Modem Integrator Algorithm (MODINT)
User’s Guide

SPIRIT CORP

DSP Software Source "
wWww.spiritDSP.com/CST

Literature Number: SPRU636
March 2003

Q’ TeEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accor-
dance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl deems
necessary to support this warranty. Except where mandated by government requirements, testing of all parame-
ters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Tl components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which Tl products or services are used. Information published by Tl regarding third-party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without alter-
ation and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this
information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such
altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that
product or service voids all express and any implied warranties for the associated Tl product or service and is an
unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright 00 2003, Texas Instruments Incorporated

Preface

Read This First

About This Manual

For the purposes of this API description, the following abbreviations are used:

ADC Analog-to-Digital Convertor

AFE Analog Front End

DAC Digital-to-Analog Convertor

HDLC High-level Data Link Control protocol
MDP V.22bis/V.32bis Modem Data Pump
PSTN Public Switched Telephone Network
V42 V.42 algorithm library

V42B V.42bis algorithm library

XDAS TMS320 DSP Algorithm Standard

Related Documentation From Texas Instruments

Using the TMS320 DSP Algorithm Standard in a Static DSP System
(SPRA577)

TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)
TMS320 DSP Algorithm Standard API Reference (SPRU360)

Technical Overview of eXpressDSP-Compliant Algorithms for DSP Software
Producers (SPRA579)

The TMS320 DSP Algorithm Standard (SPRA581)

Achieving Zero Overhead with the TMS320 DSP Algorithm Standard IALG In-
terface (SPRA716)

Related Documentation

ITU-T Recommendation V.32. A family of 2-wire, duplex modems operating at
data signalling rates of up to 9600 bit/s for use on the general switched tele-
phone network and on leased telephone-type circuits, 1993.

Trademarks

Trademarks

Software Copyright

ITU-T Recommendation V.32bis. A duplex modem operating at data signalling
rates of up to 14400 bit/s for use on the general switched telephone network
and on leased point-to-point 2-wire telephone-type circuits, 1991.

ITU-T Recommendation V.22. 1200 bits per second duplex modem standard-
ized for use in the general switched telephone network and on point-to-point
2-wire leased telephone-type circuits, 1993.

ITU-T Recommendation V.22bis. 2400 bits per second duplex modem using
the frequency division technique standardized for use on the general switched
telephone network and on point-to-point 2-wire leased telephone-type circuits,
1993.

ITU-T Recommendation V.25. Automatic answering equipment and general
procedures for automatic calling equipment on the general switched tele-
phone network including procedures for disabling of echo control devices for
both manually and automatically established calls.

ITU-T Recommendation V.42. Error-correcting procedures for DCEs using
asynchronous-to-synchronous conversion

ITU-T Recommendation V.42bis. Data compression procedures for data cir-
cuit terminating equipment (DCE) using error correction procedures

Spirit Corp. V.42/V.42bis User’s Guide, 2002

Spirit Corp. Modem Data Pump User’s Guide, 2000

TMS320™ is a trademark of Texas Instruments.
SPIRIT CORP™ is a tradmark of Spirit Corp.

All other trademarks are the property of their respective owners.

CST Software Copyright [0 2003, SPIRIT Technologies, Inc.

If You Need Assistance

If You Need Assistance. ..

O World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/products/index.htm
DSP Solutions http://www.ti.com/dsp
320 Hotline On-line™ http://www.ti.com/sc/docs/dsps/support.htm
Microcontroller Home Page http://www.ti.com/sc/micro
Networking Home Page http://www.ti.com/sc/docs/network/nbuhomex.htm
Military Memory Products Home Page http://www.ti.com/sc/docs/military/product/memory/mem_1.htm
1 North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
Tl Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (972) 293-5050 Fax: (972) 293-5967
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
Microcontroller Hotline (281) 274-2370 Fax: (281) 274-4203 Email: micro@ti.com
Microcontroller Modem BBS (281) 274-3700 8-N-1
DSP Hotline Email: dsph@ti.com
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs
Networking Hotline Fax: (281) 274-4027
Email: TLANHOT@micro.ti.com
(O Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:
Multi-Language Support +33130701169 Fax: +33130701032
Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 13070 11 65
Francais +33130701164
Italiano +33 130701167
EPIC Modem BBS +33130701199
European Factory Repair +33 493222540
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
O Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/
O Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

Read This First v

If You Need Assistance

(0 Documentation

When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail:

Texas Instruments Incorporated Email: dsph@ti.com Email: micro@ti.com
Technical Documentation Services, MS 702

P.O. Box 1443

Houston, Texas 77251-1443

Note:

vi

When calling a Literature Response Center to order documentation, please specify the literature number of the

book.

For product price & availability questions, please contact your local Product
Information Center, or see www.ti.com/sc/support http://www.ti.com/sc/sup-
port for details.

For additional CST technical support, see the TI CST Home Page
(www.ti.com/telephonyclientside) or the Tl Semiconductor KnowledgeBase
Home Page (www.ti.com/sc/knowledgebase).

If you have any problems with the Client Side Telephony software, please, read
first the list of Frequently Asked Questions at http://www.spiritDSP.com/CST.

You can also visit this web site to obtain the latest updates of CST software &
documentation.

1

Contents

Introduction to Modem Integrator (MODINT) Algorithms, 1-1
This chapter is a brief explanation of the Modem Integrator (MODINT) and its use with the
TMS320C5400 platform.
1.1 INrOAUCTION . .ot et e e e e e e e 1-2
1.2 XDAIS BaSICS .ottt e 1-3
1.2.1 Application/Frameworkcco i 1-3
1.2.2 INterface 1-4
1.2.3 Application Development 1-5
1.3 Supported ProdUCtScouii it e 1-8
1.4 Compatibility 1-8
Modem Integrator (MODINT) Integration i, 2-1

This chapter provides descriptions, diagrams, and examples explaining the integration of the
Modem Integrator (MODINT) with frameworks.

2.1 OVBIVIBW ittt e
2.2 Integration FIOW e
2.3 Exampleofa Call SEQUENCE it e
Modem Integrator (MODINT) APl DeSCriptionst

2-2

2-4

2-6

This chapter provides the user with a clear understanding of Modem Integrator (MODINT) algo-
rithms and their implementation with the TMS320 DSP Algorithm Standard interface (XDAIS).

3.1

3.2

3.3

Standard Interface StrUCtUrES o i e 3-2
3.1.1 Instance Creation Parametersttt 3-2
3.1.2 Status StrUCIUIe e e e 3-8
Standard Interface FUNCHIONS i e e e 3-11
3.2.1 Algorithm Initialization i e 3-11
3.2.2 Algorithm Deletion e 3-12
3.2.3 Instance Creation ottt i e e 3-12
3.24 Instance Deletiont e 3-13
Vendor-Specific Interface i 3-14
3.3. 1 O PrOCESSING ..ottt et e 3-15
3.3.2 Low-Level Control Operationiuiiiiii . 3-15
3.3.3 Safe DISCONNECTttt e e e 3-16
3.3.4 Modem Integrator Data FIOWS 3-16
3.3.5 GetModem Integrator Statuso 3-17

vii

Contents

3.4 High-Level ClientInterface i e 3-18
341 ClientMethods e 3-19

A eSSt ENVITONMENT ... A-1
A.1 Description Of DIr€CtOry TrEEttt e e et A-2
ALl TeSt PrOJEC . ..ot A-2

viii

Figures

11 XDAIS SyStem Layerst 1-3
1-2 XDAIS Layers Interaction Diagramt 1-4
1-3 Module Instance Lifetime 1-6
2-1 Typical Modem Data Pump Integration i, 2-3
2-2 Modem Integrator Flowchart 2-5
Tables

3-1 Standard Interface Structures SUMMaAryc.o ittt et 3-2
3-2 Modem Integrator Interface Creation Parametersccooiiiiiiinnnnn.n. 3-2
3-3 Partial Parameters for MDP Algorithm Configuration 3-3
3-4 Partial Parameters for V.42 Algorithm Configuration 3-5
3-5 Partial Parameters for V.42bis Algorithm Configuration 3-5
3-6 Status Structure Being Returned by Modem Integrator 3-8
3-7 Set of High-Level Data CoNntrols i e et 3-9
3-8 Set of Particular Connect Conditionsttt 3-9
3-9 Modem Integrator Standard Interface Functions 3-11
3-10 Modem Integrator-Specific Interface Functions 3-14
3-11 Client Methods Given to the Modem Integratorccoviiiiienenn.n. 3-18
3-12 Parameter Description for ClientMethods i 3-18
A-1 Test Files for Ml A-2
Notes, Cautions, and Warnings

Maximum Echo Delay o e 3-15
Test ENvironment LOCALION o e e e e A-1
TESt DUALION . .ottt e e e e e e e A-2
Contents ix

Chapter 1

Introduction to
Modem Integrator (WODINT) Algorithms

This chapter briefly describes the Voice Activity Detector algorithms and sup-
ported products used with the TMS320C5400 platform.

For the benefit of users who are not familiar with the TMS320 DSP Algorithm
Standard (XDAIS), brief descriptions of typical XDAIS terms are provided.

Topic Page
L1 INtrOdUCHION .ttt e et e e e e
1.2 XDAIS BASICS .. oottt e e e
1.3 SUpported ProdUCESweee ettt
1.4 Compatibilityooe i

1-1

Introduction

11

Introduction

This document describes Standard Modem Integrator developed by SPIRIT
Corp. for TMS320C54xx platform. SPIRIT Modem Integrator is intended to be
used in standalone modems, embedded equipment, etc.

This module is a service that integrates Modem Data Pump, V.42, V.42bis and
provides missing functionality (such as V.14, retrain initiation logic, etc). The
module does not include the referred algorithms and just links them.

TheSPIRIT Modem Integrator (MODINT) software is a fully TMS320 DSP Al-
gorithm Standard (XDAIS) compatible, reentrant code. The MODINT interface
complies with the TMS320 DSP Algorithm Standard and can be used in multi-
tasking environments.

The TMS320 DSP Algorithm Standard (XDAIS) provides the user with object
interface simulating object-oriented principles and asserts a set of program-
ming rules intended to facilitate integration of objects into a framework.

The following documents provide further information regarding the TMS320
DSP Algorithm Standard (XDAIS):

[Using the TMS320 DSP Algorithm Standard in a Static DSP System
(SPRA577)

(1 TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)

]

TMS320 DSP Algorithm Standard API Reference (SPRU360)

[Technical Overview of eXpressDSP-Compliant Algorithms for DSP Soft-
ware Producers (SPRA579)

(1 The TMS320 DSP Algorithm Standard (SPRA581)

(1 Achieving Zero Overhead with the TMS320 DSP Algorithm Standard
IALG Interface (SPRA716)

However, if the user prefers to have non-XDAIS-compliant interface, for exam-
ple, when a framework is not XDAIS-oriented (it usually means that dynamic
memory management is not supported), the XDAIS interface can be omitted,
as it is merely a wrapper for the original interface.

XDAIS Basics

1.2 XDAIS Basics

This section instructs the user on how to develop applications/frameworks us-
ing the algorithms developed by vendors. It explains how to call modules
through a fully eXpress DSP-compliant interface.

Figure 1-1 illustrates the three main layers required in an XDAIS system:
(1 Application/Framework layer
1 Interface layer

[Vendor implementation. Refer to appendix A for a detailed illustration of
the interface layer.

Figure 1-1. XDAIS System Layers

Application/framework

Interface

A
A4

Vendor’s implementation

1.2.1 Application/Framework

Users should develop an application in accordance with their own design
specifications. However, instance creation, deletion and memory manage-
ment requires using a framework. It is recommended that the customer use
the XDAIS framework provided by SPIRIT Corp. in ROM.

The framework in its most basic form is defined as a combination of a memory
management service, input/output device drivers, and a scheduler. For a
framework to support/handle XDAIS algorithms, it must provide the framework
functions that XDAIS algorithm interfaces expect to be present. XDAIS frame-
work functions, also known as the ALG Interface, are prefixed with “ALG_". Be-
low is a list of framework functions that are required:

[ALG cr eat e - for memory allocation/algorithm instance creation
[0 ALG del et e - for memory de-allocation/algorithm instance deletion

(1 ALG acti vat e - for algorithm instance activation

Introduction to 1-3

XDAIS Basics

1.2.2

Interface

ALG deacti vat e - for algorithm instance de-activation
ALG i ni t - for algorithm instance initialization

ALG exi t - for algorithm instance exit operations

U U o U

ALG control - for algorithm instance control operations

Figure 1-2 is a block diagram of the different XDAIS layers and how they inter-
act with each other.

Figure 1-2. XDAIS Layers Interaction Diagram

Application/framework
l Calls

v

Concrete interface
Implements

Y

Abstract interface

7

Vendor’s implementation

1.2.2.1 Concrete Interface

A concrete interface is an interface between the algorithm module and the ap-
plication/framework. This interface provides a generic (hon-vendor specific)
interface to the application. For example, the framework can call the function
MODULE_appl y() instead of MODULE VENDOR appl y() . The following
files make up this interface:

[Header file MODULE. h - Contains any required definitions/global vari-
ables for the interface.

[Source File MODULE. ¢ - Contains the source code for the interface func-
tions.

XDAIS Basics

1.2.2.2 Abstract Interface

This interface, also known as the IALG Interface, defines the algorithm imple-
mentation. This interface is defined by the algorithm vendor but must comply
with the XDAIS rules and guidelines. The following files make up this interface:

[Header file i MODULE. h - Contains table of implemented functions, also
known as the IALG function table, and definition of the parameter struc-
tures and module objects.

[J Source Filei MODULE. ¢ - Contains the default parameter structure for the
algorithm.

1.2.2.3 Vendor Implementation

Vendor implementation refers to the set of functions implemented by the algo-
rithm vendor to match the interface. These include the core processing func-
tions required by the algorithm and some control-type functions required. A
table is built with pointers to all of these functions, and this table is known as
the function table. The function table allows the framework to invoke any of the
algorithm functions through a single handle. The algorithm instance object def-
inition is also done here. This instance object is a structure containing the func-
tion table (table of implemented functions) and pointers to instance buffers re-
quired by the algorithm.

1.2.3 Application Development

Figure 1-3 illustrates the steps used to develop an application. This flowchart
illustrates the creation, use, and deletion of an algorithm. The handle to the
instance object (and function table) is obtained through creation of an instance
of the algorithm. It is a pointer to the instance object. Per XDAIS guidelines,
software API allows direct access to the instance data buffers, but algorithms
provided by SPIRIT prohibit access.

Detailed flow charts for each particular algorithm is provided by the vendor.

Introduction to 1-5

XDAIS Basics

Figure 1-3. Module Instance Lifetime

Initialize parameters/
handle

A4

MODULE_init()

v

MODULE_create()

A4

MODULE_apply()

A

MODULE_delete()

A4

MODULE_exit()

The steps below describe the steps illustrated in Figure 1-3.

1-6

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

XDAIS Basics

Perform all non-XDAIS initializations and definitions. This may in-
clude creation of input and output data buffers by the framework, as
well as device driver initialization.

Define and initialize required parameters, status structures, and
handle declarations.

Invoke the MODULE i ni t () function to initialize the algorithm mod-
ule. This function returns nothing. For most algorithms, this function
does nothing.

Invoke the MODULE_cr eat e() function, with the vendor’s imple-
mentation ID for the algorithm, to create an instance of the algorithm.
The MODULE_cr eat e() function returns a handle to the created
instance. You may create as many instances as the framework can
support.

Invoke the MODULE _appl y() function to process some data when
the framework signals that processing is required. Using this func-
tion is not obligatory and vendor can supply the user with his own set
of functions to obtain necessary processing.

If required, the MODULE_control () function may be invoked to
read or modify the algorithm status information. This function also is
optional. Vendor can provide other methods for status reporting and
control.

When all processing is done, the MODULE_del et e() function is in-
voked to delete the instance from the framework. All instance
memory is freed up for the framework here.

Invoke the MODULE_exi t () function to remove the module from the
framework. For most algorithms, this function does nothing.

The integration flow of specific algorithms can be quite different from the se-
guence described above due to several reasons:

[Specific algorithms can work with data frames of various lengths and for-
mats. Applications can require more robust and effective methods for error
handling and reporting.

1 Instead of using t he MODULE_appl y() function, SPIRIT Corp. algo-
rithms use extended interface for data processing, thereby encapsulating
data buffering within XDAIS object. This provides the user with a more reli-
able method of data exchange.

Introduction to 1-7

Supported Products

1.3 Supported Products

1.4 Compatibility

The Modem Integrator supports the following SPIRIT products:
[V.32bis/V.22bis Modem Data Pump

(1 V.42 error correction protocol

[V.42bis data compression

(1 Embedded V.14 based asynchronous-to-synchronous conversion

This implementation is fully compliant with the following ITU-T standards:
V.14

V.22bis/V.22

V.25

V.32bhis/V.32

V.42

I I Ny I N

V.42bis

Chapter 2

Modem Integrator (WODINT) Integration

This chapter provides descriptions, diagrams, and example explaining the in-
tegration of the Modem Integrator (MODINT) with frameworks.

Topic

2.1 OVEIVIEW .. et e e e e e e e
2.2 Integration Flow

2.3 Example of a Call SEQUENCEo

2-1

Overview

2.1 Overview

The Modem Integrator (MODINT) combines several independent XDAIS ob-
jects into what is essentially called a modem.

The Modem Integrator performs the following operations:

d

4
4

Implicitly creates all required external objects and performs all required in-
terconnections. Depending on parameters, three configurations are avail-
able: MDP + V.14 only, MDP + V.14/V.42 and MDP + V.14/V.42/\.42bis.

Provides a unified and convenient user interface: Unified parameters,
sample and data flows, extended status, etc.

Modem Data Pump extra control
V.14 based asynchronous-to-synchronous conversion

V.14/V.42 switch, connect and disconnect condition report

Additional features:

d

4
a

V.42bis can be configured both in symmetric (standard) mode and in
asymmetric mode (some modems do not support asymmetric V.42bis

properly)
Both single and two-thread support

Fast connect capability

Figure 2-1 represents typical Modem Integrator API integration.

Figure 2-1. Typical Modem Data Pump Integration

Overview

ADC/DAC,
optional DC filter
A
Modulated
samples
v
Modem message
controller
Data Pump <
Data for
Demodulated modulation
v data
Switch Switch |
Compressed v 4
data Data to
< host
V.42bis Decompressed »| Swi
decompressor data V42 'Iﬂ'tc_hl_>
> A
Decompressed Host
data
3 al
V.42bis Compressed V42 4_@41
compressor data
o Data from
host
V.14
V.14 <
Modem Integrator (MODINT) Integration 2-3

Integration Flow

2.2

Integration Flow

In order to integrate Modem Integrator into a framework the user must follow
these steps (Figure 2-2):

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Call MODI NT_SPCORP_i nit () to register external algorithm li-
braries, which are MDP, V42/V42B. The absence (zero address) of
V42 automatically disables support of appropriate capabilities.

Implement three optional callback methods of the high-level client
and place their addresses into the | MODI NT_Cl i ent Subf xns
structure.

Create and fill a structure of | MODI NT_Par ans type and all referred
structures.

Call MODI NT_cr eat e to create the modem instance.

While the modem is running, get a number of samples from ADC
buffer and pass them (through DC filter or directly) to the modem by
using the MODI NT_i oPr ocessi ng() method. This produce the
same number of output samples.

Put output samples to DAC buffer.

Periodically get (if callback mechanism is not used) and send data,
control connect condition. These operations can be done using a low
priority thread.

All linked objects can be directly controlled via their pointers contained within
the Modem Integrator status structure.

Integration Flow

Figure 2-2. Modem Integrator Flowchart

MODINT_SPCORP_init

v

Select required
parameters

v

MODINT _create()

»
»
A

. Yes
Disconnect?

Take (if callbacking off) and
give new portion of data

4
N

A 4

No

Input samples ready?

Get input samples from ADC

v

MODINT _ioProcessing()

v

Put output samples to DAC

|
v

MODINT _delete()

Modem Integrator (MODINT) Integration 2-5

Example of a Call Sequence

2.3 Example of a Call Sequence

The example below demostrates a typical call sequence used with the Modem
Integrator API. Full sample code is placed in the file Src/ Fl exExam
pl es\ St andal oneXDAS\ MODI NT.

[1V.42 rel ated paraneters

| MODI NT_V42Par ans VA42Par ans=

{
1500, /I heapSi ze
15, /1w ndowsSi ze
128, /1 n401
5000, /1t401
3, /1 n400
1000, /11400, 1 sec
1, /| UseFCS32
[/V.42bis rel ated paraneters
{
512, //dictionarySize
32, /1 maxStringlLength
1, /11 sConpressor
1 /11 sDeconpressor
}
b

[/ Modem Data Punp rel ated paraneters
| MODI NT_MdpPar ans MDPPar ans=

{
14400, /I maxSpeed
0, / /i sFast Connect
3000, //txLevel
1, [1isApp
85, /| af eDel ay
500, /I maxRoudTri pDel ay, 500 millisec
0, /11 sSpeedupDi sabl ed
0 /i sSl ondownDi sabl ed
b

/1My cal | back functions: set configuration for two-thread node

2-6

Example of a Call Sequence

| MODI NT_Cl i ent Subf xns My Subf xns=

{
MyTr ansf er Dat a,

MyPr eenpti onContr ol ,
0
b
| MODI NT_Par ans DMPar ans=
{
si zeof (I MODI NT_Par ans),

0
applications

0,
applications

&M Subf xns,
&NVDPPar ans,
&VA42Par arms,
1,
0
b
void main ()

{

[/1nit the nodul e: register

/I pTransf er Dat a
/| pPreenpti onCont r ol
/'l pl sReal ti neShort age

/* sizeof the whole paraneter struct */

/1 pdient, unnecessary for single channel
/linstancel D, unnecessary for single channel

/1 pd i ent Subf xns

/ | pNDPPar ans

[| pVA2Par ams

/1isPreenption, enable two-thread node

[11isOriginator

Modem Data Punp and V. 42 al gorithns

MODI NT_SPCORP_i nit (&VDP_SPCORP_| NDP, &V/42_SPCORP_| V42) ;

/] Create instance

pMODI NT=MODI NT_cr eat e(&MODI NT_SPCORP_I| MODI NT, &DMPar ans) ;

if (!'pMODINT) return;

}

//can be called frommain | oop or by DSP-BIOS

voi d MyHi ghPeri odi cThread()

{
MODI NT_St at us St at us;

MODI NT_i oPr ocessi ng(pMODI NT, pl nput Sanpl es, pQut put Sanpl es, Count) ;
St at us=MODI NT_get St at us(pMODI NT) ;

Modem Integrator (MODINT) Integration 2-7

Example of a Call Sequence

i f (Status.connect Condition==] MODI NT_DI SCONNECT) ({

/1 Di sconnect occurred

}
//to be called from DSP-BI CS

voi d MyLowPeri odi cThread()
{

/[11f there is any data, convey it to the nbdem
Count =MODI NT_i nj ect Dat a(pMODI NTHandl e, pDat a, Count) ;

pDat a+=Count ;

/[/1Call lowpriority V.42/V.42bis operations

MODI NT_backG ound(pMODI NT) ;
}

/] Take data fromthe nodem (cal |l back function)

int MyTransferData(void *pMself,int

{
/1 Copy pData[0.. Count-1]

MyProprietaryl D, XDAI S _U nt8 *pData,int Count)

return Count; //A| data have been stored

}

/] Enabl e/ di sabl e | ow task interrupt to protect critical V.42/V.42bis operations

voi d MyPreenpti onControl (XDAS_Bool isPernitted)

{
if (isPermtted)
SW _enabl e();
el se
SW _di sabl e();
}

2-8

Chapter 3

Modem Integrator (WODINT) API Descriptions

This chapter provides the user with a clear understanding of Modem Integrator

(MODINT) algorithms and their implementation with the TMS320 DSP Algo-
rithm Standard interface (XDAIS).

Topic

3.1 Standard Interface StruCtUrESooeueeee et
3.2 Standard Interface Functions

3.3 Vendor-Specific Interface

3.4 High-Level Client Interfaceoooeiiiieennn. ..

3-1

Standard Interface Structures

3.1 Standard Interface Structures

The section describes parameter structures for the Modem Integrator.

Table 3-1 lists the type and location of the Standard Interface structures.

Table 3-1. Standard Interface Structures Summary

Parameters Located in Table...

Modem Integrator Interface Creation Table 3-2

Modem Data Pump (MDP) Interface Table 3-3

V.42 Interface Configuration Table 3-4

V.42his Interface Configuration Table 3-5

Status Structure returned by Modem Integrator Table 3-6

High Level Data Controls Table 3-7

Particular Connect Conditions Table 3-8
3.1.1 Instance Creation Parameters

Description This structure defines the creation parameters for the algorithm. A default pa-

rameter structure is defined in “i MODI NT. c”.

Structure Definition

Table 3-2. Modem Integrator Interface Creation Parameters

typedef struct | MODI NT_Parans {

Params Type Params Name Description

XDAS_Voi d* pC i ent Pointer to/handle of high algorithm instance usually
called as a “client” (see Note 1)

I nt i nstancel D An auxiliary ID in case if pClient value is not sufficient

for identification (see Note 1)

| MODI NT_Cl i ent Subf xns* pd i ent Subf xns Optional pointer to a part of client's “Fxns” structure

| MODI NT_MdpPar ans* pNDPPar ans

| MODI NT_V42Par ans* pV42Par ans

containing pTransferData and pPreemptionControl
optional methods (see Table 3-11) (see Note 1)

Effective parameters of Modem Data Pump

Effective V.42 parameters (including V.42bis) (see
Note 2)

3-2

Standard Interface Structures

Table 3-2. Modem Integrator Interface Creation Parameters (Continued)

Params Type Params Name

Description

XDAS_Bool i sPreenption

XDAS_Bool i sOriginator

Two-thread mode support enable (see Note 3)

Configure Modem Data Pump and V.42 as an originator
(calling modem)

} 1 MODI NT_Par ans;

Notes: 1) Modem Integrator supports three optional callback methods needed for two-thread running and more effective data
pumping out. The client submits these methods to the modem via ClientSubfxns structure (see Table 3-11). Zero
address in pClientSubfxns or in either field means disabling this particular option.

2) Zero address of pV42Params automatically disables V.42/V.42bis. pMDPParams must be non-zero.

3) Two-thread mechanism is enabled only if both isPreemption and pPreemptionControl method are non-zero.

Type | MODI NT_Par ans is defined in “i MODI NT. h”.

The following data types are used above:

IMODINT_ClientSubfxns - defined section NO TAG.

3.1.1.1 Parameters of Modem Data Pump (MDP) Interface

Table 3-3. Partial Parameters for MDP Algorithm Configuration

typedef struct | MODI NT_MlpParans {

Params Type Params Name

Description

I nt nmax Speed

XDAS_Bool i sFast Connect

XDAS I nt 16 txLevel

XDAS_Bool i SApp

XDAS I nt 16 af eDel ay

XDAS I nt 16 maxRoudTr i pDel ay
XDAS_Bool i sSpeedupDi sabl ed
XDAS_Bool

Maximal permitted speed (BPS) (default value
14400)

Disable automodem (skip answer tone) and
reduce V.32 training duration to the minimum
(default value 0)

Output signal amplitude in absolute units

If true, adaptive phase predictor is
enabled(default value 1)

Total number of 8KHz samples in AFE buffers
between modem pump and analog 1/O.

Maximal supported round trip delay in
milliseconds.

Disable initiation of speedup procedure

i sSI owndownDi sabl ed Disable initiation of recovery procedure

} 1 MODI NT_MdpPar ans;

Modem Integrator (MODINT) API Descriptions 3-3

Standard Interface Structures

Maximal Operating Speed (nmaxSpeed)

Selects maximal permitted speed for Data Pump. Has an implicit influence on
operating modem protocol. If maxSpeed is set to 2400 or 1200 only V.22 proto-
col is enabled.

Enable Fast Connect (i sFast Connect)

Disable automodem (skip answer tone) and reduce V.32 training duration to
the minimum.

Output Signal Level (t xLevel)

txLevel selects amplitude for tone generation (e.g. answer tone). Output pow-
er of QAM signal will be equal to the power of a single tone. Do not set it to a
value greater than 12000, otherwise it can overflow 16-bit limit (32767) during
QAM signal generation.

Enable Adaptive Phase Predictor (i SApp)

Adaptive Phase Predictor is a dedicated unit intended for phase jitter com-
pensation. According to impairment parameters for TAS “USA Worst Case”,
phase jitter can reach up to 23 deg. If phase jitter is not compensated, its level
is high enough to make V.32 14400/12000 reception impossible. Therefore it
is recommended to have this option enabled. However, disabling this unit al-
lows saving around 0.5 MIPS, and slightly improves data pump quality on very
noisy channels without phase jitter.

Delay Introduced by AFE (af eDel ay)

Total number of 8KHz samples in AFE buffers between modem pump and ana-
log I/0 (needed for correct positioning of Near Echo Canceller and correct
measurement of round trip delay). In other words, a total delay of near echo,
measured in 8KHz samples.

Maximal Round Trip Delay (maxRoudTr i pDel ay)
Maximal round trip delay in milliseconds supported by V.32 echo canceller (in-
fluences the amount of memory reserved for Far Echo bulk delay).

Disable Initiation of Speedup Procedure (i sSpeedupDi sabl ed)

Disables self-initiated rate renegotiation up. That means, the Modem Integra-
tor will never try to speed modem up, regardless stable excellent line condition.

Standard Interface Structures

Disable Initiation of Recovery Procedure (i sSI owdownDi sabl ed)

Disables self-initiated rate renegotiation down or retrain. That means, the Mo-
dem Integrator will never try to speed modem down or retrain, regardless
stable intolerable line condition.

For more on Modem D
Guide.

ata Pump, see Spirit Corp. Modem Data Pump User’s

3.1.1.2 Parameters of V.42/V.42bis Interface

Table 3-4. Partial Parameters for V.42 Algorithm Configuration

typedef struct

| MODI NT_V42Par ans {

Params Type

Params Name

Description

XDAS Ul nt 16
XDAS I nt 16

XDAS I nt 16

XDAI S_Ui nt 32
XDAS_| nt 16
XDAI S_| nt 32

XDAS_Bool

heapSi ze
windowsSize

n401

1401
n400
t 400

UseFCS32

| MODI NT_V42bi sPar ans V42bi sPar ans

Typical value is 1500. It cannot be less than 1000 words
Window size (default value 15)

Maximum number of octets in the information field
(maximum value 128)

Acknowledgement timer (in msec) (default value 5000)
Maximum number of retransmissions (default value 3)
V.42 handshake timer, in msec. (default value 750)
Allow to use 32-bit FCS (default value true)

V.42bhis configuration

}

| MODI NT_V42Par arns,;

Table 3-5. Partial Parameters for V.42bis Algorithm Configuration

typedef struct

| MODI NT_VA42Bi sPar ans {

Params Type

Params Name

Description

I nt
I nt
XDAS_Bool

XDAS_Bool

di ctionarySi ze
maxStri nglength
i sConpr essor

i sDeconpr essor

Desired dictionary size (512,1024,2048)
Maximal string length (6...32)
Enable compression

Enable decompression

}

| MODI NT_V42Bi sPar ans;

Modem Integrator (MODINT) API Descriptions 3-5

Standard Interface Structures

Heap Size (heapSi ze)

Heap size is chosen according to the system needs. Longer heap provides
more robust performance for outgoing traffic (lower delays and better outgoing
throughput). Upper boundary for heap size can be estimated as:

heapsi ze = wi ndowSi ze*(12+n401/2) + 550
Heap size must be not lesser than 1000.

Window Size (wi ndowSi ze)

This parameters governs the maximum number of information frames that a
V.42 instance can have unacknowledged. To provide compatibility with ITU-T
standard, user should set this parameter to 15 or greater.

Window size is set during negotiation/indication procedure and can not be less
than 15. However, real window size can be less than declared value, and be
defined dynamically according to the actual heap size.

Maximum Number of Octets in an Information Field (n401)

Parameter n401 governs the maximum number of octets that can be carried
in the information field of an information frame transmitted by V.42 instance.
The typical value of n401 is 128.

In very noisy environment (e.g. when datapump provides BER>10-4) this pa-
rameter can be reduced, but it is not recommended to set it below 30.

Acknowledgement Timer (t 401)

The acknowledgement timer governs the amount of time that V.42 instance will
wait for an acknowledgement for previously initiated operation. Two V.42
instances may operate with different values of T401 timer. Typically, modems
use values in range 0.5 ... 5 seconds.

In nonstandard implementations user must take into account following factors
that affect the optimal value of the timer:

(1 overall propagation delay between modems — (Tj)

[0 maximum time allowed to complete transmission of frames in the remote
V.42's “transmit queue” — (Tp)

[time needed for the V.42 instances to process the received frame — (T,)
(1 time needed to transmit the acknowledging frame — (Tq)

Correspondingly, value of the acknowledgement timer used by the V.42
instance should be set as follows:

t401 . 2VITq + Tp + 2VIe + Ty

Standard Interface Structures

Maximum Number of Retransmissions (n400)

Parameter mM\N400 governs the maximum number of times that a V.42
instance will re-attempt a procedure requiring a response. The two V.42
instances may operate with a different value of niN400.

Typically, user can select this parameter from the range 1...3.

Handshake Timer (t 400)

The handshake timer governs the amount of time that V.42 instance will contin-
ue protocol detection (physical handshake) phase (see Table 3-4). Recom-
mended value is 750 msec, but, typically, modems use values in range 0.75
... 5 seconds.

Basically, longer timer is needed when data pumps are connected via protocol,
which does not define strictly the end of data-pump handshake, for example
V.22.

Using of 32-Bit FCS (nmJseFCS32)

V.42 can optionally use 32-bit frame check sequences (FCS) instead of 16-bit
for better data transfer reliability. Since FCS32 is optional, it will be used only
if both modems supports this capability. Default value for mUseFCS32 is 1; re-
setting it to O disables indication of this capability during negotiation/indication
stage.

V.42bis Dictionary Size (di cti onarySi ze)

The size of V.42bis dictionary affects memory requirements and compression
rate. Using large dictionaries allows better compression. Extending the dictio-
nary size from 512 to 1024 entries increases average compression rate
approximately for 15%; extending from 1024 to 2048 entries additionally
grants about 5%. The value of mV42bis_P1 shall only be 512, 1024 or 2048;
any other values are invalid.

V.42bis Maximum String Length (maxStri ngLengt h)

Maximum string length has an influence on maximum compression rate. Using
large string lengths allows to achieve better compression rates on very regular
blocks of data but practically has no effect on more or less heterogeneous
data. Allowed values for mV42bis_P2 are 6..32. Using of default value (32) is
recommended.

Modem Integrator (MODINT) API Descriptions 3-7

Standard Interface Structures

Enable V.42bis Compressor (i sConpr essor)

This parameter sets capabilities of V.42bis compression algorithm. During ne-
gotiation/indication stage, V.42bis capabilities will be indicated according to
this parameter. The value of this parameter is also affects the amount of re-
quired memory.

Enable V.42bis Decompressor (i sDeconpr essor)

This parameter sets capabilities of V.42bis decompression algorithm. During
negotiation/indication stage, V.42bis capabilities will be indicated according to
this parameter. The value of this parameter is also affects the amount of re-
quired memory.

For more on V.42/V.42bis algorithm see Spirit Corp. V.42/V.42bis User’s
Guide.
3.1.2 Status Structure

Description This structure defines the status parameters for the algorithm. Status structure
is used for control purposes. The status can be received via function
MODI NT_get St at us() at any time during the instance lifetime.

Structure Definition

Table 3-6. Status Structure Being Returned by Modem Integrator
typedef struct | MODI NT_Status {

Status Type Status Name Description

| MODI NT_Hi gh- hi ghLevel Procot ol High level data control (see Table 3-7)
Level Procot ol

| MODI NT_MobdentCon connect Condi tion Set of particular connect conditions (see Table 3-8)

nect Condi ti on

XDAS_Ul nt 32 connect CondDur ati on Duration of the current connect condition in 8kHz ticks

| MDP_St at us ndpSt at us Modem Data Pump status (see Spirit Corp. Modem
Data Pump User’s Guide)

I V42_St at us v42St at us V42 status (see Spirit Corp. V.42/V.42bis User’s Guide)

| MDP_Handl e pNDP Pointer to MDP instance

I V42_Handl e pVv4a2 Pointer to V42 instance if created

| V42B_Handl e pV42Bi sConpr essor Pointer to V42B compressor if created

| V42B_Handl e pV42Bi sDeconpr essor Pointer to V42B decompressor if created

} 1 MODI NT_St at us;

3-8

Standard Interface Structures

Type | MODI NT_St at us defined in “i MODI NT. h”.

The following types are used above:

Table 3-7. Set of High-Level Data Controls
typedef enum | MODI NT_Hi ghLevel Procot ol {

Value Name

Description

0 | MODI NT_NA
1 | MODI NT_V14
2 | MODI NT_V42
3 | MODI NT_V42BI S

Modem has not been connected
Standard connect without error correction
Pure V.42 connect established

V.42bis connect established. It also can be asymmetric V.42bis

} 1 MODI NT_Hi ghLevel Procot ol ;

Table 3-8. Set of Particular Connect Conditions
typedef enum | MODI NT_MbdemConnect Condi tion {

Value Name

Description

0 | MODI NT_WAI TI NG

1 | MODI NT_TRAI NI NG

2 | MODI NT_DATA

4 | MODI NT_DI SCONNECT

Idle or automodem state

Modem Data Pump is switched to certain signal protocol training
(also retraining etc)

Modem Data Pump has finished all training stages. Data is going
through

Modem is disconnected now

} 1 MODI NT_MbdemConnect Condi ti on;

Modem Integrator (MODINT) API Descriptions 3-9

MODINT_SPCORP _init

3.2 Standard Interface Functions

Table 3-9. Modem

Table 3-9 summarizes the standard interface functions of the Modem Integra-
tor API. Only one override is available: MODINT_SPCORP_init.

MODI NT_appl y() and MODI NT_control () are optional, but neither are
supported by Spirit Corp.

Integrator Standard Interface Functions

Functions Description See Page...

MODI NT_i ni t Algorithm initialization. Overrridden by MO-
DINT_SPCORP_init

MODI NT_exi t Algorithm deletion

MODI NT_cr eat e Instance creation

MODI NT_del et e Instance deletion

3.2.1 Algorithm Initialization

MODINT SPCORP _init Initializes the MODINT algorithm through table registration

Description

Function Prototype

Arguments

Return Value

Instead of generic MODI NT_i ni t, function MODI NT_SPCORP_i ni t shall be
called. This function initializes the MODI NT algorithm through external function
table registration.

MODI NT_SPCORP_i ni t
(1 MDP_Fxns *pl MDPFxns,
| VA2_Fxns *pl VA2Fxns) ;

pl MDPFxns pointer to MDP function table
(see Spirit Corp. Modem Data Pump User’s Guide)

pl V42Fxns pointer to V42 function table
(see Spirit Corp. V.42/V.42bis User’s Guide)

none

3-11

MODINT _exit

3.2.2 Algorithm Deletion

MODINT _exit Calls the framework exit function to remove the MODINT algorithm
Description This function calls the framework exit function, ALG exi t (), to remove the

Function Prototype
Arguments

Return Value

algorithm MODI NT. In respect of Modem Integrator this function does nothing.
It can be skipped and removed from the target code according to Achieving
Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface
(SPRA716).

voi d MODI NT_exit ()
none

none

3.2.3 Instance Creation

MODINT create Calls the framework create function to create a new object instance

Description

Function Prototype

Arguments

Return Value

3-12

In order to create a new MODINT object, MODI NT_cr eat e function should
be called. This function calls the framework create function, ALG create(),
to create new object instance and perform memory allocation task. Global
structure MODI NT_SPCORP_I MODI NT contains MODINT virtual table
supplied by SPIRIT Corp.

MODI NT_Handl e MODI NT _creat e
(const | MODI NT_Fxns *fxns,
const MODI NT_Par ans *prmns);

fxns Pointer to vendor’s functions (Implementation ID).
Use reference to MODI NT_SPCORP_I MODI NT virtual table
supplied by SPIRIT Corp.

prns Pointer to Parameter Structure (see Table 3-2).

MODI NT_Handl e Defined in file “MODI NT. h”. This is a pointer to the
created instance object.

MODINT delete

3.2.4 Instance Deletion

MODINT delete Calls the framework delete function to delete an instance object

Description This function calls the framework delete function, ALG del et e(), to delete
the instance object and perform memory de-allocation task.

Function Prototype voi d MODI NT_del ete (MODI NT_Handl e handl e)
Arguments MODI NT_Handl e Instance’s handle obtained from MODI NT_cr eat e()

Return Value none

3-13

MODINT _delete

3.3 Vendor-Specific Interface

Table 3-10. Modem

This section describes the vendor-specific functions in the SPIRIT’s algorithm
implementation and interface (extended IALG methods).

Table 3-10 summarizes SPIRIT’s API functions of Modem Integrator.

The whole interface is placed in header files i MODI NT. h, MODI NT. h,
MODI NT_spcor p. h.

Integrator-Specific Interface Functions

Functions

Description See Page...

MODI NT_i oPr ocessi ng

MODI NT_backGr ound

MODI NT_di sconnect
MODI NT_r et ur nDat a
MODI NT_i nj ect Dat a

MODI NT_get St at us

Processes input samples and generates output samples.

In two-thread mode, performs low priority operations and
can be interrupted by MODI NT_i oPr ocessi ng (also see
pPreenpti onCont rol method in Table 3-11).

Safe disconnect request.
Returns a number of received data bytes.
Takes a number of data bytes to be transmitted.

Returns the Modem Integrator status that reports the cur-
rent connection state and contains information about inte-
grated algorithms.

3-14

MODINT backGround

3.3.1 1/O Processing

MODINT _io- Processes count input samples and generates count output samples
Processing

Description

Function Prototype

Arguments

Return Value

Processes count input samples and generates count output samples. In
single thread mode, also performs low priority control operations.

XDAS Voi d MODI NT i oProcessi ng
(MODI NT_Handl e handl e,

XDAS Int16 in[],

XDAS Int16 out[],

Int count)

handl e Pointer to Modem Integrator object

in Array of input samples (sampling rate 8kHz)
out Array of output samples (sampling rate 8kHz)
count Number of samples to be processed

none

Note: Maximum Echo Delay

Maximal V.32 local echo delay is approx. ten milliseconds. Thus, I/O buffers
should not exceed this limitation.

3.3.2 Low-Level Control Operation

MODINT_back-
Ground
Description
Function Prototype

Arguments

Return Value

Performs low priority operations in two-thread mode

In two-thread mode, performs low priority operations and can be interrupted
by MODI NT_i oPr ocessi ng() (also see pPreenpti onControl method
in Table 3-11). In single thread mode, it does nothing.

XDAS Voi d MODI NT_backGround (MODI NT_Handl e handl e);
MODI NT_Handl e Instance’s handle obtained from MODI NT_cr eat e()

none

3-15

MODINT_disconnect

3.3.3 Safe Disconnect

MODINT_discon-
nect

Description
Function Prototype

Arguments

Return Value

Safe disconnect request

The purpose of this operation is an attempt to release V.42 connection
correctly. Modem integrator indicates real disconnect in its status flags (see
Table 3-6 and Table 3-8).

XDAS Voi d MODI NT_di sconnect
(MODI NT_Handl e handl e,
XDAS Ul nt 16 HDLCTi ner);

handl e Pointer to Modem Integrator object
HDLCTi ner Time in milliseconds to complete V.42 release procedure.
A typical value is 1000.

none

3.3.4 Modem Integrator Data Flows

MODINT _return-
Data

Description

Function Prototype

Arguments

Return Value

3-16

Returns a number of received data bytes

Modem Integrator supports single mechanism to pump data in
(MODI NT_i nj ect Dat a method) and two mechanisms to pump out (either
MODI NT_returnData method or callback). If an optional callback
pTransf er Dat a method is not set (see Table 3-11), the pump out is
performed in the same manner as the pump in, i.e. via standard method which
is described below.

Checking the number of actually transferred bytes provides the flow control
in both directions. If MODI NT_i nj ect Dat a(), MODI NT_ret urnDat a()
or appropriate callback handler returns 0, no data is transferred. Host must
control returned value and store the remaining data for further use.

I nt MODI NT_returnData
(MODI NT_Handl e handl e,
XDAS_Ul nt 8 *pBuffer

I nt maxCount) ;

handl e Pointer to Modem Integrator object
pBuf f er Receive buffer
max Count Maximum length of receive buffer

Number of written bytes. Can not exceed naxCount .

MODINT _getStatus

YIeIINIMNIEMIER Takes a number of data bytes to be injected
ta

Function Prototype

Arguments

Return Value

I nt MODI NT_i nj ect Dat a
(MODI NT_Handl e handl e,
XDAS Ul nt8 *pBuffer,

Int count);
handl e Pointer to Modem Integrator object
pBuf f er Transmit buffer
count Number of bytes in transmit buffer

Number of bytes that was actually taken by Modem Integrator. When this value
is less than count, the buffer is not transferred completely and host has to store
the rest for further transactions.

3.3.5 Get Modem Integrator Status

(VeInl[\Ale[-I&iF-B Returns the Modem Integrator status
tus

Description

Function Prototype

Arguments

Return Value

Returns Modem Integrator status (see | MODI NT_St at us Table 3-6) that
informs about current connection state and summarizes information about
integrated algorithms.

| MODI NT_St at us MODI NT_get St at us
(MODI NT_Handl e handl e)

MODI NT_Handl e Instance’s handle obtained from MODI NT_cr eat e()

Current Modem Integrator status.

3-17

High-Level Client Interface

3.4 High-Level Client Interface

Modem Integrator supports two optional methods needed for two-thread run-
ning and more effective data pumping out. It also supports one optional meth-
od used in single-threaded environment.

Table 3-11. Client Methods Given to the Modem Integrator
typedef struct | MODINT_COient Subfxns {

Params Type

Params Name Description

Int (*)

pTransferDat a By calling this method, Modem Integrator

(XDAS_Voi d *pd i ent,

I nt instancel D,
XDAS_UI nt 8*
pBuf f er,

Int count)

Int (*)

transfers to the client a new portion of
demodulated data bytes.

pPr eenpti onContr ol By calling this method, Modem Integrator

(XDAS _Voi d *pdient,

I nt instancel D,

XDAS_Bool isPermitted)

XDAS_Bool (*)

sends a request to lock or unlock task
switching on the fly.

pl sReal ti meShortage By calling this method, Modem Integrator

(XDAS_Voi d *pd i ent,

Int instancel D)

(V.42bis) asks to let it continue. This query
is issued in single thread mode only, and
only by V.42bis unit. True result suspends
V.42bis processing to be continued at next
time.

} I MODI NT_d i ent Subf xns;

Table 3—12. Parameter Description for Client Methods

Params Type

Params Name

Description

XDAS_Voi d *

I nt

XDAS_Ul nt 8*

I nt

XDAS_Bool

pd i ent

i nst ancel D

pBuf f er

count

isPermtted

Pointer to the client given for Modem Integrator at initialization
as pd i ent parameter (see parameter pCl i ent in
| MODI NT_Par ans, Table 3-2).

An auxiliary 1D for case when pd i ent value is not sufficient
for the identification (see parameter i nst ancel Din
| MODI NT_Par ans, Table 3-2).

Pointer to the source memory with data bytes. The pointed byte
is first in time.

Number of data bytes.

Ifi sPerm tted valueis zero, MODI NT_backG ound method
cannot be interrupted by MODI NT_i oPr ocessi ng.

3-18

High-Level Client Interface

3.4.1 Client Methods

Transfer Data

Description

Function Prototype

Parameters

Return Value

When implemented, Modem Integrator calls this method to transfer data
(incoming traffic) to the client. This provides more effective processor usage
than equivalent polling method | MDP_r et ur nDat a() .

Int (*pTransferData)

(XDAS_Voi d*, I nt i nst ancel D, XDAS_UI nt 8* pBuf fer, I nt
count)
pd i ent Internal instance pointer. Data pump sets it with | MO-

DI NT_Par ans: : pd i ent value.

i nstancel D Optional instance sub-item. Data pump sets it with | MO-
DI NT_Par ans: : i nst ancel Dvalue.

pBuf f er Internal receive buffer.

count Number of data bytes to be transferred.

Client shall return the number of taken bytes.

Preemption Allowing

Description

Function Prototype

Modem Integrator calls this method in two-thread mode to protect preemption
sensitive operation. This message is invoked during low-priority processing or
other V.42 functions that require data locking. Host must lock both Modem
Integrator threads (disable task preemption) when this message with
parameter i sPernmitted is equal to 0, and restore thread state when
isPernmitted is equal to 1. When host uses DSP/BIOS, functions
SW _di sabl e()/ SW _enabl e() can be used for this purpose. Otherwise,
when host does not use DSP/BIOS and provides custom multitasking,
disabling/enabling interrupts can be used also. It is guaranteed that these
messages are always issued in pairs.

In single-threaded applications, framework can ignore this message.

Int (*pPreenptionControl)
(XDAS_Voi d* pdient,Int instancel D, XDAS Bool
i sPermitted)

3-19

High-Level Client Interface

Parameters

Return Value

pd i ent Internal instance pointer. Data pump sets it with
| MODI NT_Par ans: : pd i ent value.

i nstancel D Optional instance sub-item. Data pump sets it with
| MODI NT_Par ans: : i nst ancel Dvalue.

isPermtted ==0, when thread preemption should to be disabled
and, correspondingly, MODI NT_back G ound method
shall not be interrupted by MODI NT_i oPr ocessi ng

==1, restore thread status (is always issued after
isPermtted == 0)

Ignored (obsolete)

Real-Time Control for Single-Threaded Environment

Description

Function Prototype

Parameters

Return Value

3-20

Modem Integrator calls this function in one-threaded mode to prevent
real-time shortage. It calls the function before starting V.42bis time-consuming
operations. True result suspends V.42bis processing to be continued at next
time. User can make a decision based on e.g., how far is DAA buffer from
collapse.

Int (*plsRealtineShortage)
(XDAS_Voi d* pdient,Int instancelD);

pd i ent Internal instance pointer. Data pump sets it with
| MODI NT_Par ans: : pd i ent value.

i nstancel D Optional instance sub-item. Data pump sets it with
| MODI NT_Par ans: : i nst ancel Dvalue.

Non-zero value corresponds to real-time shortage alarm.

Test Environment

C54CST

Note: Test Environment Location
This chapter describes test environment for the Ml object.

For TMS320C54CST device, test environment for standalone Ml object is lo-
cated in the Software Development Kit (SDK) in Src\Fl exExam
pl es\ St andal oneXDAS\ MODI NT.

Topic Page

A.1 Description of Directory Tree . ..ot A-2

A-1

Description of Directory Tree

A.1 Description of Directory Tree

The SDK package includes the test project “test.pjt” and corresponding refer-
ence test vectors. The user is free to modify this code as needed, without sub-
missions to SPIRIT Corp.

Table A-1. Test Files for Ml

File Description
main.c Test file
FileC5x.c File input/output functions

.\ROM\CSTRom.s54
Test.cmd

Vectors\output.pcm

ROM entry address

Linker command file

Reference output test vectors

A.1.1 Test Project

To build and run a project, the following steps must be performed:

Step 1:
Step 2:
Step 3:
Step 4:

Step 5:

Open the project: Pr oj ect \ Open

Build all necessary files: Pr oj ect\ Rebui | d Al |
Initialize the DSP: Debug\ Reset CPU

Load the output-file: Fi | e\ Load pr ogram

Run the executable: Debug\ Run

Once the program finishes testing, the file Output.pcm will be written in the cur-
rent directory. Compare this file with the reference vector contained in the
directory Vectors.

Note:

Test Duration

Since the standard file I/O for EVM is very slow, testing may take several min-
utes. Test duration does not indicate the real algorithm’s throughput.

Acknowledgement Timer (t401)
afeDelay
ALG, interface |1-3
ALG_activate |1-3
ALG_control [1-4
ALG_create [1-3
ALG_deactivate |1-4
ALG_delete |[1-3
ALG_exit
ALG_init
Algorithm Configuration

for Modem Data Pump

for V.42
for V.42bis
Algorithm Deletion

Algorithm Initialization

Application Development
steps to creating an application |1-7

Application/Framework

Call sequence |2-6

Client Methods
given to Modem Integrat
parameter descriptions
Connect Conditions

Delay Introduced by AFE (afeDelay)
dictionarySize |3-7

Index

Directory Tree

Disable Initiation of Recovery Procedure
(isSlowdownDisabled)

Disable Initiation of Speedup Procedure

(isSpeedupDisabled)

Enable Adaptive Phase Predictor (iSApp)
Enable Fast Connect (isFastConnect)
Enable V.42bis Compressor (isCompressor)

Enable V.42bis Decompressor
(isDecompressor)

Environment, for testing

Framework

Functions

standard
vendor-specific

Get Modem Integrator Status

Handshake Timer (t400)
Header file

for abstract interfaces

for concrete interfaces
Heap Size (heapSize)
heapSize |3-6

High-Level Client Interface
High-Level Data Controls

Index-1

Index

/0 Processing
IALG
Instance Creation
Instance Creation Parameters |[3-2
Modem Data Pump (MDP) Interface |3-3
Modem Integrator Interface Creation
V.42/V.42bis Interface |3-5
Instance Deletion
Integration
call sequence example |2-6
integration flow
modem data pump
overview
steps to integrating the Modem Integrator |[2-4
Interface
abstract

concrete
V.42/V.42bis
vendor implementation

isApp
isCompressor |3-8
isDecompressor |3-8
isFastConnect
isSlowdownDisabled |3-5
isSpeedupDisabled |3-4

“*Empty**

Maximal Operating Speed (maxSpeed)

Maximal Round Trip Delay
(maxRoudTripDelay)

Maximum Echo Delay

Maximum Number of Octets in an Information Field
(n401)

Maximum Number of Retransmissions (n400)

maxRoudTripDelay

maxSpeed

maxStringLength

MDP

MDP Algorithm Configuration

Index-2

Modem Data Pump (MDP) Parameters

Modem Integrator
compatibility
introduction
supported products
Modem Integrator Data Flows
MODINT _apply
MODINT_backGround
MODINT_control
MODINT _create [3-12
MODINT_delete |3-13
MODINT_disconnect
MODINT_exit
MODINT _getStatus
MODINT _init
MODINT _injectData
MODINT _ioProcessing
MODINT _returnData [3-16
MODINT_SPCORP_init
Module Instance Lifetime. See Application
Development

mUseFCS32

Z

n400 |3-7
n401 |3-6

Output Signal Level (txLevel)

Preemption Allowing

Real-Time Control for Single-Threaded
Environment

&

Safe Disconnect
Single-Threaded Environment

Source file
for abstract interfaces |1-5

for concrete interfaces
Status Structure |3-8
Status Structure Being Returned by Modem
Integrator |[3-8
Structures ‘
connect conditions |3-9
high-level data controls [3-9
Modem integrator interface creation
parameters
Partial Parameters for MDP Algorithm

Configuration

Partial Parameters for V.42 Algorithm

Configuration

partial parameters for V.42bis algorithm
configurations |[3-5

standar

status

status structures returned by Modem
Integrator |[3-8

t400
t401
Test
files
project
Test Environment
Transfer Data

txLevel |3-4

Using of 32-Bit FCS (mUseFCS32)

V.42 Algorithm Configuration

V.42/\V.42bis Interface |3-5

V.42bis Algorithm Configuration

V.42bis Dictionary Size (dictionarySize)

V.42bis Maximum String Length
(maxStringLength)

Window Size (windowSize)
windowSize |3-6

XDAIS
Application Developmentf
Application/Framework |1-3
basics
Interface

related documentaion
System Layers, illustration of

Index

Index-3

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks
	Software Copyright
	If You Need Assistance . . .

	Contents
	Figures
	Tables
	Notes, Cautions, and Warnings
	Chapter 1: Introduction to Modem Integrator (MODINT) Algorithms
	1.1 Introduction
	1.2 XDAIS Basics
	1.2.1 Application/Framework
	1.2.2 Interface
	1.2.2.1 Concrete Interface
	1.2.2.2 Abstract Interface
	1.2.2.3 Vendor Implementation

	1.2.3 Application Development

	1.3 Supported Products
	1.4 Compatibility

	Chapter 2: Modem Integrator (MODINT) Integration
	2.1 Overview
	2.2 Integration Flow
	2.3 Example of a Call Sequence

	Chapter 3: Modem Integrator (MODINT) API Descriptions
	3.1 Standard Interface Structures
	3.1.1 Instance Creation Parameters
	3.1.1.1 Parameters of Modem Data Pump (MDP) Interface
	Maximal Operating Speed (maxSpeed)
	Enable Fast Connect (isFastConnect)
	Output Signal Level (txLevel)
	Enable Adaptive Phase Predictor (isApp)
	Delay Introduced by AFE (afeDelay)
	Maximal Round Trip Delay (maxRoudTripDelay)
	Disable Initiation of Speedup Procedure (isSpeedupDisabled)
	Disable Initiation of Recovery Procedure (isSlowdownDisabled)

	3.1.1.2 Parameters of V.42/V.42bis Interface
	Heap Size (heapSize)
	Window Size (windowSize)
	Maximum Number of Octets in an Information Field (n401)
	Acknowledgement Timer (t401)
	Maximum Number of Retransmissions (n400)
	Handshake Timer (t400)
	Using of 32-Bit FCS (mUseFCS32)
	V.42bis Dictionary Size (dictionarySize)
	V.42bis Maximum String Length (maxStringLength)
	Enable V.42bis Compressor (isCompressor)
	Enable V.42bis Decompressor (isDecompressor)

	3.1.2 Status Structure

	3.2 Standard Interface Functions
	3.2.1 Algorithm Initialization
	MODINT_SPCORP_init

	3.2.2 Algorithm Deletion
	MODINT_exit

	3.2.3 Instance Creation
	MODINT_create

	3.2.4 Instance Deletion
	MODINT_delete

	3.3 Vendor-Specific Interface
	3.3.1 I/O Processing
	MODINT_ioProcessing

	3.3.2 Low-Level Control Operation
	MODINT_backGround

	3.3.3 Safe Disconnect
	MODINT_disconnect

	3.3.4 Modem Integrator Data Flows
	MODINT_returnData
	MODINT_injectData

	3.3.5 Get Modem Integrator Status
	MODINT_getStatus

	3.4 High-Level Client Interface
	3.4.1 Client Methods
	Transfer Data
	Preemption Allowing
	Real-Time Control for Single-Threaded Environment

	Appendix A: Test Environment
	A.1 Description of Directory Tree
	A.1.1 Test Project

	Index

