
TMS320C62x DSP
Expansion Bus (XBUS)

Reference Guide

Literature Number: SPRU579A
December 2003

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2003, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

3Expansion Bus (XBUS)SPRU579A

Preface

Read This First

About This Manual

This document describes the expansion bus (XBUS) used by the CPU to
access off-chip peripherals, FIFOs, and peripheral component interconnect
(PCI) interface devices in the TMS320C62x digital signal processors (DSPs)
of the TMS320C6000 DSP family.

Notational Conventions

This document uses the following conventions.

� Hexadecimal numbers are shown with the suffix h. For example, the
following number is 40 hexadecimal (decimal 64): 40h.

� Registers in this document are shown in figures and described in tables.

� Each register figure shows a rectangle divided into fields that represent
the fields of the register. Each field is labeled with its bit name, its
beginning and ending bit numbers above, and its read/write properties
below. A legend explains the notation used for the properties.

� Reserved bits in a register figure designate a bit that is used for future
device expansion.

Related Documentation From Texas Instruments

The following documents describe the C6000 devices and related support
tools. Copies of these documents are available on the Internet at www.ti.com.
Tip: Enter the literature number in the search box provided at www.ti.com.

TMS320C6000 CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the TMS320C6000 CPU architecture,
instruction set, pipeline, and interrupts for these digital signal processors.

TMS320C6000 DSP Peripherals Overview Reference Guide (literature
number SPRU190) describes the peripherals available on the
TMS320C6000 DSPs.

Trademarks

4 Expansion Bus (XBUS) SPRU579A

TMS320C6000 Technical Brief (literature number SPRU197) gives an
introduction to the TMS320C62x and TMS320C67x DSPs, develop-
ment tools, and third-party support.

TMS320C6000 Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the
TMS320C6000 DSPs and includes application program examples.

TMS320C6000 Code Composer Studio Tutorial (literature number
SPRU301) introduces the Code Composer Studio integrated develop-
ment environment and software tools.

Code Composer Studio Application Programming Interface Reference
Guide (literature number SPRU321) describes the Code Composer
Studio application programming interface (API), which allows you to
program custom plug-ins for Code Composer.

TMS320C6x Peripheral Support Library Programmer’s Reference
(literature number SPRU273) describes the contents of the
TMS320C6000 peripheral support library of functions and macros. It
lists functions and macros both by header file and alphabetically,
provides a complete description of each, and gives code examples to
show how they are used.

TMS320C6000 Chip Support Library API Reference Guide (literature
number SPRU401) describes a set of application programming interfaces
(APIs) used to configure and control the on-chip peripherals.

Trademarks

Code Composer Studio, C6000, C62x, C64x, C67x, TMS320C6000,
TMS320C62x, TMS320C64x, TMS320C67x, and VelociTI are trademarks of
Texas Instruments.

Related Documentation From Texas Instruments / Trademarks

Contents

5Expansion Bus (XBUS)SPRU579A

Contents

1 Overview 9.

2 Expansion Bus Signals 12.

3 Expansion Bus I/O Port Operation 14.
3.1 Asynchronous Mode 17.
3.2 Synchronous FIFO Mode 17.

3.2.1 Write FIFO Interface 19.
3.2.2 Read/Write FIFO Interface 20.
3.2.3 Read FIFO Interface 21.
3.2.4 Programming Offset Register 22.
3.2.5 Flag Monitoring 22.

3.3 Single Frame Transfer Example 23.
3.4 Multiple Frame Transfer With Frame Synchronization Example 24.

4 Expansion Bus Host Port Operation 26.
4.1 Synchronous Host Port Mode 27.

4.1.1 TMS320C62x Master on the Expansion Bus 29.
4.1.2 TMS320C62x Slave on the Expansion Bus 36.

4.2 Asynchronous Host Port Mode 42.
4.3 Special Circumstance of XBUS Host Memory Accesses 45.

5 Expansion Bus Arbitration 46.
5.1 Internal Bus Arbiter Enabled 47.
5.2 Internal Bus Arbiter Disabled 48.
5.3 Expansion Bus Requestor Priority 51.

6 Boot Configuration Control via Expansion Bus 52.
6.1 Boot and Device Configuration 54.
6.2 Boot Processes 57.

7 Registers 58.
7.1 Expansion Bus Global Control Register (XBGC) 58.
7.2 Expansion Bus XCE Space Control Registers (XCECTL0−3) 60.
7.3 Expansion Bus Host Port Interface Control Register (XBHC) 62.
7.4 Expansion Bus Internal Master Address Register (XBIMA) 65.
7.5 Expansion Bus External Address Register (XBEA) 66.
7.6 Expansion Bus Data Register (XBD) 67.
7.7 Expansion Bus Internal Slave Address Register (XBISA) 68.

Revision History 69.

Figures

6 Expansion Bus (XBUS) SPRU579A

Figures

1 Expansion Bus Block Diagram 10.
2 TMS320C62x DSP Block Diagram 11.
3 Expansion Bus Interface to Four 8-Bit FIFOs 15.
4 Expansion Bus Interface to Two 16-Bit FIFOs 16.
5 Write FIFO Interface With Glueless Logic 19.
6 Read and Write FIFO Interface With Glue Logic 20.
7 Read and Write FIFO Interface With Glue Logic—FIFO Write Cycles 20.
8 Read FIFO Interface With Glueless Logic 21.
9 Read FIFO Interface With Glueless Logic—FIFO Read Cycles 21.
10 Read FIFO Interface With Glue Logic—FIFO Read Cycles 22.
11 DMA Channel Primary Control Register (PRICTL) Content for

Single Frame Transfer Example 23.
12 DMA Channel Primary Control Register (PRICTL) Content for

Multiple Frame Transfer Example 24.
13 DMA Channel Secondary Control Register (SECCTL) Content for

Multiple Frame Transfer Example 25.
14 Expansion Bus Host Port Interface Block Diagram 26.
15 Read Transfer Initiated by the DSP and Throttled by XWAIT and XRDY Signals

(Internal Bus Arbiter Disabled) 30.
16 Write Transfer Initiated by the DSP and Throttled by XWAIT and XRDY Signals

(Internal Bus Arbiter Disabled) 32.
17 External Device Requests the Bus From the DSP Using XBOFF 34.
18 Expansion Bus Master Writes a Burst of Data to the DSP 38.
19 Expansion Bus Master Reads a Burst of Data From the DSP 40.
20 Asynchronous Host Port Mode Timing Diagrams 44.
21 XHOLD/XHOLDA Timing Diagram for Bus Arbitration With

Internal Bus Arbiter Enabled 47.
22 XHOLD/XHOLDA Timing Diagram for Bus Arbitration With

Internal Bus Arbiter Disabled 48.
23 XHOLD Timing Diagram When the External Host Starts a Transfer to the DSP Instead

of Granting the DSP Access to the Expansion Bus With Internal Bus Arbiter Disabled 49. . .
24 Expansion Bus Global Control Register (XBGC) 58.
25 Expansion Bus XCE Space Control Register (XCECTL) 60.
26 Expansion Bus Host Port Interface Control Register (XBHC) 62.
27 Expansion Bus Internal Master Address Register (XBIMA) 65.
28 Expansion Bus External Address Register (XBEA) 66.
29 Expansion Bus Data Register (XBD) 67.
30 Expansion Bus Internal Slave Address Register (XBISA) 68.

Tables

7Expansion Bus (XBUS)SPRU579A

Tables

1 Expansion Bus Signals 12.
2 Expansion Bus Signal State for Disabled Host Port 13.
3 Addressing Scheme—Expansion Bus Interfaced to Four 8-Bit FIFOs 15.
4 Addressing Scheme—Expansion Bus Interfaced to Two 16-Bit FIFOs 16.
5 Signal Description—Synchronous FIFO Mode 18.
6 DMA Registers Content for Single Frame Transfer Example 23.
7 DMA Registers Content for Multiple Frame Transfer Example 24.
8 Signal Description—Synchronous Host Port Mode 27.
9 Signal Description—Asynchronous Host Port Mode 42.
10 XHOLD and XHOLDA Signal Functionality Based on XARB Bit Value 46.
11 Possible Expansion Bus Arbitration Scenarios With Internal Bus Arbiter Disabled 49.
12 Expansion Bus Requestor Priority 51.
13 Boot Configuration Summary 52.
14 Boot and Device Configuration Description 54.
15 Expansion Bus Registers 58.
16 Expansion Bus Global Control Register (XBGC) Field Descriptions 59.
17 Expansion Bus XCE Space Control Register (XCECTL) Field Descriptions 60.
18 Expansion Bus Host Port Interface Control Register (XBHC) Field Descriptions 62.
19 Expansion Bus Internal Master Address Register (XBIMA) Field Descriptions 65.
20 Expansion Bus External Address Register (XBEA) Field Descriptions 66.
21 Expansion Bus Data Register (XBD) Field Descriptions 67.
22 Expansion Bus Internal Slave Address Register (XBISA) Field Descriptions 68.
23 Document Revision History 69.

8 Expansion Bus (XBUS) SPRU579A

This page is intentionally left blank.

9Expansion Bus (XBUS)SPRU579A

Expansion Bus (XBUS)

This document describes the expansion bus (XBUS) used by the CPU to
access off-chip peripherals, FIFOs, and peripheral component interconnect
(PCI) interface devices in the TMS320C62x digital signal processors (DSPs)
of the TMS320C6000 DSP family.

1 Overview

The expansion bus (XBUS) is a 32-bit wide bus that supports interfaces to a
variety of asynchronous peripherals, asynchronous or synchronous FIFOs,
PCI bridge chips, and other external masters.

The XBUS offers a flexible bus arbitration scheme, implemented with two
signals, XHOLD and XHOLDA. The XBUS can operate with the internal arbiter
enabled, in which case any external hosts must request the bus from the DSP.
For increased flexibility, the internal arbiter can be disabled and the DSP
requests the bus from an external arbiter.

The XBUS has two major subblocks, the I/O port and host port interface. A
block diagram of the XBUS is shown in Figure 1. The I/O port has two modes
of operation that can coexist in a single system: asynchronous I/O mode and
synchronous FIFO mode. These modes are selectable for each of the four
XCE spaces in the XBUS. The asynchronous I/O mode provides output
strobes that are highly programmable, like the asynchronous signals of the
external memory interface (EMIF). The XBUS interface provides four output
address signals in this mode, and with external decode this provides for up to
16 devices per XCE space. The FIFO mode provides a glueless interface to
a single synchronous read FIFO or up to four synchronous write FIFOs. With
a minimal amount of glue, this can be extended to up to 16 read and 16 write
FIFOs per XCE space. Connectivity of the XBUS I/O port and DSP memory
is provided through the direct-memory access (DMA) controller.

The host port interface can operate in one of two modes: synchronous and
asynchronous. The synchronous mode offers master and slave functionality,
and has multiplexed address and data signals. The asynchronous mode is
slave only and is similar to the host-port interface (HPI) on the
C6201/C6211/C6701/C6711 DSP, but is extended to a 32-bit data path. The
asynchronous mode is used to interface to microprocessors that utilize an
asynchronous bus.

Overview

Expansion Bus (XBUS)10 SPRU579A

Figure 1. Expansion Bus Block Diagram

Expansion bus

XCLKIN

Expansion bus host channel

XFCLK

XD[31−0]

XCE[3−0]

XBE[3−0]/XA[5−2]

XOE
XRE

XWE/XWAIT

XCS

XAS
XCNTL
XW/R
XRDY
XBLAST
XBOFF

XHOLD
XHOLDA

Shared signals

I/O Port:
asynchronous peripheral/
FIFO interface

Host port interface

Bus arbitration signals

DMA controller

Connectivity of the XBUS host port interface and the DSP memory space is
provided by the DMA auxiliary port. Dedicated address and data registers
connect the host port interface to the XBUS host channel. An external master
accesses these registers using external data and interface control signals.
Through a dedicated port, the DMA provides connectivity between the
processor and the XBUS I/O port. To initiate transfers via the synchronous host
port interface, the CPU has to configure a set of registers. Figure 2 shows the
XBUS interface on the C62x DSP.

Overview

11Expansion Bus (XBUS)SPRU579A

Figure 2. TMS320C62x DSP Block Diagram

EMIF

Other
 Peripherals

Expansion Bus

Data Access
Controller

Internal Data
Memory

Internal Program
Memory

D
M

A
 B

us

P
er

ip
he

ra
l C

on
tr

ol
 B

us

Interrupt
Selector

Program
Access/Cache

Controller

Direct Memory Access
Controller (DMA)

PLL
Power Down

Logic

Boot
Configuration

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control Logic

Test

In-Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

Note: Refer to the specific device datasheet for its peripheral set.

Expansion Bus Signals

Expansion Bus (XBUS)12 SPRU579A

2 Expansion Bus Signals

Table 1 lists the XBUS signals and their functionality in each mode. If only the
I/O port of the XBUS is used (or if the XBUS is not used at all), the XBUS signals
should be pulled inactive according to Table 2.

Table 1. Expansion Bus Signals

I/O Port Mode
(Non-Exclusive)

Mutually Exclusive
Host Port Modes

XBUS
Signal I/O/Z

Async
Signal I/O/Z

Sync FIFO
Signal I/O/Z

Sync
Mode I/O/Z Async Mode

XD[31−0] I/O/Z D[31−0] I/O/Z D[31−0] I/O/Z D[31−0] I/O/Z D[31−0]

XFCLK O XFCLK

XCLKIN I CLK

XCE[3−0] O CS O RE/WE/CS

XBE0/XA2 O/Z XA2 O/Z XA2 I/O/Z BE0 I BE0

XBE1/XA3 O/Z XA3 O/Z XA3 I/O/Z BE1 I BE1

XBE2/XA4 O/Z XA4 O/Z XA4 I/O/Z BE2 I BE2

XBE3/XA5 O/Z XA5 O/Z XA5 I/O/Z BE3 I BE3

XOE O OE O OE

XRE O RE O RE

XWE/XWAIT O WE O WE O WAIT

XAS I/O/Z AS

XRDY I XRDY I/O/Z READY O/Z READY

XW/R I/O/Z W/R I W/R

XBLAST I/O/Z BLAST

XHOLD I/O/Z HOLD I/O/Z HOLD I/O/Z HOLD I/O/Z HOLD

XHOLDA I/O/Z HOLDA I/O/Z HOLDA I/O/Z HOLDA I/O/Z HOLDA

XCNTL I CNTL I CNTL

XBOFF I BOFF

XCS I CS I CS

Expansion Bus Signals

13Expansion Bus (XBUS)SPRU579A

Table 2. Expansion Bus Signal State for Disabled Host Port

XBUS Signal
I/O Port Mode
(I/O/Z)

External
Connection

XD[31−0] I/O/Z According to system
(See section 6)

XFCLK O N/C

XCLKIN I Pull up

XCE[3−0] O N/C

XBE[3−0]/XA[5−2] O/Z Pull down

XOE O N/C

XRE O N/C

XWE O N/C

XAS I/O/Z Pull up

XRDY I/O/Z Pull up

XW/R I/O/Z Pull up

XBLAST I/O/Z Pull up, if BLPOL = 0;
Pull down, if BLPOL = 1

XHOLD† I/O/Z Pull down

XHOLDA† I/O/Z Pull down

XCNTL I Pull up

XBOFF I Pull down

XCS I Pull up

† Internal arbitration should be enabled, such that the DSP is the master of the bus when not using
the host port. See section 5 for more details.

Expansion Bus I/O Port Operation

Expansion Bus (XBUS)14 SPRU579A

3 Expansion Bus I/O Port Operation

For external I/O port accesses on the XBUS, the XBE signals act as address
signals XA[5−2]. You can use the address signals to address as many as
16 different read/write peripherals or 32 FIFOs in each XCE space. For the
FIFO interface, 32 devices are possible since a separate read and write FIFO
can be located at each address.

Access to the XBUS I/O port can only be done through DMA channels 0−3. The
DMEMC does not have direct access to the XBUS. Therefore, load and store
(LD/ST) commands to the memory spaces of the XBUS I/O port via the CPU
are not allowed, and result in undefined operation. A DMA transfer cannot
occur from one XCE space to another XCE space. Also, a host port transaction
cannot access any of the XCE spaces.

For reads, care must be taken to ensure that contention on the data bus does
not occur when switching from one peripheral to the next in the same XCE
space. The DMA can accomplish this since inactive cycles occur when the
DMA switches from one frame to the next. The DMA can be set up to read (or
write) a frame from each of the peripherals or FIFOs in turn. For example, the
element index can be cleared to 0 and the frame index can be set to a multiple
of 4 (ensure word strides), thus incrementing to a different location after each
frame has completed.

Although the XBUS does not explicitly support memory widths of less than
32 bits, the DMA can be used to read/write to 8-bit or 16-bit peripherals or
FIFOs by controlling the byte/halfword logical addressing. For example, if an
8-bit-wide FIFO is in XCE2, then the DMA ESIZE bits can specify 8-bit
transfers. The lower two address bits in the DMA source or destination address
register determines the byte lane used for accessing the I/O port. If the bottom
two bits are 00b (word aligned), then only XD[7−0] is used for valid data; if 01b,
then XD[15−8] is used (see Figure 3 and Table 3).

Figure 3 shows how to interface four 8-bit FIFOs to the I/O port (memory map
for this case is described in Table 4). Figure 4 is an example of an interface
between two 16-bit FIFOs and the I/O port.

The XOE, XRE, XWE, and XCEn signals are not tri-stated while the DSP
releases control of the XBUS.

Expansion Bus I/O Port Operation

15Expansion Bus (XBUS)SPRU579A

Figure 3. Expansion Bus Interface to Four 8-Bit FIFOs

Decoder

XD[31−24]

XD[23−16]

XD[15−8]

XD[7−0]

XA[3]

WENCLK

FIFO #3

D[7:0]
OE REN

FIFO #2

WEN
REN

CLK
OE
D[7:0]

XA[2]

XRE
XCE

XD[31:0]

XOE

XFCLK

CLK

D[7:0]
OE

FIFO #4

REN
WEN

XD[31−0]

FIFO #1

REN
WEN

D[7:0]
OE
CLK

Table 3. Addressing Scheme—Expansion Bus Interfaced to Four 8-Bit FIFOs

Logical Address A[31−6] A5 A4 A3 A2 A1 A0

FIFO #1 Address X X X 0 0 0 0

FIFO #2 Address X X X 0 1 0 1

FIFO #3 Address X X X 1 0 1 0

FIFO #4 Address X X X 1 1 1 1

Physical Address XA5 XA4 XA3 XA2

Expansion Bus I/O Port Operation

Expansion Bus (XBUS)16 SPRU579A

Alternatively, if 16-bit (or 8-bit) peripherals are used, the DMA element index
can be set up such that the stride value causes a read from alternating byte
lanes during each read transfer. For example, the first access can be to
address A[5−0] = xxxx00b, causing the lower half of the data bus to be driven
by the peripheral. If the next address is A[5−0] = xxxx10b, the top half of the
data bus is driven by the other peripheral (or FIFO) and no bus contention
occurs. The only address signals that are externally provided are A[5−2]. If
address decoding is required to address a specific peripheral or FIFO, these
should be modified as necessary by the DMA to ensure that peripherals are
only addressed when appropriate (see Figure 4 and Table 4).

Figure 4. Expansion Bus Interface to Two 16-Bit FIFOs

XA[2]

XRE
XCE

XD[31:0]

XOE
XFCLK

CLK

D[15:0]
OE

FIFO #2

REN
WEN

XD[31−0]

XD[31−16]

XD[15−0]

FIFO #1

REN
WEN

D[15:0]
OE
CLK

Table 4. Addressing Scheme—Expansion Bus Interfaced to Two 16-Bit FIFOs

Logical Address A[31−6] A5 A4 A3 A2 A1 A0

FIFO #1 Address X X X X 0 0 0

FIFO #2 Address X X X X 1 1 0

Physical Address XA5 XA4 XA3 XA2

Expansion Bus I/O Port Operation

17Expansion Bus (XBUS)SPRU579A

3.1 Asynchronous Mode

The asynchronous cycles of the XBUS are identical to the asynchronous
cycles provided by the EMIF. During asynchronous peripheral accesses,
XRDY acts as an active-high ready input and XBE[3−0]/XA[5−2] operate as
address signals XA[5−2]. The remaining asynchronous peripheral signals
operate exactly like their EMIF counterparts. The following minimum values
apply to the asynchronous parameters:

� SETUP + STROBE + HOLD ≥ 3
� SETUP ≥ 1
� STROBE ≥ 1

� If XRDY is used to extend STROBE, then HOLD ≥ 2.

Notes:

1) XRDY is active (low) during host-port accesses.

2) XBE[3−0]/XA[5−2] operate as XBE[3−0] during host-port accesses.

An access to a section of memory that does not return a ready indication is not
allowed. This includes accesses to XBUS I/O asynchronous spaces with
XRDY pulled inactive or left floating on the device. Possible requestors are
programmed DMA channels, or HPI/PCI/XBUS host mastering via the auxiliary
DMA. This type of access can create a stall indefinitely.

3.2 Synchronous FIFO Mode

The synchronous FIFO mode of the XBUS offers a glueless and/or low glue
interface to standard synchronous FIFOs. The XBUS can interface with up to
four write FIFOs without using glue logic (one per XCE space) or three write
FIFOs and a single read FIFO (in XCE3 only). However, with a minimal amount
of glue logic, up to 16 read and write FIFOs can be used per XCE space.

Several FIFOs can be accessed in a single XCE space, if address decode logic
is used to access each FIFO separately.

A description of the synchronous FIFO signals is listed in Table 5.

Expansion Bus I/O Port Operation

Expansion Bus (XBUS)18 SPRU579A

Table 5. Signal Description—Synchronous FIFO Mode

Signal
Signal Function

Signal
Name I/O/Z Signal Purpose Read/Write Mode Read Mode

XFCLK O FIFO clock output Programmable to either 1/2, 1/4, 1/6, or 1/8 of the CPU clock
frequency. If CPU clock = 250 MHz, then XFCLK = 125, 62.5, 41.7,
or 31.25 MHz. XFCLK continues to clock even when the DSP
releases ownership of the XBUS.

XD[31−0] I/O/Z Data Data lines

XCE[3−0] O FIFO read enable/
write enable/
chip select

Active for both read and write
transactions. They should be
logically ORed with output control
signals externally to create
dedicated controls for a FIFO. Also
can be used directly as FIFO write
enable signal for a single write FIFO
per XCE space.

Acts as read enable signal
(XCE3 only).

XWE O FIFO write enable Write enable signal for FIFO. Must
be logically ORed with
corresponding XCE signal to
ensure that only one FIFO is
addressed at a time.

XRE O FIFO read enable Read enable signal for FIFO. Must
be logically ORed with
corresponding XCE signal to
ensure that only one FIFO is
addressed at a time.

XOE O FIFO output
enable

Shared output enable signal. Must
be logically ORed with
corresponding XCE signal to
ensure that only one FIFO is
addressed at a time.

Dedicated output enable
signal in XCE3, if FIFO read
mode is selected. If selected,
this signal is disabled for all
other modes.

XBE[3−0]/
XA[5−2]

O/Z Expansion bus
address

Operate as XA[5−2]. Can be
decoded to specify up to 16 different
addresses, enabling interface with
glue logic to 16 read FIFOs and 16
write FIFOs in a single XCE space.

Expansion Bus I/O Port Operation

19Expansion Bus (XBUS)SPRU579A

3.2.1 Write FIFO Interface

During write accesses to a memory space configured for read/write FIFO
mode, the XCE signal and XWE signal are both active for a single rising edge
of XFCLK. So, depending on the specific system environment, the write
interface can be accomplished either with glue logic or without glue logic
(glueless).

The glueless interface can be used if only a single write FIFO is used in a given
XCE space (see Figure 5), since the XCE signal is used as the write enable
signal. If this is true, the XCE signal is tied directly to the write enable (WEN)
input of the FIFO. If a read FIFO is also used in the same XCE space, glue logic
must be used since the XCE signal also goes low for reads from the read FIFO.

Figure 5. Write FIFO Interface With Glueless Logic

OE

Q[31:0]

REN
RCLK

FIFO
Synchronous

D[31:0]
HF
FF
EF

WEN
WCLK

bus
Expansion

XD[31:0]

EXT_INTx
XRE
XWE

XCEn
XFCLK

Expansion Bus I/O Port Operation

Expansion Bus (XBUS)20 SPRU579A

3.2.2 Read/Write FIFO Interface

Figure 6 shows an interface to a read FIFO and a write FIFO in the same XCE
space. For this example, the XCE signal is used to gate the appropriate
read/write strobes to the FIFOs. The FIFO write timing diagram for this
interface is shown in Figure 7.

Figure 6. Read and Write FIFO Interface With Glue Logic

OE

RCLK
REN

WCLK
WEN

FIFO
Synchronous

Q[31:0]

FF
EF

HF
Q[31:0]

EXT_INTy
D[31:0]

WEN
WCLK

FIFO
Synchronous

Q[31:0]
HF
FF
EF

OE
REN
RCLK

bus
Expansion

XD[31:0]

EXT_INTx

XWE
XOE

XRE
XCEn

XFCLK

Figure 7. Read and Write FIFO Interface With Glue Logic—FIFO Write Cycles

XA2 XA3 XA4 XA5

D2 D3 D4 D5

XFCLK

XCEn

XBE[3−0] / XA[5−2]

XWE

WEN = XCEn + XWE

XD[31−0]

Expansion Bus I/O Port Operation

21Expansion Bus (XBUS)SPRU579A

3.2.3 Read FIFO Interface

The read FIFO interface can be accomplished without glue logic (glueless) in
XCE3 space or with a minimal amount of glue logic in any XCE space. If a
glueless read FIFO interface is used (specified by boot configuration
selection), the XOE signal is only enabled in XCE3 space and is dedicated to
use for the FIFO interface. If this mode is selected at boot, the XOE signal is
disabled in all other XCE spaces. In this mode, XCE3 is used as the read
enable signal (REN) and XOE is used as the output enable signal (OE) of the
FIFO. Figure 8 shows this interface and Figure 9 shows the read timing
diagram. If the glueless read FIFO mode is not chosen, then a minimal amount
of glue logic can be used in any XCE space specified as a FIFO interface.
Figure 6 shows the required glue logic. Figure 10 shows the read timing
diagram for the case when glue logic is used to read from FIFO.

Figure 8. Read FIFO Interface With Glueless Logic

D[31:0]

WEN
WCLK

FIFO
Synchronous

Q[31:0]
HF
FF
EF

OE
REN
RCLK

bus
Expansion

XD[31:0]

EXT_INTx
XRE
XWE
XOE

XCE3
XFCLK

Figure 9. Read FIFO Interface With Glueless Logic—FIFO Read Cycles

D5D4D3D2D1XD[31−0]

XOE

XCE3

XFCLK

Sample5
Sample4

Sample3
Sample2

DSP Sample1

Expansion Bus I/O Port Operation

Expansion Bus (XBUS)22 SPRU579A

Figure 10. Read FIFO Interface With Glue Logic—FIFO Read Cycles

XA1 XA2 XA3 XA4

D1 D2 D3 D4

XFCLK

XCEn

XBE[3−0], XA[5−2]

XWE

XRE

XOE

REN = XCEn + XRE

OE = XCEn + XOE

XD[31−0]

3.2.4 Programming Offset Register

The programmable offset registers of the FIFO are used to hold the offset
values for the flags that indicate the condition of the FIFO contents. The
programmable offset registers must be programmed in consecutive cycles
and read in consecutive cycles. The writer should not write to the FIFO until
the offset registers have been programmed. In addition, the reader should not
read from the FIFO until the writer has programmed the offset registers. This
should not be a problem, since the FIFO is not read until it has been written.

For programming (or reading) the offset registers, back-to-back accesses
must be done. For example, the first XFCLK edge with the program input to
the FIFO low, programs the PAE register; the second XFCLK edge, programs
the PAF register. Also, for 9-bit or 18-bit FIFOs, it is common to require two or
three write cycles to fully program each register. The first write programs the
low bits, the second write programs the middle bits, and the third write
programs the high bits.

A general-purpose output (DMACx or TOUTx) can be used to control whether
FIFO reads/writes are done to the FIFO memory or to the programmable offset
register of the memory. The XA[5−2] signals can also be decoded to control
when the FIFO offset register is accessed.

3.2.5 Flag Monitoring

To efficiently control bursts to and from the dedicated FIFO interfaces, the
interrupt signals EXT_INT4, EXT_INT5, EXT_INT6, and EXT_INT7 are used as
flags to control DMA transfers. The flag polarity used to start the transfer can
be programmed in the DMA channel secondary control register (SECCTL). The
CPU EXT_INT and DMA EXT_INT polarity is controlled separately.

Expansion Bus I/O Port Operation

23Expansion Bus (XBUS)SPRU579A

3.3 Single Frame Transfer Example

Peripherals located on the I/O port of the XBUS are accessible only via DMA
transactions. This example shows you how to transfer a single frame of
256 words from a FIFO located in XCE0 into internal data memory at
8000 0000h. This example sets up the source and destination registers,
transfer counter register, and starts the DMA with an incrementing destination
address (DSTDIR = 01) and a nonchanging source address (SRCDIR = 00).
The source address does not change since the FIFO is located in a
fixed-memory location. The content of relevant DMA registers is listed in
Table 6 and the content of the DMA channel primary control register (PRICTL)
is shown in Figure 11.

Table 6. DMA Registers Content for Single Frame Transfer Example

Register Contents

DMA channel primary control register (PRICTL) 0000 0041h (see Figure 11)

DMA channel source address register (SRC) 4000 0000h

DMA channel destination address register (DST) 8000 0000h

DMA channel transfer counter register (XFRCNT) 0000 0100h

Figure 11. DMA Channel Primary Control Register (PRICTL) Content for
Single Frame Transfer Example

31 30 29 28 27 26 25 24

00 00 0 0 0 0

DSTRLD SRCRLD EMOD FS TCINT PRI

23 19 18 14 13 12

0 0000 0 0000 0 0

WSYNC RSYNC INDEX CNTRLD

11 10 9 8 7 6 5 4 3 2 1 0

00 00 01 00 00 01

SPLIT ESIZE DSTDIR SRCDIR STATUS START

Expansion Bus I/O Port Operation

Expansion Bus (XBUS)24 SPRU579A

3.4 Multiple Frame Transfer With Frame Synchronization Example

This example shows you how to transfer 10 frames of 256 words from a FIFO
located in XCE0 into internal data memory at 8000 0000h. This example sets
up the source and destination registers, transfer counter register, global count
reload register, and starts the DMA with an incrementing destination address
(DSTDIR = 01) and a nonchanging source address (SRCDIR = 00). The
source address does not change since the FIFO is located in a fixed-memory
location. Frame synchronization is enabled (FS = 1) and an active (high)
EXT_INT4 is used for the synchronization event (RSYNC = 0100). The
content of relevant DMA registers is listed in Table 7 and the content of the
DMA channel primary control register (PRICTL) and secondary control register
(SECCTL) are shown in Figure 12 and Figure 13.

Table 7. DMA Registers Content for Multiple Frame Transfer Example

Register Content

DMA channel primary control register (PRICTL) 0401 0041h (see Figure 12)

DMA channel secondary control register (SECCTL) 0008 0000h (see Figure 13)

DMA channel source address register (SRC) 4000 0000h

DMA channel destination address register (DST) 8000 0000h

DMA channel transfer counter register (XFRCNT) 000A 0100h

DMA global count reload register A (GBLCNTA) 0000 0100h

Figure 12. DMA Channel Primary Control Register (PRICTL) Content for
Multiple Frame Transfer Example

31 30 29 28 27 26 25 24

00 00 0 1 0 0

DSTRLD SRCRLD EMOD FS TCINT PRI

23 19 18 14 13 12

0 0000 0 0100 0 0

WSYNC RSYNC INDEX CNTRLD

11 10 9 8 7 6 5 4 3 2 1 0

00 00 01 00 00 01

SPLIT ESIZE DSTDIR SRCDIR STATUS START

Expansion Bus I/O Port Operation

25Expansion Bus (XBUS)SPRU579A

Figure 13. DMA Channel Secondary Control Register (SECCTL) Content for
Multiple Frame Transfer Example

31 24

0000 0000

Reserved

23 22 21 20 19 18 16

00 0 0 1 000

Reserved WSPOL† RSPOL† FSIG† DMACEN

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

WSYNCCLR WSYNC-
STAT

RSYNCCLR RSYNC-
STAT

WDROPIE WDROP-
COND

RDROPIE RDROP-
COND

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

BLOCKIE BLOCK-
COND

LASTIE LAST-
COND

FRAMEIE FRAME-
COND

SXIE SXCOND

† Available only on C6202 and C6203 devices.

Expansion Bus Host Port Operation

Expansion Bus (XBUS)26 SPRU579A

4 Expansion Bus Host Port Operation

The XBUS host port has two modes of operation that enable interfaces to
external processors, PCI bridge devices, or other external peripherals. These
two operation modes are the synchronous host port mode and the
asynchronous host port mode. The synchronous host port mode can interface
with minimum glue logic to PCI bridge devices and many common
microprocessors. The asynchronous host port mode enables interfacing to
genuine asynchronous devices. The XBUS host port block diagram is shown
in Figure 14.

Using pull-up/pull-down resistors on the data bus during reset sets the host
port operational mode, the DSP bootmode, and endianness.

Figure 14. Expansion Bus Host Port Interface Block Diagram

XCS
XCNTL
XBOFF

XBLAST
XW/R

XAS
XRDY

XBE[3−0]

XD[31−0]

XHOLDA

XHOLD

DSP

block
Control

arbitration
Bus

MUX

(XBGC, XBHC)
control registers

host port
Expansion bus

bus
peripheral
controller
memory

Data

latches
address
XBEA

XBD data
latches

latches
address
XBISA

channel
auxiliary

DMA
Enhanced

XWAIT

Expansion Bus Host Port Operation

27Expansion Bus (XBUS)SPRU579A

4.1 Synchronous Host Port Mode

In this mode, the host port has address and data signals multiplexed and is
i960Jx compatible. This allows a minimum glue logic interface to the PCI bus,
since major PCI interface device manufacturers adopted the i960 bus for the
local bus on their devices.

The synchronous host port can also easily interface to many other common
processors, and essentially act in a slave only mode. This is done by not
initiating transactions on the XBUS. The XBUS has the capability to initiate and
receive burst transfers.

A description of the synchronous host port signals is listed in Table 8.

Table 8. Signal Description—Synchronous Host Port Mode

Signal
Name I/O/Z

Signal
Purpose Signal Function

XCLKIN I Clock input XBUS clock (maximum clock speed is 1/4 of the CPU clock speed).

XCS I Chip select Selects the DSP as a target of an external master.

XHOLD I/O/Z Hold request Case 1 (Internal bus arbiter is enabled)
XHOLD is asserted by external device to request use of the XBUS.
The DSP asserts XHOLDA when control is granted.

Case 2 (Internal bus arbiter is disabled)

The DSP wakes up from reset as slave on the bus.

XHOLD is asserted by the DSP to request use of the XBUS. The
XBUS arbiter asserts XHOLDA when control is granted.

XHOLDA I/O/Z Hold acknowledge Case 1 (Internal bus arbiter is disabled)

The DSP wakes up from reset as slave on the bus.

The XBUS arbiter asserts XHOLDA when control is granted in
response to XHOLD. The bus should not be granted to the DSP
unless requested by XHOLD.

Case 2 (Internal bus arbiter is enabled)

The DSP wakes up from reset as master of the bus.

XHOLDA is asserted by the DSP when control is granted in response
to XHOLD.

XD[31−0] I/O/Z Address/
data bus

Data

XBLAST I/O/Z Burst last Signal driven by the current XBUS master to indicate the last transfer
in a bus access. Input polarity selected at boot. Output polarity is
always active low.

Expansion Bus Host Port Operation

Expansion Bus (XBUS)28 SPRU579A

Table 8. Signal Description—Synchronous Host Port Mode (Continued)

Signal
Name Signal Function

Signal
PurposeI/O/Z

XAS I/O/Z Address strobe Indicates a valid address and the start of a new bus access. Asserted
for the first clock of a bus access.

XCNTL I Control signal This signal selects between XBD and XBISA.

XCNTL = 0: access is made to the expansion bus data register
(XBD).

XCNTL = 1: access is made to the expansion bus internal slave
address register (XBISA).

XBE[3−0]/
XA[5−2]

I/O/Z Byte enables During host-port accesses these signals operate as XBE[3−0].

BE3 byte enable 3: XD[31−24]

BE2 byte enable 2: XD[23−16]

BE1 byte enable 1: XD[15−8]

BE0 byte enable 0: XD[7−0]

For XBD access (XCNTL = 0):
 8-bit data must be byte-aligned
 16-bit data must be halfword-aligned
 32-bit data must be word-aligned.

For XBISA access (XCNTL = 1), all XBE[3−0] must be active low.

XW/R I/O/Z Read/write Read/write enable. Polarity of this signal is configured during boot.

XRDY I/O/Z Ready out
Ready in

Active (low) during host-port access. XRDY is an input when the
DSP owns the bus. When the DSP does not own the bus, XRDY is
not driven until a request is made to the DSP.

XBOFF I Bus back-off When asserted, suspends the current access and the DSP releases
ownership of the XBUS.

XWAIT O Wait Ready output when the DSP initiates transfers on the XBUS.

Expansion Bus Host Port Operation

29Expansion Bus (XBUS)SPRU579A

4.1.1 TMS320C62x Master on the Expansion Bus

When the C62x DSP is the master of the XBUS, it can initiate a burst read or
write to a peripheral on the bus.

When the DSP controls the bus, data flow is governed in a manner similar to
a DMA transfer; however, the XBUS host channel regulates the actual data
transfer. The event flow is:

1) The DSP must initialize the expansion bus external address register
(XBEA), which dictates where data is accessed in the external slave
memory map.

2) The expansion bus internal master address register (XBIMA) must be set
to specify the source or destination address in the DSP memory map
where the transaction starts.

3) The XFRCT bits of the expansion bus host port interface control register
(XBHC) are set to control the number of 32-bit words being transferred.

Note: Only 32-bit transfers are supported by the XBUS when the DSP is
the master in synchronous host port mode.

4) The START bits of XBHC are written, controlling whether the external
access is a read or write burst.

An interrupt is generated at the completion of the transfer, if specified by the
INTSRC bit in XBHC.

Figure 15 and Figure 16 show examples of timing diagrams for a burst read
and write when the DSP is mastering the bus. In this case, internal bus arbiter
is disabled (XHOLD is output and XHOLDA is input) and the DSP wakes up
from reset as slave on the XBUS.

The XWAIT signal prevents data overflow/underflow when the DSP is a master
on the XBUS. The XWAIT signal, which is multiplexed with the XWE signal,
can be thought of as a ready output when the DSP initiates transfers on the
XBUS. When the DSP has initiated a transaction, the DSP indicates that it is
not ready to deliver/receive new data by asserting the XWAIT signal low.

The XWAIT signal is an output only signal in synchronous host port mode.

Expansion Bus Host Port Operation

Expansion Bus (XBUS)30 SPRU579A

4.1.1.1 Burst Read Transfer

The timing diagram in Figure 15 can be referenced for a visual description of
the steps required to complete a burst read initiated by the DSP and throttled
by the XWAIT and XRDY signals.

Figure 15. Read Transfer Initiated by the DSP and Throttled by XWAIT and XRDY Signals
(Internal Bus Arbiter Disabled)

XCLKIN (input)

XHOLD (output)

XHOLDA (input)

XAS (output)

XW/R (output)

XBLAST (output)

XBE[3−0] (output)

XD[31−0] (i/o)

XRDY (input)

XWAIT (output)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

BE

D1 D2 D3 D4 D5 D6 D7 D8AD

Note: XWAIT is an output only signal in synchronous host port mode.

The step-by-step description of the events marked above the waveforms in
Figure 15:

1) The DSP requests the XBUS by asserting XHOLD output.

2) The DSP waits for the XBUS.

3) The external bus arbiter asserts the XHOLDA signal, and the DSP starts
driving the bus. The XAS, XW/R, XBLAST, XBE[3−0] signals become
outputs, and the XRDY signal becomes an input.

Expansion Bus Host Port Operation

31Expansion Bus (XBUS)SPRU579A

4) Address phase: During this phase, XAS is asserted and the address is
presented on the XBUS.

5) Data phase: The external device is not ready to deliver data, as indicated
by XRDY high.

6) Same as step 5.

7) Same as step 5.

8) Same as step 5.

9) The external device presents requested data (D1), and asserts XRDY.

10) The external device is not ready to deliver next data. The XRDY is negated.

11) Same as step 10

12) Same as step 10

13) The external device presents next data (D2), and asserts XRDY.

14) The external device presents next data (D3), and XRDY stays asserted.

15) The external device presents next data (D4), and XRDY stays asserted.

16) The external device presents next data (D5), and XRDY stays asserted.
The DSP can not accept the new data (D5), and asserts XWAIT.

17) The external device recognizes XWAIT, and keeps the D5 on the XBUS.
The XRDY is asserted and indicates that the external device is ready
waiting for the DSP to accept the data.

18) The DSP deasserts XWAIT, and accepts D5.

19) The external device presents next data (D6), and XRDY stays asserted.

20) The external device presents next data (D7), and XRDY stays asserted.

21) The external device presents the last data (D8), and the DSP asserts the
XBLAST.

22) The recovery cycle.

23) The DSP negates the XBUS request (XHOLD), and turns off the outputs.

Expansion Bus Host Port Operation

Expansion Bus (XBUS)32 SPRU579A

4.1.1.2 Burst Write Transfer

The timing diagram in Figure 16 can be referenced for a visual description of
the steps required to complete a burst write initiated by the DSP and throttled
by the XWAIT and XRDY signals.

Figure 16. Write Transfer Initiated by the DSP and Throttled by XWAIT and XRDY Signals
(Internal Bus Arbiter Disabled)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

XCLKIN (input)

XHOLD (output)

XHOLDA (input)

XAS (output)

XW/R (output)

XBLAST (output)

XBE[3−0] (output)

XD[31−0] (i/o)

XRDY (input)

XWAIT (output)

BE

AD D1 D2 D3 D4 D5 D6 D7 D8

Note: XWAIT is an output only signal in synchronous host port mode.

The step-by-step description of the events marked above the waveforms in
Figure 16:

1) The DSP requests the XBUS (XHOLD asserted).

2) The DSP waits for the XHOLDA signal to be asserted by the external
arbiter.

3) The external bus arbiter asserts the XHOLDA signal, the XAS, XW/R,
XBLAST, and XBE[3−0] signals become outputs, and the XRDY signal
becomes an input.

Expansion Bus Host Port Operation

33Expansion Bus (XBUS)SPRU579A

4) Address phase: During this phase, the XAS is asserted and the address
is presented on the XBUS.

5) Data phase: During this phase, data (D1) is presented by the DSP and the
external device is ready to accept the data, which is indicated by XRDY
being active.

6) The DSP presents next data (D2). The external device indicates not ready
condition, which is indicated by XRDY being inactive.

7) The DSP is holding data D2 on the XBUS since the external device is still
not ready.

8) External device finally accepts the D2.

9) The DSP presents next data (D3). The external device is ready to take D3.

10) The DSP presents next data (D4). The external device is ready to take D4.

11) The DSP presents next data (D5). The external device is ready to take D5.

12) The DSP is not ready to present D6 and asserts XWAIT. The external
device is waiting for the DSP to present new data.

13) Same as step12.

14) Same as step 12.

15) The DSP presents next data (D6), and negates XWAIT. The external
device is ready to take D6.

16) The DSP presents next data (D7). The external device is ready to take D7.

17) The DSP presents the last data (D8), and asserts XBLAST. The external
device is ready to take D8.

18) Recovery cycle

19) The DSP removes the bus request (XHOLD), and is turns off the outputs.

To prevent contention on the XBUS, one recovery state between the last data
transfer and next address cycle is inserted.

Expansion Bus Host Port Operation

Expansion Bus (XBUS)34 SPRU579A

4.1.1.3 Preventing Deadlocks with Backoff

The XBUS has the XBOFF signal to prevent deadlocks while the DSP is
performing a master transfer. When asserted, XBOFF suspends the current
access and causes the DSP to release ownership of the XBUS. Figure 17 is
the timing diagram for the XBOFF signal.

The backoff is only recognized during active master transfers when XRDY
indicates a not-ready status and one of the following conditions exists:

1) The external device is requesting the XBUS (XHOLD = 1), when the
internal bus arbiter is enabled (XARB = 1).

or

2) The DSP is the XBUS master (XHOLD = 1 and XHOLDA = 1), and the
internal bus arbiter is disabled (XARB = 0).

The backoff request is not serviced until all current master transfers are
completed internally. This allows read data to be flushed out of the pipeline.
The XBOFF signal is not recognized during I/O port transfers.

Figure 17. External Device Requests the Bus From the DSP Using XBOFF

XCLKIN

XHOLD (output)

XHOLDA (input)

XHOLD (input)

XHOLDA (output)

XAS (output)

XW/R (output)

XBLAST (output)

XD[31−0]

XRDY

XBOFF (input)

1 2 3 4 5 6 7 8

AD AD D0 D1 D2 D3

In
te

rn
al

B
us

A
rb

ite
r

D
is

ab
le

d

In
te

rn
al

B
us

A
rb

ite
r

E
na

bl
ed

Expansion Bus Host Port Operation

35Expansion Bus (XBUS)SPRU579A

The timing diagram in Figure 17 can be referenced for a visual description of
the steps involved in release of the XBUS ownership as initiated by the XBOFF
signal. Figure 17 shows the backoff condition for both internal bus arbiter
enabled and internal bus arbiter disabled. The step-by-step description of the
events marked above the waveforms in Figure 17:

1) The DSP is the XBUS master and initiates address phase of a read
transaction. The XAS signal is active and valid address is presented.

2) The XRDY signal is high, indicating that the external device is not ready
to perform the transaction. Also, the external device drives XHOLD active,
indicating a bus request.

3) The DSP is still holding the XBUS waiting for XRDY to become low.

4) The external device asserts XBOFF, indicating a potential deadlock
condition.

5) The DSP responds by releasing the XBUS. When the internal bus arbiter
is enabled, the DSP asserts XHOLDA. When the internal bus arbiter is
disabled the DSP deasserts XHOLD. It can take a several clock cycles
before the DSP responds to XBOFF. Figure 17 shows the fastest
response time, one cycle.

6) The XBUS ownership changes. The new master drives the XBUS. XBOFF
is deasserted.

7) The external device releases the bus after performing the desired
transactions.

8) The XHOLDA is removed, and the DSP resumes the XBUS ownership.

9) The DSP performs a burst read of four words.

The DSP automatically tries to restart the transfer interrupted by a backoff from
the point where the interruption took place. The transfer restart is completely
transparent.

Expansion Bus Host Port Operation

Expansion Bus (XBUS)36 SPRU579A

4.1.2 TMS320C62x Slave on the Expansion Bus

The external host can access the different expansion bus host port registers
by driving the XCNTL signal as follows:

� XCNTL = 0; reads or writes the expansion bus data register (XBD).

� XCNTL = 1; reads or writes the expansion bus internal slave address
register (XBISA).

Every transaction initiated by the host on the XBUS is a two-step process.
First, the host has to set XBISA, and then transfer the data to/from the address
pointed by XBISA. Bursts longer than one word must take place with
autoincrementing of XBISA. Therefore, the AINC bit must always be cleared
to 0.

Initial access made to the expansion bus in host slave mode should be done
in the previous order. After reset, the first access from the host should be an
XBISA write followed by an XBD read/write. Undefined operation may occur
if an XBISA read or an XBD read/write occurs before an XBISA write.

To read/write from the DSP memory space, the host must follow the following
sequence:

1) The host writes the transfer source/destination address to XBISA and
clears the AINC bit.

2) The host reads/writes the address specified by XBISA. Read or write is
determined by the XBISA XW/R signal. XBISA is autoincremented since
bit 1 of XBISA must be cleared by the external host.

3) If the transfer is a burst, dictated by the BLAST signal, data is continuously
read or written. If a multiword burst is being done, all XBEn signals must
be low, because only 32-bit word bursts are allowed. If less than 32 bits
are transferred (specified by XBEn signals), then only single element
transfers are allowed.

The XWAIT signal is not used in slave mode.

Expansion Bus Host Port Operation

37Expansion Bus (XBUS)SPRU579A

4.1.2.1 Cycle Description

Each access initiated by the external host can be broken up into distinct
categories:

� Address phase (Ta): During the address phase, the DSP is selected with
the XCS input and the address phase is started with a low pulse on the
XAS signal. During this phase, the DSP determines if the external master
is doing a read or write cycle (XW/R input) and which XBUS register is
being accessed (via the XCNTL input).

� Wait/data phase (Tw/Td): Immediately after the address phase, the
transaction enters either the wait phase or data phase. For a read cycle,
there is at least one wait phase before the DSP presents the data to the
external host. This is controlled via the XRDY output of the DSP. If the
XRDY signal is high, this indicates to the external host that the DSP is not
ready to receive data for a write, or is not ready to present data for a read,
and is in the wait phase. The data phase is entered when the DSP asserts
XRDY signal, indicating that read data should be latched by the external
host or that write data has been latched by the DSP.

� Recovery phase (Tr): The recovery phase is entered after the final data
phase of a burst access, or after the data phase of a single access. When
the DSP is a slave, if the external master has a multiplexed address/data
bus, it is recommended that the external master insert at least one recovery
phase between a read data phase and a subsequent address phase in
order to avoid potential bus contention.

Expansion Bus Host Port Operation

Expansion Bus (XBUS)38 SPRU579A

4.1.2.2 Burst Write Transfer

The timing diagram in Figure 18 can be referenced for a visual description of
the steps required to complete a burst write initiated by an external host and
throttled by the XRDY signal.

The boot configuration for XBLAST and XW/R: BLPOL = 0 and RWPOL = 0.
See Table 8 (page 27) for more details.

Figure 18. Expansion Bus Master Writes a Burst of Data to the DSP

D4D3D2D1

9

Ready

8765

Ready

43

Wait

21

DSP latches CNTL

XCLKIN

XCS
(input)

XCNTL
(input)

XW/R
(input)

XBE[3−0]
(input)

XBLAST
(input)

XAS
 (input)

XD[31−0]

XRDY
 (output)

Write

0000 = Word

0 = XBD1 = XBISA

Write

10 11

Internal src/dst addr

Ready

Expansion Bus Host Port Operation

39Expansion Bus (XBUS)SPRU579A

The step-by-step description of the events marked above the waveforms in
Figure 18:

1) The XCS and XAS signals are low and the XCNTL signal is high, indicating
XBISA as the destination for the following transaction. The XW/R is high,
specifying that a write access is taking place.

2) The DSP begins driving the XRDY output in response to a transfer initiated
by the external host. A high XRDY indicates that the DSP is not ready.

3) The data is written to XBISA when the DSP asserts the XRDY output low.

4) The DSP inserts one or more not-ready cycles (XRDY = 1) between the
address phase and the first data phase.

5) The XAS and XCNTL signals are low (and XCS is low), indicating XBD as
the destination for the following transaction. The XW/R is high, specifying
that a write access is taking place.

6) The DSP inserts one not-ready cycle (XRDY = 1).

7) The XBUS master presents the valid data. The data is written to XBD on
the rising edge of the XCLKIN when XRDY is active-low.

8) Same as step 7.

9) The DSP is not ready to accept next data, which is indicated by XRDY high.

10) Same as step 7.

11) The XBUS master indicates that the last write transaction is taking place
by asserting the XBLAST signal. The data is written to XBD on the rising
edge of the XCLKIN.

The XWAIT signal is not used in slave mode.

Expansion Bus Host Port Operation

Expansion Bus (XBUS)40 SPRU579A

4.1.2.3 Burst Read Transfer

The timing diagram in Figure 19 can be referenced for a visual description of
the steps required to complete a burst read initiated by an external host and
throttled by the XRDY signal.

The boot configuration for XBLAST and XRW: BLPOL = 0 and RWPOL = 0.
See Table 8 (page 27) for more details.

Figure 19. Expansion Bus Master Reads a Burst of Data From the DSP

D4D3D2D1

98765

Ready

43

Wait

21

DSP latches CNTL

XCLKIN

XCS
(input)

XCNTL
(input)

XW/R
(input)

XBE[3−0]
(input)

XBLAST
(input)

XAS
 (input)

XD[31−0]

XRDY
 (output)

Read

0000 = Word

Internal src/dst addr

0 = XBD1 = XBISA

Write

10 11

Wait

Expansion Bus Host Port Operation

41Expansion Bus (XBUS)SPRU579A

The step-by-step description of the events marked above the waveforms in
Figure 19:

1) The XCS and XAS signals are low and the XCNTL signal is high, indicating
XBISA as the destination for the following transaction. The XW/R is high,
specifying that a write access is taking place.

2) The DSP begins driving the XRDY output in response to a transfer initiated
by the external host. A high XRDY indicates that the DSP is not ready.

3) The data is written to XBISA when the DSP asserts the XRDY output low.

4) The DSP inserts one or more not-ready cycles (XRDY = 1) between the
address phase and the first data phase.

5) The XAS and XCNTL signals are low (and XCS is low), indicating XBD as
the destination for the following transaction. The XW/R is low, specifying
that a read access is taking place.

6) The DSP inserts one not-ready cycle (XRDY = 1).

7) The DSP presents the valid data, and drives XRDY low.

8) Same as step 7.

9) The DSP is not ready to present the next data, which is indicated by XRDY
high.

10) Same as step 7.

11) The XBUS master indicates that the last read transaction is taking place
by asserting the XBLAST signal.

The XWAIT signal is not used in slave mode.

Expansion Bus Host Port Operation

Expansion Bus (XBUS)42 SPRU579A

4.2 Asynchronous Host Port Mode

The asynchronous host port mode is slave only, it uses a 32-bit data path and
is similar to the host port interface (HPI) on the C6201 DSP. The asynchronous
host port mode is used to interface to asynchronous microprocessor buses.

A description of the signals when the XBUS operates in the asynchronous host
port mode is listed in Table 9.

Table 9. Signal Description—Asynchronous Host Port Mode

Signal
Name I/O/Z

Signal
Purpose Signal Function

XCS I Chip select Selects the DSP as a target of an external master.

XD[31−0] I/O/Z Data bus

XBE[3−0] I Byte enables Functionality of these signals is the same as on the DSP HPI (during a
read, XBE does not matter). During a write:

BE3 byte enable 3: XD[31−24]

BE2 byte enable 2: XD[23−16]

BE1 byte enable 1: XD[15−8]

BE0 byte enable 0: XD[7−0]

8-bit data must be byte-aligned.
16-bit data must be halfword-aligned.
32-bit data must be word-aligned.

XCNTL I Control signal This signal selects between XBD and XBISA.

XCNTL=0, access is made to the expansion bus data register (XBD).

XCNTL=1, access is made to the expansion bus internal slave address
register (XBISA).

XW/R I Read/write Read/write enable. Polarity of this signal is configured during boot.

XRDY O/Z Ready out Ready signal indicates normally not-ready condition. This signal is
always driven in asynchronous host mode when the DSP does not own
the bus.

Expansion Bus Host Port Operation

43Expansion Bus (XBUS)SPRU579A

The XCNTL signal selects which internal register the host is accessing. The
state of this pin selects if access is made to the expansion bus internal slave
address register (XBISA) or the expansion bus data register (XBD).

If the XBUS host port operates in the asynchronous mode, every transaction
initiated by the host on the XBUS is a two-step process. The host first has to
set XBISA, and then transfer the data to/from the address pointed to by XBISA.
The data transfer can take place with or without autoincrementing XBISA.
Whether or not XBISA gets autoincremented is determined by the AINC bit in
XBISA.

In order to read/write from the DSP memory spaces, the host must follow the
following sequence:

1) Host writes the address to XBISA, and sets AINC accordingly in XBISA.

2) Host reads/writes the address specified by XBISA. Read or write is
determined by the XW/R signal. XBISA may be autoincremented, depending
upon what is written to the AINC bit during step 1.

Initial access made to the expansion bus in host slave mode should be done
in the order indicated above. After reset, the first access from the host should
be an XBISA write followed by an XBD read/write. Undefined operation may
occur if an XBISA read or an XBD read/write occurs before an XBISA write.

If the XBUS host port is configured to operate in asynchronous mode, the XCS
signal is used for four purposes:

1) To select the XBUS host port as a target of an external master.

2) On a read, the falling edge of XCS initiates read accesses.

3) On a write, the rising edge of XCS initiates write accesses.

4) The XCS falling edge latches XBUS host port control inputs including:
XW/R and XCNTL.

The XRDY signal of the DSP functions differently than the C6201 HPI READY
signal. The XRDY signal indicates normally not ready condition (active-low
READY signal is internally ORed with XCS signal in order to obtain XRDY).
XRDY should be polled during reads/writes to/from the XBISA or XBD.

Asynchronous host port read and write timing diagrams are shown in
Figure 20.

Expansion Bus Host Port Operation

Expansion Bus (XBUS)44 SPRU579A

Figure 20. Asynchronous Host Port Mode Timing Diagrams

(a) Write Timing

XCNTL (input)

word

XR/W (input)

XCS (input)

XRDY (output)

XD[31−0]

XBE[3−0] (input)

(b) Read Timing

word

XCNTL (input)

XR/W (input)

XCS (input)

XRDY (output)

XD[31−0]

XBE[3−0] (input)

Expansion Bus Host Port Operation

45Expansion Bus (XBUS)SPRU579A

4.3 Special Circumstance of XBUS Host Memory Accesses

When the XBUS host port executes a read from the DSPs memory space, it
does so by performing burst prefetches of 3 words. This results in the DMA
auxiliary channel reading 3 higher-word addresses that you may not have
explicitly requested. This occurs only under the following situations:

� An external master performs an autoincremented read from the XBUS
configured for host slave mode (both synchronous or asynchronous).

� The XBUS configured as the master in synchronous host port mode writes
from the DSP to the external space via the XBUS.

The accesses described above can cause the following undesired operations:

1) Accesses to undesired CE spaces:

� When reading the top 3 words of EMIF CE0, the resulting prefetches
can cause an inadvertent access to CE1 that may cause an undesired
read to a device or a stall, if the inadvertent access is to an asynchronous
memory space with ARDY left floating or pulled inactive (not-ready).

� The above example also applies to CE2 with the resulting prefetches
possibly causing an inadvertent access to CE3.

Associated design tip: If not using ARDY or XRDY, always pull to the ready
state to avoid stalls. If you always want to detect bad software setups,
always pull to the not-ready state to detect system stalls.

2) Unintended port crossings or illegal accesses to a reserved location:

� When reading the top 3 words of EMIF CE1, the access can cross into
either program memory (PMEM) block 0 when in Map 0, or to the internal
peripheral bus (PBus) region storing EMIF control registers when in
Map 1. This is an illegal port crossing.

� When reading the top 3 words of EMIF CE3, the access can cross into
reserved address space. This is an illegal access.

� When reading the top 3 words of PMEM block 0, the access can cross
into PMEM block 1. This is an illegal port crossing.

� When reading the top 3 words of PMEM block 1, the access can cross
into reserved address space. This is an illegal access.

� When reading the top 3 words of data memory (DMEM) block 1, the
access can cross into reserved address space. This is an illegal access.

� When reading anywhere in the PBus space, you may prefetch ahead
to three undesired control registers. This can cause an illegal access
when accessing a reserved register address. If the register access
has side effects (like reading the McBSP DRR, clearing RRDY), then
you may inadvertently cause these side effects.

Expansion Bus Arbitration

Expansion Bus (XBUS)46 SPRU579A

Note: A restriction does not exist when crossing between DMEM block 0
and block 1 because they both use the same DMA port.

Associated design tips:

� When reading internal peripheral registers:

� For reads from an external master, use fixed-mode addressing.
As a broader statement, it is good practice to use fixed mode also
when writing to peripheral registers as sometimes there are gaps
between them.

� Do not use the XBUS host port configured in synchronous master
mode to directly copy peripheral register values to external
slaves. This is an atypical operation. If you must do so, copy the
register data to an internal space with the CPU and then copy
those internal locations to external space.

� When reading the top 3 locations of an EMIF CEx, internal program
block or DMEM block 1, use fixed-mode addressing. Note this procedure
does not have to be followed when accessing the top 3 words of
DMEM block 0, this is because DMEM block 0 and block 1 are in the
same DMA port.

5 Expansion Bus Arbitration
Two signals, XHOLD and XHOLDA, are provided for expansion bus
arbitration. The internal bus arbiter is disabled or enabled depending on the
value on the expansion data bus during reset.

The XARB bit in the expansion bus global control register (XBGC) indicates
if the internal bus arbiter is enabled or disabled as shown in Table 10. If the
internal bus arbiter is enabled (XARB = 1), the DSP wakes up from reset as
the bus master. If the internal bus arbiter is disabled (XARB = 0), the DSP
wakes up from reset as the bus slave. The DMA controller releases the XBUS
between frames if a DMA block transfer is in progress. When the DSP releases
the XBUS, the host port signals become tristated, except for the I/O port
signals (XWE/XWAIT, XOE, XRE, XCE[3−0], and XFCLK) that are not
affected.

Table 10. XHOLD and XHOLDA Signal Functionality Based on XARB Bit Value

XARB Bit Value Internal Bus Arbiter XHOLD XHOLDA Section

0 Disabled Output Input 5.2

1 Enabled Input Output 5.1

Expansion Bus Host Port Operation / Expansion Bus Arbitration

Expansion Bus Arbitration

47Expansion Bus (XBUS)SPRU579A

5.1 Internal Bus Arbiter Enabled

When the internal bus arbiter is enabled (XARB = 1), the DSP owns the XBUS
by default. The DSP wakes up from reset as the master of the XBUS, and all
other devices must request the bus from the DSP. This mode is preferred when
connecting one DSP to a PCI interface device.

When the DSP owns the XBUS, both XHOLD (input) and XHOLDA (output)
are low. XHOLD is asserted by an external device to request use of the XBUS.
The DSP asserts XHOLDA when a bus request is granted. The XBUS is not
granted unless requested by XHOLD.

Figure 21 shows the XHOLD and XHOLDA functionality when the internal bus
arbiter is enabled. The DSP grants the XBUS to the requester only if no internal
transfer requests to the XBUS are pending.

During a synchronized slave single-word write to XBD, if XHOLD input is
deasserted quickly enough after XBLAST = 0 (in the same cycle), the transfer
gets corrupted. No slave single-word write with the simultaneous removal of
the XHOLD and assertion of the XBLAST should be allowed (XARB = 1). In
these cases, the XHOLD should be registered before connecting it to the
XHOLD input on the DSP.

Figure 21. XHOLD/XHOLDA Timing Diagram for Bus Arbitration With Internal Bus Arbiter
Enabled

OUTPUTS

XHOLD(input)

XHOLDA(output)

External Device Mastering the Bus

Expansion Bus Arbitration

Expansion Bus (XBUS)48 SPRU579A

5.2 Internal Bus Arbiter Disabled

When the internal bus arbiter is disabled (XARB = 0), the DSP acts as slave
on the XBUS by default. This mode is preferred when the DSP is interfacing
to an external host, or if multiple DSPs are connected to a PCI interface device.

When the DSP owns the XBUS, both XHOLD (output) and XHOLDA (input)
are high. To request use of the XBUS (for example to access a FIFO), the DSP
asserts XHOLD. The external XBUS arbiter asserts XHOLDA when control is
granted. The XBUS should not be granted to the DSP unless requested by
XHOLD.

Figure 22 shows the XHOLD and XHOLDA functionality when the internal bus
arbiter is disabled.

Figure 22. XHOLD/XHOLDA Timing Diagram for Bus Arbitration With Internal Bus Arbiter
Disabled

OUTPUTS

XHOLD(output)

XHOLDA(input)

The DSP is Master of the Bus

When the internal bus arbiter is disabled and the XBUS master transfer is
initiated by writing to the START bits of XBHC, the DSP asserts its XHOLD
request. If the host initiates a transfer to the DSP instead of granting the DSP
access to the XBUS, the DSP drops its XHOLD request as shown in Figure 23.

The DSP drops the bus request only if the pending request is for a transfer to
the XBUS host port. The DSP reasserts the bus request for pending master
transfers after the host completes its transfer (see Figure 23). Table 11 shows
possible scenarios that can happen when the internal bus arbiter is disabled.

Expansion Bus Arbitration

49Expansion Bus (XBUS)SPRU579A

Figure 23. XHOLD Timing Diagram When the External Host Starts a Transfer to the DSP
Instead of Granting the DSP Access to the Expansion Bus With Internal Bus
Arbiter Disabled

XHOLDA (input)

XAS (input)

XBLAST (input)

XCS (input)

XHOLD (output)

Table 11. Possible Expansion Bus Arbitration Scenarios With Internal Bus Arbiter
Disabled

XBOFF
Asserted

Current
External
Host Activity Current DSP State Actions

N/A Host transfer
to the XBUS
in progress

DMA request to
XBUS I/O port
pending

If the DMA request comes before or at the same time
when the host started the transfer, the DSP asserts the
XHOLD and keeps it asserted during the host transfer.

If the DMA request came after the host started the
transfer, the DSP waits for the host transfer to complete
and then asserts XHOLD.

DMA request to
XBUS I/O port, and
auxiliary DMA
requests are
pending

After the DSP gets the XBUS, the pending auxiliary DMA
request is executed first (since for the XBUS, the auxiliary
DMA channel always has priority over the other DMA
channels). After the DMA transfer is completed, the DSP
starts the auxiliary DMA transfer and does not drop the
XHOLD between these two transfers.

Auxiliary DMA
request pending

If the auxiliary DMA request comes prior to the host
starting the transfer, the DSP asserts the XHOLD and
keeps it asserted until the host starts the transfer. Once
the host starts the transfer, the DSP drops the request
(see Figure 15). The DSP reasserts the XHOLD after the
host completes the transfer.

If the auxiliary DMA request comes after the host is
started the transfer, the DSP waits for the host transfer to
complete and asserts the XHOLD.

Expansion Bus Arbitration

Expansion Bus (XBUS)50 SPRU579A

Table 11. Possible Expansion Bus Arbitration Scenarios With Internal Bus Arbiter
Disabled (Continued)

Current DSP State Actions
XBOFF

Asserted

Current
External
Host Activity

No None DMA request to
XBUS I/O port
pending

The DSP asserts the XHOLD, and once it gets the XBUS,
the transfer starts.

DMA request to
XBUS I/O port, and
auxiliary DMA
requests are
pending

After the DSP gets the XBUS, the pending auxiliary DMA
request is executed first (since for the XBUS, the auxiliary
DMA channel always has priority over the rest of the DMA
channels). After the auxiliary DMA transfer is completed,
the DSP starts the DMA transfer and does not drop the
XHOLD between these two transfers.

Auxiliary DMA
request pending

The DSP asserts the XHOLD, and once it gets the XBUS
the transfer starts.

Yes N/A DMA transfer to
XBUS I/O port in
progress

XBOFF is ignored if a DMA transfer to the XBUS I/O port
is in progress.

Auxiliary DMA
transfer in progress

The DSP releases ownership of the XBUS as soon as
possible. After that, the DSP requests the XBUS to
complete the transfer interrupted by the XBOFF.

Auxiliary DMA
transfer in progress,
and DMA request to
XBUS I/O port
pending

The DSP stops the current auxiliary DMA transfer in
progress, and starts executing the pending DMA transfer
to the XBUS I/O port. After the pending DMA transfer is
completed, the DSP releases the XBUS to the external
device. Some time afterwards, the DSP requests the
XBUS to complete the transfer interrupted by the XBOFF.

Expansion Bus Arbitration

51Expansion Bus (XBUS)SPRU579A

5.3 Expansion Bus Requestor Priority

The auxiliary DMA channel for the XBUS is always given the highest priority,
followed by the standard DMA priority (DMA0 highest) as listed in Table 12.

Table 12. Expansion Bus Requestor Priority

Priority Description

Highest Auxiliary channel

DMA0

DMA1

DMA2

Lowest DMA3

In many situations, the priority between the auxiliary channel and the standard
DMA channels is first-come, first-served, because the auxiliary channel
cannot preempt the standard DMA channels during a frame transfer and the
standard DMA channels cannot preempt the auxiliary channel. The standard
DMA channels can preempt each other.

The auxiliary channel can only acquire the bus between DMA frames or if no
other DMA activity is occurring. For example, if an unsynchronized DMA
transfer is set up to perform 4 frames of 32 elements each, and an auxiliary
transfer becomes pending, either by an external host asserting the XHOLD
request signal if the internal arbiter is enabled or by the DSP attempting to
begin a master transfer by writing to the start bits of XBHC (internal arbiter
enabled or disabled), the auxiliary request will be ignored during the frame
transfer to the expansion memory. After the first frame, however, the auxiliary
request is recognized and the DMA transfer to the expansion memory stops
to allow the host transfer to begin.

To allow host transfers sufficient access to the XBUS, DMA transactions
should be set up so that the frame length is as short as possible. The size of
frame transfers to the XBUS I/O port define the longest amount of time that
host transactions can be blocked from accessing the XBUS.

Boot Configuration Control via Expansion Bus

Expansion Bus (XBUS)52 SPRU579A

6 Boot Configuration Control via Expansion Bus
The pull-up/pull-down resistors on the expansion bus XD[31−0] pins are used
to determine the boot and device configurations during reset. The boot and
device configurations include:

� Boot-mode of the device
� Lendian mode selection
� FIFO mode
� Internal expansion bus arbiter enable/disable
� Expansion bus host port mode
� Polarity of read/write XW/R and XBLAST control signals
� Memory type used in each XBUS memory space.

Several device settings are configured at reset to determine how the device
operates. These settings include the boot configuration, the input clock mode,
endian mode, and other device-specific configurations. The boot configuration
is determined by the BOOTMODE[4−0] values. Table 13 lists all the values for
BOOTMODE[4−0], as well as the associated memory maps and boot processes.
For example, the value 00000b on BOOTMODE[4−0] selects memory map 0,
indicates that the memory type at address 0 is synchronous DRAM (SDRAM)
organized as four 8-bit-wide banks, and that no boot process is selected. SDWID
is a bit in the EMIF SDRAM control register.

For C6000 DSPs with multiple memory maps, the boot configuration
determines the type of memory located at the reset address for processor
operation, address 0, as shown in Table 13. When the boot configuration
selects MAP 1, this memory is internal; when the boot configuration selects
MAP 0, the memory is external. When external memory is selected, the boot
configuration also determines the type of memory at the reset address. These
options effectively provide alternative reset values to the appropriate EMIF
control registers.

Table 13. Boot Configuration Summary

BOOTMODE
Memory

Map Memory at Address 0 Boot Process

00000 MAP 0 SDRAM: four 8-bit devices (SDWID = 0) None

00001 MAP 0 SDRAM: two 16-bit devices (SDWID = 1) None

00010 MAP 0 32-bit asynchronous with default timing None

00011 MAP 0 1/2 × rate SBSRAM None

00100 MAP 0 1 × rate SBSRAM None

00101 MAP 1 Internal None

Boot Configuration Control via Expansion Bus

53Expansion Bus (XBUS)SPRU579A

Table 13. Boot Configuration Summary (Continued)

BOOTMODE Boot ProcessMemory at Address 0
Memory

Map

00110 MAP 0 External: default values Host boot (HPI/XBUS/PCI)

00111 MAP 1 Internal Host boot (HPI/XBUS/PCI)

01000 MAP 0 SDRAM: four 8-bit devices (SDWID = 0) 8-bit ROM with default timings

01001 MAP 0 SDRAM: two16-bit devices (SDWID = 1) 8-bit ROM with default timings

01010 MAP 0 32-bit asynchronous with default timing 8-bit ROM with default timings

01011 MAP 0 1/2 × rate SBSRAM 8-bit ROM with default timings

01100 MAP 0 1 × rate SBSRAM 8-bit ROM with default timings

01101 MAP 1 Internal 8-bit ROM with default timings

01110-
01111

− Reserved

10000 MAP 0 SDRAM: four 8-bit devices (SDWID = 0) 16-bit ROM with default timings

10001 MAP 0 SDRAM: two 16-bit devices (SDWID = 1) 16-bit ROM with default timings

10010 MAP 0 32-bit asynchronous with default timing 16-bit ROM with default timings

10011 MAP 0 1/2× rate SBSRAM 16-bit ROM with default timings

10100 MAP 0 1× rate SBSRAM 16-bit ROM with default timings

10101 MAP 1 Internal 16-bit ROM with default timings

10110-
10111

− Reserved

11000 MAP 0 SDRAM: four 8-bit devices (SDWID = 0) 32-bit ROM with default timings

11001 MAP 0 SDRAM: two 16-bit devices (SDWID = 1) 32-bit ROM with default timings

11010 MAP 0 32-bit asynchronous with default timing 32-bit ROM with default timings

11011 MAP 0 1/2 × rate SBSRAM 32-bit ROM with default timings

11100 MAP 0 1 × rate SBSRAM 32-bit ROM with default timings

11101 MAP 1 Internal 32-bit ROM with default timings

11110-
11111

− Reserved

Boot Configuration Control via Expansion Bus

Expansion Bus (XBUS)54 SPRU579A

6.1 Boot and Device Configuration

The pull-up/pull-down resistors on the XBUS are used to determine the boot
configuration (pins XD[4−0]) and other device configurations (pins XD[31−5])
at reset. The XD[4−0] pins directly map to BOOTMODE[4−0] described in
Table 13. Reserved configuration pins should be pulled-down. Detailed
descriptions of boot and device configurations are shown in Table 14.

Table 14. Boot and Device Configuration Description

XD Pin Type Value Description

30-28 MTYPE3 XCE3 memory type.

000-001 Reserved

010 32-bit wide asynchronous interface

011-100 Reserved

101 32-bit wide FIFO interface

110-111 Reserved

27 Reserved − Reserved configuration pins should be pulled-down.

26-24 MTYPE2 XCE2 memory type.

000-001 Reserved

010 32-bit wide asynchronous interface

011-100 Reserved

101 32-bit wide FIFO interface

110-111 Reserved

23 Reserved − Reserved configuration pins should be pulled-down.

22-20 MTYPE1 XCE1 memory type.

000-001 Reserved

010 32-bit wide asynchronous interface

011-100 Reserved

101 32-bit wide FIFO interface

110-111 Reserved

Boot Configuration Control via Expansion Bus

55Expansion Bus (XBUS)SPRU579A

Table 14. Boot and Device Configuration Description (Continued)

XD Pin DescriptionValueType

19 Reserved − Reserved configuration pins should be pulled-down.

18-16 MTYPE0 XCE0 memory type.

000-001 Reserved

010 32-bit wide asynchronous interface

011-100 Reserved

101 32-bit wide FIFO interface

110-111 Reserved

15-14 Reserved − Reserved configuration pins should be pulled-down.

13 BLPOL Determines polarity of the XBLAST signal when the DSP is a slave on the XBUS.
When the DSP initiates a transfer on the expansion bus, XBLAST is always active
low.

0 XBLAST is active low.

1 XBLAST is active high.

12 RWPOL Determines polarity of XBUS read/write signal.

0 Write is active-high.

1 Read is active-high.

11 HMOD Host mode.

0 External host interface operates in asynchronous slave mode.

1 External host interface operates in synchronous master/slave mode.

10 XARB XBUS arbiter (status in XBGC).

0 Internal XBUS arbiter is disabled.

1 Internal XBUS arbiter is enabled.

9 FMOD FIFO mode (status in XBGC).

0 Glue logic is used for FIFO read interface in all XCE spaces operating in FIFO
mode. XOE can be used in all XCE spaces.

1 XOE is reserved for use only in XCE3 for FIFO read mode. XOE is disabled in all
other XCE spaces.

Boot Configuration Control via Expansion Bus

Expansion Bus (XBUS)56 SPRU579A

Table 14. Boot and Device Configuration Description (Continued)

XD Pin DescriptionValueType

8 LEND Little-endian mode select pin.

0 System operates in big-endian mode.

1 System operates in little-endian mode.

7-5 Reserved − Reserved configuration pins should be pulled-down.

4-0 BOOT-
MODE

00000-
11111

Determines the bootmode of the device, see Table 13.

Boot Configuration Control via Expansion Bus

57Expansion Bus (XBUS)SPRU579A

6.2 Boot Processes

The boot process is determined by the boot configuration selected by the
BOOTMODE[4−0] pins and described in Table 13. Up to three types of boot
processes are available:

� No boot process: The CPU begins direct execution from the memory
located at address 0. If SDRAM is used in the system, the CPU is held until
SDRAM initialization is complete. Operation is undefined if invalid code is
located at address 0.

� ROM boot process: The program located in external ROM is copied to
address 0 by the DMA controller. Although the boot process begins when
the device is released from external reset, this transfer occurs while the
CPU is internally held in reset. This boot process also lets you choose the
width of the ROM. In this case, the EMIF automatically assembles
consecutive 8-bit bytes or 16-bit halfwords to form the 32-bit instruction
words to be moved. These values are expected to be stored in little-endian
format in the external memory, typically a ROM device.

The transfer is automatically done by the DMA controller as a single-frame
block transfer from the ROM to address 0. After completion of the block
transfer, the CPU is removed from reset and allowed to run from address 0.

The DMA controller copies 64K bytes from CE1 to address 0, using default
ROM timings. After the transfer, the CPU begins executing from
address 0.

� Host boot process: The XBUS can be used for the host boot. The type
of host interface is determined by a set of latched signals during reset. The
CPU is held in reset while the remainder of the device is released. During
this period, an external host can initialize the CPU’s memory space as
necessary through the host interface, including internal configuration
registers, such as those that control the EMIF or other peripherals. Once
the host is finished with all necessary initialization, it must set the DSPINT
to complete the boot process. This transition causes the boot configuration
logic to remove the CPU from its reset state. The CPU then begins
execution from address 0. The DSPINT condition is not latched by the CPU,
because it occurs while the CPU is still in reset. Also, DSPINT wakes the
CPU from internal reset only if the host boot process is selected. All memory
may be written to and read by the host. This allows for the host to verify what
it sends to the processor, if required.

Registers

Expansion Bus (XBUS)58 SPRU579A

7 Registers
Control of the XBUS and the peripheral interfaces is maintained through registers
within the XBUS listed in Table 15. See the device-specific datasheet for the
memory address of these registers.

The external master on the XBUS uses the XCNTL signal to select which internal
register is being accessed. The state of this pin selects whether access is
made to the XBUS internal slave address register (XBISA) or expansion bus
data register (XBD). In addition to that, the external master has access to the
entire memory map of the DSP, including memory-mapped registers.

Table 15. Expansion Bus Registers

Read/Write Access

Acronym Register Name DSP Host Section

XBGC Expansion bus global control register 7.1

XCECTL0-3 Expansion bus XCE space control registers 7.2

XBHC Expansion bus host port interface control register R/W — 7.3

XBIMA Expansion bus internal master address register R/W — 7.4

XBEA Expansion bus external address register R/W — 7.5

XBD Expansion bus data register — R/W 7.6

XBISA Expansion bus internal slave address register — R/W 7.7

7.1 Expansion Bus Global Control Register (XBGC)
The expansion bus global control register (XBGC) configures parameters of
the XBUS that are common to all interfaces. XBGC must not be modified while
I/O port transactions are in progress. The XBGC is shown in Figure 24 and
described in Table 16.

Figure 24. Expansion Bus Global Control Register (XBGC)

31 16

Reserved

R-0

15 14 13 12 11 10 0

FMOD XFCEN XFRAT XARB Reserved

R-0 R/W-0 R/W-0 R-0 R-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Registers

59Expansion Bus (XBUS)SPRU579A

Table 16. Expansion Bus Global Control Register (XBGC) Field Descriptions

Bit field† symval† Value Description

31-16 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

15 FMOD FIFO boot-mode selection bit.

GLUE 0 Glue logic is used for FIFO read interface in all XCE spaces
operating in FIFO mode.

GLUELESS 1 Glueless read FIFO interface. If XCE3 is selected for FIFO
mode, then XOE acts as FIFO output enable and XCE3 acts
as FIFO read enable. XOE is disabled in all other XCE spaces
regardless of MTYPE setting in XCECTL.

14 XFCEN FIFO clock enable bit. The FIFO clock enable cannot be
changed while a DMA request to XCE space is active.

DISABLE 0 XFCLK is held high.

ENABLE 1 XFCLK is enabled to clock.

13-12 XFRAT 0−3h FIFO clock rate bits. The FIFO clock setting cannot be
changed while a DMA request to XCE space is active. The
XFCLK should be disabled before changing the XFRAT bits.
There is no delay required between enabling/disabling XFCLK
and changing the XFRAT bits.

ONEEIGHTH 0 XFCLK = 1/8 CPU clock rate

ONESIXTH 1h XFCLK = 1/6 CPU clock rate

ONEFOURTH 2h XFCLK = 1/4 CPU clock rate

ONEHALF 3h XFCLK = 1/2 CPU clock rate

11 XARB Arbitration mode select bit.

DISABLE 0 Internal arbiter is disabled. DSP wakes up from reset as the
bus slave.

ENABLE 1 Internal arbiter is enabled. DSP wakes up from reset as the
bus master.

10-0 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

† For CSL implementation, use the notation XBUS_XBGC_field_symval

Registers

Expansion Bus (XBUS)60 SPRU579A

7.2 Expansion Bus XCE Space Control Registers (XCECTL0−3)

The expansion bus XCE space control registers (XCECTL0−3) correspond to
the four XCE memory spaces supported by the XBUS. The XCECTL is shown
in Figure 25 and described in Table 17.

Figure 25. Expansion Bus XCE Space Control Register (XCECTL)

31 28 27 22 21 20 19 16

WRSETUP WRSTRB WRHLD RDSETUP

R/W-1111 R/W-11 1111 R/W-11 R/W-1111

15 14 13 8 7 6 4 3 2 1 0

Reserved RDSTRB Rsvd MTYPE Reserved RDHLD

R-0 R/W-11 1111 R-0 R/W-0 R-0 R/W-11

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 17. Expansion Bus XCE Space Control Register (XCECTL)
Field Descriptions

Bit field† symval† Value Description

31-28 WRSETUP OF(value) 0-Fh Write setup width. Number of CLKOUT1 cycles of setup time
for byte-enable/address (XBE/XA) and chip enable (XCE)
before write strobe falls. For asynchronous read accesses,
this is also the setup time of XOE before XRE falls.

27-22 WRSTRB OF(value) 0-3Fh Write strobe width. The width of write strobe (XWE) in
CLKOUT1 cycles.

21-20 WRHLD OF(value) 0-3h Write hold width. Number of CLKOUT1 cycles that
byte-enable/address (XBE/XA) and chip enable (XCE) are
held after write strobe rises. For asynchronous read
accesses, this is also the hold time of XCE after XRE rising.

19-16 RDSETUP OF(value) 0-Fh Read setup width. Number of CLKOUT1 cycles of setup time
for byte-enable/address (XBE/XA) and chip enable (XCE)
before read strobe falls. For asynchronous read accesses,
this is also the setup time of XOE before XRE falls.

15-14 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

† For CSL implementation, use the notation XBUS_XCECTL_field_symval

Registers

61Expansion Bus (XBUS)SPRU579A

Table 17. Expansion Bus XCE Space Control Register (XCECTL)
Field Descriptions (Continued)

DescriptionValuesymval†field†Bit

13-8 RDSTRB OF(value) 0-3Fh Read strobe width. The width of read strobe (XRE) in
CLKOUT1 cycles.

7 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

6-4 MTYPE 0−7h Memory type is configured during boot using pull-up or
pull-down resistors on the expansion bus.

− 0-1h Reserved

32BITASYN 2h 32-bit wide asynchronous interface

− 3h-4h Reserved

32BITFIFO 5h 32-bit wide FIFO interface

− 6h-7h Reserved

3-2 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

1-0 RDHLD OF(value) 0-3h Read hold width. Number of CLKOUT1 cycles that
byte-enable/address (XBE/XA) and chip enable (XCE) are
held after read strobe rises. For asynchronous read
accesses, this is also the hold time of XCE after XRE rising.

† For CSL implementation, use the notation XBUS_XCECTL_field_symval

Registers

Expansion Bus (XBUS)62 SPRU579A

7.3 Expansion Bus Host Port Interface Control Register (XBHC)

The expansion bus host port interface control register (XBHC) configures
expansion bus host port parameters. The XBHC is shown in Figure 26 and
described in Table 18.

The START bits are not cleared to 0 after a transfer is completed. Writing 00
to the the START bits while a transfer-in-progress is stalled by XRDY high,
aborts the transfer. When a transfer is aborted, the XFRCT bits and the
address registers, XBIMA and XBEA, reflect the state of the aborted transfer.
Using this state information, the transfer can be restarted. Writing values other
than 00 to the START bits is not recommended.

Figure 26. Expansion Bus Host Port Interface Control Register (XBHC)

31 16

XFRCT

R/W-0

15 6 5 4 3 2 1 0

Reserved INTSRC START Rsvd DSPINT Rsvd

R-0 R/W-0 R/W-0 R-0 R/W-0 R-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 18. Expansion Bus Host Port Interface Control Register (XBHC)
Field Descriptions

Bit field† symval† Value Description

31-16 XFRCT OF(value) 0−FFFFh Transfer counter bits control the number of 32-bit words
transferred between the expansion bus and an external slave
when the CPU is mastering the bus (range of up to 64K).

15-6 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

† For CSL implementation, use the notation XBUS_XBHC_field_symval

Registers

63Expansion Bus (XBUS)SPRU579A

Table 18. Expansion Bus Host Port Interface Control Register (XBHC)
Field Descriptions (Continued)

DescriptionValuesymval†field†Bit

5 INTSRC The interrupt source bit selects between the DSPINT bit of the
expansion bus internal slave address register (XBISA) and the
XFRCT counter. An XBUS host port interrupt can be caused
either by the DSPINT bit or by the XFRCT counter.

INTSRC 0 Interrupt source is the DSPINT bit of XBISA. When a zero is
written to the INTSRC bit, the DSPINT bit of XBISA is copied to
the DSPINT bit of XBHC.

INTSRC 1 Interrupt is generated at the completion of the master transfer
initiated by writing to the START bits.

4-3 START 0−3h Start bus master transaction bit.

ABORT 0 Writing 00 to the the START field while an active transfer is
stalled by XRDY high, aborts the transfer. When a transfer is
aborted, the XBUS registers reflect the state of the aborted
transfer. Using this state information, you can restart the
transfer.

WRITE 1h Starts a burst write transaction from the address pointed to by
the expansion bus internal master address register (XBIMA) to
the address pointed to by the expansion bus external address
register (XBEA).

READ 2h Starts a burst read transaction from the address pointed to by
the expansion bus external address register (XBEA) to the
address pointed to by the expansion bus internal master
address register (XBIMA).

− 3h Reserved

2 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

† For CSL implementation, use the notation XBUS_XBHC_field_symval

Registers

Expansion Bus (XBUS)64 SPRU579A

Table 18. Expansion Bus Host Port Interface Control Register (XBHC)
Field Descriptions (Continued)

DescriptionValuesymval†field†Bit

1 DSPINT The expansion bus to DSP interrupt (set either by the external
host or the completion of a master transfer) is cleared when
this bit is set. The DSPINT bit must be manually cleared before
another one can be set.

NONE 0 DSP interrupt bit is not cleared.

CLR 1 DSP interrupt bit is cleared.

0 Reserved − 0 Reserved. The reserved bit location is always read as 0. A
value written to this field has no effect.

† For CSL implementation, use the notation XBUS_XBHC_field_symval

Registers

65Expansion Bus (XBUS)SPRU579A

7.4 Expansion Bus Internal Master Address Register (XBIMA)

The expansion bus internal master address register (XBIMA) specifies the
source or destination address in the DSP memory map where the transaction
starts. XBIMA is set by the DSP when the DSP wants to initiate a transfer on
the XBUS. Since all transfers have a width of one word, XBIMA is incremented
by 4 after each transfer. XBIMA is used when the host port operates in
synchronous mode. XBIMA is shown in Figure 27 and described in Table 19.

Figure 27. Expansion Bus Internal Master Address Register (XBIMA)

31 0

XBIMA

R/W-0

Legend: R/W = Read/Write; -n = value after reset

Table 19. Expansion Bus Internal Master Address Register (XBIMA) Field Descriptions

Bit Field symval† Value Description

31-0 XBIMA OF(value) 0-FFFF FFFFh Specifies the source or destination address in the DSP
memory map where the transaction starts.

† For CSL implementation, use the notation XBUS_XBIMA_XBIMA_symval

Registers

Expansion Bus (XBUS)66 SPRU579A

7.5 Expansion Bus External Address Register (XBEA)

The expansion bus external address register (XBEA) specifies the source or
destination address in the external slave memory map where the data is
accessed. XBEA is set by the DSP when the DSP is ready to initiate a transfer
on the XBUS. The content of XBEA appears on the XD[31−0] lines during the
address phase of the transfer initiated by the DSP. Since all transfers have a
width of one word, XBEA is incremented by 4 after each transfer. XBEA is used
when the host port operates in synchronous mode. XBEA is shown in
Figure 28 and described in Table 20.

Figure 28. Expansion Bus External Address Register (XBEA)

31 0

XBEA

R/W-0

Legend: R/W = Read/Write; -n = value after reset

Table 20. Expansion Bus External Address Register (XBEA) Field Descriptions

Bit Field symval† Value Description

31-0 XBEA OF(value) 0-FFFF FFFFh Specifies the source or destination address in the external
slave memory map where the data is accessed.

† For CSL implementation, use the notation XBUS_XBEA_XBEA_symval

Registers

67Expansion Bus (XBUS)SPRU579A

7.6 Expansion Bus Data Register (XBD)

The expansion bus data register (XBD) contains the data that was read from
the memory accessed by the XBUS host port, if the current access is a read.
If the current access is a write, XBD contains the data that is written to the
memory. The host can perform single 32-bit, 16-bit, or 8-bit accesses to XBD.
Bursts longer than one word to XBD should always be 32-bits wide. XBD is
used when the XBUS host port operates either in synchronous or
asynchronous mode. XBD is shown in Figure 29 and described in Table 21.

Figure 29. Expansion Bus Data Register (XBD)

31 0

XBD

HR/W-0

Legend: H = Host access; R/W = Read/Write; -n = value after reset

Table 21. Expansion Bus Data Register (XBD) Field Descriptions

Bit Field Value Description

31-0 XBD 0-FFFF FFFFh Contains the data that was read from the memory accessed by the
XBUS host port, if the current access is a read; contains the data that is
written to the memory, if the current access is a write.

Registers

Expansion Bus (XBUS)68 SPRU579A

7.7 Expansion Bus Internal Slave Address Register (XBISA)

The expansion bus internal slave address register (XBISA) is used when the
external XBUS master initiates a data transfer. XBISA is shown in Figure 30
and described in Table 22. The XBSA bits, a 30-bit word address, control the
memory location in the DSP memory map being accessed by the external
mastering data transactions. The AINC bit is used by the host to enable or
disable autoincrement of the XBSA bits. The DSPINT bit is used to trigger the
interrupt (by setting the DSPINT bit). The host can only perform 32-bit
accesses to XBISA.

XBISA is used when the host port operates either in synchronous or
asynchronous mode. The DSP does not have access to the XBISA content.
Burst transfers in the synchronous host-port mode are always expected to occur
with autoincrement (AINC should be cleared to 0). In autoincrement mode
(AINC = 0), operation is undefined if an external host attempts to access the last
two word locations in the internal program/data RAM. This is because the DSP
tries to prefetch data from reserved locations. Operation is also undefined if an
external host attempts to cross a block boundary in a single DMA transfer. For
more information, see the Program and Data Memory Controller/Direct Memory
Access (DMA) Controller Reference Guide, SPRU577.

Figure 30. Expansion Bus Internal Slave Address Register (XBISA)

31 2 1 0

XBSA AINC DSPINT

HR/W-0 HR/W-0 HR/W-0

Legend: H = Host access; R/W = Read/Write; -n = value after reset

Table 22. Expansion Bus Internal Slave Address Register (XBISA) Field Descriptions

Bit Field Value Description

31-2 XBSA 0-3FFF FFFFh This 30-bit word address specifies the memory location in the DSP
memory map being accessed by the host.

1 AINC Autoincrement mode enable bit. (Asynchronous mode only)

0 The expansion bus data register (XBD) is accessed with
autoincrement of XBSA bits.

1 The expansion bus data register (XBD) is accessed without
autoincrement of XBSA bits.

0 DSPINT 0−1 The external master to DSP interrupt bit. Used to wake up the DSP
from reset. The DSPINT bit is cleared by the corresponding DSPINT
bit in the expansion bus host port interface control register (XBHC).

69Expansion Bus (XBUS)SPRU579A

Revision History

Table 23 lists the changes made since the previous version of this document.

Table 23. Document Revision History

Page Additions/Modifications/Deletions

56 Changed XD pin 7 to reserved in Table 14.

Expansion Bus (XBUS)70 SPRU579A

This page is intentionally left blank.

Index

71Expansion Bus (XBUS)SPRU579A

Index

A
AINC bit 68

arbitration 46
internal bus arbiter disabled 48
internal bus arbiter enabled 47
requestor priority 51

B
block diagrams

expansion bus 10
expansion bus host port interface 26
expansion bus interface to four 8-bit FIFOs 15
expansion bus interface to two 16-bit FIFOs 16
read and write FIFO interface with glue logic 20
read FIFO interface with glueless logic 21
TMS320C62x DSP 11
write FIFO interface with glueless logic 19

boot configuration 52
process 57
XD pins 54

D
DSPINT bit

in XBHC 62
in XBISA 68

E
expansion bus data register (XBD) 67

expansion bus external address register (XBEA) 66

expansion bus global control register (XBGC) 58

expansion bus host port interface control
register (XBHC) 62

expansion bus internal master address
register (XBIMA) 65

expansion bus internal slave address
register (XBISA) 68

expansion bus XCE space control
register (XCECTL) 60

F
FMOD bit 58

H
host port operation 26

asynchronous mode 42
synchronous mode 27

DSP is master of XBUS 29
DSP is slave of XBUS 36

XBUS host memory accesses 45

I
I/O port operation 14

asynchronous mode 17
multiple frame transfer with frame

synchronization example 24
single frame transfer example 23
synchronous FIFO mode 17

flag monitoring 22
programming offset registers 22
read FIFO interface 21
read/write FIFO interface 20
write FIFO interface 19

INTSRC bit 62

M
MTYPE bits 60

Index

72 Expansion Bus (XBUS) SPRU579A

N
notational conventions 3

O
operation

host port 26
asynchronous mode 42
synchronous mode 27
XBUS host memory accesses 45

I/O port 14
asynchronous mode 17
multiple frame transfer with frame

synchronization example 24
single frame transfer example 23
synchronous FIFO mode 17

overview 9

R
RDHLD bits 60

RDSETUP bits 60

RDSTRB bits 60

registers 58
expansion bus data register (XBD) 67
expansion bus external address

register (XBEA) 66
expansion bus global control register (XBGC) 58
expansion bus host port interface control

register (XBHC) 62
expansion bus internal master address

register (XBIMA) 65
expansion bus internal slave address

register (XBISA) 68
expansion bus XCE space control

register (XCECTL) 60

related documentation from Texas Instruments 3

revision history 69

S
signal descriptions

asynchronous host port mode 42
synchronous FIFO mode 18
synchronous host port mode 27

signals 12
START bits 62

T
trademarks 4
transfer examples

multiple frames with frame sync 24
single frame 23

W
WRHLD bits 60
WRSETUP bits 60
WRSTRB bits 60

X
XARB bit 58
XBD 67
XBD bits 67
XBEA 66
XBEA bits 66
XBGC 58
XBHC 62
XBIMA 65
XBIMA bits 65
XBISA 68
XBSA bits 68
XCECTL 60
XFCEN bit 58
XFRAT bits 58
XFRCT bits 62

	Title Page - SPRU579A
	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Expansion Bus (XBUS)
	1 Overview
	2 Expansion Bus Signals
	3 Expansion Bus I/O Port Operation
	3.1 Asynchronous Mode
	3.2 Synchronous FIFO Mode
	3.2.1 Write FIFO Interface
	3.2.2 Read/Write FIFO Interface
	3.2.3 Read FIFO Interface
	3.2.4 Programming Offset Register
	3.2.5 Flag Monitoring

	3.3 Single Frame Transfer Example
	3.4 Multiple Frame Transfer With Frame Synchronization Example

	4 Expansion Bus Host Port Operation
	4.1 Synchronous Host Port Mode
	4.1.1 TMS320C62x Master on the Expansion Bus
	4.1.1.1 Burst Read Transfer
	4.1.1.2 Burst Write Transfer
	4.1.1.3 Preventing Deadlocks with Backoff

	4.1.2 TMS320C62x Slave on the Expansion Bus
	4.1.2.1 Cycle Description
	4.1.2.2 Burst Write Transfer
	4.1.2.3 Burst Read Transfer

	4.2 Asynchronous Host Port Mode
	4.3 Special Circumstance of XBUS Host Memory Accesses

	5 Expansion Bus Arbitration
	5.1 Internal Bus Arbiter Enabled
	5.2 Internal Bus Arbiter Disabled
	5.3 Expansion Bus Requestor Priority

	6 Boot Configuration Control via Expansion Bus
	6.1 Boot and Device Configuration
	6.2 Boot Processes

	7 Registers
	7.1 Expansion Bus Global Control Register (XBGC)
	7.2 Expansion Bus XCE Space Control Registers (XCECTL0-3)
	7.3 Expansion Bus Host Port Interface Control Register (XBHC)
	7.4 Expansion Bus Internal Master Address Register (XBIMA)
	7.5 Expansion Bus External Address Register (XBEA)
	7.6 Expansion Bus Data Register (XBD)
	7.7 Expansion Bus Internal Slave Address Register (XBISA)

	Revision History
	Index

