 through
3 inclusive, and the third subparameter accepts any of
the values 0, 4, 5, 6, 9, 11 or12.

Value range indication is preceded by command name followed by a colon
e

AT+VAD: (0- 8000) , (- 32767- 32767) , (0- 100) , (0- 100) , (0- 10)

AT Command Set Descriptions 9-11

AT Command Syntax

9.3.6 Command Execution

9.3.6.1 Normal Execution

Upon receipt of the termination character (S3 register), the AT parser starts
execution of the commands in the command line in the order received from the
DTE. If the execution of a command results in an error, or a character is not
recognized as a valid command, execution is terminated, the remainder of the
command line is ignored, and the ERROR result code is issued. Otherwise, if
all commands execute correctly, only the result code associated with the last
command is issued; result codes for preceding commands are suppressed.
If no commands appear in the command line, the OK result code is issued.

Some commands can force AT parser to ignore the remainder of command
line after them (such as ATA, ATD, ATSxx?).

9.3.6.2 Aborting Commands

9-12

Some action commands that require time to execute may be aborted while in
progress (such as dialing and establishing connection, ATD and ATA). Abort-
ing a command is accomplished by transmission of any character from the
DTE. A single character is sufficient to abort the command in progress.

When such event happens, AT parser does not echo incoming character, ter-
minates the command in progress and returns an appropriate result code ac-
cording to specification for the particular command.

General Commands

9.4 AT Commands

9.4.1 General Commands

9.4.1.1 Circuit 109 (Received Line Signal Detector or DCD) Behaviour

This parameter determines how DCD line state changes depending on con-
nection status of the modem.

Syntax &C<val ue>
Parameter(s)
Value Description
0 DCD line always ON
1 DCD line is ON when modem is in connected state.

Otherwise, it is OFF.

9.4.1.2 Circuit 108 (DTR - Data Terminal Ready) Behaviour

This parameter determines how the CST reacts when DTR circuit is changed
from the ON to the OFF condition.

Syntax &D<val ue>
Parameter(s)
Value Description
0 DTR change is ignored
1 CST switches to online command mode if it was in online data

state (modem connected)
CST disconnects with remote modem and goes on-hook

CST re-initializes completely, equal to ATZ command

9.4.1.3 Set to Factory-Defined Configuration

Syntax &F<val ue>
Parameter(s)
Value Description
0 This command does not do anything in CST. It is implemented only

for compatibility.

9.4.1.4 Answer call

Answer Call. Go off-hook and start modem in answering mode. All characters
following this command in the command line are ignored. This command can
be aborted by sending any character from DTE.

Syntax A

AT Command Set Descriptions 9-13

General Commands

9.4.1.5 Dial
Dial a number. Go off-hook, wait for dial tone to be detected, dial the specified
number, if any, and then start modem in originating mode.

Syntax D<di al i ng_nunber >

Parameter(s) Parameter string <di al i ng_nunber > may contain numeric characters “0”

through “9”, “A”, “B”, “C”, “D”, “#", “*" and the following dial modifiers:

Dial Modifiers Description
L Redial last dialed number (see
Dial in pulse mode
Force modem to connect in answering mode

P
R
T Dial in tone mode
w Wait for DIAL tone
/

Make a short pause. This pause is programmable in flex
mode only.

, Make a long pause. This pause is programmable both in
chipset (register S8, see and flex modes.

; Just dial the number and go to command line mode immedi-
ately (neither modem nor voice will run after the number was
dialed)

@ After the number has been dialed wait for RINGBACK signal
detection and then it's disappearance before entering Voice
Mode (VCON)

! Flash (going on hook for a short time, and then back off
hook). Flash pause is programmable in flex mode only.

Dialing is aborted upon detection of any character not from this list.
Dial symbols and modifiers are case insensitive.

9.4.1.6 Dial Last Dialed Number

Dial last dialed number. All characters in the command line following this com-
mand are ignored.

Syntax DL

9-14

General Commands

9.4.1.7 Command Echo

Select echo mode for AT-parser.

Syntax E<val ue>
Parameter(s)
Value Description
0 Turn off echo mode for command mode of AT parser
1 Turn on echo mode for command mode of AT parser

9.4.1.8 Hook Control

Switch DAA to off hook or on hook state.

Syntax H<val ue>
Parameter(s)
Value Description
0 Go on-hook.
1 Go off-hook. Turn on CPTD and DTMF detectors.

9.4.1.9 Request Identification Information

Request miscellaneous information.

Syntax | <val ue>
Parameter(s)
Value Description
0 Request manufacturer info. In flex mode, the user can redefine a

string returned in this case.

AT Command Set Descriptions 9-15

General Commands

9.4.1.10 Monitor Speaker Loudness

Adjust speaker volume.

Syntax L<val ue>
Parameter(s)
Value Description
0 Very low volume
1 Low volume
2 Normal volume
3 High volume

NOTICE: This command does not have any effect in CST EVM, because this
EVM does not have monitor speaker. However, it is still supported to simplify
monitor speaker control on User-specific platform.

9.4.1.11 Monitor Speaker Mode

Speaker On/Off. Using the speaker, you can monitor the status of each call
your modem dials. This is helpful for tracking call progress.

Syntax Meval ue>
Parameter(s)
Value Description
0 Speaker is turned off all the time
1 Speaker is turned on from going off hook till the connection is

established
Speaker is turned on all the time

Speaker is turned on from the end of dialing till the connection is
established

NOTICE: This command does not have any effect in CST EVM, because this

EVM does not have monitor speaker. However, it is still supported to simplify
monitor speaker control on User-specific platform.

9-16

General Commands

9.4.1.12 Return to Online Data Mode

Syntax

Return to modem data mode from modem online command mode. All data re-
ceived by the modem while in modem online command mode is discarded. In
response to this command, the AT parser will return the same string as when
modem connects successfully, indicating current connection speed.

O

9.4.1.13 Select Pulse Dialing

Syntax

Standard function: Select pulse-dialing mode as default.

Complimentary function: Select power-saving mode. When this command is
entered, CST framework starts using IDLE 1 instruction of C54 DSP to put
DSP into power-saving mode in between processing and interrupts. IDLE 1
mode stops only DSP’s core, it does not stop its peripherals, however even this
allows to significantly reduce power consumption in power-critical applica-
tions.

By default, this mode is off.

Since this command can be considered as redundant (ATDP is used much
more often), such combination of functions should not cause much inconve-
nience.

P

9.4.1.14 Result Code Suppression

Syntax

Parameter(s)

Qxval ue>
Value Description
0 Enable result code indication (default).
1 Suppress result codes.

9.4.1.15 Command Line Termination Character

Syntax

Parameter(s)

S3=<val ue> Set parameter
S3? Read parameter
Acceptable
Limits Description
1...127 Command line termination character value (13 by default).

AT Command Set Descriptions 9-17

General Commands

9.4.1.16 Response Formatting Character

Syntax
S4=<val ue> Set parameter
S47? Read parameter
Parameter(s)
Acceptable
Limits Description
1...127 Response formatting character value (10 by default).

9.4.1.17 Command Line Editing Character

Select Backspace character.

Syntax
Sb=<val ue> Set parameter
S5? Read parameter
Parameter(s)
Acceptable
Limits Description
1...127 Backspace character value (8 by default).

9.4.1.18 Pause Before Dialing

This parameter specifies the amount of time (seconds) that the modem waits
after going off hook and performing any other actions, such as dialing or an-
swering to remote modem.

Syntax
S6=<val ue> Set parameter
S67? Read parameter
Parameter(s)
Acceptable
Limits Description
2...10 Number of seconds to wait before next action.

9-18

General Commands

9.4.1.19 Comma Dial Modifier Time

This parameter specifies the amount of time (seconds) that the modem
pauses during dialing when a ”,” (comma) dial modifier is encountered in a dial

string (see
Syntax
S8=<val ue> Set parameter
S8? Read parameter
Parameter(s)
Acceptable
Limits Description
1...255 Number of seconds to wait.

9.4.1.20 S-Registers Set or Test

Read or write to S-register. The description of available S-registers is given in

Syntax
S<reg_nunber >[. <bi t _nunber>] Write S-register. When <bi t _nunber >
=<val ue> is not specified, S-register value is
completely replaced by <val ue>,
otherwise only selected bit is written. In
the later case, any value that is not equal
to 0 is treated as a command to set this
bit to 1.
S<reg_nunber>[.<bit_ Read S-register. When <bi t _nunber >
nunber >] ? is not specified, the whole S-register
value is printed; otherwise only selected
bit value is printed.
Parameter(s)
Acceptable
Name Limits Description
reg_number 0...199 S-register number
bit_number 0...15 Bit index of S-register

If <r eg_nunber > is not any of the S-registers defined in CST AT parser (see
Table 9-9), any value can be written into it, but the value of such register will
always read as 0.

AT Command Set Descriptions 9-19

General Commands

9.4.1.21 Select Tone Dialing

Syntax

Standard function: Select DTMF tone dialing mode as default.

Complimentary function: Turn off power-saving mode. When this command is
entered, CST framework stops using IDLE 1 instruction of DSP to put DSP into
power-saving mode in between processing and interrupts. IDLE 1 mode stops
only DSP’s core, it does not stop its peripherals, however even such behavior
may be undesirable in some applications. This is why this command allows
disabling usage of IDLE.

By default, this mode is on.

Since this command can be considered as redundant (ATDT is used much
more often), such combination of functions should not cause much inconve-
nience.

T

9.4.1.22 DCE Response Format

Syntax

Parameter(s)

9-20

The setting of this parameter determines the contents of the header and trailer
transmitted with result codes and information responses. It also determines
whether result codes are transmitted in a numeric form or an alphabetic (ver-
bose) form. The text portion of information responses is not affected by this
setting.

V<val ue>
Value Description
0 Select numeric responses
1 Select verbose responses

General Commands

9.4.1.23 Result Code Selection and Call Progress Monitoring Control

The setting of this parameter determines whether or not the DCE transmits
particular result codes to the DTE. It also controls recognition busy and dial
tone when going off hook.

However, this setting has no effect on the operation of the W dial modifier (see
which always checks for dial tone regardless of this setting.

Syntax X<val ue>
Parameter(s)
Value CONNECT Response Dial tone Detection Busy Tone Detection

0 CONNECT disabled disabled
1 CONNECT <text> disabled disabled
2 CONNECT <text> enabled disabled
3 CONNECT <text> disabled enabled
4 CONNECT <text> enabled enabled

9.4.1.24 Reset To Default Configuration

Syntax

Go on hook and reboot CST solution. All characters following the command
are ignored.

z

Note: This command is not implemented in release 1. It should be implement-
ed in CST Release 2.

9.4.1.25 Print Brief S-Registers Summary

Syntax

Print S-registers summary.

$

9.4.1.26 Print Brief AT Command Summary

Syntax

Print AT commands summary. Both internal and user defined AT-commands
are printed.

$H

9.4.1.27 Print Current Settings Summary

Syntax

Print AT commands-related settings summary. Both internal and user defined
AT-commands current status is printed.

&V

AT Command Set Descriptions 9-21

General Commands

9.4.1.28 Switch Channel

This command does nothing by default.
User may use this parameter in user-specific multichannel application.

Syntax #CHAN<nunber >
<nunber > channel number to switch to.

9.4.1.29 Flex Application Load on The Fly
Loads flex application via UART.

Control can be passed to loaded program immediately after load, if entry point
is non-zero, or can be returned to CST’'s AT-parser. This command can also
be used also for modifying some of the variables in the internal memory on the
fly, for example, for loading additional user-specific CPTD settings.

The format of the loaded image is the same as used by bootloader (see
TMS320C54CST Bootloader Technical Reference (SPRA853)).

Syntax #DATA

9.4.1.30 Mode Selection

AT parser mode selection (see section B.7 for details).

Syntax
CLS=<mpde> Set mode of CST system. See B.2 for details.
CLS? Retrieve current mode.
CLS=? Test available modes. Parser returns (0, 8) information
response.
Parameter(s)
Value Description
0 Standard command mode
8 Voice command mode

9-22

Caller ID Related Commands

9.4.1.31 Country selection

Select CPT detector configuration. CST has 4 country configurations, 2 of
them are already defined (user can change them), other reserved for the user.

See section for details.

Syntax

+CNTRY=<nunber > Set country configuration for CPTD.

+CNTRY? Retrieve current country configuration.

+CNTRY=? Test available configuration. Parser returns (0, 3)

information response.
Parameter(s)
Value Description
0 Default configuration. CST will detect CPT signals compliant with

Q.35 recommendation.

1 CST will detect CPT signals complied with Q.35 recommendation
and some signals which do not fin in Q.35 recommendation (i.e.
Singapore busy tone, Italian dial tone, etc).

Empty. Can be defined to select user-specific configuration.

Empty. Can be defined to select user-specific configuration.

9.4.2 Caller ID Related Commands

CST client side caller ID component conforms to many standards of different
countries, and as a result, it has many parameters, which have to be tuned to
help CID operate correctly in a specific region.

Detailed definition and explanation of these parameters is given in “CID User’s
Guide”. This chapter gives only brief description of AT commands, which tune
some of these parameters.

9.4.2.1 TE-ACK Signal Settings

Select TE-ACK generator parameters such as duration, type and level.

Syntax
+ATEACK=<Dur at i on, Dt nf, Level > See Table 9-3 for details.
+ATEACK? Tests actual parameter values.
+ATEACK=? Tests available parameter values.
Parameter(s)

AT Command Set Descriptions 9-23

Caller ID Related Commands

Table 9-3. TE-ACK Signal Settings

Acceptable
Parameter Limits Description
Duration 65...90 Duration of TE-ACK signal, msec.
Dtmf 65...68 These values represent DTMF symbol 'A'’B’,’C’ and 'D’ to be
generated.
TonelLevel 0...16384 Generated signal level per tone (Q15.0 format) - 32768

corresponds to the full-scale sine-wave.

9.4.2.2 DT-AS Signal Settings

Syntax

Parameter(s)

Select DT-AS detector parameters.

+ADTAS=<Dur at i on, Twi st ,

See Table 9-4 for details.

TonelLevel , Spuri ousLevel >

+ADTAS?
+ADTAS=?

Tests actual parameter values.

Tests available parameter values.

Table 9-4. DT-AS Detector Parameters

Acceptable
Parameter Limits Description
Duration 50...100 Minimum acceptable duration (in msec).
Twist 8192...32767 Maximum acceptable tones twist (Q15.0 format).
TonelLevel 0...32767 Detector sensitivity. This parameter controls minimum signal
level for tone to be accepted by detector (Q15.0 format).
SpuriousLevel 4096...16384 Acceptable relative spurious level (Q15.0 format). Greater

values enhance tone recognition but make worse talk-off
performance.

9-24

Caller ID Related Commands

9.4.2.3 FSK Demodulator Settings

Select FSK demodulator settings that control message recognition.

Syntax
+AFSK=<TonelLevel See Table 9-5 for details.
Spuri ousLevel >
+AFSK? Tests actual parameter values.
+AFSK="? Tests available parameter values.
Parameter(s)

Table 9-5. FS