
�������
�� � �������
������ � �� ��� ������	�! ��� ������	�!
	 �� ���
�� ���� ������ � ����

Addendum

1993 Microprocessor Development Systems

Printed in U.S.A., April 1993
2617619–9741 revision *

SPRU094

�������
�� � �������

������ � �� ��� ������	�! ��� ������	�!
	 �� ���
�� ���� ������ � ����

SPRU094
April 1993

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to
discontinue any semiconductor product or service without notice, and advises its customers to
obtain the latest version of relevant information to verify, before placing orders, that the
information being relied on is current.

TI warrants performance of its semiconductor products and related software to current
specifications in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices,
or systems. Use of TI product in such applications requires the written approval of the
appropriate TI officer. Certain applications using semiconductor devices may involve potential
risks of personal injury, property damage, or loss of life. In order to minimize these risks,
adequate design and operating safeguards should be provided by the customer to minimize
inherent or procedural hazards. Inclusion of TI products in such applications is understood to be
fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1993, Texas Instruments Incorporated

 Running Title—Attribute Reference

iii Chapter Title—Attribute Reference

Read This First

What Is This Addendum About?

The TMS320C4x and TMS320C5x emulation systems are true
multiprocessing debugging systems. Each allows you to debug your entire
application by using the parallel debug manager (PDM). The PDM is a
command shell that controls and coordinates multiple debuggers, providing
you with the ability to:

� Create and control debuggers for one or more processors
� Organize debuggers into groups
� Send commands to one or more debuggers
� Synchronously run, step, and halt multiple processors in parallel
� Gather system information in a central location

You can run multiple debuggers under the control of the PDM only on PCs
running OS/2 or Sun workstations running OpenWindows. Before you can use
the PDM, you must install the emulator and software as described in the
installation guide.

How to Use This Manual

This addendum describes the parallel debug manager (PDM) for the
TMS320C4x and TMS320C5x systems.

� Chapter 1, Getting Started With the Parallel Debug Manager, tells you
how to invoke the PDM and individual debuggers and describes
execution-related commands. This chapter also includes information
about describing your target system in a configuration file.

� Chapter 2, PDM Shell Commands, describes commands that control how
you send commands to the individual debuggers and how you can use the
output from the PDM command line.

� Chapter 3, Additional Help, provides a summary of commands and error
messages.

Notational Conventions

iv

Notational Conventions

This document uses the following conventions.

� The TMS320C40 processor is referred to as the ’C4x .

� The TMS320C50, TMS320C51, and TMS320C53 processors are
referred to collectively as the ’C5x .

� PDM commands are not case sensitive; you can enter them in lowercase,
uppercase, or a combination.

� Program listings and examples, interactive displays, and window contents
are shown in a special font. Some examples use a bold version to identify
code, commands, or portions of an example that you enter. Here is an
example:

Command Result Displayed in the PDM Display Area

echo $mask3 36+47

set dgroup ”proc1 proc2 proc3”
i ”hello world”
val_proc1 ”24”
val_proc2” ”34”
val_proc3 ”45”

In this example, the left column identifies PDM commands that you type in.
The right column identifies the result that the PDM displays in the PDM
display area.

� In syntax descriptions, the instruction or command is in a bold face font,
and parameters are in italics. Portions of a syntax that are in bold face
should be entered as shown; portions of a syntax that are in italics
describe the kind of information that should be entered. Here is an
example of a command syntax:

echo string

echo is the command. This command has one parameter, indicated by
string.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of a command
that has an optional parameter:

help [command]

The HELP command has one parameter, command, which is optional.

 Notational Conventions / Related Documentation From Texas Instruments

v Read This First

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

unalias {alias name | *}

This provides two choices: unalias alias name or unalias *

Unless the list is enclosed in square brackets, you must choose one item
from the list.

Related Documentation From Texas Instruments

The following books describe the TMS320C4x and TMS320C5x devices and
related support tools. To obtain a copy of any of these TI documents, call the
Texas Instruments Literature Response Center at (800) 477–8924. When
ordering, please identify the book by its title and literature number.

TMS320C4x C Source Debugger User’s Guide (literature number
SPRU054) tells you how to invoke the ’C4x emulator and simulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints, and includes a tutorial that introduces basic debugger
functionality.

TMS320C4x User’s Guide (literature number SPRU063) describes the ’C4x
32-bit floating-point processor, developed for digital signal processing as
well as parallel processing applications. Covered are its architecture,
internal register structure, instruction set, pipeline, specifications, and
operation of its six DMA channels and six communication ports. Software
and hardware applications are included.

TMS320C5x C Source Debugger User’s Guide (literature number
SPRU055) tells you how to invoke the ’C5x emulator, SWDS, EVM, and
simulator versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints, and includes a tutorial that introduces basic debugger
functionality.

TMS320C5x User’s Guide (literature number SPRU056) describes the
TMS320C5x 16-bit, fixed-point, general-purpose digital signal
processors. Covered are its architecture, internal register structure,
instruction set, pipeline, specifications, DMA, and I/O ports. Software
applications are covered in a dedicated chapter.

If You Need Assistance / Trademarks

vi

If You Need Assistance. . .

If you want to. . . Do this. . .

Request more information about
Texas Instruments Digital Signal
Processing (DSP) products

Write to:
Texas Instruments Incorporated
Market Communications Manager, MS 736
P.O. Box 1443
Houston, Texas 77251–1443

Order Texas Instruments docu-
mentation

Call the TI Literature Response Center:
(800) 477–8924

Ask questions about product oper-
ation or report suspected prob-
lems

Call the DSP hotline:
(713) 274–2320
FAX: (713) 274–2324

Report mistakes in this document
or any other TI documentation

Send your comments to:
Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251–1443

Trademarks

OpenWindows is a trademark of Sun Microsystems, Inc.

OS/2 is a trademark of International Business Machines Corp.

UNIX is a registered trademark of Unix System Laboratories, Inc

 Contents

vii Contents

Contents

1 Getting Started With the Parallel Debug Manager 1-1.
Describes the parallel debug manager (PDM) for the TMS320C4x and TMS320C5x systems, tells you how to
invoke the PDM and individual debuggers, and describes execution-related commands. Also included in this
chapter is information about describing your target system in a configuration file.

1.1 Describing Your Target System to the Debugger 1-2.
Step 1: Create the board configuration file 1-2.
Step 2: Translate the configuration file to binary 1-6.
Step 3: Specify the configuration file when invoking the debugger 1-6.

1.2 Invoking a Standalone Debugger 1-7.
1.3 Invoking the PDM 1-8.
1.4 Invoking Individual Debuggers From the PDM 1-9.

Selecting the screen size (–b option) 1-10.
Identifying a new board configuration file (–f option) 1-10.
Identifying additional directories (–i option) 1-11.
Loading the symbol table only (–s option) 1-11.
Identifying a new initialization file (–t option) 1-11.
Loading without the symbol table (–v option) 1-11.
Ignoring D_OPTIONS (–x option) 1-11.

1.5 Identifying Processors and Groups 1-12.
Assigning names to individual processors 1-12.
Organizing processors into groups 1-13.

1.6 Running and Halting Code 1-16.
Halting processors at the same time 1-17.
Sending ESCAPE to all processors 1-17.
Finding the execution status of a processor or a group of processors 1-17.

1.7 Exiting a Debugger or the PDM 1-18.

2 PDM Shell Commands 2-1.
Describes additional PDM commands that let you create system variables, execute batch files, conditionally
execute or loop through commands, and perform other system-level tasks.

2.1 Understanding the PDM’s Expression Analysis 2-2.
2.2 Sending Debugger Commands to One or More Debuggers 2-3.
2.3 Using System Variables 2-4.

Creating your own system variables 2-4.
Assigning a variable to the result of an expression 2-5.
Changing the PDM prompt 2-5.
Checking the execution status of the processors 2-6.
Listing system variables 2-6.
Deleting system variables 2-6.

Contents

viii

2.4 Evaluating Expressions 2-7.
2.5 Executing PDM Commands From a Batch File 2-8.
2.6 Recording Information From the PDM Display Area 2-9.
2.7 Echoing Strings to the PDM Display Area 2-10.
2.8 Pausing the PDM 2-10.
2.9 Controlling PDM Command Execution 2-11.
2.10 Defining Your Own Command Strings 2-13.
2.11 Entering Operating-System Commands 2-14.
2.12 Using the Command History 2-15.

3 Additional Help 3-1.

Summarizes the PDM commands and error messages.

3.1 Viewing the Description of a PDM Command 3-2.
3.2 Summary of PDM Commands 3-3.

Invocation commands 3-3.
Group-definition commands 3-3.
Execution-related commands 3-3.
Shell commands 3-4.

3.3 Alphabetical Summary of PDM Messages 3-5.

 Running Title—Attribute Reference

1-1 Chapter Title—Attribute Reference

Getting Started With the
Parallel Debug Manager

This chapter describes the parallel debug manager (PDM) for the TMS320C4x
and TMS320C5x systems, tells you how to invoke the PDM and individual de-
buggers, and describes execution-related commands. Also included in this
chapter is information about describing your target system in a configuration
file.

Before you can use the PDM, you must install the emulator and software as
described in the installation guide.

Topic Page

1.1 Describing Your Target System to the Debugger 1-2
Step 1: Create the board configuration file 1-2
Step 2: Translate the configuration file to binary 1-6
Step 3: Specify the configuration file when invoking the debugger 1-6

1.2 Invoking a Standalone Debugger 1-7

1.3 Invoking the PDM 1-8

1.4 Invoking Individual Debuggers From the PDM 1-9
Selecting the screen size (–b option) 1-10
Identifying a new board configuration file (–f option) 1-10
Identifying additional directories (–i option) 1-11
Loading the symbol table only (–s option) 1-11
Identifying a new initialization file (–t option) 1-11
Loading without the symbol table (–v option) 1-11
Ignoring D_OPTIONS (–x option) 1-11

1.5 Identifying Processors and Groups 1-12
Assigning names to individual processors 1-12
Organizing processors into groups 1-13

1.6 Running and Halting Code 1-16
Halting processors at the same time 1-17
Sending ESCAPE to all debuggers 1-17
Finding the execution status of a processor or a group of processors 1-17

1.7 Exiting a Debugger or the PDM 1-18

Chapter 1

Describing Your Target System to the Debugger

 1-2

1.1 Describing Your Target System to the Debugger

In order for the debugger to understand how you have configured your target
system, you must supply a file for the debugger to read.

� The ’C4x PPDS (parallel processing development system) comes with a
file called board.dat. This file describes to the debugger the PPDS device
chain and gives the four ’C4xs the names CPU_A, CPU_B, CPU_C, and
CPU_D. Since the debugger automatically looks for a file called board.dat
in the current directory and in the directories specified with the D_DIR en-
vironment variable, you can skip this section and go on to Section 1.2 if
you’re using the PPDS.

� If you’re using an emulation scan path that contains only one ’C5x and no
other devices, you can use the board.dat file that comes with the ’C5x
emulator kit. This file describes to the debugger the single ’C5x in the scan
path and gives the ’C5x the name C50_1. Since the debugger automati-
cally looks for a file called board.dat in the current directory and in the di-
rectories specified with the D_DIR environment variable, you can skip this
section and go on to Section 1.2.

� If you plan to use a different target system, you must follow these steps:

Step 1: Create the board configuration file.

Step 2: Translate the board configuration file to binary so that the debug-
ger can read it.

Step 3: Specify the configuration file when invoking the debugger.

These steps are described in the following subsections.

Step 1: Create the board configuration file

To define your target system, you must create a board configuration file that
describes your target system (also called an emulation scan path) to the de-
bugger. The file consists of a series of entries, each describing one device on
your target system. You must list individual devices on your system in the
board configuration file in order for the debugger to work. The configuration file
will be referred to as board.cfg in this book.

Example 1–1 shows a board.cfg file that describes the ’C4x PPDS. It lists
twelve octals named A1–A9, AA, AB, and AC, followed by four ’C4x devices
named CPU_A, CPU_B, CPU_C, and CPU_D.

 Describing Your Target System to the Debugger

1-3 Getting Started With the Parallel Debug Manager

Example 1–1.The ’C4x PPDS Device Chain

(a) A sample board.cfg file

Device Name Device Type Comments

”A1” BYPASS08 ;the first device nearest TDO
;(test data out)

”A2” BYPASS08 ;the next device nearest TDO

”A3” BYPASS08

”A4” BYPASS08

”A5” BYPASS08

”A6” BYPASS08

”A7” BYPASS08

”A8” BYPASS08

”A9” BYPASS08

”AA” BYPASS08

”AB” BYPASS08

”AC” BYPASS08

”CPU_A” TI320C4x ;the first ’C4x

”CPU_B” TI320C4x

”CPU_C” TI320C4x

”CPU_D” TI320C4x ;the last ’C4x nearest TDI
;(test data in)

(b) The ’C4x PPDS device chain

ABTDI CPU_ACPU_BCPU_CCPU_D A1A2 TDO. . .AC

The order in which you list each device is important. The emulator scans the
devices, assuming that the data from one device is followed by the data of the
next device on the chain. Data from the device that is closest to the emulation
header’s TDO reaches the emulator first. Moreover, in the board.cfg file, the
devices should be listed in the order in which their data reaches the emulator.
For example, the device whose data reaches the emulator first is listed first in
the board.cfg file; the device whose data reaches the emulator last is listed last
in the board.cfg file.

The board.cfg file can have any number of each of the three types of entries:

� Debugger devices such as the ’C4x or ’C5x. These are the only devices
that the debugger can recognize.

� The TI ACT8997 scan path linker , or SPL. The SPL allows you to have
up to four secondary scan paths that can each contain debugger devices
(’C4xs or ’C5xs) and other devices.

Describing Your Target System to the Debugger

 1-4

� Other devices . These are any other devices in the scan path. For exam-
ple, you can have devices such as the TI BCT 8244 octals that are used
on the PPDS board. These devices cannot be debugged and must be
worked around or “bypassed” when trying to access the ’C4xs or ’C5xs.

Each entry in the board.cfg file consists of at least two pieces of data:

� The name of the device. The device name always appears first and is
enclosed in double quotes:

”device name”

This is the same name that you use with the –n debugger option, which
tells the debugger the name of the ’C4x or ’C5x. The device name can con-
sist of up to eight alphanumeric characters or underscore characters and
must begin with an alphabetic character.

� The type of the device. The debugger supports the following device
types:

� TI320C4x describes the ’C4x.

� TI320C5x describes the ’C5x.

� BYPASS## describes devices other than the ’C4x, ’C5x, or SPL. The
is the hexadecimal number that describes the number of bits in the
device’s JTAG instruction register. For example, TI BCT 8244 octals
have a device type of BYPASS08.

� SPL specifies the scan path linker and must be followed by four sub-
paths, as in this syntax:

”device name” SPL {subpath0} {subpath1} {subpath2} {subpath3}

Each subpath can contain any number of devices. However, an SPL
subpath cannot contain another SPL.

 Describing Your Target System to the Debugger

1-5 Getting Started With the Parallel Debug Manager

Example 1–2 shows a file that contains an SPL.

Example 1–2. A board.cfg File Containing an SPL

Device Name Device Type Comments

”A1” BYPASS08 ;the first device nearest TDO

”A2” BYPASS08

”CPU_A” TI320C5x ;the first ’C5x

”HUB” SPL ;the scan path linker

{ ;first subpath

”B1” BYPASS08

”B2” BYPASS08

”CPU_B” TI320C5x ;the second ’C5x

}

{ ;second subpath

”C1” BYPASS08

”C2” BYPASS08

”CPU_C” TI320C5x ;the third ’C5x

}

{ ;third subpath

”D1” BYPASS08

”D2” BYPASS08

”CPU_D” TI320C5x ;the fourth ’C5x

}

{ ;fourth subpath (contains nothing)

}

”CPU_E” TI320C5x ;the last ’C5x nearest TDI

Note: The indentation in the file is for readability only.

Describing Your Target System to the Debugger

 1-6

Step 2: Translate the configuration file to binary

After you have created the board.cfg file, you must translate it from text to a
binary, conditioned format so that the debugger can understand it. To translate
the file, use the composer utility. At the system prompt, enter the following
command:

composer [input file [output file]]

� The input file is the name of the board.cfg file that you created in step 1;
if the file isn’t in the current directory, you must supply the entire pathname.
If you omit the input filename, the composer utility looks for a file called
board.cfg in your current directory.

� The output file is the name that you can specify for the resulting binary file;
ideally, use the name board.dat. If you want the output file to reside in a
directory other than the current directory, you must supply the entire path-
name. If you omit an output filename, the composer utility creates a file
called board.dat and places it in the current directory.

To avoid confusion, use a .cfg extension for your text filenames and a .dat ex-
tension for your binary filenames. If you enter only one filename on the com-
mand line, the composer utility assumes that it is an input filename.

Step 3: Specify the configuration file when invoking the debugger

When you invoke a debugger (either from the PDM or at the system prompt),
the debugger must be able to find the board.dat file so that it knows how you
have set up your target system. The debugger looks for the board.dat file in
the current directory and in the directories named with the D_DIR environment
variable.

If you used a name other than board.dat or if the board.dat file is not in the cur-
rent directory or in a directory named with D_DIR, you must use the –f option
when you invoke the debugger. The –f option allows you to specify a board
configuration file (and pathname) that will be used instead of board.dat. The
format for this option is:

–f filename

 Invoking a Standalone Debugger

1-7 Getting Started With the Parallel Debug Manager

1.2 Invoking a Standalone Debugger

There are two ways to invoke a debugger: you can invoke a standalone debug-
ger, or you can invoke several debuggers that are under control of the PDM.
If you want to invoke a debugger that is under control of the PDM, see Section
1.3.

Here’s the basic format for the command that invokes a standalone debugger:

’C4x: emu4x –n processor name [filename] [options]
’C5x: emu5x –n processor name [filename] [options]

� emu4x and emu5x are the commands that invoke the debugger. Enter
one of these commands from the operating-system command line.

� –n processor name supplies a processor name. The processor name can
consist of up to eight alphanumeric characters or underscore characters
and must begin with an alphabetic character. Note that the name is not
case sensitive.

The processor name must match one of the names defined in your board
configuration file (see Section 1.1). For example, to invoke the debugger
for a ’C5x that you had defined as CPU_A, you would enter:

emu5x –n CPU_A

� filename is an optional parameter that names an object file that the debug-
ger loads into memory during invocation. The debugger looks for the file
in the current directory; if the file isn’t in the current directory, you must sup-
ply the entire pathname.

If you don’t supply an extension for the filename, the debugger assumes
that the extension is .out, unless you are using multiple extensions; you
must specify the entire filename if the filename has more than one exten-
sion.

� –options supply the debugger with additional information. Table 1–1 on
page 1-10 lists the debugger options that you can use when invoking a de-
bugger, and the subsections that follow the table describe these options.
You can also specify filename and option information with the
D_OPTIONS environment variable (see Setting up the environment vari-
ables in your installation guide).

Once you have invoked a standalone debugger, turn to your debugger user’s
guide; the rest of this addendum describes commands and functions of the
PDM.

Invoking the PDM

 1-8

1.3 Invoking the PDM

The TMS320C4x and TMS320C5x emulation systems are true multipro-
cessing debugging systems. Each allows you to debug your entire application
by using the PDM. The PDM is a command shell that controls and coordinates
multiple debuggers, providing you with the ability to:

� Create and control debuggers for one or more processors
� Organize debuggers into groups
� Send commands to one or more debuggers
� Synchronously run, step, and halt multiple processors in parallel
� Gather system information in a central location

You can operate the PDM only on PCs running OS/2 or Sun workstations run-
ning OpenWindows. The PDM is invoked and PDM commands are executed
from a command shell window under the host windowing system. From the
PDM, you can invoke and control debuggers for each of the processors in your
multiprocessing system.

The format for invoking the PDM is:

pdm

Once you invoke the PDM, you will see the PDM command prompt (PDM:1>>)
and can begin entering commands.

When you invoke the PDM, it looks for a file called init.pdm. This file contains
initialization commands for the PDM. The PDM searches for the init.pdm file
in the current directory and in the directories you specify with the D_DIR envi-
ronment variable. If the PDM can’t find the initialization file, you will see this
message: Cannot open take file.

Note: Using the PDM on UNIX Systems

The PDM environment uses the interprocess communication (IPC) features
of UNIX (shared memory, message queues, and semaphores) to provide
and manage communications between the different tasks. If you are not sure
if the IPC features are enabled, see your system administrator. To use the
PDM environment, you should be familiar with the IPC status (ipcs) and IPC
remove (ipcrm) UNIX commands. If you use the UNIX task kill (kill) command
to terminate execution of tasks, you will also need to use the ipcrm command
to terminate the shared memory, message queues, and semaphores used
by the PDM.

 Invoking Individual Debuggers From the PDM

1-9 Getting Started With the Parallel Debug Manager

1.4 Invoking Individual Debuggers From the PDM

When you debug a multiprocessing application, each processor must have its
own debugger. These debuggers can be invoked individually from the PDM
command line.

To invoke a debugger, use the SPAWN command. Here’s the basic format for
this command:

’C4x: spawn emu4x –n processor name [filename] [options]
’C5x: spawn emu5x –n processor name [filename] [options]

� emu4x and emu5x are the executables that invoke the ’C4x or ’C5x ver-
sion of the debugger. In order to invoke a debugger, the PDM must be able
to find the executable file for that debugger. The PDM will first search the
current directory and then search the directories listed with the PATH
statement.

� –n processor name supplies a processor name. You must use the –n
option because the PDM uses processor names to identify the various de-
buggers that are running. The processor name can consist of up to eight
alphanumeric characters or underscore characters and must begin with
an alphabetic character. Note that the name is not case sensitive.

The processor name must match one of the names defined in your board
configuration file (see Section 1.1). For example, to invoke a debugger for
a ’C4x that you had defined as CPU_A, you would enter:

spawn emu4x –n CPU_A

� filename is an optional parameter that names an object file that the debug-
ger loads into memory during invocation. The debugger looks for the file
in the current directory; if the file isn’t in the current directory, you must sup-
ply the entire pathname.

If you don’t supply an extension for the filename, the debugger assumes
that the extension is .out, unless you are using multiple extensions; you
must specify the entire filename if the filename has more than one exten-
sion.

� –options supply the debugger with additional information. Table 1–1 lists
the debugger options that you can use when invoking a debugger, and the
subsections that follow the table describe these options. You can also
specify filename and option information with the D_OPTIONS environ-
ment variable (see Setting up the environment variables in your installa-
tion guide).

Invoking Individual Debuggers From the PDM

 1-10

Table 1–1.Summary of Debugger Options

Option Description

–b[b] Select the screen size

–f filename Identify a new board configuration file

–i pathname Identify additional directories

–s Load the symbol table only

–t filename Identify a new initialization file

–v Load without the symbol table

–x Ignore D_OPTIONS

Selecting the screen size (–b option)

By default, the debugger uses an 80-character-by-25-line screen. If you’d like
to use a different screen size, the method for doing so varies, depending on
the type of system that you’re using:

� PC systems. You can use the –b or –bb option to select one of these pre-
set screen sizes:

–b Screen size is 80 characters by 43 lines for EGA or VGA displays.

–bb Screen size is 80 characters by 50 lines for a VGA display only.

� Sun systems. When you run multiple debuggers, the default screen size
is a good choice because you can easily fit up to five default-size debug-
gers on your screen. However, you can change the default screen size by
using one of the –b options, which provide a preset screen size, or by resiz-
ing the screen at run time.

� Using a preset screen size. Use the –b or –bb option to select one of
these preset screen sizes:

–b Screen size is 80 characters by 43 lines.

–bb Screen size is 80 characters by 50 lines.

� Resizing the screen at run time. You can resize the screen at run
time by using your mouse to change the size of the operating-system
window that contains the debugger. The maximum size of the debug-
ger screen is 132 characters by 60 lines.

Identifying a new board configuration file (–f option)

The –f option allows you to specify a board configuration file that will be used
instead of board.dat. The format for this option is:

–f filename

 Invoking Individual Debuggers From the PDM

1-11 Getting Started With the Parallel Debug Manager

Identifying additional directories (–i option)

The –i option identifies additional directories that contain your source files.
Replace pathname with an appropriate directory name. You can specify sever-
al pathnames; use the –i option as many times as necessary. For example:

spawn emu4x –n name –i pathname1 –i pathname2 –i pathname3 . . .

Using –i is similar to using the D_SRC environment variable (see Setting up
the environment variables in the installation guide). If you name directories
with both –i and D_SRC, the debugger first searches through directories
named with –i. The debugger can track a cumulative total of 20 paths (includ-
ing paths specified with –i, D_SRC, and the debugger USE command).

Loading the symbol table only (–s option)

If you supply a filename when you invoke the debugger, you can use the –s
option to tell the debugger to load only the file’s symbol table (without the file’s
object code). This is similar to loading a file by using the debugger’s SLOAD
command.

Identifying a new initialization file (–t option)

The –t option allows you to specify an initialization command file that will be
used instead of emuinit.cmd. The format for this option is:

–t filename

Loading without the symbol table (–v option)

The –v option prevents the debugger from loading the entire symbol table
when you load an object file. The debugger loads only the global symbols and
later loads local symbols as it needs them. This speeds up the loading time and
consumes less memory.

The –v option affects all loads, including those performed when you invoke the
debugger and those performed with the LOAD command within the debugger
environment.

Ignoring D_OPTIONS (–x option)

The –x option tells the debugger to ignore any information supplied with the
D_OPTIONS environment variable (described in the installation guide).

Identifying Processors and Groups

 1-12

1.5 Identifying Processors and Groups

You can send commands to an individual processor or to a group of proces-
sors. To do this, you must assign names to the individual processors or to
groups of processors. Individual processor names are assigned when you in-
voke the individual debuggers; you can assign group names with the SET
command after the individual processor names have been assigned.

Note: Entering Commands From the PDM

Each debugger that runs under the PDM must have a unique processor
name. The PDM does not keep track of existing processor names. When you
send a command to a debugger, the PDM will validate the existence of a de-
bugger invoked with that processor name.

Assigning names to individual processors

You must associate each debugger within the multiprocessing system with a
unique name, referred to as a processor name. The processor name is used
for:

� Identifying a processor to send commands to.

� Assigning a processor to a group.

� Setting the default prompts for the associated debuggers. For example,
if you invoke a debugger with a processor name of CPU_A, that debug-
ger’s prompt will be CPU_A>.

� Identifying the individual debuggers on the screen (Sun systems only).
The processor name that you assign will appear at the top of the operating-
system window that contains the debugger. Additionally, if you turn one of
the windows into an icon, the icon name is the same as the processor
name that you assigned.

To assign a processor name, you must use the –n option when you invoke a
debugger. For example, to name one of the ’C5x processors CPU_B, use the
following command to invoke the debugger:

spawn emu5x –n CPU_B

From this point onward, whenever you needed to identify this debugger, you
could identify it by its processor name, CPU_B.

The processor name that you supply can consist of up to eight alphanumeric
characters or underscore characters and must begin with an alphabetic char-
acter. Note that the name is not case sensitive. The processor name must
match one of the names defined in your board configuration file (see Section
1.1).

 Identifying Processors and Groups

1-13 Getting Started With the Parallel Debug Manager

Organizing processors into groups

Processors can be organized into groups; these groups are identified by
names defined with the SET command. Each processor can belong to any
group, all groups, or a group of its own. Figure 1–1 (a) shows an example of
processors that could exist in a system, and Figure 1–1 (b) illustrates three ex-
amples of named groups. GROUP1 contains two processors, GROUP2 con-
tains four processors, and GROUP3 contains five processors.

Figure 1–1. Grouping Processors

(a) A system with x processors

CPU_A
debugger

CPU_B
debugger

CPU_C
debugger

CPU_D
debugger

CPU_E
debugger

(b) Examples of how processors could be grouped

GROUP1 GROUP2 GROUP3
CPU_A

debugger

CPU_C
debugger

CPU_A
debugger

CPU_B
debugger

CPU_D
debugger

CPU_E
debugger

CPU_B
debugger

CPU_C
debugger

CPU_D
debugger

CPU_E
debugger

CPU_A
debugger

To define and manipulate software groupings of named processors, use the
SET and UNSET commands.

� Defining a group of processors

To define a group, use the SET command. The format for this command is:

set [group name [= list of processor names]]

This command allows you to specify a group name and the list of proces-
sors you want in the group. The group name can consist of up to 128 alpha-
numeric characters or underscore characters.

Identifying Processors and Groups

 1-14

For example, to create the GROUP1 group illustrated in Figure 1–1 (b),
you could enter the following on the PDM command line:

set GROUP1 = CPU_A CPU_C

The result is a group called GROUP1 that contains the processors named
CPU_A and CPU_C. Note that the order in which you add processors to a
group is the same order in which commands will be sent to the members of
that group.

� Setting the default group

Many of the PDM commands can be sent to groups; if you often send com-
mands to the same group and you want to avoid typing the group name
each time, you can assign a default group.

To set the default group, use the SET command with a special group name
called dgroup. For example, if you want the default group to contain the
processors called CPU_B, CPU_D, and CPU_E, enter:

set dgroup = CPU_B CPU_D CPU_E

The PDM will automatically send commands to the default group when
you don’t specify a group name.

� Modifying an existing group or creating a group based on another
group

Once you’ve created a group, you can add processors to it by using the
SET command and preceding the existing group name with a dollar sign
($) in the list of processors. You can also use a group as part of another
group by preceding the existing group’s name with a dollar sign. The dollar
sign tells the PDM to use the processors listed previously in the group as
part of the new list of processors.

Suppose GROUPA contained CPU_C and CPU_D. If you wanted to add
CPU_E to the group, you’d enter:

set GROUPA = $GROUPA CPU_E

After entering this command, GROUPA would contain CPU_C, CPU_D,
and CPU_E.

If you decided to send numerous commands to GROUPA, you could make
it the default group:

set dgroup = $GROUPA

 Identifying Processors and Groups

1-15 Getting Started With the Parallel Debug Manager

� Listing all groups of processors

To list all groups of processors in the system, use the SET command with-
out any parameters:

set

The PDM lists all of the groups and the processors associated with them:

GROUP1 ”CPU_A CPU_C”
GROUPA ”CPU_C CPU_D CPU_E”
dgroup ”CPU_C CPU_D CPU_E”

You can also list all of the processors associated with a particular group by
supplying a group name:

set dgroup
dgroup ”CPU_C CPU_D CPU_E”

� Deleting a group

To delete a group, use the UNSET command. The format for this com-
mand is:

unset group name

You can use this command in conjunction with the SET command to re-
move a particular processor from a group. For example, suppose
GROUPB contained CPU_A, CPU_C, CPU_D, and CPU_E. If you wanted
to remove CPU_E, you could enter:

unset GROUPB
set GROUPB = CPU_A CPU_C CPU_D

If you want to delete all of the groups you have created, use the UNSET
command with an asterisk instead of a group name:

unset *

Note: Using the UNSET * Command

When you use UNSET * to delete all of your groups, the default group
(dgroup) is also deleted. As a result, if you issue a command such as PRUN
and don’t specify a group or processor, the command will fail because the
PDM can’t find the default group name (dgroup).

Running and Halting Code

 1-16

1.6 Running and Halting Code

The PRUN, PRUNF, and PSTEP commands synchronize the debuggers to
cause the processors to begin execution at the same real time.

� PRUNF starts the processors running free, which means they are discon-
nected from the emulator.

� PRUN starts the processors running under the control of the emulator.

� PSTEP causes the processors single-step synchronously through assem-
bly language code with interrupts disabled.

The formats for these commands are:

prunf [–g {group | processor name}]

prun [–r] [–g {group | processor name}]

pstep [–g {group | processor name}] [count]

� The –g option identifies the group or processor that the command should
be sent to. If you don’t use this option, the command is sent to the default
group (dgroup).

� The –r (return) option for the PRUN command determines when control
returns to the PDM command line:

� Without –r , control is not returned to the command line until each de-
bugger in the group finishes running code. If you want to to break out of
a synchronous command and regain control of the PDM command
line, press CONTROL C in the PDM window. This will return control to
the PDM command line. However, no debugger executing the com-
mand will be interrupted.

� With –r , control is returned to the command line immediately, even if a
debugger is still executing a command. You can type new commands,
but the processors can’t execute the commands until they finish with
the current command; however, you can perform PHALT, PESC, and
STAT commands when the processors are still executing.

� You can specify a count for the PSTEP command so that each processor
in the group will step for count number of times.

Note: Single-Stepping With Breakpoints

If the current statement that a processor is pointing to has a breakpoint, that
processor will not step synchronously with the other processors when you
use the PSTEP command. However, that processor will still single-step.

 Running and Halting Code

1-17 Getting Started With the Parallel Debug Manager

Halting processors at the same time

After you enter a PRUNF command, you can use the PHALT command to stop
an individual processor or a group of processors (global halt). Each processor
in the group is halted at the same real time. The syntax for the PHALT com-
mand is:

phalt [–g {group | processor name}]

Sending ESCAPE to all processors

Use the PESC command to send the escape key to an individual processor
or to a group of processors after you execute a PRUN command. Entering
PESC is essentially like typing an escape key in all of the individual debuggers.
However, the PESC command is asynchronous; the processors don’t halt at
the same real time. When you halt a group of processors, the individual pro-
cessors are halted in the order in which they were added to the group.

The syntax for this command is:

pesc [–g {group | processor name}]

Finding the execution status of a processor or a group of processors

The STAT command tells you whether a processor is running or halted. If a pro-
cessor is halted when you execute this command, then the PDM also lists the
current PC value for that processor. The syntax for the command is:

stat [–g {group | processor name}]

For example, to find the execution status of all of the processors in GROUP_A
after you’ve executed a global PRUN, enter:

stat –g GROUP_A

After entering this command, you’ll see something similar to this in the PDM
window:

[CPU_C] Running
[CPU_D] Halted PC=200001A
[CPU_E] Running

Exiting a Debugger or the PDM

 1-18

1.7 Exiting a Debugger or the PDM

To exit any version of the debugger, enter the following command from the
COMMAND window of the debugger you want to close:

quit

You can also enter QUIT from the command line of the PDM to quit all of the
debuggers (and also close the PDM).

 Running Title—Attribute Reference

2-1 Chapter Title—Attribute Reference

PDM Shell Commands

The commands such as PRUN, STAT, and PHALT described in Chapter 1 are
execution-related commands. The commands described in this chapter are
additional PDM commands that control how you send commands to the indi-
vidual debuggers and how you can use the output from the PDM command
line. For example, these shell commands allow you to:

� Create system variables
� Execute commands from a batch file
� Record information from the PDM display area
� Conditionally execute or loop through PDM commands
� Define command strings
� Enter operating-system commands
� Use the command history

Topic Page

2.1 Understanding the PDM’s Expression Analysis 2-2

2.2 Sending Debugger Commands to One or More Debuggers 2-3

2.3 Using System Variables 2-4
Creating your own system variables 2-4
Assigning a variable to the result of an expression 2-5
Changing the PDM prompt 2-5
Checking the execution status of the processors 2-6
Listing system variables 2-6
Deleting system variables 2-6

2.4 Evaluating Expressions 2-7

2.5 Executing PDM Commands From a Batch File 2-8

2.6 Recording Information From the PDM Display Area 2-9

2.7 Echoing Strings to the PDM Display Area 2-10

2.8 Pausing the PDM 2-10

2.9 Controlling PDM Command Execution 2-11

2.10 Defining Your Own Command Strings 2-13

2.11 Entering Operating-System Commands 2-14

2.12 Using the Command History 2-15

Chapter 2

Understanding the PDM’s Expression Analysis

 2-2

2.1 Understanding the PDM’s Expression Analysis

The PDM analyzes expressions differently than individual debuggers do (ex-
pression analysis for the debugger is described in the Basic Information About
C Expressions chapter of the debugger user’s guide). The PDM uses a simple
integral expression analyzer. You can use expressions to cause the PDM to
make decisions as part of the @ command and the flow control commands
(described in Sections 2.3 and 2.9, respectively).

Note that you cannot evaluate string variables with the PDM expression ana-
lyzer. You can evaluate only constant expressions.

Table 2–1 summarizes the PDM operators. The PDM interprets the operators
in the order that they’re listed in Table 2–1 (left to right, top to bottom).

Table 2–1.PDM Operators

Operator Definition Operator Definition

() take highest precedence * multiplication

/ division % modulo

+ addition (binary) – subtraction (binary)

< < left shift ~ complement

< less than > > right shift

> greater than < = less than or equal to

= = is equal to > = greater than or equal to

& bitwise AND ! = is not equal to

| bitwise OR ^ bitwise exclusive-OR

| | logical OR && logical AND

 Sending Commands From the PDM to One or More Debuggers

2-3 Getting Started With the Parallel Debug Manager

2.2 Sending Debugger Commands to One or More Debuggers

The SEND command sends a debugger command to an individual processor
or to a group of processors. The command is sent directly to the command in-
terpreter of the individual debuggers. You can send any valid debugger com-
mand string.

The syntax for the SEND command is:

send [–r] [–g {group | processor name}] debugger command

� The –g option specifies the group or processor that the debugger com-
mand should be sent to. If you don’t use this option, the command is sent
to the default group (dgroup).

� The –r (return) option determines when control returns to the PDM com-
mand line:

� Without –r , control is not returned to the command line until each de-
bugger in the group finishes running code. Any results that would be
printed in the COMMAND window of the individual debuggers will also
be echoed in the PDM command window. These results will be dis-
played by processor. For example:

send ?pc
[CPU_C] 0x40000000
[CPU_D] 0x40000004
[CPU_E] 0x4000000A

If you want to break out of a synchronous command and regain control
of the PDM command line, press CONTROL C in the PDM window. This
will return control to the PDM command line. However, no debugger
executing the command will be interrupted.

� With –r , control is returned to the command line immediately, even if a
debugger is still executing a command. When you use –r, you do not
see the results of the commands that the debuggers are executing.

The –r option is useful when you want to exit from a debugger but not
from the PDM. When you send the QUIT command to a debugger or
group of debuggers without using the –r command, you will not be able
to enter another PDM command until all debuggers that QUIT was
sent to finish quitting; the PDM waits for a response from all of the de-
buggers that are quitting. By using –r, you can gain immediate control
of the PDM and continue sending commands to the remaining debug-
gers.

Using System Variables

 2-4

2.3 Using System Variables

You can use the SET, @, and UNSET commands to create, modify, and delete
system variables. In addition, you can use the SET command with system-
defined variables.

Creating your own system variables

The SET command lets you create system variables that you can use with
PDM commands. The syntax for the SET command is:

set [variable name [= string]]

The variable name can consist of up to 128 alphanumeric characters or under-
score characters.

For example, suppose you have an array that you want to examine frequently.
You can use the SET command to define a system variable that represents
that array value:

set result = ar1[0] + 100

In this case, result is the variable name, and ar1[0] + 100 is the expression
that will be evaluated whenever you use the variable result.

Once you have defined result, you can use it with other PDM commands such
as the SEND command:

send CPU_D ? $result

The dollar sign ($) tells the PDM to replace result with ar1[0] + 100 (the string
defined in result) as the expression parameter for the ? command. You must
precede the name of a system variable with a $ when you want to use the string
value you defined with the variable as a parameter.

You can also use the SET command to concatenate and substitute strings.

� Concatenating strings

The dollar sign followed by a system variable name enclosed in braces
({ and }) tells the PDM to append the contents of the variable name to a
string that precedes or follows the braces. For example (the ECHO com-
mand is described on page 2-10):

set k = Hel Set k to the string Hel
set i = ${k}lo ${k}en Concatenate the contents of k before

lo and en and set the result to i
echo $i Show the contents of i
Hello Helen

 Using System Variables

2-5 PDM Shell Commands

� Substituting strings

You can substitute defined system variables for parts of variable names or
strings. This series of commands illustrates the substitution feature:

set err0 = 25 Set err0 to 25
set j = 0 Set j to 0
echo errj Show the value of errj → $err0 → 25
25

Note that substitution stops when the PDM detects recursion (for example,
$k = k).

Assigning a variable to the result of an expression

The @ (substitute) command is similar to the SET command. You can use the
@ command to assign the result of an expression to a variable. The syntax for
the @ command is:

@ variable name = expression

The following series of commands illustrates the differences between the @
command and the SET command. Assume that mask1 equals 36 and mask2
equals 47.

set mask3 = $mask1+$mask2 Set mask3 to the contents of mask1
plus the contents of mask2

echo $mask3 Show the contents of mask3
36+47

@ mask3 = $mask1+$mask2 Set mask3 to the result of the
expression $mask1+$mask2

echo $mask3 Show the contents of mask3
83

Notice the difference between the two commands. The @ command evaluates
the expression and assigns the result to the variable name.

The @ command is useful in setting loop counters. For example, you can ini-
tialize a counter with the following command:

@ j = 0

Inside the loop, you can increment the counter with the following statement:

@ j = $j + 1

Changing the PDM prompt

The PDM recognizes a system variable called prompt. You can change the
PDM prompt by setting the prompt variable to a string. For example, to change
the PDM prompt to 3PROCs, enter:

set prompt = 3PROCs

After entering this command, the PDM prompt will look like this: 3PROCs:x>>.

Using System Variables

 2-6

Checking the execution status of the processors

In addition to displaying the execution status of a processor or group of proces-
sors, the STAT command (described on page 1-17) sets a system variable
called status.

� If all of the processors in the specified group are running, the status vari-
able is set to 1.

� If one or more of the processors in the group is halted, the status variable
is set to 0.

You can use this variable when you want an instruction loop to execute until
a processor halts (the LOOP/ENDLOOP command is described on page
2-11):

loop stat == 1
send ?pc
.
.

Listing system variables

To list all system variables, use the SET command without parameters:

set

You can also list contents of a single variable. For example,

set j
j ”100”

Deleting system variables

To delete a system variable, use the UNSET command. The format for this
command is:

unset variable name

If you want to delete all of the variables you have created and any groups you
have defined (as described on page 1-13), use the UNSET command with an
asterisk instead of a variable name:

unset *

Note: Using the UNSET * Command

When you use UNSET * to delete all of your system variables and processor
groups, variables such as prompt, status, and dgroup are also deleted.

 Evaluating Expressions

2-7 PDM Shell Commands

2.4 Evaluating Expressions

The debugger includes a ? command that evaluates an expression and shows
the result in the display area of the COMMAND window. The PDM has a similar
command called EVAL that you can send to a processor or a group of proces-
sors. The EVAL command evaluates an expression in a debugger and sets a
variable to the result of the expression. The syntax for the PDM version of the
EVAL command is:

eval [–g {group | processor name}] variable name=expression[, format]

� The –g option specifies the group or processor that EVAL should be sent
to. If you don’t use this option, the command is sent to the default group
(dgroup).

� When you send the EVAL command to more than one processor, the PDM
takes the variable name that you supply and appends a suffix for each pro-
cessor. The suffix consists of the underscore character (_) followed by the
name that you assigned the processor. That way, you can differentiate be-
tween the resulting variables.

� The expression can be any expression that uses the symbols described
in Section 2.1.

� When you use the optional format parameter, the value that the variable
is set to will be in one of the following formats:

Parameter Result Parameter Result

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

Suppose proc0 has two variables defined: j is equal to 5, and k is equal to 17.
Also assume that proc1 contains variables j and k: j is equal to 12, and k is
equal to 22.

set dgroup = proc0 proc1
eval val = j + k
set
dgroup ”proc0 proc1”
val_proc0 ”23”
val_proc1 ”34”

Notice that the PDM created a system variable for each processor: val_proc0
for proc0 and val_proc1 for proc1.

Executing PDM Commands From a Batch File

 2-8

2.5 Executing PDM Commands From a Batch File

The TAKE command tells the PDM to execute commands from a batch file.
The syntax for the PDM version of this command is:

take batch filename

The batch filename must have a .pdm extension, or the PDM will not be able
to read the file. If you don’t supply a pathname as part of the filename, the PDM
first looks in the current directory and then searches directories named with
the D_DIR environment variable.

The TAKE command is similar to the debugger version of this command. How-
ever, there are some differences when you enter TAKE as a PDM command
instead of a debugger command.

� Similarities. As with the debugger version of the TAKE command, you
can nest batch files up to 10 deep.

� Differences. Unlike the debugger version of the TAKE command:

� There is no suppress-echo-flag parameter. Therefore, all command
output is echoed to the PDM window, and this behavior cannot be
changed.

� To halt batch-file execution, you must press CONTROL C instead of
ESC .

� The batch file must contain only PDM commands (no debugger com-
mands).

The TAKE command is advantageous for executing a batch file in which you
have defined often-used aliases. Additionally, you can use the SET command
in a batch file to set up group configurations that you use frequently, and then
execute that file with the TAKE command. You can also put your flow-control
commands (described in Section 2.9) in a batch file and execute the file with
the TAKE command.

 Recording Information From the PDM Display Area

2-9 PDM Shell Commands

2.6 Recording Information From the PDM Display Area

By using the DLOG command, you can record the information shown in the
PDM display area into a log file. The log file is a system file that contains com-
mands you’ve entered, their results, and error or progress messages. When
using DLOG, the PDM automatically precedes all error or progress messages
and command results with a semicolon to turn them into comments; this way,
you can easily re-execute the commands in your log file by using TAKE.

� To begin recording the information shown in the PDM display area, use:

dlog filename

This command opens a log file called filename that the information is re-
corded into. If you plan to execute the log file with the TAKE command, the
filename must have a .pdm extension.

� To end the recording session, enter:

dlog close

If necessary, you can write over existing log files or append additional informa-
tion to existing files. The extended format for the DLOG command is:

dlog filename [,{a | w}]

The optional parameters control how the log file is created and/or used:

� Appending to an existing file. Use the a parameter to open an existing
file and append the information in the display area.

� Writing over an existing file. Use the w parameter to open an existing
file and write over the current contents of the file. Note that this is the de-
fault action if you specify an existing filename without using either the a or
w options; you will lose the contents of an existing file if you don’t use the
append (a) option.

Echoing Strings to the PDM Display Area / Pausing the PDM

 2-10

2.7 Echoing Strings to the PDM Display Area

You can display a string in the PDM display area by using the ECHO command.
This command is especially useful when you are executing a batch file or run-
ning a flow-control command such as IF or LOOP. The syntax for the command
is:

echo string

This displays the string in the PDM display area.

You can also use ECHO to show the contents of a system variable:

echo $var_proc1
34

The ECHO command works exactly the same as the ECHO command de-
scribed in the debugger user’s guide, except that you can use it outside of a
batch file.

2.8 Pausing the PDM

Sometimes you may want the PDM to pause while it’s running a batch file or
when it’s executing a flow control command such as LOOP/ENDLOOP. Paus-
ing is especially helpful in debugging the commands in a batch file.

The syntax for the PAUSE command is:

pause

When the PDM reads this command in a batch file or during a flow control com-
mand segment, the PDM stops execution and displays the following message:

<< pause – type return >>

To continue processing, press .

 Controlling PDM Command Execution

2-11 PDM Shell Commands

2.9 Controlling PDM Command Execution

You can control the flow of PDM commands in a batch file or interactively. With
the IF/ELIF/ELSE/ENDIF or LOOP/BREAK/CONTINUE/ENDLOOP flow-
control commands, you can conditionally execute debugger commands or set
up a looping situation, respectively.

� To conditionally execute PDM commands, use the IF/ELIF/ELSE/ENDIF
commands. The syntax is:

if expression
debugger commands
[elif expression
debugger commands]
[else
debugger commands]
endif

� If the expression for the IF is nonzero, the PDM executes all com-
mands between the IF and ELIF, ELSE, or ENDIF.

� The ELIF is optional. If the expression for the ELIF is nonzero, the
PDM executes all commands between the ELIF and ELSE or ENDIF.

� The ELSE is optional. If the expressions for the IF and ELIF (if present)
are false (zero), the PDM executes the commands between the ELSE
and ENDIF.

� To set up a looping situation to execute PDM commands, use the LOOP/
BREAK/CONTINUE/ENDLOOP commands. The syntax is:

loop Boolean expression
debugger commands
[break]
[continue]
endloop

The PDM version of the LOOP/ENDLOOP commands is different from the
debugger version of these commands. Instead of accepting any expres-
sion, the PDM version of the LOOP command evaluates only Boolean ex-
pressions. If the Boolean expression evaluates to true (1), the PDM
executes all commands between the LOOP and BREAK, CONTINUE, or
ENDLOOP. If the Boolean expression evaluates to false (0), the loop is not
entered.

Controlling PDM Command Execution

 2-12

� The optional BREAK command allows you to exit the loop without hav-
ing to reach the ENDLOOP. This is helpful when you are testing a
group of processors and want to exit if an error is detected.

� The CONTINUE command, which is also optional, acts as a goto and
returns command flow to the enclosing LOOP command. CONTINUE
is useful when the part of the loop that follows is complicated and re-
turning to the top of the loop avoids further nesting.

The flow-control commands can be entered interactively or included in a batch
file that is executed by the TAKE command. When you enter LOOP or IF from
the PDM command line, a question mark (?) prompts you for the next entry:

PDM:11>>if $i > 10
?echo ERROR IN TEST CASE
?endif
ERROR IN TEST CASE

PDM:12>>

The PDM continues to prompt you for input using the ? until you enter ENDIF
(for an IF statement) or ENDLOOP (for a LOOP statement). After you enter
ENDIF or ENDLOOP, the PDM immediately executes the IF or LOOP com-
mand.

If you are in the middle of interactively entering a LOOP or IF statement and
want to abort it, type CONTROL C .

The IF/ENDIF and LOOP/ENDLOOP commands can be used together to per-
form a series of tests. For example, within a batch file, you can create a loop
like the following:

set i = 10 Set the counter (i) to 10
loop $i > 0 Loop while i is greater than 0

.
test commands
.
if $k > 500 Test for error condition

echo ERROR ON TEST CASE 8 Display an error message
endif
.
@ i = $i – 1 Decrement the counter

endloop

You can record the results of this loop in a log file (refer to page 2-9) to ex-
amine which test cases failed during the testing session.

 Defining Your Own Command Strings

2-13 PDM Shell Commands

2.10 Defining Your Own Command Strings

The ALIAS command provides a shorthand method of entering often-used
commands or command sequences. The UNALIAS command deletes one or
more ALIAS definitions. The syntax for the PDM version of each of these com-
mands is:

alias [alias name [, ”command string”]]
unalias {alias name | *}

The PDM versions of the ALIAS and UNALIAS commands are similar to the
debugger versions of these commands. You can:

� Include several commands in the command string by separating the indi-
vidual commands with semicolons.

� Define parameters in the command string by using a percent sign and a
number (%1, %2, etc.) to represent a parameter whose value will be sup-
plied when you execute the aliased command.

� List all currently defined PDM aliases by entering ALIAS with no parame-
ters.

� Find the definition of a PDM alias by entering ALIAS with only an alias-
name parameter.

� Nest alias definitions.

� Redefine an alias.

� Delete a single PDM alias by supplying the UNALIAS command with an
alias name, or delete all PDM aliases by entering UNALIAS *.

Like debugger aliases, PDM alias definitions are lost when you exit the PDM.
However, individual commands within a PDM command string don’t have an
expanded-length limit.

For more information about these features, refer to the Defining Your Own
Command Strings section in your debugger user’s guide.

The PDM version of this command is especially useful for aliasing often-used
command strings involving the SEND and SET commands.

� You can use the ALIAS command to create PDM versions of debugger
commands. For example, the ML debugger command lists the memory
ranges that are currently defined. To make a PDM version of the ML com-
mand to list the memory ranges of all the debuggers in a particular group,
enter:

alias ml ”send –g %1 ml”

Defining Your Own Command Strings / Entering Operating-System Commands

 2-14

You could then list the memory maps of a group of processors such as
those in group GROUP1:

ml GROUP1

� The ALIAS command can be helpful if you frequently change the default
group. For example, suppose you plan to switch between two groups. You
can set up the following alias:

alias switch ”set dgroup $%1; set prompt %1”

The %1 parameter will be filled in with the group information that you enter
when you execute SWITCH. Notice that the %1 parameter is preceded by
a dollar sign ($) to set up the default group. The dollar sign tells the PDM to
evaluate (take the list of processor names defined in the group instead of
the actual group name). However, to change the prompt, you don’t want
the PDM to evaluate (use the processors associated with the group name
as the prompt)—you just want the group name. As a result, you don’t need
to use the dollar sign when you want to use only the group name.

Assume that GROUP3 contains CPU_A, CPU_B, and CPU_D. To make
GROUP3 the current default group and make the PDM prompt the same
name as your default group, enter:

switch GROUP3

This causes the default group (dgroup) to contain CPU_A, CPU_B, and
CPU_D, and changes the PDM prompt to GROUP3:x>>.

2.11 Entering Operating-System Commands

The SYSTEM command provides you with a method of entering operating-
system commands. The format for the PDM version of this command is:

system operating-system command

The SYSTEM command is similar to the debugger’s SYSTEM command, but
there are some differences.

� Similarities. You can enter operating-system commands without having
to leave the primary environment (in this case, the PDM) and without hav-
ing to open another operating-system window.

� Differences. Unlike the debugger version of the SYSTEM command:

� The PDM version of the SYSTEM command cannot be entered with-
out an operating-system command parameter. Therefore, you cannot
use the command to open a shell.

� There is no flag parameter; command output is always displayed in
the PDM window.

 Using the Command History

2-15 PDM Shell Commands

2.12 Using the Command History

The PDM supports a command history that is similar to the UNIX command
history. The PDM prompt identifies the number of the current command. This
number is incremented with every command. For example, PDM:12>> indi-
cates that eleven commands have previously been entered, and the PDM is
now ready to accept the twelfth command.

The PDM command history allows you to re-enter any of the last twenty com-
mands:

� To repeat the last command that you entered, type:

!!

� To repeat any of the last twenty commands, use the following command:

!number

The number is the number of the PDM prompt that contains the command
that you want to re-enter. For example,

PDM:100>>echo hello
hello
PDM:101>>echo goodbye
goodbye
PDM:102>> !100
echo hello
hello

Notice that the PDM displays the command that you are re-entering.

� An alternate way to repeat any of the last twenty commands is to use:

!string

This command tells the PDM to execute the last command that began with
string. For example,

PDM:103>>pstep –g GROUPA
PDM:104>>send –g GROUPA ?pc
[CPU_C] 0x40000000
[CPU_D] 0x40000004
PDM:103>>pstep –g GROUPB
PDM:104>>send –g GROUPB ?pc
[CPU_A] 0x4000001A
[CPU_E] 0x40000014
PDM:105>> !p
pstep –g GROUPB

� To see a list of the last twenty commands that you entered, type:

history

The command history for the PDM works differently from that of the debugger;
the TAB and F2 keys have no command-history meaning for the PDM.

 2-16

 Running Title—Attribute Reference

3-1 Chapter Title—Attribute Reference

Additional Help

This chapter summarizes the PDM commands and error messages.

Topic Page

3.1 Viewing the Description of a PDM Command 3-2

3.2 Summary of PDM Commands 3-3
Invocation commands 3-3
Group-definition commands 3-3
Execution-related commands 3-3
Shell commands 3-4

3.3 Alphabetical Summary of PDM Messages 3-5

Chapter 3

Viewing the Description of a PDM Command

 3-2

3.1 Viewing the Description of a PDM Command

You can use the HELP command to display the syntax and a brief description
of a specific command. The syntax for the HELP command is:

help [command]

If you omit the command parameter, the PDM lists all of the available com-
mands.

 Summary of PDM Commands

3-3 Additional Help

3.2 Summary of PDM Commands

This section provides a quick reference to the PDM commands. Refer to the
page numbers listed in the tables for more information about these com-
mands.

Invocation commands

To do this Use this command
See
page

Exit any debugger and/or the PDM quit 1-18

Invoke a ’C4x debugger spawn emu4x –n name [filename] [options] 1-9

Invoke a ’C5x debugger spawn emu5x –n name [filename] [options] 1-9

Invoke the PDM pdm 1-8

Group-definition commands

To do this Use this command
See
page

Define a group of processors set group name = list of processors 1-13

Delete a group unset {group name | *} 1-15

List all groups of processors set 1-15

Set the default group set dgroup = list of processors 1-13

Execution-related commands

To do this Use this command
See
page

Find the execution status of a processor
or a group of processors

stat [–g {group | processor name}] 1-17

Global halt phalt [–g {group | processor name}] 1-17

Halt code execution pesc [–g {group | processor name}] 1-17

Run code globally under the control of
the emulator

prun [–r] [–g {group | processor name}] 1-16

Single-step globally pstep [–g {group | processor name}] [count] 1-16

Start the processors running free prunf [–g {group | processor name}] 1-16

Summary of PDM Commands

 3-4

Shell commands

To do this Use this command
See
page

Assign a variable to the result of an
expression

@ variable name = expression 2-5

Change the PDM prompt set prompt = new prompt 2-5

Conditionally execute PDM commands if expression
debugger commands
[elif expression
debugger commands]
[else
debugger commands]
endif

2-11

Create your own system variables set variable name = string 2-4

Define a custom command string alias [alias name [, ” command string”]] 2-13

Delete a system variable unset {variable name | *} 2-6

Delete an alias definition unalias {alias name | *} 2-13

Display a string to the PDM display area echo string 2-10

Enter an operating-system command system operating-system command 2-14

Evaluate an expression in a debugger or
group of debuggers and set a variable to
the result of the expression

eval [–g {group | processor}] variable=expr[, format] 2-7

Execute a batch file take batch filename 2-8

List the last twenty commands history 2-15

Loop through PDM commands loop Boolean expression
debugger commands
[break]
[continue]
endloop

2-11

Pause the PDM pause 2-10

Record the information shown in the
PDM display area

dlog filename [, {a | w}] 2-9

Send a debugger command to an
individual processor or a group of
processors

send [–r] [{–g group | processor name}] debugger cmd 2-3

Use the command history !{prompt number | string} 2-15

View the description of a PDM command help [command] 3-2

 Alphabetical Summary of PDM Messages

3-5 Additional Help

3.3 Alphabetical Summary of PDM Messages

This section contains an alphabetical listing of the error messages that the
PDM might display. Each message contains both a description of the situation
that causes the message and an action to take.

Note: Errors in Batch Files

If errors are detected in a TAKE file, the PDM aborts the batch file execution,
and the file line number of the invalid command is displayed along with the
error message.

C

Cannot communicate with “name”

Description The PDM cannot communicate with the named debugger, be-
cause the debugger either crashed or was exited.

Action Spawn the debugger again.

Cannot communicate with the child debugger

Description This error occurs when you are spawning a debugger. The
PDM was able to find the debugger executable file, but the de-
bugger could not be invoked for some reason, and the com-
munication between the debugger and PDM was never es-
tablished. This usually occurs when you have a problem with
your target system.

Action Exit the PDM and go back though the installation instructions
in the installation guide. Re-invoke the PDM and try to spawn
the debugger again.

Cannot create mailbox

Description The PDM was unable to create a mailbox for the new debug-
ger that you were trying to spawn; the PDM must be able to
create a mailbox in order to communicate with each debug-
ger. This message usually indicates a resource limitation (you
have more debuggers invoked than your system can handle).

Action If you have numerous debuggers invoked and you’re not us-
ing all of them, close some of them. If you are under a UNIX
environment, use the ipcs command to check your message
queues; use ipcrm to clean up the message queues.

Alphabetical Summary of PDM Messages

 3-6

Cannot open log file

Description The PDM cannot find the filename that you supplied when you
entered the DLOG command.

Action � Be sure that the file resides in the current directory or in
one of the directories specified by the D_DIR environ-
ment variable.

� Check to see if you mistyped the filename.

Cannot open take file

Description The PDM cannot find the batch filename supplied for the
TAKE command. You will also see this message if you try to
execute a batch file that does not have a .pdm extension.

Action � Be sure that the file resides in the current directory or in
one of the directories specified by the D_DIR environ-
ment variable.

� Check to see if you mistyped the filename.

� Be sure that the batch filename has a .pdm extension.

� Be sure that the file has executable rights.

Cannot open temporary file

Description The PDM is unable create a temporary file in the current direc-
tory.

Action Change the permissions of the current directory.

Cannot seek in file

Description While the PDM was reading a file, the file was deleted or mo-
dified.

Action Be sure that files the PDM reads are not deleted or modified
during the read.

 Alphabetical Summary of PDM Messages

3-7 Additional Help

Cannot spawn child debugger

Description The PDM couldn’t spawn the debugger that you specified, be-
cause the PDM couldn’t find the debugger executable file
(emu4x or emu5x). The PDM will first search for the file in the
current directory and then search the directories listed with
the PATH statement.

Action Check to see if the executable file is in the current directory or
in a directory that is specified by the PATH statement. Modify
the PATH statement if necessary, or change the current direc-
tory.

Command error

Description The syntax for the command that you entered was invalid (for
example, you used the wrong options or arguments).

Action Re-enter the command with valid parameters. Refer to the
command summary in Section 3.2 for a complete list of com-
mands and their syntaxes.

D

Debugger spawn limit reached

Description The PDM spawned the maximum number of debuggers that it
can keep track of in its internal tables. The maximum number
of debuggers that the PDM can track is 2048. However, your
system may not have enough resources to support that many
debuggers.

Action Before trying to spawn an additional debugger, close any de-
buggers that you don’t need to run.

Alphabetical Summary of PDM Messages

 3-8

I

Illegal flow control
Description One of the flow control commands (IF/ELIF/ELSE/ENDIF or

LOOP/BREAK/CONTINUE/ENDLOOP) has an error. This
error usually occurs when there is some type of imbalance in
one of these commands.

Action Check the flow command construct for such problems as an
IF without an ENDIF, a LOOP without an ENDLOOP, or a
BREAK that does not appear between a LOOP and an
ENDLOOP. Edit the batch file that contains the problem flow
command, or interactively re-enter the correct command.

Input buffer overflow
Description The PDM is trying to execute or manipulate an alias or shell

variable that has been recursively defined.

Action Use the SET and/or ALIAS commands to check the defini-
tions of your aliases and system variables. Modify them as
necessary.

Invalid command
Description The command that you entered was not valid.

Action Refer to the command summary in Section 3.2 for a complete
list of commands and their syntax.

Invalid expression
Description The expression that you used with a flow control command or

the @ command is invalid. You may see specific messages
before this one that provide more information about the prob-
lem with the expression. The most common problem is the
failure to use the $ character when evaluating the contents of
a system variable.

Action Check the expression that you used. Refer to Section 2.1,
page 2-2, for more information about expression analysis.

Invalid shell variable name
Description The system variable name that you used the SET command

to assign is invalid. Variable names can contain any alphanu-
meric characters or underscore characters.

Action Use a different name.

 Alphabetical Summary of PDM Messages

3-9 Additional Help

M

Maximum loop depth exceeded

Description The LOOP/ENDLOOP command that you tried to execute
had more than 10 nested LOOP/ENDLOOP constructs.
LOOP/ENDLOOP constructs can be nested up to 10 deep.

Action Edit the batch file that contains the LOOP/ENDLOOP
construct, or re-enter the LOOP/ENDLOOP command inter-
actively.

Maximum take file depth exceeded

Description The batch file that you tried to execute with the TAKE com-
mand called or nested more than 10 other batch files. The
TAKE command can handle only batch files that are nested
up to 10 deep.

Action Edit the batch file.

U

Unknown processor name “name”

Description The processor name that you specified with the –g option or a
processor name within a group that you specified with the –g
option does not match any of the names of the debuggers that
were spawned under the PDM.

Action Be sure that you’ve correctly entered the processor name.

 3-10

 Index

Index-1

Index

! command 2-15
@ command 2-5

A
ALIAS command 2-13 to 2-14
aliasing 2-13 to 2-14

B
–b debugger option 1-10
batch files

board.cfg 1-2 to 1-6
sample 1-3, 1-5

board.dat 1-2 to 1-6
controlling command execution 2-11 to 2-12

conditional commands 2-11 to 2-12
looping commands 2-11 to 2-12

displaying text when executing 2-10
echoing messages 2-10
errors 3-5
init.pdm 1-8
TAKE command 2-8

board configuration
creating the file 1-2 to 1-5
naming an alternate file 1-6, 1-10
specifying the file 1-6
translating the file 1-6

board.cfg file 1-2 to 1-6
device names 1-4
device types

BYPASS## 1-4
SPL 1-4
TI320C4x 1-4
TI320C5x 1-4

sample 1-3, 1-5
translating 1-6
types of entries 1-3 to 1-5

board.dat file 1-2 to 1-6
default 1-2

BREAK command 2-11 to 2-12
BYPASS## device type 1-4

C
closing

debugger 1-18
log files 2-9
PDM 1-18

command history 2-15
commands

command strings 2-13 to 2-14
conditional commands 2-11 to 2-12
controlling command execution

conditional commands 2-11 to 2-12
looping commands 2-11 to 2-12

customizing 2-13 to 2-14
looping commands 2-11 to 2-12
PDM commands 3-3 to 3-4
system commands 2-14

composer utility 1-6
conditional commands 2-11 to 2-12
CONTINUE command 2-11 to 2-12

D
D_DIR environment variable 1-8
D_OPTIONS environment variable 1-7, 1-9

ignoring 1-10, 1-11
D_SRC environment variable 1-7, 1-9
data-management commands

EVAL command 2-7
debugger

exiting 1-18
installation

describing the target system 1-2 to 1-6

Index

Index-2

debugger (continued)
invocation

options 1-10 to 1-11
standalone 1-7
under PDM control 1-9 to 1-11

default
group 1-14

device name 1-4

device types
BYPASS## 1-4
SPL 1-4
TI320C4x 1-4
TI320C5x 1-4

display area
recording information from 2-9

display formats
EVAL command 2-7

DLOG command
ending recording session 2-9
PDM version 2-9
starting recording session 2-9

E
ECHO command 2-10

ELIF command 2-11 to 2-12

ELSE command 2-11 to 2-12

emu4x command 1-7, 1-9
options 1-7

–b 1-10
–f 1-10
–i 1-10, 1-11
–n 1-7
–s 1-10, 1-11
–t 1-10, 1-11
–v 1-10, 1-11
–x 1-10, 1-11

emu5x command 1-7, 1-9
options 1-7

–b 1-10
–f 1-10
–i 1-10, 1-11
–n 1-7
–s 1-10, 1-11
–t 1-10, 1-11
–v 1-10, 1-11
–x 1-10, 1-11

emulator
describing the target system to the debug-

ger 1-2 to 1-6
creating the board configuration file 1-2 to

1-5
specifying the file 1-6
translating the file 1-6

invoking the debugger
standalone 1-7
under PDM control 1-9 to 1-11

ENDIF command 2-11 to 2-12
ENDLOOP command 2-11 to 2-12
entering commands

from the PDM 1-8, 1-12
environment variables

D_DIR 1-8
D_OPTIONS 1-7, 1-9, 1-10, 1-11
D_SRC 1-7, 1-9
for debugger options 1-7, 1-9

error messages 3-5 to 3-9
EVAL command 2-7

display formats 2-7
executing code

checking execution status 2-6
finding execution status 1-17

execution
pausing 2-10

exiting the debugger 1-18
expressions

evaluating 2-7
by the PDM 2-2

operators 2-2

F
–f debugger option 1-6, 1-10
files

log files 2-9

G
groups

adding a processor 1-14
commands

SET command 1-13 to 1-15
UNSET command 1-15

defining 1-13 to 1-15
deleting 1-15

 Index

Index-3

groups (continued)
examples 1-13
identifying 1-12 to 1-15
listing all groups 1-15
setting default 1-14

H
halting

debugger 1-18
PDM 1-18
processors in parallel 1-17
program execution 1-18

HELP command 3-2

history
of commands 2-15

I
–i debugger option 1-10, 1-11

IF/ELIF/ELSE/ENDIF commands 2-11 to 2-12

init.pdm file 1-8

initialization batch files
init.pdm 1-8
naming an alternate file 1-10, 1-11

invoking
debugger

standalone 1-7
under PDM control 1-9 to 1-11

parallel debug manager 1-8

K
key sequences

halting actions 1-16, 2-3

L
loading, object code

while invoking the debugger 1-7, 1-9

log files 2-9

LOOP command 2-11 to 2-12

LOOP/BREAK/CONTINUE/ENDLOOP com-
mands 2-11 to 2-12

looping commands 2-11 to 2-12

M
messages 3-5 to 3-9

N
–n debugger option 1-7, 1-9, 1-12

O
object files, loading 1-7, 1-9

symbol table only 1-10, 1-11
while invoking the debugger 1-7, 1-9

operators 2-2

P
parallel debug manager

adding a processor to a group 1-14
assigning processor names 1-12

–n option 1-9, 1-12
changing the PDM prompt 2-5
checking the execution status 2-6
closing 1-18
command history 2-15
commands 3-3 to 3-4

! command 2-15
@ command 2-5
ALIAS command 2-13 to 2-14
DLOG command 2-9
ECHO command 2-10
EVAL command 2-7
HELP command 3-2
IF/ELIF/ELSE/ENDIF commands 2-11 to

2-12
LOOP/BREAK/CONTINUE/ENDLOOP com-

mands 2-11 to 2-12
PAUSE command 2-10
PDM command 1-8
PESC command 1-17
PHALT command 1-17
PRUN command 1-16
PRUNF command 1-16
PSTEP command 1-16
QUIT command 1-18
SEND command 2-3
SET command 1-13 to 1-15

creating system variables 2-4 to 2-5
SPAWN command 1-9 to 1-11

Index

Index-4

parallel debug manager, commands (continued)
STAT command 1-17, 2-6
SYSTEM command 2-14
TAKE command 2-8
UNALIAS command 2-13 to 2-14
UNSET command 1-15

deleting system variables 2-6
viewing descriptions 3-2

controlling command execution 2-11 to 2-12
creating system variables 2-4 to 2-5

concatenating strings 2-4
substituting strings 2-5

defining a group 1-13 to 1-14
deleting a group 1-15

UNSET command 1-15
deleting system variables 2-6
displaying text strings 2-10
expression analysis 2-2
finding the execution status 1-17
getting started 1-1 to 1-18
global halt 1-17
grouping processors 1-12 to 1-15

example 1-13
SET command 1-13 to 1-15

halting code execution 1-17
invoking 1-8
listing all groups of processors 1-15
listing system variables 2-6
messages 3-5 to 3-9
overview 1-8
pausing 2-10
recording information from the display area 2-9
running code 1-16
running free 1-16
sending commands to debuggers 2-3
setting the default group 1-14
single-stepping through code 1-16
supported operating systems 1-8
system variables 2-4 to 2-6
using with UNIX 1-8

parallel processing development system
default configuration file 1-2

parameters
emu4x command 1-7
emu5x command 1-7
SPAWN command 1-9 to 1-11

PATH statement 1-9

PAUSE command 2-10

PDM command 1-8

PESC command 1-17

PHALT command 1-17

processors
assigning names 1-12
organizing into groups 1-13 to 1-15

program execution
halting 1-18

PRUN command 1-16

PRUNF command 1-16

PSTEP command 1-16
with breakpoints 1-16

Q
QUIT command 1-18

R
run commands

PRUN command 1-16
PRUNF command 1-16
PSTEP command 1-16

S
–s debugger option 1-10, 1-11

scan path linker 1-3
device type 1-4
example 1-5

SEND command 2-3

SET command 1-13 to 1-15
adding processors to a group 1-14
changing the PDM prompt 2-5
creating system variables 2-4 to 2-5

concatenating strings 2-4
substituting strings 2-5

defining a group 1-13 to 1-14
defining the default group 1-14
listing all groups 1-15
listing system variables 2-6

single-step
commands, PSTEP command 1-16
execution, in parallel 1-16

with breakpoints 1-16
SLOAD command

–s debugger option 1-10, 1-11

 Index

Index-5

SPAWN command 1-9 to 1-11
options 1-9 to 1-11

–b 1-10
–f 1-10
–i 1-10, 1-11
–n 1-9
–s 1-10, 1-11
–t 1-10, 1-11
–v 1-10, 1-11
–x 1-10, 1-11

SPL device type 1-4

STAT command 1-17, 2-6

symbol table
loading without object code 1-10, 1-11

SYSTEM command 2-14

system commands 2-14
ALIAS command 2-13 to 2-14
DLOG command 2-9
ECHO command 2-10
IF/ELIF/ELSE/ENDIF commands 2-11 to 2-12
LOOP/BREAK/CONTINUE/ENDLOOP com-

mands 2-11 to 2-12
QUIT command 1-18
TAKE command 2-8
UNALIAS command 2-13 to 2-14

T
–t debugger option 1-10, 1-11

TAKE command 2-8
executing log file 2-9

target system
describing to the debugger 1-2 to 1-6

creating the board configuration file 1-2 to
1-5

specifying the file 1-6
translating the file 1-6

terminating the debugger 1-18
TI320C4x device type 1-4
TI320C5x device type 1-4

U
UNALIAS command 2-13 to 2-14
UNIX

using with the PDM 1-8
UNSET command 1-15

deleting system variables 2-6 to 2-16

V
–v debugger option 1-10, 1-11
variables 2-4 to 2-6

assigning to the result of an expression 2-5

X
–x debugger option 1-10, 1-11

Index-6

