

�	������ �������

Installation
Guide

1993 Microprocessor Development Systems

Printed in U.S.A., April 1993
SDS

SPRU125B

-1

�
������� �������

	��������� �����

April 1993

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to
discontinue any semiconductor product or service without notice, and advises its customers to
obtain the latest version of relevant information to verify, before placing orders, that the
information being relied on is current.

TI warrants performance of its semiconductor products and related software to current
specifications in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices,
or systems. Use of TI product in such applications requires the written approval of the
appropriate TI officer. Certain applications using semiconductor devices may involve potential
risks of personal injury, property damage, or loss of life. In order to minimize these risks,
adequate design and operating safeguards should be provided by the customer to minimize
inherent or procedural hazards. Inclusion of TI products in such applications is understood to be
fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

WARNING

This equipment is intended for use in a laboratory test environment only. It generates, uses, and
can radiate radio frequency energy and has not been tested for compliance with the limits of
computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide
reasonable protection against radio frequency interference. Operation of this equipment in other
environments may cause interference with radio communications, in which case the user at his
own expense will be required to take whatever measures may be required to correct this
interference.

TRADEMARKS

MS-DOS and MS-Windows are registered trademarks of Microsoft Corp.

OS/2 and PC-DOS are trademarks of International Business Machines Corp.

Copyright 1993, Texas Instruments Incorporated

 Contents

iii Contents

Contents

1 Installing the Emulator and C Source Debugger With OS/2 1-1.

Lists the hardware and software you’ll need to install the emulator board and C source debugger; provides
installation instructions for PC systems running OS/2.

1.1 What You’ll Need 1-2.
Hardware checklist 1-2.
Software checklist 1-3.

1.2 Step 1: Installing the Emulator Board in Your PC 1-4.
Preparing the emulator board for installation 1-4.
Setting the emulator board into your PC 1-6.

1.3 Step 2: Connecting the Emulator to Your Target System 1-8.
1.4 Step 3: Installing the Debugger Software 1-9.
1.5 Step 4: Setting Up the Debugger Environment 1-9.

Invoking the new or modified batch file 1-10.
Modifying the PATH statement 1-11.
Setting up the environment variables 1-11.
Identifying the correct I/O switches 1-12.
Setting the IOPL option 1-13.
Resetting the emulator 1-13.

1.6 Step 5: Describing Your Target System to the Debugger 1-15.
1.7 Step 6: Verifying the Installation 1-16.

Installation error messages 1-17.

2 Installing the Emulator and C Source Debugger With DOS 2-1.

Lists the hardware and software you’ll need to install the emulator board and C source debugger; provides
installation instructions for PC systems running MS-DOS, PC-DOS, or Microsoft Windows.

2.1 What You’ll Need 2-2.
Hardware checklist 2-2.
Software checklist 2-3.

2.2 Step 1: Installing the Emulator Board in Your PC 2-4.
Preparing the emulator board for installation 2-4.
Setting the emulator board into your PC 2-6.

2.3 Step 2: Connecting the Emulator to Your Target System 2-8.
2.4 Step 3: Installing the Debugger Software 2-9.

Contents

iv

2.5 Step 4: Setting Up the Debugger Environment 2-9.
Invoking the new or modified batch file 2-10.
Modifying the PATH statement 2-11.
Setting up the environment variables 2-11.
Identifying the correct I/O switches 2-12.
Resetting the emulator 2-12.

2.6 Step 5: Verifying the Installation 2-13.
Installation error messages 2-14.

2.7 Using the Debugger With Microsoft Windows 2-15.

3 Specification for Your Target System’s Connection to the Emulator 3-1.

Contains information about constructing a 14-pin connector on your target system and information about
connecting the emulator to target system.

3.1 Designing Your Target System’s Emulator Connector (14-pin Header) 3-2.
3.2 Bus Protocol 3-3.
3.3 Emulator Cable Pod Logic 3-4.
3.4 Emulator Cable Pod Signal Timing 3-6.
3.5 Buffering Signals Between the Emulator and the Target System 3-7.
3.6 Emulation Timing Calculations 3-10.
3.7 Mechanical Dimensions for the 14-Pin Emulator Connector 3-13.

1-1 Chapter Title—Attribute Reference

Installing the Emulator and
C Source Debugger With OS/2

This chapter helps you to install the ’C5x emulator board and the C source
debugger on a PC system running OS/2. When you complete the installation,
turn to the TMS320C5x C Source Debugger User’s Guide.

Topic Page

1.1 What You’ll Need 1-2
Hardware checklist 1-2
Software checklist 1-3

1.2 Step 1: Installing the Emulator Board in Your PC 1-4
Preparing the emulator board for installation 1-4
Setting the emulator board into your PC 1-6

1.3 Step 2: Connecting the Emulator to Your Target System 1-8

1.4 Step 3: Installing the Debugger Software 1-9

1.5 Step 4: Setting Up the Debugger Environment 1-9
Invoking the new or modified batch file 1-10
Modifying the PATH statement 1-11
Setting up the environment variables 1-11
Identifying the correct I/O switches 1-12
Setting the IOPL option 1-13
Resetting the emulator 1-13

1.6 Step 5: Describing Your Target System to the Debugger 1-15

1.7 Step 6: Verifying the Installation 1-16
Installation error messages 1-17

Chapter 1

What You’ll Need

 1-2

1.1 What You’ll Need

The following checklists detail items that are shipped with the ’C5x C source
debugger and emulator and additional items you’ll need to use these tools.

Hardware checklist

host An IBM PC/AT or 100% compatible ISA/EISA-based PC with a hard-
disk system and a 1.2-megabyte floppy-disk drive

memory Minimum of 8 megabytes

display Monochrome or color (color recommended)

slot One 16-bit slot

emulator board
power requirements

Approximately 1 ampere @ 5 volts (5 watts)

target system A board with at least one ’C5x on the emulator scan path

connector to
target system

14-pin connector (two rows of seven pins)—see Chapter 3 of this
book for more information about this connector

optional hardware A Microsoft-compatible mouse

An EGA- or VGA-compatible graphics display card and a large mon-
itor. The debugger has two options that allow you to change the
overall size of the debugger display. If you have an EGA- or
VGA-compatible graphics card, you can take advantage of some of
these larger screen sizes. These larger screen sizes are most effec-
tive when used with a large (17” or 19”) monitor. (To use a larger
screen size, you must invoke the debugger with the appropriate op-
tion. For more information about options, refer to the invocation sec-
tion in Chapter 1, Overview of a Code Development and Debugging
System, in the TMS320C5x C Source Debugger User’s Guide.)

miscellaneous
materials

Blank, formatted disks

Notes:

The speed at which your system operates depends on the amount of RAM
available on your PC and the number of debuggers running simultaneously.

 What You’ll Need

1-3 Installing the Emulator and C Source Debugger With OS/2

Software checklist

operating system OS/2 (version 1.1 or later)

software tools TMS320 fixed-point family DSP (’C1x/’C2x/’C5x) assembler and
linker and TMS320C2x/C5x C compiler

required files † emurst.exe resets the ’C5x emulator

† board.dat describes your target system to the debugger

optional files † emuinit.cmd is a general-purpose batch file that contains debugger
commands. The version of this file that’s shipped with the debugger
defines a ’C5x memory map. If this file isn’t present when you first
invoke the debugger, then all memory is invalid at first. When you
first start using the debugger, this memory map should be sufficient
for your needs. Later, you may want to define your own memory
map. For information about setting up your own memory map, refer
to Chapter 5, Defining a Memory Map, in the TMS320C5x C Source
Debugger User’s Guide.

† board.cfg is the default name for the text file that describes your tar-
get system to the debugger. If you plan to create target system that
contains anything other than a single ’C5x, you must make a text file
that describes the target system. Once you have created the file,
you must translate it to a binary, conditioned format so that the de-
bugger can understand it; this reformatted file is called board.dat.

Refer to the Parallel Debug Manager Addendum to the TMS320C4x
and TMS320C5x C Source Debugger User’s Guides for more in-
formation about creating and translating a board configuration file.

† composer.exe is the utility that translates the board.cfg file to a
binary, conditioned format.

† init.clr is a general-purpose screen configuration file. If this file isn’t
present when you invoke the debugger, the debugger uses the
default screen configuration.

† The default configuration is for color monitors; an additional file,
mono.clr, can be used with monochrome monitors. When you first
invoke the debugger, the default screen configuration should be
sufficient for your needs. Later, you may want to define your own
custom configuration.

For information about the screen configuration files and about set-
ting up your own screen configuration, refer to Chapter 9, Customiz-
ing the Debugger Display, in the TMS320C5x C Source Debugger
User’s Guide.

† Included as part of the debugger package

Step 1: Installing the Emulator Board in Your PC

 1-4

1.2 Step 1: Installing the Emulator Board in Your PC

This section contains the hardware installation information for the emulator.

Preparing the emulator board for installation

Before you install the emulator board, you must be sure that the board’s
switches are set to correctly identify the I/O space that the board can use.The
emulator uses 32 bytes of the PC I/O space; two switches on the board identify
this space.

Figure 1–1 shows where these switches are on the emulator board and identi-
fies the switch numbers.

Figure 1–1. Emulator Board I/O Switches

 1 2

on

off

’C5x emulator

default switch settings

Switches are shipped in the default settings shown here and are listed in
Table 1–1. If you use an I/O space that differs from the default, change the
switch settings. Table 1–1 also shows alternate settings.

In most cases, you can leave the switch settings in the default position.
However, you must ensure that the ’C5x emulator I/O space does not conflict
with other bus settings. For example, if you’ve installed a bus mouse in your
system, you may not be able to use the default switch settings for the I/O ad-
dress space—the mouse might use this space. Refer to your PC technical ref-
erence manual and your other hardware-board manuals to see if there are any
I/O space conflicts. If you find a conflict, use one of the alternate settings
shown in Table 1–1.

 Step 1: Installing the Emulator Board in Your PC

1-5 Installing the Emulator and C Source Debugger With OS/2

Table 1–1. Emulator Board Switch Settings

switch #

Address Range 1 2

0x0240–0x025F on on

0x0280–0x029F on off

0x0320–0x033F off on

0x0340–0x035F off off

Some of the other installation steps require you to know which switch settings
you used. If you reset the I/O switches, note the modified settings here for later
reference.

Table 1–2.Your Switch Settings

Switch #

Address Range 1 2

default

Step 1: Installing the Emulator Board in Your PC

 1-6

Setting the emulator board into your PC

After you’ve prepared the emulator board for installation, follow these steps.

Step 1: Turn off your PC’s power. Leave the power cord plugged in so that
the computer is properly grounded.

Step 2: Remove the cover of your PC.

Step 3: Remove the mounting bracket from an unused 16-bit slot.

Step 4: Install the emulator board in a 16-bit slot (see Figure 1–2).

Figure 1–2. Emulator Installation

mounting bracket

emulator board

16-bit slot

rear of computer

Step 5: Tighten down the mounting bracket.

Step 6: Plug the emulator target cable into the emulator board (see
Figure 1–3). The cable is a 25-pin DSUB connector, shaped to en-
sure proper connection.

Step 7: Replace the PC cover.

Step 8: Turn on the PC’s power.

 Step 1: Installing the Emulator Board in Your PC

1-7 Installing the Emulator and C Source Debugger With OS/2

Figure 1–3. Connecting the Target Cable to the ’C5x Emulator Board

14-pin keyed connector
(connects to target system)

target cable

’C5x emulator board

active buffer pod

X
D

S
510

emulator connection

target cable connection

Don’t connect or disconnect the target cable while the PC is powered
up.

Be very careful with the target cable connectors. Connect them
gently; forcing the connectors into position may damage them.

Remember, the connector is keyed. Be sure to connect the cable so
that the key fits into its slot.

Step 2: Connecting the Emulator to Your Target System

 1-8

1.3 Step 2: Connecting the Emulator to Your Target System

Figure 1–4 shows a typical setup using the emulator, target cable, and your
target system.

Figure 1–4. Typical Setup Using the ’C5x Emulator and Your Target System

target system
14-pin connector

active buffer pod

target cable

’C5x

Figure 1–5 shows how you connect the emulator and target cable to your
target system. In most cases, the target system will be a ’C5x board of your
own design.

Figure 1–5. Connecting the ’C5x Emulator to Your Target System

14-pin keyed connector

target cable
’C5x emulator board

active buffer pod

X
D

S
510

’C5x

’C5x target system

14-pin keyed header

 Step 3: Installing the Debugger Software / Step 4: Setting Up the Debugger Environment

1-9 Installing the Emulator and C Source Debugger With OS/2

1.4 Step 3: Installing the Debugger Software

This section explains the process of installing the debugger software on a
hard-disk system.

1) Make a backup copy of the OS/2 debugger product disk. (If necessary, re-
fer to the OS/2 manual that came with your computer.)

2) On your hard disk or system disk, create a directory named c5xhll. This
directory will contain the ’C5x C source debugger software. To create this
directory, enter:

MD C:\C5XHLL

3) Insert the OS/2 debugger product disk into drive A. Copy the contents of
the disk:

COPY A:*.* C:C5XHLL /V

The OS/2 version of the debugger executable is called emu5xo.exe. If you
don’t plan to install the DOS or Microsoft Windows version of the debugger
software in the c5xhll directory, you can rename the OS/2 version of the
executable to emu5x.exe.

4) Include one entry for each ’C5x debugger on your scan path in either your
Start Programs menu or a Group menu. (Refer to your OS/2 manual for
instructions on adding a new program to your Start Programs or Group
menu.)

1.5 Step 4: Setting Up the Debugger Environment

To ensure that your debugger works correctly, you must:

� Modify the PATH statement to identify the c5xhll directory.
� Define environment variables so that the debugger can find the files it

needs.
� Identify any nondefault I/O space used by the emulator.
� Set the IOPL option. (This can be done only in your config.sys file.)
� Reset the emulator board.

Not only must you do these things before you invoke the debugger for the first
time, you must do them any time you power up or reboot your PC.

You can accomplish most of these tasks by entering individual OS/2 com-
mands, but it’s simpler to put the commands in your config.sys file or a sepa-
rate batch file.

Step 4: Setting Up the Debugger Environment

 1-10

Figure 1–6 (a) shows an example of a config.sys file that contains the sug-
gested modifications (highlighted in bold type). Figure 1–6 (b) shows a sample
batch file that you could create instead of editing the config.sys file. (For the
purpose of discussion, assume that this sample file is named initdb.cmd.) The
subsections following the figure explain these modifications.

Figure 1–6. OS/2 Command Setup for the Debugger

(a) Sample config.sys file to use with the debugger and emulator

PATH = C:\OS2\SYSTEM;C:\C5XTOOLS; C:\C5XHLL

SET D_DIR=C:\C5XHLL

SET D_SRC=C:\C5XSRC;C:\PROJECT\SOURCE

SET D_OPTIONS= –P 280

SET C_DIR=C:\C5XTOOLS

IOPL = YES

RUN = C:\C5XHLL\EMURST.EXE
Set IOPL to yes

Environment
variables and
I/O space

PATH statement

Reset the
emulator

(b) Sample initdb.cmd file to use with the debugger and emulator

PATH = %PATH%; C:\C5XHLL

SET D_DIR=C:\C5XHLL

SET D_SRC=C:\C5XSRC;C:\PROJECT\SOURCE

SET D_OPTIONS= –P 280

SET C_DIR=C:\C5XTOOLS

EMURST

Environment
variables and
I/O space

PATH statement

Reset the
emulator

Invoking the new or modified batch file

� If you modify the config.sys file, be sure to invoke it before invoking the
debugger for the first time. To invoke this file, reboot your PC.

� If you create an initdb.cmd file, you must invoke it before invoking the
debugger for the first time. After that, you’ll need to invoke initdb.cmd for
each session in which you want to use the debugger. To invoke this file,
enter:

INITDB

 Step 4: Setting Up the Debugger Environment

1-11 Installing the Emulator and C Source Debugger With OS/2

Modifying the PATH statement

Define a path to the debugger directory. The general format for doing this is:

PATH=C:\C5XHLL; path2 ; path3 ;. . .

This allows you to invoke the debugger without specifying the name of the
directory that contains the debugger executable file.

� If you are modifying your config.sys file and it already contains a PATH
statement, simply include ;C:\c5xhll at the end of the statement, as shown
in Figure 1–6 (a).

� If you are creating an initdb.cmd file, include %path%; at the front of your
PATH statement, as shown in Figure 1–6 (b).

Note:

Creating an initdb.cmd file to modify your path statement has its limitations.
The new path statement is active only within the window in which you invoked
initdb.cmd. Ideally, your path statement should be set in your config.sys file.

Setting up the environment variables

An environment variable is a special system symbol that the debugger uses
for finding or obtaining certain types of information. The debugger uses three
environment variables named D_DIR, D_SRC, and D_OPTIONS. The next
three steps tell you how to set up these environment variables. The format for
doing this is the same for both the config.sys and initdb.cmd files.

� Set up the D_DIR environment variable to identify the c5xhll directory:

SET D_DIR=C:\C5XHLL

(Be careful not to precede the equal sign with a space.)

These directories contain auxiliary files (such as emuinit.cmd) that the
debugger needs.

� Set up the D_SRC environment variable to identify any directories that
contain program source files that you’ll want to look at while you’re debug-
ging code. The general format for doing this is:

SET D_SRC=pathname1;pathname2...

(Be careful not to precede the equal sign with a space.)

For example, if your ’C5x programs were in a directory named csource on
drive C, the D_SRC setup would be:

SET D_SRC=C:\CSOURCE

Step 4: Setting Up the Debugger Environment

 1-12

� You can use several options when you invoke the debugger. If you use the
same options over and over, it’s convenient to specify them with
D_OPTIONS. The general format for doing this is:

SET D_OPTIONS= [object filename] [debugger options]

(Be careful not to precede the equal sign with a space.)

This tells the debugger to load the specified object file and use the
selected options each time you invoke the debugger. These are the
options that you can identify with D_OPTIONS:

–b –bb –f filename –i pathname
–n device name –p port address –profile –s
–t filename –v

Note that you can override D_OPTIONS by invoking the debugger with the
–x option.

For more information about options, refer to the invocation instructions in
Chapter 1, Overview of a Code Development and Debugging System, in
the TMS320C5x C Source Debugger User’s Guide.

Note:

Setting environment variables in the initdb.cmd file has its limitations. The
new environment variables are active only within the window in which you
invoked initdb.cmd. Ideally, your environment variables should be set in your
config.sys file.

Identifying the correct I/O switches

Refer to your entries in Table 1–2 (page 1-5). If you didn’t modify the I/O
switches, you can skip this step.

If you modified the I/O switch settings, you must use the debugger’s –p option
to identify the I/O space that the emulator is using. You can do this each time
you invoke the debugger, or you can specify this information by using the
D_OPTIONS environment variable. Table 1–3 lists the I/O nondefault switch
setting and the appropriate line that you can add to the config.sys or initdb.cmd
file.

Table 1–3. Identifying Nondefault I/O Address Space

switch # Add this line to the

Address Range 1 2 batch file

0x0280–0x029F on off SET D_OPTIONS=–p 280

0x0320–0x033F off on SET D_OPTIONS=–p 320

0x0340–0x035F off off SET D_OPTIONS=–p 340

 Step 4: Setting Up the Debugger Environment

1-13 Installing the Emulator and C Source Debugger With OS/2

Setting the IOPL option

You must override the default IOPL setting. IOPL is an OS/2-specific option
that prevents you from accessing your emulator. To override the default set-
ting, set IOPL to YES by adding the following line to your config.sys file:

IOPL=YES

Note:

You must set the IOPL option in the config.sys file; you cannot access it in
any other way.

Resetting the emulator

You must reset the emulator before invoking the debugger. Reset can occur
only after you have powered up the target board. You can reset the emulator
in one of three ways:

� Add the following line to the end of your config.sys file (as shown in
Figure 1–6 (a) on page 1-10):

RUN = C:\C5XHLL\EMURST.EXE

Note:

If you reset the emulator using the RUN command in your config.sys file (see
Figure 1–6 (a) on page 1-10.), emurst will not display an error message when
trying to reset the emulator while a debugger is running. In addition, execut-
ing emurst in this manner will not produce any standard messages.

� If you created an initdb.cmd file, add the following line to the end of the file
(as shown in Figure 1–6 (b) on page 1-10):

EMURST

� Create or modify a file called C:\startup.cmd that contains the following
line:

EMURST

Note:

If a debugger is running, emurst will not reset the emulator. The debugger
will display the message, “RESET DISALLOWED : DEBUGGER RUN-
NING”.

Step 4: Setting Up the Debugger Environment

 1-14

If the following message appears after the emulator is reset, you have a hard-
ware error:

CANNOT DETECT TARGET POWER

One of several problems may cause this error message to appear. Follow the
suggestions listed below and restart your PC. Check:

� Is the emulator board installed snugly?

� Is the cable connecting your emulator and target system loose?

� Is the target power on?

� Is your target board getting the correct voltage?

� Is your emulator scan path uninterrupted?

� Is your port address set correctly?

� Check to be sure the –p option of the D_OPTIONS environment vari-
able matches the I/O address defined by your switch settings (refer to
Your Switch Settings, Table 1–2, and Identifying Nondefault I/O Ad-
dress Space, Table 1–3).

� Check to see if you have a conflict in address space with another bus
setting. If you have a conflict, change the switches on your board to
one of the alternate settings in Table 1–1. Modify the –p option of the
D_OPTIONS environment variable to reflect the change in your switch
settings.

 Step 5: Describing Your Target System to the Debugger

1-15 Installing the Emulator and C Source Debugger With OS/2

1.6 Step 5: Describing Your Target System to the Debugger

In order for the debugger to understand how you have configured your target
system, you must supply a file for the debugger to read.

� If you’re using an emulation scan path that contains only one ’C5x and no
other devices, you can use the board.dat file that comes with the ’C5x
emulator kit. This file describes to the debugger the single ’C5x in the scan
path and gives the ’C5x the name C50_1. Since the debugger automati-
cally looks for a file called board.dat in the current directory and in the di-
rectories specified with the D_DIR environment variable, you don’t need
to create your own board configuration file. Go to the next page.

� If you plan to use a different target system, you must follow these steps:

Step 1: Create the board configuration file.

Step 2: Translate the board configuration file to binary so that the debug-
ger can read it.

Step 3: Specify the configuration file when invoking the debugger.

These steps are described in Section 1.1 of the PDM Addendum to the
TMS320C4x and TMS320C5x C Source Debugger User’s Guides, litera-
ture number SPRU094.

Step 6: Verifying the Installation

 1-16

1.7 Step 6: Verifying the Installation

To ensure that you have correctly installed the emulator and debugger soft-
ware, enter this command at the system prompt:

emu5x c:\C5xhll\sample –n device name

You should see a display similar to this one:

DISASSEMBLY

MEMORYCOMMAND

>>>

TMS320C5x Revision 1

Loading sample.out

 34 Symbols loaded

Done

ACC 0000005f

ACCB 01ff01ff

PREG 00000005

PC 20cf TOS 005d

AR0 08ab AR1 08ac

AR2 08a5 AR3 00a3

AR4 00a4 AR5 0807

AR6 08a4 AR7 00a7

ST0 2610 ST1 cdfc

PMST 0038 TIM 249d

IMR 01ff IFR 0008

DBMR 0000 BMAR 5555

INDX 08ab TRG0 0001

TRG1 ffe1 TRG2 fff1

SPCR 0800 TCR 0000

20cf bf08 c_int0: LAR AR0,#08a1h

20d1 bf09 LAR AR1,#00a1h

20d3 bf00 SPM 0

20d4 be47 SETC SXM

20d5 bf80 LACC #2143h

20d7 b801 ADD #1

20d8 e388 BCND 20dch,EQ

20da 7a89 CALL 20e0h,*,AR1

20dc 7a89 CALL main,*,AR1

20de 7a89 CALL abort,*,AR1

20e0 bf80 LACC #2143h

20e2 8bc00 LDP #0

20e3 a680 TBLR *

20e4 b801 ADD #1

20e5 028a LAR AR2,*,AR2

0000 0000 0000 0000 0000 01ff ff00 0008 0038

0008 0000 0000 20f1 20f3 0001 ffe1 fff1 0000

0010 08ab 08ac 08a5 00a3 0004 0807 08a4 00a7

0018 08ab 08ab 0000 0000 0000 0000 ff77 5555

0020 0000 0000 0000 0000 249d ffff 0000 0000

0028 ffff ffff 000f 0000 0000 0000 0000 0000

Load Break Watch Memory MoD e Run=F5 Step=F8 Next=F10Color

CPU

Analysis

� If you see a display similar to this one, you have correctly installed your
emulator and debugger.

� If you see a display and the lines of code show ADD instructions, your
emulator board may not be installed snugly. Check your board to see if it
is correctly installed, and re-enter the command above.

� If you see a display and the lines of code say Invalid address or the fields
in the MEMORY window are shown in red, the debugger may not be able
to find the emuinit.cmd file. Check for the file in the directories specified
by the D_SRC environment variable or ensure that the file is in the current
directory. Re-enter the command above.

� If you don’t see a display, then your debugger or board may not be installed
properly. Go back through the installation instructions and be sure that you
have followed each step correctly; then re-enter the command above.

 Step 6: Verifying the Installation

1-17 Installing the Emulator and C Source Debugger With OS/2

Installation error messages

While invoking the debugger, you may see the following message:

CANNOT INITIALIZE TARGET SYSTEM ! !
– Check I/O configuration
– Check cabling and target power

One of several of the following conditions may be the cause; check:

� Is the target power on?

� Is the emulator board installed snugly?

� Is the device installed snugly?

� Is the cable connecting your emulator and target system loose?

� Is your target board getting the correct voltage?

� Is your emulator scan path interrupted? One or more devices on the emu-
lator scan path may have been removed. Check the connections; either
they are not connected, or they are connected improperly.

� Did you use the –n option? Or was it used with an incorrect device name?
You must supply a valid device name with the –n option.

� After you powered up the target board, did you execute the emurst.exe
command? Check your initdb.cmd file, startup.cmd file, or config.sys file.

� Is your port address set correctly?

� Check to be sure the –p option of the D_OPTIONS environment vari-
able matches the I/O address defined by your switch settings (refer to
Your Switch Settings, Table 1–2, and Identifying Nondefault I/O Ad-
dress Space, Table 1–3).

� Check to see if you have a conflict in address space with another bus
setting. If you have a conflict, change the switches on your board to
one of the alternate settings in Table 1–1. Modify the –p option of the
D_OPTIONS environment variable to reflect the change in your switch
settings.

� Is the board.dat file in the current directory or in a directory specified by
D_DIR?

� Did the compose utility successfully create the board.dat file?

Step 6: Verifying the Installation

 1-18

Note:

If the debugger suddenly quits or behaves erratically during the debugging
process, the board.dat file may contain incorrect information in the correct
format. See Section 1.6 (page 1-15) for more information.

After you have checked all of the above, repeat the verification instructions in
Section 1.7.

2-1 Chapter Title—Attribute Reference

Installing the Emulator and
C Source Debugger With DOS

This chapter helps you install the ’C5x emulator board and the C source de-
bugger on a PC running MS-DOS or PC-DOS. You can also use the debugger
with MS-Windows. When you complete the installation, turn to the
TMS320C5x C Source Debugger User’s Guide.

Topic Page

2.1 What You’ll Need 2-2
Hardware checklist 2-2
Software checklist 2-3

2.2 Step 1: Installing the Emulator Board in Your PC 2-4
Preparing the emulator board for installation 2-4
Setting the emulator board into your PC 2-6

2.3 Step 2: Connecting the Emulator to Your Target System 2-8

2.4 Step 3: Installing the Debugger Software 2-9

2.5 Step 4: Setting Up the Debugger Environment 2-9
Invoking the new or modified batch file 2-10
Modifying the PATH statement 2-11
Setting up the environment variables 2-11
Identifying the correct I/O switches 2-12
Resetting the emulator 2-12

2.6 Step 5: Verifying the Installation 2-13
Installation error messages 2-14

2.7 Using the Debugger With Microsoft Windows 2-15

Chapter 2

What You’ll Need

 2-2

2.1 What You’ll Need

The following checklists detail items that are shipped with the ’C5x C source
debugger and emulator and additional items you’ll need to use these tools.

Hardware checklist

host An IBM PC/AT or 100% compatible ISA/EISA-based PC with a hard-
disk system and a 1.2-megabyte floppy-disk drive

memory Minimum of 4 megabytes

display Monochrome or color (color recommended)

slot One 16-bit slot

emulator board
power requirements

Approximately 1 ampere @ 5 volts (5 watts)

target system A board with a ’C5x

connector to
target system

14-pin connector (two rows of seven pins)—see Chapter 3 of this
book for more information about this connector

optional hardware A Microsoft-compatible mouse

An EGA- or VGA-compatible graphics display card and a large mon-
itor. The debugger has two options that allow you to change the
overall size of the debugger display. If you have an EGA- or
VGA-compatible graphics card, you can take advantage of some of
these larger screen sizes. These larger screen sizes are most effec-
tive when used with a large (17” or 19”) monitor. (To use a larger
screen size, you must invoke the debugger with an appropriate op-
tion. For more information about options, refer to the invocation sec-
tion in Chapter 1, Overview of a Code Development and Debugging
System, in the TMS320C5x C Source Debugger User’s Guide.)

miscellaneous
materials

Blank, formatted disks

 What You’ll Need

2-3 Installing the Emulator and C Source Debugger With DOS

Software checklist

operating system MS-DOS or PC-DOS (version 3.0 or later)
Optional: Microsoft Windows (version 3.0 or later)

software tools TMS320 fixed-point family DSP (’C1x/’C2x/’C5x) assembler and
linker and TMS320C2x/C5x C compiler

required file † emurst.exe resets the ’C5x emulator

optional files † emuinit.cmd is a general-purpose batch file that contains debugger
commands. The version of this file that’s shipped with the debugger
defines a ’C5x memory map. If this file isn’t present when you first
invoke the debugger, then all memory is invalid at first. When you
first start using the debugger, this memory map should be sufficient
for your needs. Later, you may want to define your own memory
map. For information about setting up your own memory map, refer
to Chapter 5, Defining a Memory Map, in the TMS320C5x C Source
Debugger User’s Guide.

† init.clr is a general-purpose screen configuration file. If this file isn’t
present when you invoke the debugger, the debugger uses the
default screen configuration.

† The default configuration is for color monitors; an additional file,
mono.clr, can be used for monochrome monitors. When you first
start to use the debugger, the default screen configuration should be
sufficient for your needs. Later, you may want to define your own
custom configuration.

For information about these files and about setting up your own
screen configuration, refer to Chapter 9, Customizing the Debugger
Display, in the TMS320C5x C Source Debugger User’s Guide.

† Included as part of the debugger package

Step 1: Installing the Emulator Board in Your PC

 2-4

2.2 Step 1: Installing the Emulator Board in Your PC

This section contains the hardware installation information for the emulator.

Preparing the emulator board for installation

Before you install the emulator board, you must be sure that the board’s
switches are set to correctly identify the I/O space that the board can use.The
emulator uses 32 bytes of the PC I/O space; two switches on the board identify
this space.

Figure 2–1 shows where these switches are on the emulator and identifies the
switch numbers.

Figure 2–1. Emulator Board I/O Switches

 1 2

on

off

’C5x emulator

default switch settings

Switches are shipped in the default settings shown here and are listed in
Table 2–1. If you use an I/O space that differs from the default, change the
switch settings. Table 2–1 shows alternate settings.

In most cases, you can leave the switch settings in the default position.
However, you must ensure that the ’C5x emulator I/O space does not conflict
with other bus settings. For example, if you’ve installed a bus mouse in your
system, you may not be able to use the default switch settings for the I/O
space—the mouse might use this space. Refer to your PC technical reference
manual and your other hardware-board manuals to see if there are any I/O
space conflicts. If you find a conflict, use one of the alternate settings shown
in Table 2–1.

default

 Step 1: Installing the Emulator Board in Your PC

2-5 Installing the Emulator and C Source Debugger With DOS

Table 2–1.Emulator Board Switch Settings

switch #

Address Range 1 2

0x0240–0x025F on on

0x0280–0x029F on off

0x0320–0x033F off on

0x0340–0x035F off off

Some of the other installation steps require you to know which switch settings
you used. If you reset the I/O switches, note the modified settings here for later
reference.

Table 2–2.Your Switch Settings

Switch #

Address Range 1 2

Step 1: Installing the Emulator Board in Your PC

 2-6

Setting the emulator board into your PC

After you’ve prepared the emulator board for installation, follow these steps.

Step 1: Turn off your PC’s power. Leave the power cord plugged in so that
the computer is properly grounded.

Step 2: Remove the cover of your PC.

Step 3: Remove the mounting bracket from an unused 16-bit slot.

Step 4: Install the emulator board in a 16-bit slot (see Figure 2–2).

Figure 2–2. Emulator Board Installation

mounting bracket

emulator board

16-bit slot

rear of computer

Step 5: Tighten down the mounting bracket.

Step 6: Plug the emulator target cable into the emulator board (see
Figure 2–3). The cable is a 25-pin DSUB connector, shaped to en-
sure proper connection.

Step 7: Replace the PC cover.

Step 8: Turn on the PC’s power.

 Step 1: Installing the Emulator Board in Your PC

2-7 Installing the Emulator and C Source Debugger With DOS

Figure 2–3. Emulator Target Cable and Board

14-pin keyed connector
(connects to target system)

target cable

’C5x emulator board

active buffer pod

X
D

S
510

emulator connection

target cable connection

Don’t connect or disconnect the target cable while the PC is powered
up.

Be very careful with the target cable connectors. Connect them
gently; forcing the connectors into position may damage them

Remember, the connector is keyed. Be sure to connect the cable so
that the key fits into its slot.

Step 2: Connecting the Emulator to Your Target System

 2-8

2.3 Step 2: Connecting the Emulator to Your Target System

Figure 2–4 shows a typical setup using the emulator, target cable, and your
target system.

Figure 2–4. Typical Setup Using the ’C5x Emulator and Your Target System

target system
14-pin connector

active buffer pod

target cable

’C5x

Figure 2–5 shows how you connect the emulator and target cable to your
target system. In most cases, the target system will be a ’C5x board of your
own design.

Figure 2–5. Connecting the ’C5x Emulator to Your Target System

14-pin keyed connector

target cable
’C5x emulator board

active buffer pod

X
D

S
510

’C5x

’C5x target system

14-pin keyed header

 Step 3: Installing the Debugger Software / Step 4: Setting Up the Debugger Environment

2-9 Installing the Emulator and C Source Debugger With DOS

2.4 Step 3: Installing the Debugger Software

This section explains the process of installing the debugger software on a
hard-disk system.

1) Make a backup copy the DOS and/or Microsoft Windows debugger prod-
uct disk. (If necessary, refer to the DOS manual that came with your com-
puter.)

2) On your hard disk or system disk, create a directory named c5xhll. This
directory will contain the ’C5x C source debugger software. To create this
directory, enter:

MD C:\C5XHLL

3) Insert either the DOS or Microsoft Windows debugger product disk into
drive A. Copy the contents of the disk:

COPY A:*.* C:\C5XHLL*.* /V

Repeat this step for the other product disk if you want to be able to run both
the DOS and Microsoft Windows versions of the debugger.

The DOS version of the debugger executable is called emu5x.exe, and the
Microsoft Windows version of the debugger executable is called
emu5xw.exe. Throughout this document, the executable for the debugger
is referred to as simply emu5x.

2.5 Step 4: Setting Up the Debugger Environment

To ensure that your debugger works correctly, you must:

� Modify the PATH statement to identify the c5xhll directory.
� Define environment variables so that the debugger can find the files it

needs.
� Identify any nondefault I/O space used by the emulator.
� Reset the emulator board.

Not only must you do these things before you invoke the debugger for the first
time, you must do them any time you power up or reboot your PC.

You can accomplish these tasks by entering individual DOS commands, but
it’s simpler to put the commands in a batch file. You can edit your systems
autoexec.bat file; in some cases, modifying the autoexec may interfere with
other applications running on your PC. So, if you prefer, you can create a sepa-
rate batch file that performs these tasks.

Step 4: Setting Up the Debugger Environment

 2-10

Figure 2–6 (a) shows an example of an autoexec.bat file that contains the sug-
gested modifications (highlighted in bold type). Figure 2–6 (b) shows a sample
batch file that you could create instead of editing the autoexec.bat file (for the
purpose of discussion, assume that this sample file is named initdb.bat). The
subsections following the figure explain these modifications.

Figure 2–6. DOS-Command Setup for the Debugger

(a) Sample autoexec.bat file to use with the debugger and emulator

DATE

TIME

ECHO OFF

PATH=C:\DOS;C:\C5XTOOLS; C:\C5XHLL

SET D_DIR=C:\C5XHLL

SET D_SRC=;C:\C5XCODE

SET D_OPTIONS=–P 280

SET C_DIR=C:\C5XTOOLS

CLS

EMURST

PATH statement

Environment
variables and
I/O space

Reset the
emulator

(b) Sample initdb.bat file to use with the debugger and emulator

PATH=C:\C5XHLL;%PATH%

SET D_DIR=C:\C5XHLL

SET D_SRC=C:\C5XCODE

SET D_OPTIONS=–P 280

EMURST

PATH statement

Environment
variables and
I/O space

Reset the
emulator

Invoking the new or modified batch file

� If you modify the autoexec.bat file, be sure to invoke it before invoking the
debugger for the first time. To invoke this file, enter:

AUTOEXEC

� If you create an initdb.bat file, you must invoke it before invoking the
debugger for the first time. If you are using Microsoft Windows, invoke
initdb.bat before entering Microsoft Windows. You’ll need to invoke
initdb.bat any time that you power up or reboot your PC. To invoke this file,
enter:

INITDB

 Step 4: Setting Up the Debugger Environment

2-11 Installing the Emulator and C Source Debugger With DOS

Modifying the PATH statement

Define a path to the debugger directory. The general format for doing this is:

PATH=C:\C5XHLL

This allows you to invoke the debugger without specifying the name of the di-
rectory that contains the debugger executable file.

� If you are modifying an autoexec that already contains a PATH statement,
simply include ;C:\c5xhll at the end of the statement, as shown in
Figure 2–6 (a).

� If you are creating an initdb.bat file, use a different format for the PATH
statement, as shown in Figure 2–6 (b):

PATH=C:\C5XHLL;%PATH%

The addition of ;%path% ensures that this PATH statement won’t undo
PATH statements in any other batch files (including the autoexec.bat file).

Setting up the environment variables

An environment variable is a special system symbol that the debugger uses
for finding or obtaining certain types of information. The debugger uses three
environment variables named D_DIR, D_SRC, and D_OPTIONS. The next
three steps tell you how to set up these environment variables. The format for
doing this is the same for both the autoexec.bat and initdb.bat files.

� Set up the D_DIR environment variable to identify the c5xhll directory:

SET D_DIR=C:\C5XHLL

(Be careful not to precede the equal sign with a space.)

This directory contains auxiliary files (emurst, emuinit.cmd, etc.) that the
debugger needs.

� Set up the D_SRC environment variable to identify any directories that
contain program source files that you’ll want to look at while you’re debug-
ging code. The general format for doing this is:

SET D_SRC=pathname1;pathname2...

(Be careful not to precede the equal sign with a space.)

For example, if your ’C5x programs were in a directory named csource on
drive C, the D_SRC setup would be:

SET D_SRC=C:\CSOURCE

Step 4: Setting Up the Debugger Environment

 2-12

� You can use several options when you invoke the debugger. If you use the
same options over and over, it’s convenient to specify them with
D_OPTIONS. The general format for doing this is:

SET D_OPTIONS= [object filename] [debugger options]

(Be careful not to precede the equal sign with a space.)

This tells the debugger to load the specified object file and use the speci-
fied options each time you invoke the debugger. These are the options that
you can identify with D_OPTIONS:

–b –bb –i pathname –p port address

–profile –s –t filename –v

Note that you can override D_OPTIONS by invoking the debugger with the
–x option.

For more information about options, see the invocation instructions in
Chapter 1, Overview of a Code Development and Debugging System, in
the TMS320C5x C Source Debugger User’s Guide.

Identifying the correct I/O switches

Refer to your entries in Table 2–2 (page 2-5). If you didn’t modify the I/O
switches, skip this step.

If you modified the I/O switch settings, you must use the debugger’s –p option
to identify the I/O space that the emulator is using. You can do this each time
you invoke the debugger, or you can specify this information by using the
D_OPTIONS environment variable. Table 2–3 lists the nondefault I/O switch
setting and the appropriate line that you can add to the autoexec.bat or
initdb.bat file.

Table 2–3. Identifying Nondefault I/O Address Space

switch # Add this line to the

Address Range 1 2 batch file

0x0280–0x029F on off SET D_OPTIONS=–p 280

0x0320–0x033F off on SET D_OPTIONS=–p 320

0x0340–0x035F off off SET D_OPTIONS=–p 340

Resetting the emulator

To reset the emulator, add this line to the autoexec.bat or initdb.bat file:

emurst

 Step 5: Verifying the Installation

2-13 Installing the Emulator and C Source Debugger With DOS

2.6 Step 5: Verifying the Installation

To ensure that you have correctly installed the emulator and debugger soft-
ware, enter this command at the system prompt:

emu5x c:\c5xhll\sample

You should see a display similar to this one:

DISASSEMBLY

MEMORYCOMMAND

>>>

TMS320C5x Revision 1

Loading sample.out

 34 Symbols loaded

Done

ACC 0000005f

ACCB 01ff01ff

PREG 00000005

PC 20cf TOS 005d

AR0 08ab AR1 08ac

AR2 08a5 AR3 00a3

AR4 00a4 AR5 0807

AR6 08a4 AR7 00a7

ST0 2610 ST1 cdfc

PMST 0038 TIM 249d

IMR 01ff IFR 0008

DBMR 0000 BMAR 5555

INDX 08ab TRG0 0001

TRG1 ffe1 TRG2 fff1

SPCR 0800 TCR 0000

20cf bf08 c_int0: LAR AR0,#08a1h

20d1 bf09 LAR AR1,#00a1h

20d3 bf00 SPM 0

20d4 be47 SETC SXM

20d5 bf80 LACC #2143h

20d7 b801 ADD #1

20d8 e388 BCND 20dch,EQ

20da 7a89 CALL 20e0h,*,AR1

20dc 7a89 CALL main,*,AR1

20de 7a89 CALL abort,*,AR1

20e0 bf80 LACC #2143h

20e2 8bc00 LDP #0

20e3 a680 TBLR *

20e4 b801 ADD #1

20e5 028a LAR AR2,*,AR2

0000 0000 0000 0000 0000 01ff ff00 0008 0038

0008 0000 0000 20f1 20f3 0001 ffe1 fff1 0000

0010 08ab 08ac 08a5 00a3 0004 0807 08a4 00a7

0018 08ab 08ab 0000 0000 0000 0000 ff77 5555

0020 0000 0000 0000 0000 249d ffff 0000 0000

0028 ffff ffff 000f 0000 0000 0000 0000 0000

Load Break Watch Memory MoD e Run=F5 Step=F8 Next=F10Color

CPU

Analysis

� If you see a display similar to this one, you have correctly installed your
emulator and debugger.

� If you see a display and the lines of code show ADD instructions, your
emulator board may not be installed snugly. Check your board to see if it
is correctly installed, and re-enter the command above.

� If you see a display and the lines of code say Invalid address or the fields
in the MEMORY window are shown in red, the debugger may not be able
to find the emuinit.cmd file. Check for the file in the directories specified
by the D_SRC environment variable or ensure that the file is in the current
directory. Re-enter the command above.

� If you don’t see a display, then your debugger or board may not be installed
properly. Go back through the installation instructions and be sure that you
have followed each step correctly; then re-enter the command above.

Step 5: Verifying the Installation

 2-14

Installation error messages

While invoking the debugger, you may see the following message:

CANNOT INITIALIZE THE TARGET SYSTEM ! !
– Check I/O configuration
– Check cabling and target power

One of several of the following conditions may be the cause; check:

� Is the target power on?

� Is the emulator board installed snugly?

� Is the device installed snugly?

� Is the cable connecting your emulator and target system loose?

� Is your target board getting the correct voltage?

� Is your port address set correctly:

� Does the emurst command appear at the end of either your autoexec.bat
or initdb.bat file? This command must be executed after you powered up
the target board.

� Check to be sure the –p option used with the D_OPTIONS environ-
ment variable matches the I/O address defined by your switch settings
(refer to Your Switch Settings, Table 2–2, and Identifying Nondefault
I/O Address Space, Table 2–3).

� Check to see if you have a conflict in address space with another bus
setting. If you have a conflict, change the switches on your board to
one of the alternate settings in Table 2–1. Modify the –p option of the
D_OPTIONS environment variable to reflect the change in your switch
settings.

After you have checked all of the above, repeat the verification instructions in
Section 2.6.

 Using the Debugger With Microsoft Windows

2-15 Installing the Emulator and C Source Debugger With DOS

2.7 Using the Debugger With Microsoft Windows

If you’re using Microsoft Windows, you can freely move or resize the debugger
display on the screen. If the resized display is bigger than the debugger re-
quires, the extra space is not used. If the resized display is smaller than re-
quired, the display is clipped. Note that when the display is clipped, it can’t be
scrolled.

You should run Microsoft Windows in either the standard mode or the 386
enhanced mode to get the best results.

 2-16

 Running Title—Attribute Reference

3-1 Chapter Title—Attribute Reference

Specification for Your Target System’s
Connection to the Emulator

This chapter contains information about connecting your target system to the
emulator. Your target system must use a special 14-pin connector for proper
communication with the emulator.

Topic Page

3.1 Designing Your Target System’s
Emulator Connector (14-pin Header) 3-2

3.2 Bus Protocol 3-3

3.3 Emulator Cable Pod Logic 3-4

3.4 Emulator Cable Pod Signal Timing 3-6

3.5 Buffering Signals Between the Emulator and the Target System 3-7

3.6 Emulation Timing Calculations 3-10

3.7 Mechanical Dimensions for the 14-Pin Header 3-13

Chapter 3

Designing Your Target System’s Emulator Connector (14-Pin Header)

 3-2

3.1 Designing Your Target System’s Emulator Connector (14-pin Header)

The ’C5x devices support emulation through a dedicated emulation port. This
port is a superset of the IEEE 1149.1 (JTAG) standard and is accessed by the
emulator. To communicate with the emulator, your target system must have
a 14-pin header (2 rows of 7 pins) with the connections that are shown in
Figure 3–1. Table 3–1 describes the emulation signals.

Figure 3–1. 14-Pin Header Signals and Header Dimensions

TDO 7 8 GND

TMS 1 2 TRST

TDI 3 4 GND

TCK_RET 9 10 GND

TCK 11 12 GND

Header Dimensions:
Pin-to-pin spacing, 0.100 in. (X,Y)
Pin width, 0.025-in. square post
Pin length, 0.235-in. nominal

PD (+5V) 5 6 no pin (key)

EMU0 13 14 EMU1

Table 3–1.14-Pin Header Signal Description

Signal Description
Emulator

State
Target
State

TMS JTAG test mode select. O I

TDI JTAG test data input. O I

TDO JTAG test data output. I O

TCK JTAG test clock. TCK is a 10-MHz clock
source from the emulation cable pod. This sig-
nal can be used to drive the system test clock.

O I

TRST JTAG test reset. O I

EMU0 Emulation pin 0. I I/O

EMU1 Emulation pin 1. I I/O

PD Presence detect. Indicates that the emulation
cable is connected and that the target is pow-
ered up. PD should be tied to +5 volts in the tar-
get system.

I O

TCK_RET JTAG test clock return. Test clock input to the
emulator. May be a buffered or unbuffered ver-
sion of TCK.

I O

Note: I = input; O = output

 Designing Your Target System’s Emulator Connector (14-Pin Header) / Bus Protocol

3-3 Specifications for Your Target System’s Connection to the Emulator

Although you can use other headers, recommended parts include:

straight header, unshrouded DuPont Connector Systems
part number 67996–114

right-angle header, unshrouded DuPont Connector Systems
part number 68405–114

3.2 Bus Protocol

The IEEE 1149.1 specification covers the requirements for JTAG bus slave de-
vices (such as the TMS320C5x devices) and provides certain rules, summa-
rized as follows:

� The TMS/TDI inputs are sampled on the rising edge of the TCK signal of
the device.

� The TDO output is clocked from the falling edge of the TCK signal of the
device.

When JTAG devices are daisy-chained together, the TDO of one device has
approximately a half TCK cycle set up to the next device’s TDI signal. This type
of timing scheme minimizes race conditions that would occur if both TDO and
TDI were timed from the same TCK edge. The penalty for this timing scheme
is a reduced TCK frequency.

The IEEE 1149.1 specification does not provide rules for JTAG bus master
(emulator) devices. Instead, it states that it expects a bus master to provide
bus slave compatible timings. The emulator provides timings that meet the bus
slave rules and also provides an optional timing mode that allows you to run
the emulation at a much higher frequency for improved performance.

Emulator Cable Pod Logic

 3-4

3.3 Emulator Cable Pod Logic

Figure 3–2 shows a portion of the emulator cable pod. These are the functional
features of the emulator pod:

� Signals TDO and TCK_RET can be parallel-terminated inside the pod if
required by the application. The default is that these signals are not termi-
nated.

� Signal TCK is driven with a 74AS1034 device. Because of the high current
drive (48 mA IOL/IOH), this signal can be parallel-terminated. If TCK is tied
to TCK_RET, then you can use the parallel terminator in the pod.

� Signals TMS and TDI can be generated from the falling edge of TCK_RET,
according to the IEEE 1149.1 bus slave device timing rules.They can also
be driven from the rising edge of TCK_RET, which allows a higher
TCK_RET frequency. The default is to match the IEEE 1149.1 slave de-
vice timing rules. This is an emulator software option that can be selected
when the emulator is invoked. In general, single-processor applications
can benefit from the higher clock frequency. However, in multiprocessing
applications, you may wish to use the IEEE 1149.1 bus slave timing mode
to minimize emulation system timing constraints.

� Signals TMS and TDI are series-terminated to reduce signal reflections.

� A 10-MHz test clock source is provided. You may also provide your own
test clock for greater flexibility.

 Emulator Cable Pod Logic

3-5 Specifications for Your Target System’s Connection to the Emulator

Figure 3–2. Emulator Pod Interface

100 Ω

74AS74
CL

270 Ω

JP2

180 Ω

TCK_RET (Pin 9)

EMU1 (Pin 13

EMU0 (Pin 13)
10 kΩ

74AS1034

74AS1034

74AS1034
GND (Pins 4,6,8,10,12)

TRST (Pin 2)

TCK (Pin 11)10 MHz

33 Ω

33 Ω

TDI (Pin 3)

TMS (Pin 1)

TDO (Pin 7)

74AS258

180 Ω

JP1

270 Ω
74F175

Q

Q

D

PD (Pin 5)

10 kΩ

+5 V

+5 V

+5 V

74AS1004

Emulator Cable Pod Signal Timing

 3-6

3.4 Emulator Cable Pod Signal Timing

Figure 3–3 shows the signal timings for the emulator. Table 3–2 defines the
timing parameters for the emulator. The timing parameters are calculated from
standard data sheet parts used in the emulator and cable pod. These parame-
ters are for reference only. Texas Instruments does not test or guarantee these
timings.

The emulator pod uses TCK_RET as its clock source for internal synchroniza-
tion. TCK is provided as an optional target system test clock source.

Figure 3–3. Emulator Pod Timings

TDO

TMS TDI (Optional)

TMS TDI (Default)

TCK_RET

7
6

5

4

3
2

1

1.5 V

Table 3–2.Emulator Pod Timing Parameters

No. Reference Description Min Max Units

1 tTCKmin
tTCKmax

TCK_RET period 35 200 ns

2 tTCKhighmin TCK_RET high-pulse duration 15 ns

3 tTCKlowmin TCK_RET low-pulse duration 15 ns

4 td(XTMXmin)
td(XTMXmax)

TMS/TDI valid from TCK_RET low (default timing) 6 20 ns

5 td(XTMSmin)
td)XTMSmax)

TMS/TDI valid from TCK_RET high (optional timing) 7 24 ns

6 tsu(XTDOmin) TDO setup time to TCK_RET high 3 ns

7 thd(XTDOmin) TDO hold time from TCK_RET high 12 ns

 Buffering Signals Between the Emulator and the Target System

3-7 Specifications for Your Target System’s Connection to the Emulator

3.5 Buffering Signals Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator
and the ’C5x on the target system. If the distance between the emulation head-
er and the ’C5x is greater than 6 inches, the emulation signals must be buff-
ered. The need for signal buffering and placement of the emulation header can
be divided into two categories:

� No signal buffering. In this situation, the distance between the header
and the ’C5x should be no more than 6 inches.

+5 V
Emulator Header

+5 V

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

TMS320C5x

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

6 Inches or Less

� Buffered emulation signals. In this situation, the distance between the
emulation header and the ’C5x is greater than 6 inches. The ’C5x emula-
tion signals—TMS, TDI, TDO, and TCK_RET—are buffered through the
same package.

+5 V

Emulator Header +5 V

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

TMS320C5x

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater Than
6 Inches

Buffering Signals Between the Emulator and the Target System

 3-8

� The EMU0 and EMU1 signals must have pullups to 5 volts. The pullup re-
sistor value should be chosen to provide a signal rise of time less than 10
µs. A 4.7-kΩ resistor is suggested for most applications. EMU0 – 1 are I/O
pins on the ’C5x; however, they are inputs to the emulator only. In general,
these pins are used in multiprocessor systems to provide global run/stop
operations.

� It is extremely important to provide high-quality signals, especially on the
processor TCK and the emulator TCK_RET signal. In some cases, this
may require you to provide special PWB trace routing and to use termina-
tion resistors to match the trace impedance. The emulator pod does pro-
vide optional internal parallel terminators on the TCK_RET and TDO. TMS
and TDI provide fixed series termination.

Figure 3–4 shows an application with the system test clock generated in the
target system. In this application, the TCK signal is left unconnected.

Figure 3–4. Target-System Generated Test Clock

NC

System Test Clock

+5 V

Emulator Header
+5 V

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

TMS320C5x

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater Than
6 Inches

There are two benefits to having the target system generate the test clock:

� The emulator provides only a single 10-MHz test clock. If you generate
your own test clock, you can set the frequency to match your system re-
quirements.

� In some cases, you may have other devices in your system that require
a test clock when the emulator is not connected.

 Buffering Signals Between the Emulator and the Target System

3-9 Specifications for Your Target System’s Connection to the Emulator

Figure 3–5. Multiprocessor Connections

TDITDI TDOTDO

TMS320C5xTMS320C5x

+5 V

Emulator Header

+5 V

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

T
M

S

T
C

K

T
R

S
T

E
M

U
0

E
M

U
1

T
M

S

T
C

K

T
R

S
T

E
M

U
0

E
M

U
1

Figure 3–5 shows a typical multiprocessor configuration. This is a daisy-
chained configuration (TDO-TDI daisy-chained), which meets the minimum
requirements of the IEEE 1149.1 specification. The emulation signals in this
example are buffered to isolate the processors from the emulator and provide
adequate signal drive for the target system. One of the benefits of a JTAG test
interface is that you can generally slow down the test clock to eliminate timing
problems. Several key points to multiprocessor support are as follows:

� The processor TMS, TDI, TDO, and TCK should be buffered through the
same physical package to better control timing skew.

� The input buffers for TMS, TDI, and TCK should have pullups to 5 volts.
This will hold these signals at a known value when the emulator is not con-
nected. A pullup of 4.7 kΩ or greater is suggested.

� Buffering EMU0 and EMU1 is optional but highly recommended to provide
isolation. These are not critical signals and do not need to be buffered
through the same physical package as TMS, TCK, TDI, and TDO. Unbuf-
fered and buffered signals are shown in Section 3.5 (page 3-7).

Emulation Timing Calculations

 3-10

3.6 Emulation Timing Calculations

The following are a few examples on how to calculate the emulation timings
in your system. For actual target timing parameters, see the appropriate de-
vice data sheets.

Assumptions:

tsu(TTMS) Target TMS/TDI setup to TCK high 10 ns

th(TTMS) Target TMS/TDI hold from TCK high 5 ns

td(TTDO) Target TDO delay from TCK low 15 ns

td(bufmax) Target buffer delay maximum 10 ns

td(bufmin) Target buffer delay minimum 1 ns

t(bufskew) Target buffer skew between two devices
in the same package:
[td(bufmax) – td(bufmin)] × 0.15 1.35 ns

ttckfactor Assume a 40/60 duty cycle clock 0.4

Given in Table 3–2 (page 3-6):

td(XTMSmax) Emulator TMS/TDI delay from TCK_RET
low, maximum 20 ns

td(XTMX) min emulator TMS/TDI delay from
TCK_RET low, minimum 6 ns

td(XTMSmax) Emulator TMS/TDI delay from TCK_RET
high, max 24 ns

td(XTMXmin) Emulator TMS/TDI delay from TCK_RET
high, minimum 7 ns

tsu(XTDOmin) TDO setup time to emulator TCK_RET
high 3 ns

There are two key timing paths to consider in the emulation design:

� the TCK_RET/TMS/TDI (tprdtck_TMS) path, and
� the TCK_RET/TDO (tprdtck_TDO) path.

In each case, the worst case path delay is calculated to determine the maxi-
mum system test clock frequency.

 Emulation Timing Calculations

3-11 Specifications for Your Target System’s Connection to the Emulator

Case 1: Single processor, direct connection, TMS/TDI timed from TCK_RET low (de-
fault timing).

tprdtck_TMS = [t(d(XTMSmax) + tsu(TTMS)] / ttckfactor
= (20 ns + 10 ns) /0 .4
= 75 ns (13.3 MHz)

tprdtck_TDO = [t(d(TTDO) + tsu(XTDOmin)] / ttckfactor
= (15 ns + 3 ns) / 0.4
= 45 ns (22.2 MHz)

In this case, the TCK/TMS path is the limiting factor.

Case 2: Single processor, direct connection, TMS/TDI timed from TCK_RET high (op-
tional timing).

tprdtck_TMS = td(XTMSmax) + tsu(TTMS)
= (24 ns + 10 ns)
= 34 ns (29.4 MHz)

tprdtck_TDO = [td(TTDO) + tsu(XTDOmin)] / ttckfactor
= (15 + 3) / 0.4
= 45 ns (22.2 MHz)

In this case, the TCK/TDO path is the limiting factor. One other thing to consid-
er in this case is the TMS/TDI hold time. The minimum hold time for the
emulator cable pod is 7 ns, which meets the 5-ns hold time of the target device.

Case 3: Single/multiple processor, TMS/TDI buffered input; TCK_RET/TDO buffered
output, TMS/TDI timed from TCK_RET high (optional timing).

tprdtck_TMS = td(XTMSmax) + tsu(TTMS) + 2td(bufmax)
= 24 ns + 10 ns + 2 (10)
= 54 ns (18.5 MHz)

tprdtck_TDO = td(TTDO) + tsu(XTDOmin) + tbufskew
ttckfactor

= (15 ns + 3 ns + 1.35 ns) / 0.4
= 58.4 ns (20.7 MHz)

In this case, the TCK/TMS path is the limiting factor. The hold time on TMS/TDI
is also reduced by the buffer skew (1.35 ns) but still meets the minimum device
hold time.

Emulation Timing Calculations

 3-12

Case 4: Single/multiprocessor, TMS/TDI/TCK buffered input; TDO buffered output,
TMS/TDI timed from TCK_RET low (default timing).

tprdtck_TMS = td(XTMSmax) + tsu(TTMS) + tbufskew

ttckfactor

= (24 ns + 10 ns + 1.35 ns) / 0.4
= 88.4 ns (11.3 MHz)

tprdtck_TDO = (tdTTDO + tsuXTDOmin + tdbufmax)

ttckfactor

= (15 ns + 3 ns + 10 ns) / 0.4
= 70 ns (14.3 MHz)

In this case, the TCK/TMS path is the limiting factor.

In a multiprocessor application, it is necessary to ensure that the EUM0–1 lines
can go from a logic low level to a logic high level in less than 10 µs. This can be
calculated as follows (remember that t = 5 RC):

trise = 5(Rpullup × Ndevices × Cload_per_device)
= 5(4.7K × 16 × 15pF)
= 5.64 µs

 Mechanical Dimensions for the 14-Pin Emulator Connector

3-13 Specifications for Your Target System’s Connection to the Emulator

3.7 Mechanical Dimensions for the 14-Pin Emulator Connector

The ’C5x emulator target cable consists of a 3-foot section of jacketed cable,
an active cable pod, and a short section of jacketed cable that connects to the
target system. The overall cable length is approximately 3 feet10 inches.
Figure 3–6 and Figure 3–7 (page 3-14) show the mechanical dimensions for
the target cable pod and short cable. Note that the pin-to-pin spacing on the
connector is 0.100 inches in both the X and Y planes. The cable pod box is
nonconductive plastic with four recessed metal screws.

Figure 3–6. Pod/Connector Dimensions

0.90

2.70

4.50

9.50

Please refer to Figure 3–7.

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified.

Mechanical Dimensions for the 14-Pin Emulator Connector

 3-14

Figure 3–7. 14-Pin Connector Dimensions

0.100
key, pin 6

0.100

0.87

0.66

0.20

pins 2,4,6,8,10,12,14pins
1,3,5,7,9,11,13

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified.

 Index

Index-1

Index

A
addresses, I/O address space

DOS 2-4 to 2-5, 2-12
OS/2 1-4 to 1-5, 1-12

assembler 1-3, 2-3

autoexec.bat file 2-9 to 2-12
invoking 2-10
sample 2-10

B
–b debugger option

with D_OPTIONS environment variable
DOS 2-12
OS/2 1-12

batch files
autoexec.bat 2-9 to 2-12

sample 2-10
board.cfg 1-3
board.dat 1-3
config.sys 1-9 to 1-14

sample 1-10
emuinit.cmd 1-3, 2-3
emurst 1-3, 1-13, 2-3, 2-12
init.clr 1-3, 2-3
initdb.bat 2-9 to 2-12

sample 2-10
initdb.cmd 1-9 to 1-14

sample 1-10
invoking

autoexec.bat 2-10
config.sys 1-10
initdb.bat 2-10
initdb.cmd 1-10

mono.clr 1-3, 2-3
startup.cmd 1-13

board configuration
translating the file 1-3

board.cfg file 1-3
translating 1-3

board.dat file 1-3
error messages 1-17

bus protocol 3-3

C
c5xhll directory

DOS 2-9, 2-11
OS/2 1-9, 1-11

cable pod 3-4 to 3-5
compiler 1-3, 2-3
composer utility 1-3
config.sys file 1-9 to 1-14

invoking 1-10
sample 1-10
setting the IOPL option 1-13

configuration
multiprocessor 3-9

connector
target system to emulator 1-7, 2-7, 3-1 to 3-14

customizing the display
init.clr file 1-3, 2-3
mono.clr file 1-3, 2-3

D
D_DIR environment variable

DOS 2-11
OS/2 1-11

D_OPTIONS environment variable
DOS 2-12
OS/2 1-12

D_SRC environment variable
DOS 2-11
OS/2 1-11

Index

Index-2

debugger
environment setup

DOS 2-9 to 2-12
OS/2 1-9 to 1-14

installation
describing the target system 1-15
DOS 2-1 to 2-15

error messages 2-14
verifying 2-13

OS/2 1-1 to 1-18
error messages 1-17
verifying 1-16

using with Microsoft Windows 2-9, 2-15

default
I/O address space

DOS 2-4 to 2-5
OS/2 1-4 to 1-5

memory map
DOS 2-3
OS/2 1-3

screen configuration file
color displays 1-3, 2-3
monochrome displays 1-3, 2-3

switch settings
DOS 2-4 to 2-5
OS/2 1-4 to 1-5

directories
c5xhll directory

DOS 2-9, 2-11
OS/2 1-9, 1-11

for auxiliary files
DOS 2-11
OS/2 1-11

for debugger software
DOS 2-9, 2-11
OS/2 1-9, 1-11

identifying additional source directories
DOS 2-11
OS/2 1-11

display requirements
DOS 2-2
OS/2 1-2

DOS
display requirements 2-2
error messages

installation 2-14
graphics card requirements 2-2
hardware requirements 2-2
host system 2-2
memory requirements 2-2

DOS (continued)
mouse requirements 2-2
operating system 2-3
power requirements 2-2
setting up debugger environment 2-9 to 2-12
software requirements 2-3
target system 2-2
using Microsoft Windows 2-9, 2-15

E
emu5x command

options
D_OPTIONS environment variable 1-12,

2-12
verifying the installation

DOS 2-13
OS/2 1-16

emuinit.cmd file 1-3, 2-3
emulation timing calculations 3-10 to 3-12
emulator

additional tools 1-3, 2-3
board.cfg file 1-3
board.dat file 1-3
connection to target system 1-8, 2-8, 3-1 to

3-14
mechanical dimensions 3-13 to 3-14

custom switch settings 1-5, 2-5
debugger environment

DOS 2-9 to 2-12
OS/2 1-9 to 1-14

debugger installation
DOS 2-1 to 2-15
error messages 1-17, 2-14
OS/2 1-1 to 1-18
verifying 1-16, 2-13

describing the target system to the debug-
ger 1-3, 1-15
translating the file 1-3

host system 1-2, 2-2
I/O address space

DOS 2-4 to 2-5, 2-12
OS/2 1-4 to 1-5, 1-12

installation
board 1-4 to 1-7, 1-8, 2-4 to 2-7, 2-8
debugger software 1-9, 2-9
error messages 1-17, 2-14
into PC 1-6 to 1-7, 2-6 to 2-7
preparation 1-4 to 1-5, 2-4 to 2-5
verifying 1-16, 2-13

 Index

Index-3

emulator (continued)
memory

default map 1-3, 2-3
operating system 1-3, 2-3
requirements

display 1-2, 2-2
graphics card 1-2, 2-2
hardware 1-2, 2-2
memory 1-2, 2-2
mouse 1-2, 2-2
power 1-2, 2-2
software 1-3, 2-3

resetting 1-3, 1-13, 2-3, 2-12
screen

configuration files 1-3, 2-3
signal buffering 3-7 to 3-9
switch settings

DOS 2-4 to 2-5, 2-12
OS/2 1-4 to 1-5, 1-12

target cable 1-7, 2-7
header design 3-2 to 3-3

target system 1-2, 2-2

emurst file 1-3, 1-13, 2-3, 2-12

environment variables
D_DIR

DOS 2-11
OS/2 1-11

D_OPTIONS
DOS 2-12
OS/2 1-12

D_SRC
DOS 2-11
OS/2 1-11

for debugger options
DOS 2-12
OS/2 1-12

identifying auxiliary directories
DOS 2-11
OS/2 1-11

identifying source directories
DOS 2-11
OS/2 1-11

error messages, installation
DOS 2-14
OS/2 1-17

F
–f debugger option

with D_OPTIONS environment variable 1-12

G
graphics card requirements

DOS 2-2
OS/2 1-2

H
hardware checklist

DOS 2-2
OS/2 1-2

host system
DOS 2-2
OS/2 1-2

I
–i debugger option

with D_OPTIONS environment variable
DOS 2-12
OS/2 1-12

I/O address space
DOS 2-4 to 2-5, 2-12
OS/2 1-4 to 1-5, 1-12

I/O switch settings, default settings
DOS 2-4 to 2-5
OS/2 1-4 to 1-5

init.clr file 1-3, 2-3
initdb.bat file 2-9 to 2-12

invoking 2-10
sample 2-10

initdb.cmd file 1-9 to 1-14
invoking 1-10
limitations 1-11, 1-12
sample 1-10

initialization batch files
emuinit.cmd 1-3, 2-3

installation
debugger software

DOS 2-9
OS/2 1-9

Index

Index-4

installation (continued)
emulator

DOS 2-4 to 2-7
OS/2 1-4 to 1-7

error messages
DOS 2-14
OS/2 1-17

verifying
DOS 2-13
OS/2 1-16

invoking
autoexec.bat file 2-10
config.sys file 1-10
initdb.bat file 2-10
initdb.cmd file 1-10

IOPL
setting 1-13

L
limitations

initdb.cmd file 1-11, 1-12

linker 1-3, 2-3

M
memory

default map
DOS 2-3
OS/2 1-3

mapping
emuinit.cmd file 1-3, 2-3

requirements
DOS 2-2
OS/2 1-2

messages
installation errors

DOS 2-14
OS/2 1-17

Microsoft Windows
using with the debugger 2-9, 2-15

mono.clr file 1-3, 2-3

mouse, requirements
DOS 2-2
OS/2 1-2

N
–n debugger option 1-16

with D_OPTIONS environment variable 1-12

O
operating system

DOS 2-3
OS/2 1-3

optional files 1-3, 2-3
OS/2

display requirements 1-2
error messages

installation 1-17
graphics card requirements 1-2
hardware requirements 1-2
host system 1-2
memory requirements 1-2
mouse requirements 1-2
operating system 1-3
power requirements 1-2
setting up debugger environment 1-9 to 1-14
software requirements 1-3
target system 1-2

P
–p debugger option

with D_OPTIONS environment variable
DOS 2-12, 2-14
OS/2 1-12, 1-14, 1-17

PATH statement
DOS 2-11
OS/2 1-11

port address
D_OPTIONS

DOS 2-12
OS/2 1-12

DOS 2-14
OS/2 1-14, 1-17

power requirements
board 1-2, 2-2

–profile debugger option
with D_OPTIONS environment variable

DOS 2-12
OS/2 1-12

protocol
bus 3-3

 Index

Index-5

R
RAM

speed 1-2
required files 1-3, 2-3
required tools 1-3, 2-3
resetting

emurst file 1-3, 1-13, 2-3, 2-12

S
–s debugger option

with D_OPTIONS environment variable
DOS 2-12
OS/2 1-12

signal buffering for emulator connections 3-7 to 3-9
software checklist

DOS 2-3
OS/2 1-3

startup.cmd file 1-13
switch settings

default settings
DOS 2-4 to 2-5
OS/2 1-4 to 1-5

I/O address space
DOS 2-4 to 2-5, 2-12
OS/2 1-4 to 1-5, 1-12

your settings
DOS 2-5
OS/2 1-5

T
–t debugger option

with D_OPTIONS environment variable
DOS 2-12
OS/2 1-12

target cable connections 1-7, 2-7
target system 1-2, 2-2

connection to emulator 1-8, 2-8, 3-1 to 3-14
describing to the debugger 1-15

board.cfg file 1-3
board.dat file 1-3
translating the file 1-3

test clock 3-8
timing calculations 3-10 to 3-12

V
–v debugger option

with D_OPTIONS environment variable
DOS 2-12
OS/2 1-12

verifying
installation 1-16, 2-13

X
–x debugger option

DOS 2-12
OS/2 1-12

Index-6

