H.264 Main Profile Decoder
on Co64x+

User Guide

DAVINCI

TEXAS INSTRUMENTS

Literature Number: SPRUEBOB
May 2007

” TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (Tl) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without
notice. Customers should obtain the latest relevant information beforée placing orders and should verify that such information is
current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order
acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warrfranty.dExcept where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products
and applications using Tl components. To minimize the risks associated with customer products and applications, customers
should provide adequate design and operating safeguards.

Tl does not warrant or reilj_resent that any license, either express or implied, is granted under any TI patent right, copyright,
mask work right, or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or
services are used. Information published by Tl regarding third-party products or services does not constitute a license from Tl
to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other
intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration
is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or
service voids all ex;l_)refss and any |m_BI|ed warranties for the associated Tl product or service and is an unfair and deceptive
business practice. Tl is not responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical appll_catlonsésuch as life support) where a failure of the Tl product
would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an
agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and
regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal,
regulatory and safety-related requirements concerning their products and any use of Tl products in such safety-critical
apf)ll_catlons,_ notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must
ful yl_lndtemnlfy Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical
applications.

Tl products are neither designed nor intended for use in military/aerospace ap(}))hcatlons or environments unless the Tl
products are specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-
rade meet military specifications. Buyers acknowledge and a%ree that anP/ such”use of Tl products which Tl has not
e&ﬁ;nated as military-grade is solely at'the Buyer's risk, and that they are solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI products are neither desi?ned nor intended for use in automotive applications or environments unless the specific Tl

products are designated by TI as compliant with ISO/TS 16949 requirements. B_u?/ers acknowledge and agree that, if they use
any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instruments
(T1) H.264 Main Profile Decoder implementation on the C64x+ platform.
It also provides a detailed Application Programming Interface (API)
reference and information on the sample application that accompanies
this component.

TI's codec implementations are based on the eXpressDSP Digital Media
(XDM) standard. XDM is an extension of the eXpressDSP Algorithm
Interface Standard (XDAIS).

Intended Audience

This document is intended for system engineers who want to integrate
TI's codecs with other software to build a multimedia system based on
the C64x+ platform.

This document assumes that you are fluent in the C language, have a
good working knowledge of Digital Signal Processing (DSP), digital
signal processors, and DSP applications. Good knowledge of
eXpressDSP Algorithm Interface Standard (XDAIS) and eXpressDSP
Digital Media (XDM) standard will be helpful.

How to Use This Manual
This document includes the following chapters:

O Chapter 1 - Introduction, provides a brief introduction to the XDAIS
and XDM standards. It also provides an overview of the codec and
lists its supported features.

O Chapter 2 - Installation Overview, describes how to install, build,
and run the codec.

O Chapter 3 - Sample Usage, describes the sample usage of the
codec.

O Chapter 4 - API Reference, describes the data structures and
interface functions used in the codec.

Read This First

Related Documentation From Texas Instruments

The following documents describe TI's DSP algorithm standards such
as, XDAIS and XDM. To obtain a copy of any of these Tl documents,
visit the Texas Instruments website at www.ti.com.

O TMS320 DSP Algorithm Standard Rules and Guidelines (literature
number SPRU352) defines a set of requirements for DSP algorithms
that, if followed, allow system integrators to quickly assemble
production-quality systems from one or more such algorithms.

O TMS320 DSP Algorithm Standard APl Reference (literature number
SPRU360) describes all the APIs that are defined by the TMS320
DSP Algorithm Inteface Standard (also known as XDAIS)
specification.

O Technical Overview of eXpressDSP - Compliant Algorithms for DSP
Software Producers (literature number SPRA579) describes how to
make algorithms compliant with the TMS320 DSP Algorithm
Standard which is part of TI's eXpressDSP technology initiative.

O Using the TMS320 DSP Algorithm Standard in a Static DSP System
(literature number SPRA577) describes how an eXpressDSP-
compliant algorithm may be used effectively in a static system with
limited memory.

O DMA Guide for eXpressDSP-Compliant Algorithm Producers and
Consumers (literature number SPRA445) describes the DMA
architecture specified by the TMS320 DSP Algorithm Standard
(XDAIS). It also describes two sets of APIs used for accessing DMA
resources: the IDMA2 abstract interface and the ACPY2 library.

O eXpressDSP Digital Media (XDM) Standard API Reference (literature
number SPRUECS)

The following documents describe TMS320 devices and related support
tools:

O Design and Implementation of an eXpressDSP-Compliant DMA
Manager for C6X1X (literature number SPRA789) describes a
C6x1x-optimized (C6211, C6711) ACPY2 library implementation and
DMA Resource Manager.

O TMS320c64x+ Megamodule (literature number SPRAAG8) describes
the enhancements made to the internal memory and describes the
new features which have been added to support the internal memory
architecture's performance and protection.

O TMS320C64x+ DSP Megamodule Reference Guide (literature
number SPRU871) describes the C64x+ megamodule peripherals.

0 TMS320C64x to TMS320C64x+ CPU Migration Guide (literature
number SPRAA84) describes migration from the Texas Instruments
TMS320C64x™ digital signal processor (DSP) to the
TMS320C64x+™ DSP.

o TMS320C6000 Optimizing Compiler v 6.0 Beta User's Guide
(literature number SPRU187N) explains how to use compiler tools

http://www.ti.com/

Read This First

Q

Q

Related Documentation

such as compiler, assembly optimizer, standalone simulator, library-
build utility, and C++ name demangler.

TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide
(literature number SPRU732) describes the CPU architecture,
pipeline, instruction set, and interrupts of the C64x and C64x+ DSPs.

TMS320DM6446 Digital Media System-on-Chip (literature number
SPRS283)

TMS320DM6446 Digital Media System-on-Chip Errata (Silicon
Revision 1.0) (literature number SPRZ241) describes the known
exceptions to the functional specifications for the TMS320DM6446
Digital Media System-on-Chip (DMSoC).

TMS320DM6443 Digital Media System-on-Chip (literature number
SPRS282)

TMS320DM6443 Digital Media System-on-Chip Errata (Silicon
Revision 1.0) (literature number SPRZ240) describes the known
exceptions to the functional specifications for the TMS320DM6443
Digital Media System-on-Chip (DMSoC).

TMS320DM644x DMS0oC DSP Subsystem Reference Guide
(literature number SPRUE15) describes the digital signal processor
(DSP) subsystem in the TMS320DM644x Digital Media System-on-
Chip (DMSoC).

TMS320DM644x DMS0oC ARM Subsystem Reference Guide
(literature number SPRUE14) describes the ARM subsystem in the
TMS320DM644x Digital Media System on a Chip (DMSoC).

DaVinci Technology - Digital Video Innovation Product Bulletin (Rev.
A) (sprt378a.pdf)

The DaVinci Effect: Achieving Digital Video Without Complexity
White Paper (spry079.pdf)

DaVinci Benchmarks Product Bulletin (sprt379.pdf)
DaVinci Technology for Digital Video White Paper (spry067.pdf)
The Future of Digital Video White Paper (spry066.pdf)

You can use the following documents to supplement this user guide:

a

ISO/IEC 14496-10:2005 (E) Rec.- Information technology — Coding
of audio-visual objects — H.264 (E) ITU-T Recommendation

Read This First

Abbreviations

The following abbreviations are used in this document:

Table 1-1. List of Abbreviations

Abbreviation Description

ASO Arbitrary Slice Ordering

AVC Advanced Video Coding

BIOS TI's simple RTOS for DSPs

CABAC Context Adaptive Binary Arithmetic Coding
CAVLC Context Adaptive Variable Length Coding
CSL Chip Support Library

D1 720x480 or 720x576 resolutions in

progressive scan

DCT Discrete Cosine Transform

DMA Direct Memory Access

DMAN3 DMA Manager

DPB Decoded Picture Buffer

EVM Evaluation Module

FMO Flexible Macroblock Ordering
HDTV High Definition Television

HRD Hypothetical Reference Decoder
|_PCM Intra-frame pulse code modulation
IDR Instantaneous Decoding Refresh
ITU-T International Telecommunication Union
IM Joint Menu

JVT Joint Video Team

MB Macro Block

MBAFF Macro Block Adaptive Field Frame
MPEG Moving Pictures Experts Group
MV Motion Vector

NAL Network Adaptation Layer

vi

Read This First

Text Conventions

Product Support

Trademarks

NTSC National Television Standards Committee

PicAFF Picture Adaptive Field Frame

POC Picture Order Count

RTOS Real Time Operating System

SEI Supplemental Enhancement Information

VCL Video Coded Layer

VGA Video Graphics Array (640 x 480
resolution)

VUI Video Usability Information

XDAIS eXpressDSP Algorithm Interface Standard

XDM eXpressDSP Digital Media

YUV Color space in luminance and

chrominance form

The following conventions are used in this document:
O Textinside back-quotes (*) represents pseudo-code.

O Program source code, function and macro names, parameters, and
command line commands are shown in a mono-spaced font.

When contacting Tl for support on this codec, please quote the product
name (H.264 Main Profile Decoder on C64x+) and version number. The
version number of the codec is included in the Title of the Release Notes
that accompanies this codec.

Code Composer Studio, the DAVINCI Logo, DAVINCI, DSP/BIOS,
eXpressDSP, TMS320, TMS320C64x, TMS320C6000, TMS320DM644X,
and TMS320C64x+ are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

vii

Read This First

This page is intentionally left blank

viii

Contents

Y= Lo B I 1S = SR iii
ADBOUL THIS MANUAL ... iii

L1 =T To (= To I U T =T o o= iii
HOW 10 USE ThiS MaNUAIuuiiiieiicieiiie et e et e e e e e e e e iii
Related Documentation From Texas INStruments...........ccooeevveeiiiii e, iv
Related DOCUMENTALION........uuuii e e e e e e e e e e e e e e e e e eerbaaaaas \Y;
L= 0] 17T o1 1o L P Vil

[(0T ¥ o A U o o o] A Vil
TrAEIMAIKS ... e e e e et e e e e e e e e e e ettt e e e eeeeeeeetaba e eeeaeeesnrena Vi
(L0] =T 0 1 K= iX
0 B = Xi
1=] 1= Xiii
TN 0o 1V T3 £ o] o RO 1-1
1.1 Overview of XDAIS and XDM........cooiiiiiiiiiiie e e et e e ee s 1-2
11,1 XDAIS OVEIVIEWoieiiiiieee e e e e e ettt e e e e e st ee e e e e e e s s st an e e e e e e e s annnnaeneeaaeeesnnnnnes 1-2

L1.1.2 XDM OVEIVIEW ..eeeeiiietiieieeee e e e e ettt et e e e e s s sttt e e e e e e s s snntataneaaeeeesannnnsnnenaaeeesnnnnnns 1-2

1.2 Overview of H.264 Main Profile Decoderccccoeoiiiii 1-3

1.3 Supported Services and FEAIUIEScccuuviiiiiiieei e 1-5

LR =1 = A o] T @ Y A=T V=P 2-1
P R V) (=T 0 A T = To (U] 1 4=] €PN 2-2
211 HArdWar€.......cooooiiiiii e, 2-2

2.1.2 SOMWAIE .ot ———————— 2-2

2.2 Installing the COMPONENT...........coiiiiiiiiiiiiiiiii et eeeeees 2-2

2.3 Before Building the Sample Test Applicationccovvieiiiiiiieceeccee e, 2-3
2.3.1 Installing DSP/BIOSutiiiiiiee ettt e e e e e r e e e e e e s e snnbaaer e e e e e s e nnnes 2-4

2.3.2 Installing Framework Component (FC)ccuiiiiiiiiiiniiiee e 2-4

2.4 Building and Running the Sample Test Applicationcccccccevviiiiiiiiieeeennnnnns 2-4

2.5 Configuration Filesoooiiiiiiiiiiiii e 2-5
2.5.1 Generic Configuration Fileccuviiiiiiei i 2-5

2.5.2 Decoder Configuration Filecc.uueiiiiee i 2-6

2.6 Standards Conformance and User-Defined INputscccccvvvvvvieviieevieeieeeneee, 2-6

2.7 Uninstalling the COMPONENTuiiiiiiiiiiii e 2-7

A T V7= 1 [= L o] o IV =T £ (o) o 2-7

STz 1 g1 01 L= o= Vo 1= 3-1
3.1 Overview of the Test APPHCALIONcooiiiiiiiiiiiiie e 3-2
3.1 1 Parameter SEIUPD ...coooi i 3-3

3.1.2 Algorithm Instance Creation and Initialization...............cccoveeeiieiiiniiiiiiieeeee 3-3

0 I B o (o o= 04 | RSPt 3-4

3.1.4 Algorithm InsStance DeItioNc.c.uvviiiieiiiiciie e e 3-5

F N I = (=T = Lo = U 4-1
4.1 Symbolic Constants and Enumerated Data TYPeS..........occuvvvieeeieeiiiiiiiiiineenenn. 4-2

T I - = S 1 0o 0] = 4-11
4,21 Common XDM Data StrUCIUIES........cceviiiiiiiii ettt eaeens 4-11

4.2.2 H.264 Decoder Data StrUCIUIESccuviieieeeee i iciitieee e e st e e e e e sanreaee s 4-20

I [01 (=] gt Tod I U [g Tex 1] TR 4-33

S R O (Y= 11 o] 1 = £ TN 4-33
4.3.2 INIIANZALION APl ..ottt e e aaraaas 4-35
G TR T @10 a1 (o] 12\ =4 IS 4-36
4.3.4 Data ProcessSiNg APl i 4-38
4,35 TermMINAION APoovvviiiiiiiriiiieiiieierererer e as 4-42

e o (o gl o = o |11 T 4-44

Figures

Figure 1-1. Block Diagram of H.264 Decoder
Figure 2-1. Component Directory Structure

Figure 3-1. Test Application Sample Implementation

Xi

This page is intentionally left blank

Xii

Tables

Table 1-1. List of AbBreviations ... Vi
Table 2-1. ComMPONENt DIir€CIOITES ... i i i e e e e e e e e eeees 2-3
Table 4-1. List of Enumerated Data TYPESuuviiiiiiiiiiiiiiiii e 4-2

Table 4-2. Error codes and values

xiii

This page is intentionally left blank

Xiv

Chapter 1

Introduction

This chapter provides a brief introduction to XDAIS and XDM. It also
provides an overview of TI's implementation of the H.264 Main Profile
Decoder on the C64x+ platform and its supported features.

Topic Page
1.1 Overview of XDAIS and XDM 1-2
1.2 Overview of H.264 Main Profile Decoder 1-3
1.3 Supported Services and Features 1-5

1-1

Introduction

1.1 Overview of XDAIS and XDM

TI's multimedia codec implementations are based on the eXpressDSP
Digital Media (XDM) standard. XDM is an extension of the eXpressDSP
Algorithm Interface Standard (XDAIS).

1.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the
abstract interface IALG. The IALG API takes the memory management
function away from the algorithm and places it in the hosting framework.
Thus, an interaction occurs between the algorithm and the framework. This
interaction allows the client application to allocate memory for the algorithm
and also share memory between algorithms. It also allows the memory to
be moved around while an algorithm is operating in the system. In order to
facilitate these functionalities, the IALG interface defines the following
APIs:

Q algAlloc()
algInit ()
algActivate ()

algDeactivate ()

0O 0O 0 O

algFree ()

The alghlloc () API allows the algorithm to communicate its memory
requirements to the client application. The alginit () API allows the
algorithm to initialize the memory allocated by the client application. The
algFree () API allows the algorithm to communicate the memory to be
freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process
data in real-time. The algActivate () API provides a notification to the
algorithm instance that one or more algorithm processing methods is about
to be run zero or more times in succession. After the processing methods
have been run, the client application calls the algbeactivate () API prior
to reusing any of the instance’s scratch memory.

The IALG interface also defines three more optional APIs algControl (),
algNumAlloc (), and algMoved (). For more details on these APIs, see
TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360).

1.1.2 XDM Overview

In the multimedia application space, you have the choice of integrating any
codec into your multimedia system. For example, if you are building a
video decoder system, you can use any of the available video decoders
(such as MPEGA4, H.263, or H.264) in your system. To enable easy
integration with the client application, it is important that all codecs with
similar functionality use similar APls. XDM was primarily defined as an
extension to XDAIS to ensure uniformity across different classes of codecs

1-2

Introduction

(for example audio, video, image, and speech). The XDM standard defines
the following two APlIs:

Q control ()
Q process|()

The control () API provides a standard way to control an algorithm
instance and receive status information from the algorithm in real-time. The
control () API replaces the algControl () API defined as part of the
IALG interface. The process () API does the basic processing
(encode/decode) of data.

Apart from defining standardized APIs for multimedia codecs, XDM also
standardizes the generic parameters that the client application must pass
to these APIs. The client application can define additional implementation
specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

Client Application

XDM Interface

XDAIS Interface (IALG)

TI's Codec Algorithms

As depicted in the figure, XDM is an extension to XDAIS and forms an
interface between the client application and the codec component. XDM
insulates the client application from component-level changes. Since TI's
multimedia algorithms are XDM compliant, it provides you with the flexibility
to use any Tl algorithm without changing the client application code. For
example, if you have developed a client application using an XDM-
compliant MPEG4 video decoder, then you can easily replace MPEG4 with
another XDM-compliant video decoder, say H.263, with minimal changes
to the client application.

For more details, see eXpressDSP Digital Media (XDM) Standard API
Reference (literature number SPRUECS).

1.2 Overview of H.264 Main Profile Decoder

H.264 (from ITU-T, also called as H.264/AVC) is a popular video coding
algorithm enabling high quality multimedia services on a limited bandwidth
network. H.264 standard defines several profiles and levels that specify
restrictions on the bit stream and hence limits the capabilities needed to
decode the bit streams. Each profile specifies a subset of algorithmic
features and limits that all decoders conforming to that profile may support.
Each level specifies a set of limits on the values that may be taken by the
syntax elements in that profile.

1-3

Introduction

1-4

Some important H.264 profiles and their special features are:

O Baseline Profile:

Only | and P type slices are present

Only frame mode (progressive) picture types are present
Only CAVLC is supported

ASO/FMO and redundant slices for error concealment is supported

O O O o

Q Main Profile:

@]

Only I, P, and B type slices are present

o Frame and field picture modes (in progressive and interlaced modes)
picture types are present

0 Both CAVLC and CABAC are supported
0 ASO is not supported

H.264 Main Profile Decoder is a completely programmable single-chip
solution. The input to the decoder is a H.264 encoded bit stream in the
byte-stream syntax. The byte stream consists of a sequence of byte stream
NAL unit syntax structures. Each byte stream NAL unit syntax structure
contains one start code prefix of size four bytes and value 0x00000001,
followed by one NAL unit syntax structure. The encoded frame data is a
group of slices each of which is encapsulated in NAL units. The slice
consists of the following:

O Intra coded data: Spatial prediction mode and prediction error data,
which is subjected to DCT and later quantized.

O Inter coded data: Motion information and residual error data
(differential data between two frames), which is subjected to DCT and
later quantized.

The first frame received by the decoder is IDR (Instantaneous Decode
Refresh) picture frame. The decoder reconstructs the frame by spatial
intra-prediction specified by the mode and by adding the prediction error.
The subsequent frames may be intra or inter coded.

In case of inter coding, the decoder reconstructs the bit stream by adding
the residual error data to the previously decoded image, at the location
specified by the motion information. This process is repeated until the
entire bit stream is decoded.

The output of the decoder is a YUV sequence, which can be of format 420
planar and 422 interleaved in little endian.

Figure 1-1 depicts the working of the decoder.

Introduction

Video Bit Stream

l

Buffer

—>

Video Out
Entropy Inverse Scan Inverse Deblocking
Decoding and and || Transform Filter
Demultiplexing Quantization
— Spatial Prediction Modes T
Current Spatial SW
Picture Store | Compensation >
Process
Multiple Motion
Previous — Compensation
Picture Store Process

Motion Vectors

Figure 1-1. Block Diagram of H.264 Decoder

]

From this point onwards, all references to H.264 Decoder means H.264
Main Profile Decoder only.

1.3 Supported Services and Features

This user guide accompanies TI's implementation of H.264 Decoder on the
C64x+ platform.

This version of the codec has the following supported features:

O eXpressDSP compliant

O eXpressDSP Digital Media (XDM) compliant

O Supports up to level 3.0 features of the Main Profile (MP)

O Supports progressive, interlaced, Picture Adaptive Frame Field
(PicAFF) and Macroblock Adaptive Frame Field (MBAFF) type picture
decoding

O Supports multiple slices and multiple reference frames
O Supports CAVLC and CABAC decoding

O Supports all intra-prediction and inter-prediction modes

Q Supports upto 16 MV per MB

1-5

Introduction

1-6

Supports frame based decoding

Supports frame size being hon-multiple of 16 through frame cropping
Supports frame width of the range of 32 to 720 pixels

Supports byte-stream syntax for the input bit stream

Supports parsing of Supplemental Enhancement Information (SEI) and
Video Usability Information (VUI)

Supports long term reference frame and adaptive reference picture
marking

Supports reference picture list reordering

Supports gaps in frame_num

Supports decoding of streams with IPCM coded macroblocks
Supports skipping of non reference pictures

Supports configurable delay for display of frames

Basic error concealment features

Outputs are available in YUV 420 planar and 422 interleaved little
endian formats

Tested for compliance with JM version 11.0 reference decoder

Supports dynamic change in the frame size (ability to decode different
frame sizes present in the very same stream)

H.264 decoder is fully compliant with Allegro test suites (non HD
streams)

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information
on building and running the sample test application.

Topic Page
2.1 System Requirements 2-2
2.2 Installing the Component 2-2
2.3 Before Building the Sample Test Application 2-3
2.4 Building and Running the Sample Test Application 2-4
2.5 Configuration Files 2-5
2.6 Standards Conformance and User-Defined Inputs 2-6
2.7 Uninstalling the Component 2-7
2.8 Evaluation Version 2-7

2-1

Installation Overview

2.1 System Requirements

2.1.1 Hardware

2.1.2 Software

This section describes the hardware and software requirements for the
normal functioning of the codec component.

This codec has been built and tested on the DM6446 EVM with XDS560
USB.

The following are the software requirements for the normal functioning of
the codec:

O Development Environment: This project is developed using Code
Composer Studio (CCS) version 3.3.24.1.

O Code Generation Tools: This project is compiled, assembled,
archived, and linked using the code generation tools version 6.0.7.

2.2 Installing the Component

The codec component is released as a compressed archive. To install the
codec, extract the contents of the zip file onto your local hard disk. The zip
file extraction creates a top-level directory called
100_V_H264AVC_D_1 10, under which another directory named
DM6446_MP_001 is created.

Figure 2-1 shows the sub-directories created in the DM6446_MP_001
directory.

=0 Cliert

=1 Buid

Lol :] Map

{1 b

P ‘:I ik

=1 Test

{:‘ Sre

B0 TestVees
:] Zonfig
:I Input
& Oukpuk
3 Reference

Figure 2-1. Component Directory Structure

2-2

Installation Overview

Note:

If you are installing an evaluation version of this codec, the directory
name will be 100E_V_H264AVC D 1 10.

Table 2-1 provides a description of the sub-directories created in the
DM6446_MP_001 directory.

Table 2-1. Component Directories

Sub-Directory

Description

\Inc

\Lib
\Docs
\Client\Build

\Client\Build\Map

\Client\Build\Obj

\Client\Build\Out

\Client\Test\Src
\Client\Test\Inc

\Client\Test\TestVecs\Input

Contains XDM related header files which allow interface to the
codec library

Contains the codec library file
Contains user guide, datasheet, and release notes
Contains the sample test application project (.pjt) file

Contains the memory map generated on compilation of the
code

Contains the intermediate .asm and/or .obj file generated on
compilation of the code

Contains the final application executable (.out) file generated
by the sample test application

Contains application C files
Contains header files needed for the application code

Contains input test vectors

\Client\Test\TestVecs\Output Contains output generated by the codec

\Client\Test\TestVecs\Reference Contains read-only reference output to be used for cross-

checking against codec output

\Client\Test\TestVecs\Config Contains configuration parameter files

2.3 Before Buildin

g the Sample Test Application

This codec is accompanied by a sample test application. To run the sample
test application, you need DSP/BIOS and Tl Framework Components (FC).

This version of the codec has been validated with DSP/BIOS version
5.31.02 and Framework Component (FC) version 1.10.01.

2-3

Installation Overview

2.3.1 Installing DSP/BIOS

You can download DSP/BIOS from the Tl external website:

https://www-a.ti.com/downloads/sds support/targetcontent/bios/index.html

Install DSP/BIOS at the same location where you have installed Code
Composer Studio. For example:

<install directory>\CCStudio_v3.2
The sample test application uses the following DSP/BIOS files:

O Header file, bcache.h available in the
<install directory>\CCStudio_v3.2\<bios_directory>\packages
\ti\bios\include directory.

O Library file, biosDM420.a64P available in the
<install directory>\CCStudio_v3.2\<bios_directory>\packages
\ti\bios\lib directory.

2.3.2 Installing Framework Component (FC)

You can download FC from the Tl external website:

https://www-a.ti.com/downloads/sds support/targetcontent/FC/index.html

Extract the FC zip file to the same location where you have installed Code
Composer Studio. For example:

<install directory>\CCStudio_v3.2
The test application uses the following DMANS files:

Q Library file, dman3.a64P available in the
<install directory>\CCStudio_v3.2\<fc_directory>\packages
\ti\sdo\fc\dmang3 directory.

O Header file, dman3.h available in the
<install directory>\CCStudio_v3.2\<fc_directory>\packages
\ti\sdo\fc\dman3 directory.

O Header file, idma3.h available in the
<install directory>\CCStudio_v3.2\<fc_directory>\packages
\ti\sdo\fc\acpy3 directory.

2.4 Building and Running the Sample Test Application

2-4

The sample test application that accompanies this codec component will
run in TI's Code Composer Studio (CCS) development environment. To
build and run the sample test application in Code Composer Studio(CCS),
follow these steps:

1) Verify that you have an installation of TI's Code Composer Studio
version 3.3.24.1 and code generation tools version 6.0.7.

https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html
https://www-a.ti.com/downloads/sds_support/targetcontent/FC/index.html

Installation Overview

2)

3)

4)

5)

6)

Verify that the codec object library, h264mpvdec_ti.I64P exists in the
\Lib sub-directory.

Open the test application project file, TestAppDecoder.pjt in Code
Composer Studio. This file is available in the \Client\Build sub-
directory.

Select Project > Build to build the sample test application. This
creates an executable file, TestAppDecoder.out in the \Client\Build\Out
sub-directory.

Select File > Load, browse to the \Client\Build\Out sub-directory,
select the codec executable created in step 4, and load it into Code
Composer Studio in preparation for execution.

Select Debug > Run to execute the sample test application.

The sample test application takes the input files stored in the
\Client\Test\TestVecs\Input sub-directory, runs the codec, and uses the
reference files stored in the \Client\Test\TestVecs\Reference sub-
directory to verify that the codec is functioning as expected.

On successful completion, the application displays one of the following
messages for each frame:

o0 “Decoder compliance test passed/failed” (for compliance check
mode)

0 “Decoder output dump completed” (for output dump mode)

2.5 Configuration Files

This codec is shipped along with:

Q

A generic configuration file (Testvecs.cfg) — specifies input and
reference files for the sample test application.

A Decoder configuration file (Testparams.cfg) — specifies the
configuration parameters used by the test application to configure the
Decoder.

2.5.1 Generic Configuration File

The sample test application shipped along with the codec uses the
configuration file, Testvecs.cfg for determining the input and reference files
for running the codec and checking for compliance. The Testvecs.cfg file is
available in the \Client\Test\TestVecs\Config sub-directory.

The format of the Testvecs.cfg file is:

X

Config
Input
Output/Reference

where:

Q

X may be set as:

o 1 -for compliance checking, no output file is created

2-5

Installation Overview

o0 0 - for writing the output to the output file
O configisthe Decoder configuration file. For details, see section 2.5.2
O Input isthe input file name (use complete path).

O output/Reference is the output file name (if X is 0) or reference file
name (if x is 1).

A sample Testvecs.cfq file is as shown:

\Test\TestVecs\Config\Testparams.cfg
\Test\TestVecs\Input\foreman_ipb_cabac.264
\Test\TestVecs\Reference\foreman_ipb_cabac_c.yuv

\Test\TestVecs\Config\Testparams.cfg
\Test\TestVecs\Input\foreman_ipb_cabac.264
\Test\TestVecs\Output\foreman_ipb_cabac_test.yuv

P O s
sl 7

2.5.2 Decoder Configuration File

The decoder configuration file, Testparams.cfg contains the configuration
parameters required for the decoder. The Testparams.cfg file is available in
the \Client\Test\TestVecs\Config sub-directory.

A sample Testparams.cfg file is as shown:

Input File Format is as follows

<ParameterName> = <ParameterValue> # Comment

#

HHHHHH
Parameters

HHHHHH

ImageWidth = 720 # Image width in Pels, must be
multiples of 16

ImageHeight = 576 # Image height In Pels, must be
multiples of 16

ChromaFormat = 1 # 1 => XDM_YUV_420P,
4 => XDM_YUV_422I1LE

FramesToDecode = 10 # Number of frames to be decoded

Any field in the IVIDDEC Params structure (see Section 4.2.1.5) can be
set in the Testparams.cfg file using the syntax shown above. If you specify
additional fields in the Testparams.cfg file, ensure to modify the test
application appropriately to handle these fields.

2.6 Standards Conformance and User-Defined Inputs

2-6

To check the conformance of the codec for the default input file shipped
along with the codec, follow the steps as described in Section 2.4.

To check the conformance of the codec for other input files of your choice,
follow these steps:

O Copy the input files to the \Client\Test\TestVecs\Inputs sub-directory.

Installation Overview

O Copy the reference files to the \Client\Test\TestVecs\Reference sub-
directory.

O Edit the configuration file, Testvecs.cfg available in the
\Client\Test\TestVecs\Config sub-directory. For details on the format of
the Testvecs.cfq file, see section 2.5.1.

O Execute the sample test application. On successful completion, the
application displays one of the following message for each frame:

o0 “Decoder compliance test passed/failed” (if X is 1)

0 “Decoder output dump completed” (if X is 0)
If you have chosen the option to write to an output file (x is 0), you can use

any standard file comparison utility to compare the codec output with the
reference output and check for conformance.

2.7 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

2.8 Evaluation Version

If you are using an evaluation version of this codec a Texas Instruments
logo will be visible in the output.

2-7

Installation Overview

This page is intentionally left blank

2-8

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

3-1

Sample Usage

3.1 Overview of the Test Application

The test application exercises the IVIDDEC base class of the H.264
Decoder library. The main test application files are TestAppDecoder.c and
TestAppDecoder.h. These files are available in the \Client\Test\Src and
\Client\Test\Inc sub-directories respectively

Figure 3-1 depicts the sequence of APIs exercised in the sample test

application.
Test Application XDAIS-XDM Interface Codec Library
3
(5]
€ o
® S
S @©
o wm
: _—
s c | algNumAlloc() :
g S - algAlloc) —»
S = ' Iginit() »
£gg ! 2 i
= C C 1 .. !
S g = | DMANS_init() g
<L=d —— DMAN3_grantDmaChannels() ——»
algActivate >
2 —— control() >
8 = [} 1
=5 : process() >
L control() >
: algDeactivate() >
= | DMAN3_releaseDmaChannels() ——
€85 : :
5 8% : DMANS3_exit() >
Do g : |
< £0 : algNumAlloc() >
E algFree) ~————>

Figure 3-1. Test Application Sample Implementation

3-2

Sample Usage

The test application is divided into four logical blocks:
Q Parameter setup

O Algorithm instance creation and initialization

O Process call

Q Algorithm instance deletion

3.1.1 Parameter Setup

Each codec component requires various codec configuration parameters to
be set at initialization. For example, a video codec requires parameters
such as video height, video width, etc. The test application obtains the
required parameters from the Decoder configuration files.

In this logical block, the test application does the following:

1) Opens the generic configuration file, Testvecs.cfg and reads the
compliance checking parameter, Decoder configuration file name
(Testparams.cfg), input file name, and output/reference file name.

2) Opens the Decoder configuration file, (Testparams.cfg) and reads the
various configuration parameters required for the algorithm.

For more details on the configuration files, see Section 2.5.

3) Sets the IVIDDEC Params Structure based on the values it reads from
the Testparams.cfg file.

4) Initializes the various DMAN3 parameters.
5) Reads the input bit stream into the application input buffer.
After successful completion of the above steps, the test application does
the algorithm instance creation and initialization.
3.1.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization
parameters and returns an algorithm instance pointer. The following APIs
are called in sequence:

1) algNumAlloc () - To query the algorithm about the number of
memory records it requires.

2) alghlloc() - To query the algorithm about the memory requirement
to be filled in the memory records.

3) algInit () - To initialize the algorithm with the memory structures
provided by the application.

A sample implementation of the create function that calls
algNumAlloc (), algAlloc(),and algInit() in sequence is provided
in the ALG _create () function implemented in the alg_create.c file.

3-3

Sample Usage

3.1.3 Process Call

3-4

After successful creation of the algorithm instance, the test application
does DMA resource allocation for the algorithm. This requires initialization
of DMA Manager Module and grant of DMA resources. This is
implemented by calling DMAN3 interface functions in the following
sequence:

1) DMAN3 init () - Toinitialize the DMAN module.

2) DMAN3 grantDmaChannels () - To grant the DMA resources to the
algorithm instance.

Note:

DMANS3 function implementations are provided in dman3.a64P library.

After algorithm instance creation and initialization, the test application does
the following:

1) Sets the dynamic parameters (if they change during run time) by
calling the control () function with the XbM SETPARAMS command.

2) Sets the input and output buffer descriptors required for the
process () function call. The input and output buffer descriptors are
obtained by calling the control () function with the XDM GETBUFINFO
command.

3) Calls the process () function to encode/decode a single frame of
data. The behavior of the algorithm can be controlled using various
dynamic parameters (see Section 4.2.1.6). The inputs to the process
function are input and output buffer descriptors, pointer to the
IVIDDEC InArgs and IVIDDEC OutArgs Structures.

The control () and process () functions should be called only within the
scope of the algaActivate () and algDeactivate () XDAIS functions
which activate and deactivate the algorithm instance respectively. Once an
algorithm is activated, there could be any ordering of control () and
process () functions. The following APIs are called in sequence:

1) algActivate () - To activate the algorithm instance.

2) control () (optional) - To query the algorithm on status or setting of
dynamic parameters etc., using the six available control commands.

3) process () - To call the Decoder with appropriate input/output buffer
and arguments information.

4) control () (optional) - To query the algorithm on status or setting of
dynamic parameters etc., using the six available control commands.

5) algbeactivate () - To deactivate the algorithm instance.

The do-while loop encapsulates frame level process () call and updates
the input buffer pointer every time before the next call. The do-while loop
breaks off either when an error condition occurs or when the input buffer
exhausts. It also protects the process () call from file operations by

Sample Usage

placing appropriate calls for cache operations as well. The test application
does a cache invalidate for the valid input buffers before process () and a
cache write back invalidate for output buffers after process ().

To support frame reordering and B frames, delay is present between
decoding of a frame and its display. This delay amount is configurable
depending on the application requirement. (see Section 4.2.1.9 for details).
The first frame to be displayed is returned after first N+1 frames are
decoded by the decoder (N is the configured delay). Hence N buffers are
locked within the decoder. On reaching end of sequence the control ()
API ‘'xDM_FLUSH' is called. Subsequent process call returns the locked
frames as output frame without performing any decoding.

Test application is configured for a delay of 5 frames and it utilizes 7
buffers to store decoded output in order to support frame reordering.

In the sample test application, after calling algbDeactivate (), the output
data is either dumped to a file or compared with a reference file.

3.1.4 Algorithm Instance Deletion

Once encoding/decoding is complete, the test application must release the
DMA channels granted by the DMA Manager interface and delete the
current algorithm instance. The following APIs are called in sequence:

1) DMAN3 releaseDmaChannels () - Toremove logical channel
resources from an algorithm instance.

2) DMAN3 exit () - To free DMAN3 memory resources.

3) algNumAlloc () - To query the algorithm about the number of memory
records it used.

4) algFree () - To query the algorithm to get the memory record
information.

A sample implementation of the delete function that calls algNumalloc ()
and algFree () in sequence is provided in the ALG delete () function
implemented in the alg_create.c file.

3-5

Sample Usage

This page is intentionally left blank

3-6

Chapter 4

API| Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic Page
4.1 Symbolic Constants and Enumerated Data Types 4-2
4.2 Data Structures 4-4
4.3 Interface Functions 4-32
4.4 Error Handling 4-44

4-1

API| Reference

4.1 Symbolic Constants and Enumerated Data Types

This section summarizes all the symbolic constants specified as either
#define macros and/or enumerated C data types. Described alongside the
macro or enumeration is the semantics or interpretation of the same in
terms of what value it stands for and what it means.

Table 4-1. List of Enumerated Data Types

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO FrameType IVIDEO I FRAME Intra coded frame (default value).
IVIDEO P FRAME Forward inter coded frame.
IVIDEO B FRAME Bi-directional inter coded frame.
IVIDEO IDR_FRAME Intra coded frame that can be used

for refreshing video content

IVIDEO_ ContentType IVIDEO PROGRESSIVE Progressive video content
IVIDEO INTERLACED Interlaced video content.
IVIDEO_ FrameSkip IVIDEO NO_SKIP Do not skip the current frame.

Default Value

IVIDEO_SKIP P Skip forward inter coded frame.
Not supported in this version of
H.264 decoder.

IVIDEO SKIP B Skip non -referenced frame. (See
Section 4.2.2.5 for detalils).

IVIDEO_SKIP I Skip intra coded frame.
Not supported in this version of
H.264 decoder.

ePicStruct t TOP_FIELD Indicates top field in field picture
BOTTOM_FIELD Indicates bottom field in field picture
FRAME PICTURE Indicates frame picture
XDM_DataFormat XDM_BYTE Big endian stream
XDM _LE 16 16-bit little endian stream.

Not applicable for H.264 decoder

XDM LE_32 32-bit little endian stream.
Not applicable for H.264 decoder

XDM_ChromaFormat XDM_YUV_420P YUV 4:2:0 planar

XDM_YUV_422P YUV 4:2:2 planar.
Not applicable for H.264 decoder

Group or Enumeration Class

Symbolic Constant Name

Description or Evaluation

XDM_CmdId

XDM ErrorBit

XDM_YUV_422IBE

XDM_YUV_422ILE

XDM_YUV_444P

XDM_YUV_411P

XDM_GRAY

XDM_RGB

XDM_GETSTATUS

XDM_SETPARAMS

XDM_RESET

XDM_SETDEFAULT

XDM_FLUSH

XDM_GETBUFINFO

XDM_APPLIEDCONCEALMENT

XDM_INSUFFICIENTDATA

XDM_CORRUPTEDDATA

XDM_CORRUPTEDHEADER

YUV 4:2:2 interleaved (big endian).
Not applicable for H.264 decoder

YUV 4:2:2 interleaved (little endian).

YUV 4:4:4 planar.
Not applicable for H.264 decoder

YUV 4:1:1 planar.
Not applicable for H.264 decoder

Gray format.
Not applicable for H.264 decoder

RGB color format.
Not applicable for H.264 decoder

Query algorithm instance to fill
Status structure

Set run time dynamic parameters
via the DynamicParams structure

Reset the algorithm

Initialize all fields in Params
structure to default values specified
in the library

Handle end of stream conditions.
This command forces algorithm
instance to output data without
additional input.

Subsequent process (decode) call
returns the buffer which was locked
in decoder without performing any
bitstream decoding.

Query algorithm instance regarding
the properties of input and output
buffers

Bit 9
O 1 - Applied concealment
Q O-lIgnore

Bit 10

Q 1 - Insufficient data
a O-lIgnore

Bit 11

Q 1 - Data problem/corruption
Q O-lIgnore

Bit 12
Q 1 - Header problem/corruption
a O0-lIgnore

API| Reference

Group or Enumeration Class

Symbolic Constant Name

Description or Evaluation

XDM_UNSUPPORTEDINPUT

Bit 13

O 1-Unsupported
feature/parameter in input
a O0-lIgnore

XDM_UNSUPPORTEDPARAM Bit 14
Q 1 - Unsupported input
parameter or configuration
Q O-lIgnore

XDM_FATALERROR Bit 15
Q 1 - Fatal error (stop encoding)
O O - Recoverable error

Note:

The remaining bits that are not mentioned in XDM_ErrorBit are
interpreted as:

Q Bit 16-32: Reserved
Q Bit 8: Reserved

Q Bit 0-7: Codec and implementation specific. The type of error
encountered while decoding the bitstream is returned through
extendedError field of outputArgs. Bits 8-15 are set as per XDM
convention. Bits 0-7 are used to indicate errors specific to H.264
Decoder. The various error codes returned by the H.264 Decoder (in
the lower 8-bits) and their values are given in the table below.

The algorithm can set multiple bits to 1 depending on the error condition.

4-4

The following table lists the detailed error codes and their values.

Table 4-2. Error codes and values.

Error codes Description Values

NAL Unit specific Semantic Errors

H264D ERR_SEM NALU_ EOSTRMREACHED Additional NALU is received after an End of 0x21
Stream NALU

H264D_ERR SEM NALU FORBIDDENBIT NALU syntax forbidden bit is not zero 0x22

H264D_ERR SEM NALU NALREFIDC The nal_ref_idc field has a value that violates ~ 0x23
constraits specified in the standard.

H264D ERR_SEM NALU NALUTYP Incorrect NALU type received. It may not be 0x25
an illegal NALU type, but incorrect based on
the type of previous NALU.

H264D_ERR_SEM_ NALU_EOSEQ End of Seq NALU is incorrectly received when 0x26
a picture is partially decoded.
This is not an error. It is displayed as a
warning only.

SPS specific Semantic Errors

H264D ERR SEM SPS INVLD PROFILE The profile specified in SPS is invalid or is 0x41
unsupported by the decoder

H264D ERR_SEM SPS POCTYPE The pic_order_cnt_type field decoded as part ~ 0x43
of SPS has an illegal value.

H264D ERR_SEM SPS MAXPOCLSB The log2_max_pic_order_cnt_Isb_minus4 0x44
field decoded as part of SPS has an illegal
value.

H264D ERR_SEM SPS NUMREFFRAMESINPOCCYC The num_ref frames_in_pic_order_cnt_cycle 0x45

LE field decoded as part of SPS has an illegal
value.

H264D ERR SEM SPS DIRECT8X8FLAG The direct_8x8_inference_flag field decoded 0x46
as part of SPS has an illegal value.

H264D_ERR_SEM_SPS_FRAMECROP The frame cropping parameters decoded as 0x47
part of SPS have an illegal value.

H264D ERR SEM SPS ACTIVESPS MISMATCH If in between Access Unit decoding a SPS is 0x48
received with same seq_parm_set_id as
active_sps_id then contents of received_sps
should be equal to active_sps. Otherwise this
error code is set.

H264D_ERR_SEM_SPS_SEQID The field seq_parameter_set_id of SPS has 0x49

an illegal value.

4-5

API| Reference

Error codes Description Values

H264D ERR SEM SPS UNSUPPORTEDPICWIDTH The width specified in SPS is not supported 0x4A
by the decoder.

H264D ERR_SEM_SPS_REF_FRAMES BEYOND LI The number of reference frames specified in 0x4B

MIT SPS is beyond the limit allowed by the
standard.

PPS specific Semantic Errors

H264D ERR_SEM PPS PPSID The field pic_parameter_set_id part of PPS 0x61
has an illegal value

H264D ERR_SEM PPS SEQID The seq_parameter_set_id field part of PPS 0x62
has an illegal value.

H264D ERR SEM PPS SLCGRPMAPTYPE The slice_group_map_type field in PPS has 0x63
an illegal or incorrect value.

H264D_ERR_SEM PPS TOPLEFT The field in PPS used for certain type of FMO 0x64
has a wrong value.

H264D ERR SEM PPS BOTRIGHT The field in PPS used for certain type of FMO 0x65
has a wrong value.

H264D ERR_SEM PPS TOPBOTMOD The field in PPS used for certain type of FMO 0x66
has a wrong value.

H264D ERR_SEM PPS RUNLENGTH The field in PPS used for certain type of FMO 0x67
has a wrong value.

H264D ERR_SEM PPS SLCGRPCHNGRATE The field in PPS used for certain type of FMO ~ 0x68
has a wrong value.

H264D_ERR_SEM_PPS_PICSIZEMAPUNITS The field pic_size_in_map_units_minus1 in 0x69
PPS has an incorrect value.

H264D_ERR_SEM_PPS_NUMREFIDXACTIVELO The field num_ref_idx_|0_active_minus1 in 0x6A
PPS has an illegal value.

H264D ERR_SEM PPS NUMREFIDXACTIVEL1 The field num_ref_idx_I0_active_minus1 in 0x6B
PPS has an illegal value

H264D _ERR_SEM PPS_INITDQP The field pic_init_gp_minus26 is PPS has a 0x6C
value out of bounds with what is specified by
standard.

H264D_ERR_SEM_PPS_INITDQS The field pic_init_gs_minus26 is PPS has a 0x6D
value out of bounds with what is specified by
standard.

H264D_ERR_SEM_PPS_QPINDEXOFFSET The field chroma_gp_index_offsetin PPS has 0x6E

4-6

a value out of bounds with what is specified
by standard.

Error codes Description Values
H264D_ERR_SEM_PPS_ACTIVEPPS_MISMATCH If in between Access Unit decoding a PPS is 0x6F
received with same pic_parm_set_id as
active_pps_id then contents of received_pps
should be equal to active_pps. Otherwise this
error code is set.
H264D_ERR_SEM_PPS_NUMSLCGRP The num_slice_groups_minus1 field in PPS 0x70
has an illegal value.
H264D_ERR_SEM_PPS_SLCGRPID The field slice_group_id in PPS has an 0x71
incorrect value (based on
num_slice_groups_minus1 field).
H264D_ERR_SEM_PPS_BIPREDIDC_INVALID The weighted_bipred_idc field in PPS has an 0x72
illegal value.
Slice Header Semantic Errors
H264D ERR_SEM SLCHDR_ DELTAPICCNTBOT The delta_pic_order_cnt_bottom field in slice 0x81
header has an incorrect value.
H264D_ERR SEM SLCHDR PICPARAMSETID The pic_parameter_set_id field in slice header 0x82
has an illegal value.
H264D ERR SEM SLCHDR SLCTYP Incorrect or unsupported slice type detected. 0x83
H264D ERR_SEM SLCHDR_ FIRSTMBINSLC The first_mb_in_slice field is greater than 0x84
PicSizelnMbs.
H264D ERR_SEM SLCHDR IDRPICID The idr_pic_id field in slice header has an 0x85
illegal value.
H264D ERR_SEM SLCHDR REDUNDANTPICCNT The field redundant_pic_cnt in slice header 0x86
has an illegal value.
H264D ERR_SEM SLCHDR NUMREFIDXACTIVE The num_ref_idx_lO_active_minusl decoded 0x87
LO in slice header or obtained from PPS (based
on num_ref_idx_active_override_flag) has an
illegal value.
H264D ERR SEM SLCHDR NUMREFIDXACTIVE The num_ref idx_I1_active_minusl decoded 0x88
L1l in slice header or obtained from PPS (based
on num_ref_idx_active_override_flag) has an
illegal value.
H264D ERR_SEM SLCHDR CABACINITIDC The field cabac_init_idc in slice header hasan 0x89
illegal value.
H264D ERR_SEM SLCHDR_SLCQSDELTA The value of slice_qgs_delta+ 0x8B
pic_init_qgs_minus is out of bounds with what
is specified by standard.
H264D_ERR_SEM SLCHDR DISABLEDEBLOCKF The disable_deblocking_filter_idc field parsed 0x8C

ILTERIDC

in slice header has an illegal value

API Reference

Error codes Description Values
H264D ERR_SEM SLCHDR PICINVAR This is set if any of the conditions governing 0x8D
syntax elements in slice headers when there
are multiple slices per picture is not satisfied.
H264D ERR SEM SLCHDR SLCALPHACOOFFSE The field slice_alpha_c0_offset_div2 has a 0x8E
T value out of bounds.
H264D ERR SEM SLCHDR SLCBETAOFFSET The field slice_beta_offest_div2 has a value 0x8F
out of bounds.
H264D ERR _SEM SLCHDR NON ZERO FRAME The frame_num field has non-zero value inan 0x90
NUM IN IDR IDR slice.
H264D ERR_SEM SLCHDR_ ILLEGAL PRED WE Any of the variables associated with the 0x91
IGHT computation of prediction weights has an
illegal value.
H264D_ ERR_SEM SLCHDR UNSUPPORTED_ LEV Level specified in bitstream is greater than the 0x93
EL supported level.
H264D_ ERR_SEM SLCHDR SPS CHANGE IN N Change of IDR detected in a non-IDR picture. 0x94
ONIDR
H264D ERR_SEM SLCHDR WAIT SYNC POINT Decoding is skipping NAL units till a valid 0x95
SYNC point is found.
CAVLC Semantic Errors
H264D ERR SEM CAVLC LEVEL DECODE Error in CAVLD Level Decoding 0xAl
H264D ERR_SEM CAVLC CTOKEN_YY AC Error in CTOKEN for Luma AC coefficients 0xA2
H264D ERR_SEM CAVLC CTOKEN_YY DC Error in CTOKEN for Luma DC coefficients 0xA3
H264D ERR_SEM CAVLC CTOKEN _UV_AC Error in CTOKEN for Chroma AC coefficients 0xA4
H264D ERR_SEM CAVLC CTOKEN UV _DC Error in CTOKEN for Chroma DC coefficients 0xAS5
H264D ERR_SEM CAVLC LEVEL YY AC Error in Level of Luma AC coefficients 0xA6
H264D ERR SEM CAVLC LEVEL YY DC Error in Level of Luma DC coefficients 0xA7
H264D ERR SEM CAVLC LEVEL UV_AC Error in Level of Chroma AC coefficients 0xA8
H264D ERR SEM CAVLC LEVEL UV _DC Error in Level of Chroma DC coefficients 0xA9
H264D ERR_SEM CAVLC TOTZERO_YY AC Error in Total Zero value for Luma AC 0xAA
coefficients
H264D ERR_SEM CAVLC TOTZERO_YY DC Error in Total Zero value for Luma DC 0xAB
coefficients
H264D ERR_SEM CAVLC TOTZERO_UV_AC Error in Total Zero value for Chroma AC 0xAC

4-8

coefficients

Error codes Description Values

H264D ERR_SEM CAVLC TOTZERO_UV_DC Error in Total Zero value for Chroma DC 0xAD
coefficients

H264D_ ERR_SEM CAVLC RUNBEF_YY AC Error in Run before value for Luma AC 0xAE
coefficients

H264D ERR_SEM CAVLC RUNBEF_YY DC Error in Run before value for Luma DC 0xXAF
coefficients

H264D ERR_SEM CAVLC RUNBEF UV _AC Error in Run before value for Chroma AC 0xBO
coefficients

H264D ERR_SEM CAVLC RUNBEF UV DC Error in Run before value for Chroma DC 0xB1
coefficients

These error codes reports that the specific feature is

not available in the decoder, or implementation

specific errors.

H264D_ ERR_ IMPL PPSUNAVAIL The PPS referred to in the slice header is 0xC1
unavailable.

H264D ERR IMPL SPSUNAVAIL The SPS referred by the PPS id specified in 0xC2
slice header is unavailable.

H264D ERR_IMPL NOMEMORY Memory insufficient to buffer MMCO 0xC3
commands or HRD CPB Count is greater than
available memory.

H264D ERR IMPL CORRUPTED BITSTREAM Corruption in bit stream 0xC5

H264D ERR_IMPL NOTSUPPORTED REDUNTAN Redundant picture not supported for this 0xCA

T PICTURE profile

H264D ERR_IMPL_ NOTSUPPORTED_ASOFMO ASO/FMO not supported for this profile. 0xCE

H264D ERR_IMPL_ INSUFFICIENT_DATA Data insufficient to decode a picture. 0xD1

Annex B and other Semantic Errors

H264D_ERR SEM MBPRED REFIDXLO Decoded reference index exceeds the 0XE1l
maximum ref_idx

H264D ERR_SEM RPLR Reference picture list reordering is executed 0xE6
more than the bound.

H264D ERR_SEM RPLR PICNUMSIDC Value of reordering_of_pic_nums_idc is out of 0xXE7
bounds

H264D ERR_SEM RPLR_ABSDIFFPICNUMMINU Value of abs_diff_pic_num_minusl is out of 0xE8

S1 bounds

H264D ERR_SEM MBLAYER QPDELTA Decoded MB_QP_Delta is out of bounds 0xEB

H264D ERR_SEM MBLAYER MBTYPE Decoding of MB_type had an error 0xEC

4-9

API| Reference

Error codes Description Values
H264D ERR_SEM MBLAYER CBP Decoding of CBP had an error 0xED
H264D ERR_SEM SLCDATA MBSKIPRUN Value of mb_skip_run is out of bounds 0xXEE
H264D_ ERR SEM NOT FRAME MBS ONLY Non-frame MBs are not supported at this level 0xF1
of the standard

H264D ERR SEM ILLEGAL INTRA PRED MOD Decoded value of the chroma intra prediction 0xF4
E mode is out of bounds

H264D ERR SEM ILLEGAL VALUE OCCURED Indicates that mb_mode is illegal for the ref- 0xF5

TERMINATE

idx decoding

4-10

4.2 Data Structures

This section describes the XDM defined data structures, that are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures

This section includes the following common XDM data structures:
XDM BufDesc
XDM_AlgBufInfo
IVIDEO BufDesc

IVIDDEC Fxns
IVIDDEC DynamicParams

IVIDDEC_ InArgs

a

a

a

a

Q IVIDDEC Params
a

a

O TIVIDDEC Status
a

IVIDDEC_ OutArgs

4-11

API Reference

4.2.1.1 XDM_BufDesc

| Description

This structure defines the buffer descriptor for input and output buffers.
|| Fields
Field Datatype Input/ Description

Output

**pufs XDAS_Int8 Input Pointer to the vector containing buffer addresses
numBufs XDAS_Int32 Input Number of buffers
*bufSizes XDAS_Int32 Input Size of each buffer in bytes

4.2.1.2 XDM_AlgBufinfo

| Description
This structure defines the buffer information descriptor for input and output
buffers. This structure is filled when you invoke the control () function
with the XDM GETBUFINFO command.
|| Fields
Field Datatype Input/ Description
Output
minNumInBufs XDAS_Int32 Output Number of input buffers
minNumOutBufs XDAS_Int32 Output Number of output buffers
minInBufSize[XDM_ XDAS_Int32 Output Size in bytes required for each input buffer
MAX_10_BUFFERS]
minOutBufSize[XDM XDAS_Int32 Output Size in bytes required for each output buffer

_MAX_10_BUFFERS]

4-12

Note:

For H.264 Main Profile Decoder, the buffer details are:

a

a

Number of input buffer required is 1.
Number of output buffer required is 1 for YUV 422ILE and 3 for

YUV420P.

There is no restriction on input buffer size except that it should
contain atleast one frame of encoded data.

The output buffer sizes (in bytes) for worst case 625SD format are:

For YUV 420P:

Y buffer = 720 * 576
U buffer = 360 * 288
V buffer = 360 * 288

For YUV 422|LE:
Buffer = 720 * 576 * 2

These are the maximum buffer sizes but you can reconfigure
depending on the format of the bit stream.

4.2.1.3 IVIDEO_BufDesc

| Description
This structure defines the buffer descriptor for input and output buffers.
|| Fields
Field Datatype Input/ Description
Output
numBufs XDAS_Int32 Input Number of buffers
width XDAS_Int32 Input Padded width of the video data
*pbufs [XDM_MAX IO BUFFERS] XDAS Int8 Input Pointer to the vector containing
buffer addresses
bufSizes [XDM MAX IO BUFFERS] XDAS Int32 Input Size of each buffer in bytes

4-13

API| Reference

4.2.1.4|\VIDDEC_Fxns

| Description
This structure contains pointers to all the XDAIS and XDM interface
functions.
|| Fields
Field Datatype Input/ Description
Outpu
t
ialg IALG_Fxns Input Structure containing pointers to all the XDAIS
interface functions.
For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).
*process XDAS_Int32 Input Pointer to the process () function
*control XDAS_Int32 Input Pointer to the control () function
4.2.1.5 IVIDDEC Params
| Description
This structure defines the creation parameters for an algorithm instance
object. Set this data structure to NULL, if you are unsure of the values to
be specified for these parameters.
| Fields
Field Datatype Input/ Description
Output
size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.
maxHeight XDAS_Int32 Input Maximum video height to be supported in pixels
maxWidth XDAS_Int32 Input Maximum video width to be supported in pixels
maxFrameRate XDAS_Int32 Input Maximum frame rate in fps * 1000 to be
supported.
maxBitRate XDAS_Int32 Input Maximum bit rate to be supported in bits per
second. For example, if bit rate is 10 Mbps, set
this field to 10485760.
dataEndianness XDAS_Int32 Input Endianness of input data. See

4-14

XDM_DataFormat enumeration for details.

Field

Datatype

Input/

Output

Description

forceChromaForma
t

XDAS_Int32

Input

Sets the output to the specified format. For
example, if the output should be in YUV 4:2:2
interleaved (little endian) format, set this field to
XDM YUV 422ILE.

See XDM_ChromaFormat enumeration for
details.

Note:

Q H.264 Decoder does not use the maxFrameRate and maxBitRate
fields for creating the algorithm instance.

a Maximum video height and width supported are 576 pixels and 720
pixels respectively (for 625SD format).

QO dataEndianness field should be set to XbM BYTE.

4.2.1.6 IVIDDEC_DynamicParams

| Description
This structure defines the run time parameters for an algorithm instance
object. Set this data structure to NULL, if you are unsure of the values to
be specified for these parameters.
| Fields
Field Datatype Input/ Description
Output
size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.
decodeHeader XDAS_Int32 Input Number of access units to decode:
Q 0 (XDM_DECODE_AU) - Decode entire frame
including all the headers
a 1 (XDM_PARSE_HEADER) - Decode only one
NAL unit
displayWidth XDAS_Int32 Input If the field is set to:
Q 0 - Uses decoded image width as pitch
Q If any other value is given, then this value in
pixels is used as pitch.
frameSkipMode XDAS_Int32 Input Frame skip mode. See 1VIDEO_FrameSKip

enumeration for details.

4-15

API| Reference

Note:

Q If the application requires the decoder to skip decoding of non-
reference frames, then the frameSkipMode field has to be set to
IVIDEO SKIP_ B (see section 4.2.2.5 for details).

If displayWidth is non-zero, then it has to be an even number.

If the specified displayWidth is less than the image width, it is still
considered and image is written at a resolution equal to
displayWidth.

a Ifthe displayWidth is set to 0 and frame cropping parameters are
present in the bit stream, then the cropped image width is taken as
the pitch.

4.2.1.7 IVIDDEC_InArgs

| Description
This structure defines the run time input arguments for an algorithm
instance object.
| Fields
Field Datatype Input/ Description
Output
size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.
numBytes XDAS_Int32 Input Size of input data (in bytes) provided to the algorithm for
decoding
inputiD XDAS_Int32 Input Application passes this ID to algorithm and decoder will

attach this ID to the corresponding output frames. This is
useful in case of re-ordering (for example, B frames). If
there is no re-ordering, outputID field in the
1VIDDEC_OutArgs data structure will be same as
inputID field.

4-16

4.2.1.8 IVIDDEC_Status

| Description
This structure defines parameters that describe the status of an algorithm
instance object.
|| Fields
Field Datatype Input/ Description
Output

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See XDM_ErrorBit
enumeration for details.

outputHeight XDAS_Int32 Output Output height in pixels

outputWidth XDAS_Int32 Output Output width in pixels

frameRate XDAS_Int32 Output Average frame rate in fps * 1000. The
average frame rate for all video decoders is
30 fps.

bitRate XDAS_Int32 Output Average bit rate in bits per second

contentType XDAS_Int32 Output Video content. See
IVIDEO_ ContentType enumeration for
details.

outputChromaForma XDAS_Int32 Output Output chroma format. See

t XDM_ ChromaFormat enumeration for
details.

bufinfo XDM_AlgBufiInf Output Input and output buffer information. See

o] XDM_AlgBufInfo data structure for
details.
Note:

Q If cropping of pixels is specified in the bit stream, then the
outputHeight and outputWidth returned is equal to the cropped
image size. outputWidth returned is independent of the display
width, given in the DynamicParams.

Algorithm sets the frameRate and bitRate fields to zero.

contentType IS returned as IVIDEO PROGRESSIVE or
IVIDEO INTERLACED.

4-17

API Reference

4.2.1.91VIDDEC_OutArgs

| Description
This structure defines the run time output arguments for an algorithm
instance object.
|| Fields
Field Datatype Input/ Description
Output
size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.
extendedError XDAS_Int32 Output Extended error code. See XDM_ErrorBit
enumeration for details.
byteConsumed XDAS_Int32 Output Bytes consumed per decode call
decodedFrameTy XDAS_Int32 Output Decoded frame type. See 1VIDEO_FrameType
pe enumeration for more details.
outputlD XDAS_Int32 Output Output ID. See inputID field description in
IVIDDEC InArgs data structure for details.
displayBufs 1VIDEO_Buf Output Decoder fills this structure to denote the buffer

Desc

pointers for current frames. In case of sequences
having | and P frames only, these values are
identical to the output buffers (outBufs) passed using
the process call.

4-18

a

Note:

With frame reordering, the display order is independent of decode
order. When the algorithm is ready for display it copies the inputID
value of a given decoded frame to the output 1D value of

IVIDDEC OutArgs Structure. The algorithm sets displayBufs
pointers accordingly.

When there is no frame ready to be displayed after a given decode
call, the first pointer of displayBufs structure is set to NULL.

To support frame reordering and B frames, delay is present between
decoding of a frame and its display. This delay amount is
configurable depending on the application scenario. The delay
needs to be specified in maxDisplayDelay (element of
IH264MPVDEC InArgs).

The first frame to be displayed is returned after first N+1 frames are
decoded by the decoder (N is the configured delay). Hence N buffers
are locked within the decoder. However if the maxDisplayDelay
specified by the client is more than what is actually required for
decoding of that stream(This is calculated by the decoder looking at
the level and frame resolution), the decoder will lock only the

required number of frames within.

For MP decoder, in order to handle B-frames a delay of one frame is
mandatory. Due to reordering of frames allowed in H264 standard,
the delay requirement can be in the range 5 -16 (Depending on the
resolution of the image).

Based on the application scenario, this delay should be configured.
However, for most of the used case scenarios of BP and MP, a
delay of 0 and 1 frames respectively should suffice.

In case of interlaced content (IVIDEO ContentType IS

IVIDEO INTERLACED), the decoder decodes one field (top or
bottom field) in one decode call. Hence, there will be 2 decode calls
to decode complete frame comprising top and bottom fields.

4-19

API| Reference

4.2.2 H.264 Decoder Data Structures

This section includes the following H.264 decoder specific data structures:
O IH264MPVDEC Params

IH264MPVDEC_ DynamicParams

IH264MPVDEC InArgs

IH264MPVDEC Status

0o 0 0o O

IH264MPVDEC OutArgs

4221 IH264MPVDEC _Params

| Description
This structure defines the creation parameters and any other
implementation specific parameters for the H.264 Decoder instance object.
The creation parameters are defined in the XDM data structure,
IVIDDEC_ Params.
|| Fields
Field Datatype Input/ Description
Output
viddecParams IVIDDEC Params Input See IVIDDEC Params data structure for
details.

4.2.2.2 IH264MPVDEC_DynamicParams

| Description
This structure defines the run time parameters and any other
implementation specific parameters for the H.264 Decoder instance object.
The run time parameters are defined in the XDM data structure,
IVIDDEC DynamicParams.
|| Fields
Field Datatype Input/ Description
Output
viddecDynamicParams IVIDDEC DynamicParams Input See IVIDDEC DynamicParams

data structure for details.

4-20

4.2.2.31H264MPVDEC_InArgs

| Description
This structure defines the run time input arguments for the H.264 Decoder
instance object.
|| Fields
Field Datatype Input/ Description
Output
Input See IVIDDEC InArgs data
viddecInArgs IVIDDEC_InArgs structure for details.
. Input Maximum delay between decode
maxDisplayDelay XDAS_Int32 and display of a frame. (See
section 4.2.1.9 for details).
. . Input If the application is interested in
Sei_Vui_parse_flag XDAS_Int32 SEI or VUI information, then this
needs to be set to 1. Otherwise
this needs to be set to 0.
' . Input Pointer to the buffer, where the
Seivui_buffer ptr sSeiVuiParams_t* SEI and VUI information will be

written by the decoder.

4.2.2.3.1 sSeiVuiParams_t

| Description
This structure defines Supplemental Enhancement Information (SEI)
messages and parameters that describe the values of various Video
Usability parameters(VUI).
|| Fields
Field Datatype Input/ Description
Output
parsed_flag unsigned int Output QO 1 -Indicates thatin the current process call,
contents of the structure is updated
Q O - Indicates contents of the structure is not
updated
vui_params SVSP_t Output Video Usability Information
sei_messages sSeiMessages_t Output Supplemental Enhancement Information

4-21

API| Reference

Note:

A brief description of SEI and VUI contents are given below. For details
see H.264 standard (ISO/IEC 14496-10:2005 (E) Rec.- Information
technology — Coding of audio-visual objects — H.264 (E) ITU-T

Recommendation.)

4.2.2.3.2 sSeiMessages _t

| Description

| Fields

Structure containing supplemental enhancement information messages.

Field

Datatype

Input/
Output

Description

parsed_flag

frame_freeze_rep
etition

frame_freeze_rel
ease

prog_refine_star
t

prog_refine_end

recovery_pt_info

4-22

unsigned int

sFullFrameFreezeRepet
ition_t

sFul lFrameFreezeRelea
se t

sProgRefineStart_t

sProgRefineEnd_t

sRecoveryPointinfo_t

Output

Output

Output

Output

Output

Output

Q 1 - Indicates that in the
current process call,
contents of the structure is
updated

O O - Indicates contents of the
structure is not updated

Specifies the persistence of the
full-frame freeze SEI message
and may specify a picture order
count interval within which
another full-frame freeze SEI
message or a full-frame freeze
release SEI or the end of the
coded video sequence shall be
present in the bitstream.

Cancels the effect of any full-
frame freeze SEI message sent
with pictures that precede the
current picture in output order.

Specifies the beginning of a set
of consecutive coded pictures
that is labelled as the current
picture followed by a sequence of
one or more pictures of
refinement of the quality of the
current picture, rather than as a
representation of a continually
moving scene.

Specifies end of progressive
refinement.

The recovery point SEI message

Field Datatype Input/ Description
Output

assists a decoder in determining
when the decoding process will
produce acceptable pictures for
display after the decoder initiates
random access or after the
encoder indicates a broken link in
the sequence.

pic_timing sPictureTiming_t Output Specifies timing information
regarding cpb delays, dpb output
delay etc.

4.2.2.3.3 sFullFrameFreezeRepetition_t

| Description
Structure contains information regarding frame freeze.
| Fields
Field Datatype Input/ Description
Output
parsed_flag unsigned int Output Q 1 -Indicates that in the current process
call, contents of the structure is updated
O O - Indicates contents of the structure is
not updated
full_frame_freeze unsigned int Output Specifies the persistence of the full-frame

_ freeze SEI message
repetition_period

4.2.2.3.4 sFullFrameFreezeRelease t

| Description
Structure contains information regarding frame freeze.
|| Fields
Field Datatype Input/ Description
Output
parsed_flag unsigned int Output Q 1 -Indicates that in the current process
call, contents of the structure is updated
O O - Indicates contents of the structure is
not updated
full_frame_freeze unsigned char Output Cancels the effect of any full-frame freeze
release_fTlag SEI message sent with pictures that precede

the current picture in output order.

4-23

API Reference

4.2.2.3.5 sProgRefineStart_t

| Description
Structure contains information regarding progressive refinement.
|| Fields
Field Datatype Input/ Description
Output
parsed_flag unsigned int Output Q 1-Indicates thatin the current
process call, contents of the structure
is updated

O O - Indicates contents of the structure
is not updated

progressive_refinem unsigned int Output Specifies an identification number for the
ent_id progressive refinement operation.

num_refinement_step unsigned int Output Specifies the number of reference frames
s_minusl in the tagged set of consecutive coded
pictures

4.2.2.3.6 sProgRefineEnd _t

| Description
Structure contains information regarding progressive refinement.
|| Fields
Field Datatype Input/ Description
Output
parsed_flag unsigned int Output Q 1-Indicates that in the current process
call, contents of the structure is
updated
Q O - Indicates contents of the structure is
not updated
progressive_ unsigned int Output Specifies an identification number for the
refinement_id progressive refinement operation.

4-24

4.2.2.3.7 sRecoveryPointinfo_t

| Description
Structure contains information regarding recovery points.
|| Fields
Field Datatype Input/ Description
Output
parsed_flag unsigned int Output Q 1 - Indicates that in the current process

call, contents of the structure is updated
Q O - Indicates contents of the structure is
not updated

recovery_frame_cnt unsigned int Output Specifies the recovery point of output
pictures in output order.

exact_match_flag unsigned Output Indicates whether decoded pictures at and
char subsequent to the specified recovery point in

output order
derived by starting the decoding process at
the access unit associated with the recovery
point SEI message shall be an
exact match to the pictures that would be
produced by starting the decoding process
at the location of a previous IDR access unit
in the NAL unit stream.

broken_link_flag unsigned Output Indicates the presence or absence of a
char broken link in the NAL unit stream

changing_slice_gro unsigned Output Indicates whether decoded pictures are

up_idc char correct or approximately correct in content at

and subsequent to the recovery point in
output order when all macroblocks of the
primary coded pictures are decoded within
the changing slice group period.

4.2.2.3.8 sPictureTiming _t

| Description
Structure contains timing information such as DPB delay and CPD delay.
|| Fields
Field Datatype Input/ Description
Output
parsed_flag unsigned int Output Q 1 -Indicates that in the current process

call, contents of the structure is

4-25

API| Reference

Field

Datatype

Input/
Output

Description

cpb_removal_delay

dpb_output_delay
pic_struct
clock_timestamp_¥FlI
ag

ct_type

nuit_field _based f
lag

counting_type
full_timestamp_fla

g

discontinuity_flag

cnt_dropped_flag

n_frames

seconds_value

4-26

unsigned

unsigned

unsigned

unsigned

unsigned

unsigned

unsigned

unsigned

unsigned

unsigned

unsigned

unsigned

int

int

int

int

int

int

int

int

int

int

int

int

Output

Output

Output

Output

Output

Output

Output

Output

Output

Output

Output

Output

updated
O O - Indicates contents of the structure is
not updated

Specifies how many clock ticks to wait after
removal from the CPB of the access unit
associated with the most recent buffering
period SEI message before removing from
the buffer the access unit data associated
with the picture timing SEI message.

Used to compute the DPB output time of
the picture.

Indicates whether a picture should be
displayed as a frame or field

O 1 - Indicates number of clock
timestamp syntax elements present
and follow immediately

O O - Indicates associated clock
timestamp syntax elements not present

Indicates the scan type(interlaced or
progressive) of the source material

Used to calculate the clockTimestamp

Specifies the method of dropping values of
n_frames

O 1 - Specifies that the n_frames syntax
element is followed by seconds_value,
minutes_value, and hours_value.

O O - Specifies that the n_frames syntax
element is followed by seconds_flag

Indicates whether the difference between
the current value of clockTimestamp
and the value of clockTimestamp
computed from the previous
clockTimestamp in output order can be
interpreted as the time difference between
the times of origin or capture of the
associated frames or fields.

Specifies the skipping of one or more
values of n_frames using the counting
method

Specifies the value of nFrames used to
compute clockTimestamp.

Specifies the value of sS used to compute
clockTimestamp.

Field Datatype Input/ Description

Output
minutes_value unsigned int Output Specifies the value of mM used to compute
clockTimestamp.
hours_value unsigned int Output Specifies the value of hH used to compute
clockTimestamp.
time_offset unsigned int Output Specifies the value of tOffset used to

compute clockTimestamp

4.2.2.3.9 sVSP_t

| Description
This structure defines parameters that describe the values of various video
usability parameters that come as a part of Sequence Parameter Set in the
bit-stream.
|| Fields
Field Datatype Input/ Description
Output
parsed_flag unsigned Output Q 1-Indicates that in the current process
int call, contents of the structure is updated
Q 0 - Indicates contents of the structure is
not updated
aspect_ratio _info p unsigned int Output Indicates whether aspect ratio idc is present
resent_flag or not.
aspect_ratio_idc unsigned int Output Aspect ratio of Luma samples
sar_width unsigned int Output Horizontal size of sample aspect ratio
sar_height unsigned int Output Vertical size of sample aspect ratio
overscan_info prese unsigned int Output Overscan_appropriate_flag
nt_flag
overscan_appropriat unsigned int Output Cropped decoded pictures are suitable for
e flag display or not.
video_signal_type p unsigned int Output This flag tells whether video format,
resent flag video full range flagand
colour description present flag
are present or not
video format unsigned int Output Video format indexed by a table. For
example, PAL/NTSC
video full range fl unsigned int Output Black level, luma and chroma ranges. It
ag should be used for BT.601 compliance

4-27

API Reference

Field Datatype Input/ Description
Output

colour description_ unsigned int Output Indicates whether colour primaries,

present_flag transfer characteristics and
matrix coefficients are present.

colour primaries unsigned int Output Chromaticity co-ordinates of source
primaries

transfer characteri unsigned int Output Opto-electronic transfer characteristics of

stics the source picture

matrix coefficients unsigned int Output Matrix coefficients for deriving Luma and
chroma data from RGB components.

chroma_location inf wunsigned int Output This flag tells whether

o_present flag chroma_sample loc_type top
field and chroma_ sample loctype
bottom field are present.

chroma_sample_loc_t unsigned int Output Location of chroma_sample top field

ype_top_ field

chroma_sample_loc_t wunsigned int Output Location of chroma_sample bottom field

ype_bottom field

timing info present wunsigned int Output It indicates whether

_flag num units_in tick, time_scale,
and fixed frame rate flagare
present.

num units_in tick unsigned int Output number of units of a clock that corresponds
to 1 increment of a clock tick counter

time scale unsigned int Output Indicates actual increase in time for 1
increment of a clock tick counter

fixed frame rate_fl unsigned int Output It tells how the temporal distance between

ag HRD output times of any two output pictures
is constrained

nal hrd parameters unsigned int Output Indicates whether nal _hrd parameters

present flag are present

nal hrd parameters sHrdParm_t Output See sHrdParm_t datastructure for
details.

vcl_hrd parameters_ unsigned int Output Indicates whether vcl _hrd parameters

present flag are present

vcl _hrd parameters sHrdParm_t Output See sHrdParm_t datastructure for
details.

low_delay hrd flag unsigned int Output HRD operational mode as in Annex C of the
standard

pic_struct present_ unsigned int Output Indicates whether picture timing SEI

flag

4-28

messages are present

Field Datatype Input/ Description
Output
bitstream restricti unsigned int Output Indicates if the bitstream restriction
on_flag parameters are present
motion vectors over unsigned int Output Specifies whether motion vectors can point
_pic_boundaries_fla to regions outside the picture boundaries
g
max_bytes per pic_d wunsigned int Output Maximum number of bytes not exceeded by
enom the sum of sizes of all VCL NAL units of a
single coded picture
max _bits per mb den unsigned int Output Maximum number of bits taken by any
om coded MB
log2 max mv_length unsigned int Output Maximum value of any motion vector's
vertical vertical component
log2 max mv_length unsigned int Output Maximum value of any motion vector’s
horizontal horizontal component
num_reorder_frames unsigned int Output Maximum number of frames that need to be
re-ordered
max_dec_frame_buffe wunsigned int Output Size of HRD decoded buffer (DPB) in terms

ring

of frame buffers

4.2.2.3.10 sHrdParm_t

| Description
This structure defines the HRD parameters that come in a H264 bit-stream
as a part of video usability Information.
|| Fields
Field Datatype Input/ Description
Output
cpb_cnt unsigned int Output Number of alternative CPB specifications in
the bitstream
bit rate scale unsigned int Output Together with bit rate wvalue[il,it
specifies the maximum input bitrate for the it
CPB.
cpb _size scale unsigned int Output Together with cpb_size value [1],
specifies the maximum CPB size for the i
CPB.
bit rate value[il unsigned int Output Maximum input bitrate for the i" CPB
cpb_size value[i] unsigned int Output Maximum CPB size for the i" CPB

4-29

API Reference

Field Datatype Input/ Description
Output
vbr cbr flagl[il unsigned int Output Specifies the i" CPB is operated in Constant

Bit-rate mode or variable bit-rate mode

initial cpb removal unsigned int Output Length in bits of initial_cpb_removal_length
_delay length minus syntax element
1

cpb_removal delay 1 unsigned int Output Length in bits of
ength minusl cpb_removal delay length syntax
element

dpb_output_delay_le wunsigned int Output Length in bits of
ngth minusl dpb_output delay length syntax
element

time offset length unsigned int Output Length in bits of time offset syntax
element

Note:
SEI / VUI parsing is handled by the decoder as follows:

If the application is interested in SEI / VUI, then the

sel Vui parse flag (element of IH264MPVDEC InArgs) needs to be
set to one and the buffer(structure) pointer needs to be passed in
seivVui_ buffer ptr (element of IH264MPVDEC InArgs). When the
sei Vui_parse flagis setto 1, the decoder parses the SEI / VUI
information and updates the buffer allotted by the application.

A flag “parsed_flag” is present as the first element of structure of every
SEIl message, VUI structure and the SE1_vUT structure. This flag when
set to one by the decoder indicates that in the current process call,
contents of this structure was updated. The pointer of the buffer is simply
copied to the pointer in the TH264MPVDEC_OutArgs.

Currently parsing of the following SEI messages are supported.
Full-frame freeze SEI message

Full-frame freeze release

Progressive refinement segment start

Progressive refinement segment end

Recovery point SEI message

I S I A S

Picture timing SEI message

Other types of SEI messages will be simply skipped by the decoder.

4.2.2.4 IH264MPVDEC_Status

| Description

4-30

This structure defines parameters that describe the status of the H.264
Decoder and any other implementation specific parameters. The status
parameters are defined in the XDM data structure, IVIDDEC Status.

|| Fields
Field Datatype Input/ Description
Output
viddecStatus IVIDDEC_ Status Output See IVIDDEC Status data structure for
details
profile eH264MPVDEC_Profi Output Profile of the bit stream. The H.264 decoder
le supports only main profile.
level eLevelNum t Output Level number of the bit stream. The H.264
decoder supports only upto Level 3.
Qp XDAS Int32 Output Frame quantization parameter
last _decoded m XDAS UInt32 Output Raster scan address of the last decoded
b addr MB.
slice header f XDAS UInt32 Output Frame number present in the slice header.
rame_num
full frame dec XDAS UInt32 Output The flag indicates whether the full frame is
oded decoded without any errors.
poc_num XDAS UInt32 Output POC number of the current frame.

Note:

Following is the decoder behavior for supporting frame size being non-
multiple of 16 through frame cropping:

O The decoder populates the output buffers at a resolution equal to the
size of the cropped image. Also, it returns status parameters for picture
resolution (outputHeight and outputWidth) as equal to the cropped
values.

Q Ifthe displayWidth (elementin DynamicParams) is lesser than
the cropped image width, then the decoder writes at a width equal to
the display width.

4225 IH264MPVDEC_OutArgs

| Description
This structure defines the run time output arguments for the H.264 Decoder
instance object.

|| Fields

Field Datatype Input/ Description

Output

4-31

API Reference

Field

Datatype

Input/ Description
Output

viddecOutArgs

pict struct

display frame
skip flag

Seivui buffer
ptr

IVIDDEC_ OutArgs Output See IVIDDEC OutArgs data structure for

details.

ePicStruct_t Output This argument returns enumeration

indicating the decoded picture is frame, top
field, or bottom field. See ePicStruct t
enumeration for details.

XDAS_Int32 Output This flag, when set to one indicates that the

frame returned in this call was skipped and
hence nothing was written into this buffer.

sSeiVuiParams t * Output SEI, VUI Buffer pointer given by the

application is simply replicated here.

4-32

a

Note:

Following is the behavior of the decoder to handle skipping of non-
reference frames.

If the application needs the decoder to skip non-reference frames,
then it has to set frameSkipMode (element in dynamicParams)
equal to IVIDEO SKIP B and call the control API with
“XDM_SETPARAMS” option.

Decoder skips decoding only when frameSkipMode is set to
IVIDEO SKIP B and the current frame is not referenced in the
future. The buffer allotted during frame skip mode will be locked
inside the decoder irrespective of whether the frame was actually
skipped or not.

When the buffer pointer of skipped frame is returned by the decoder,
the display_frame_skip_flag(element in IH264MPVDEC OutArgs) will
be set to one indicating that nothing was written into this buffer.

In order to come out of the frame skip mode, the application has to
set frameSkipMode (element in dynamicParams) equal to
IVIDEO NO_sKIP and call the control APl with “ XDM SETPARAMS”
option.

Important:

In skip mode, the decoder skips non-reference frames irrespective of
whether it is B or P frame as the H264 standard allows both P and B
frames to be non-reference frames.

4.3

4.3.1 Creation APIs

Interface Functions

This section describes the Application Programming Interfaces (APIs) used

in the H.264 Decoder. The APIs are logically grouped into the following
categories:

O Creation —algNumAlloc (), algAlloc ()
O Initialization —algInit ()

Q Control — control ()

O Dataprocessing —algActivate(), process (), algDeactivate ()

Q Termination —algFree ()

You must call these APIs in the following sequence:
1) algNumAlloc()

2) algalloc()

3) algInit()

4) algActivate()

5) process()

6) algDeactivate ()

7) algFree()

control () can be called any time after calling the alginit () API.

algNumAlloc (), algAlloc(), algInit (), algActivate(),
algDeactivate (), and algFree () are standard XDAIS APIs. This

document includes only a brief description for the standard XDAIS APIs.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

Creation APIs are used to create an instance of the component. The term

creation could mean allocating system resources, typically memory.

4-33

API| Reference

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

4-34

algNumAlloc () — determine the number of buffers that an algorithm
requires

XDAS Int32 algNumAlloc (Void) ;

Void

XDAS Int32; /* number of buffers required */

algNumAlloc () returns the number of buffers that the algalloc ()
method requires. This operation allows you to allocate sufficient space to
call the algalloc () method.

algNumAlloc () may be called at any time and can be called repeatedly
without any side effects. It always returns the same result. The
algNumAlloc () APl is optional.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

algAlloc ()

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

algAlloc () — determine the attributes of all buffers that an algorithm
requires

XDAS Int32 algAlloc(const IALG Params *params, IALG Fxns
**parentFxns, IALG_MemRec memTab[]) ;

IALG Params *params; /* algorithm specific attributes */

IALG Fxns **parentFxns;/* output parent algorithm
functions */

IALG_MemRec memTab[]; /* output array of memory records */

XDAS Int32 /* number of buffers required */

algAlloc () returns a table of memory records that describe the size,
alignment, type, and memory space of all buffers required by an algorithm.
If successful, this function returns a positive non-zero value indicating the
number of records initialized.

The first argument to algAlloc () is a pointer to a structure that defines
the creation parameters. This pointer may be NULL; however, in this case,
algAlloc () must assume default creation parameters and must not fail.

The second argument to algAlloc () is an output parameter.

algAlloc () may return a pointer to its parent’s IALG functions. If an
algorithm does not require a parent object to be created, this pointer must
be set to NULL.

The third argument is a pointer to a memory space of size

nbufs * sizeof (IALG MemRec) where, nbufs is the number of buffers
returned by algNumAlloc () and IALG MemRec is the buffer-descriptor
structure defined in ialg.h.

After calling this function, memTab [] is filled up with the memory
requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

algNumAlloc (), algFree()

4.3.2 Initialization API

Initialization API is used to initialize an instance of the algorithm. The
initialization parameters are defined in the Params structure (see Data
Structures section for details).

4-35

API| Reference

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

4.3.3 Control API

4-36

algInit () —initialize an algorithm instance

XDAS Int32 algInit (IALG Handle handle, IALG MemRec
memTab [], IALG Handle parent, IALG Params *params) ;

IALG Handle handle; /* algorithm instance handle*/
IALG memRec memTab[]; /* array of allocated buffers */
IALG Handle parent; /* handle to the parent instance */

IALG Params *params; /* algorithm initialization
parameters */

IALG EOK; /* status indicating success */

IALG _EFAIL; /* status indicating failure */

algInit () performs all initialization necessary to complete the run time
creation of an algorithm instance object. After a successful return from
algInit (), the instance object is ready to be used to process data.

The first argument to algInit () is a handle to an algorithm instance. This
value is initialized to the base field of memTab [0].

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers allocated
for an algorithm instance. The number of initialized records is identical to
the number returned by a prior call to algalloc ().

The third argument is a handle to the parent instance object. If there is no
parent object, this parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm
initialization parameters.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

algAlloc(), algMoved()

Control API is used for controlling the functioning of the algorithm instance
during run time. This is done by changing the status of the controllable
parameters of the algorithm during run time. These controllable parameters
are defined in the status data structure (see data structures section for
details).

| Name

control () —change run time parameters and query the status

| Synopsis
XDAS Int32 (*control) (IVIDDEC Handle handle, IVIDDEC Cmd
id, IVIDDEC DynamicParams *params, IVIDDEC_ Status
*status) ;

| Arguments

IVIDDEC Handle handle; /* algorithm instance handle */
IVIDDEC Cmd id; /* algorithm specific control commands*/

IVIDDEC DynamicParams *params /* algorithm run time
parameters */

IVIDDEC Status *status /* algorithm instance status
parameters */

| Return Value
IALG EOK; /* status indicating success */

IALG EFAIL; /* status indicating failure */
| Description

This function changes the run time parameters of an algorithm instance
and queries the algorithm'’s status. control() must only be called after a
successful call to alglnit() and must never be called after a call to
algFree().

The first argument to control () is a handle to an algorithm instance.

The second argument is an algorithm specific control command. See
XDM_CmdId enumeration for details.

The third and fourth arguments are pointers to the
IVIDDEC DynamicParams and IVIDDEC Status data structures
respectively.

Note:

If you are using extended data structures, the third and fourth arguments
must be pointers to the extended DynamicParams and Status data
structures respectively. Also, ensure that the size field is set to the size
of the extended data structure. Depending on the value set for the size
field, the algorithm uses either basic or extended parameters.

4-37

API| Reference

| Preconditions
The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.
O control () can only be called after a successful return from
algInit () and algActivate().
Q If algorithm uses DMA resources, control () can only be called after
a successful return from DMAN3 init ().
O handle must be a valid handle for the algorithm’s instance object.
| Postconditions
The following conditions are true immediately after returning from this
function.
Q If the control operation is successful, the return value from this
operation is equal to IALG EOK; otherwise it is equal to either
IALG EFAIL or an algorithm specific return value.
Q If the control command is not recognized, the return value from this
operation is not equal to IALG EOK.
| Example
See test application file, TestAppDecoder.c available in the \Client\Test\Src
sub-directory.
| See Also

algInit (), algActivate (), process ()

4.3.4 Data Processing API

Data processing APl is used for processing the input data.

4-38

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

algActivate () —initialize scratch memory buffers prior to processing.

Void algActivate (IALG Handle handle) ;

IALG Handle handle; /* algorithm instance handle */

Void

algActivate () initializes any of the instance’s scratch buffers using the
persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algActivate () is an algorithm instance
handle. This handle is used by the algorithm to identify various buffers that
must be initialized prior to calling any of the algorithm’s processing
methods.

For more details, see TMS320 DSP Algorithm Standard API Reference.
(literature number SPRU360).

algDeactivate ()

4-39

API Reference

| Name

| Synopsis

| Arguments

| Return Value

| Description

| Preconditions

4-40

process () — basic encoding/decoding call

XDAS Int32 (*process) (IVIDDEC Handle handle, XDM BufDesc
*inBufs, XDM BufDesc *outBufs, IVIDDEC InArgs *inargs,
IVIDDEC OutArgs *outargs) ;

IVIDDEC Handle handle; /* algorithm instance handle */

XDM BufDesc *inBufs; /* algorithm input buffer descriptor
*/

XDM_BufDesc *outBufs; /* algorithm output buffer
descriptor */

IVIDDEC InArgs *inargs /* algorithm runtime input
arguments */

IVIDDEC OutArgs *outargs /* algorithm runtime output
arguments */

IALG EOK; /* status indicating success */

IALG EFAIL; /* status indicating failure */

This function does the basic encoding/decoding. The first argument to
process () is a handle to an algorithm instance.

The second and third arguments are pointers to the input and output buffer
descriptor data structures respectively (see XbM BufDesc data structure
for details).

The fourth argument is a pointer to the IVIDDEC InArgs data structure
that defines the run time input arguments for an algorithm instance object.

The last argument is a pointer to the IVIDDEC OutArgs data structure that
defines the run time output arguments for an algorithm instance object.

Note:

If you are using extended data structures, the fourth and fifth arguments
must be pointers to the extended InArgs and outArgs data structures
respectively. Also, ensure that the size field is set to the size of the
extended data structure. Depending on the value set for the size field,

the algorithm uses either basic or extended parameters.

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

O process() can only be called after a successful return from
algInit () and algActivate () .

Q If algorithm uses DMA resources, process () can only be called after
a successful return from DMAN3 init () .

O handle must be a valid handle for the algorithm’s instance object.
O Buffer descriptor for input and output buffers must be valid.

O Input buffers must have valid input data.
| Postconditions

The following conditions are true immediately after returning from this
function.

O If the process operation is successful, the return value from this
operation is equal to IALG EOK; otherwise it is equal to either
IALG EFAIL or an algorithm specific return value.

O After successful return from process () function, algbDeactivate ()
can be called.
| Example

See test application file, TestAppDecoder.c available in the \Client\Test\Src
sub-directory.
| See Also

algInit (), algbDeactivate (), control ()

Note:

A video encoder or decoder cannot be pre-empted by any other video
encoder or decoder instance. That is, you cannot perform task switching
while encode/decode of a particular frame is in progress. Pre-emption
can happen only at frame boundaries and after algDeactivate () is
called.

4-41

API| Reference

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

algDeactivate () — save all persistent data to non-scratch memory

Void algDeactivate (IALG Handle handle) ;

IALG Handle handle; /* algorithm instance handle */
Void
algDeactivate () saves any persistent information to non-scratch buffers

using the persistent memory that is part of the algorithm'’s instance object.

The first (and only) argument to algDeactivate () is an algorithm
instance handle. This handle is used by the algorithm to identify various
buffers that must be saved prior to next cycle of algActivate () and
processing.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

algActivate ()

4.3.5 Termination API

4-42

Termination API is used to terminate the algorithm instance and free up the
memory space that it uses.

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

algFree () — determine the addresses of all memory buffers used by the
algorithm

XDAS Int32 algFree (IALG Handle handle, IALG MemRec
memTab []) ;
IALG Handle handle; /* handle to the algorithm instance */

IALG MemRec memTab[]; /* output array of memory records */

XDAS Int32; /* Number of buffers used by the algorithm */

algFree () determines the addresses of all memory buffers used by the
algorithm. The primary aim of doing so is to free up these memory regions
after closing an instance of the algorithm.

The first argument to algFree () is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers previously
allocated for the algorithm instance.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

algAlloc()

4-43

API| Reference

4.4 Error Handling

This section describes the errors in the bit stream, the expected behavior
of the decoder, and the recommended actions on the application side.

O When the decoder detects an error in the bitstream, the return value
from the process call will be TALG_EFAIL.

O The type of the detected error will be indicated in the extendedError
field of outargs. See XDM_ErrorBit enumeration for details.

a In any type of error scenario, there is no need for the application to
reset the decoder.

O Ouput/display buffer handling in error scenarios:

0 Ifthe maxDisplayDelay is zero, then the decoder always returns
back the same display buffer passed by the system in the current
process call

0 Ifthe maxDisplayDelay is greater than zero, then the decoder
returns display buffers in an order based on the display order logic
specified by the standard. However if the display order logic cannot
be executed due to error XbM_CORRUPTEDHEADER, then decoder
simply returns back the display buffer given by the system in the
current process call. Note that the decoder attempts to return a non-
NULL pointer for display in all scenarios, when the initial pipeup for
maxDisplayDelay iS completed.

0 When the error type is XDM CORRUPTEDHEADER, the output height and
width information present in the outArgs or Status structure might
not be reliable.

Note:

In certain scenarios, the decoder returns a non-zero extendedError,
with the process call returning IALG _EOK. This happens, if decoder
detects errors in the bit stream, which do not obstruct the further
decoding and reconstruction. For example: An error detected during
parsing of a PPS which is never referenced, will be reported in the
extendedError, but the process call will still return IALG EOK.

4-44

	H.264 Main Profile Decoder on C64x+
	Read This First
	Contents
	Figures
	Tables
	Introduction
	1.1 Overview of XDAIS and XDM
	1.1.1 XDAIS Overview
	1.1.2 XDM Overview

	1.2 Overview of H.264 Main Profile Decoder
	1.3 Supported Services and Features

	Installation Overview
	2.1 System Requirements
	2.1.1 Hardware
	2.1.2 Software

	2.2 Installing the Component
	2.3 Before Building the Sample Test Application
	2.3.1 Installing DSP/BIOS
	2.3.2 Installing Framework Component (FC)

	2.4 Building and Running the Sample Test Application
	2.5 Configuration Files
	2.5.1 Generic Configuration File
	2.5.2 Decoder Configuration File

	2.6 Standards Conformance and User-Defined Inputs
	2.7 Uninstalling the Component
	2.8 Evaluation Version

	Sample Usage
	3.1 Overview of the Test Application
	3.1.1 Parameter Setup
	3.1.2 Algorithm Instance Creation and Initialization
	3.1.3 Process Call
	3.1.4 Algorithm Instance Deletion

	API Reference
	4.1 Symbolic Constants and Enumerated Data Types
	4.2 Data Structures
	4.2.1 Common XDM Data Structures
	4.2.2 H.264 Decoder Data Structures

	4.3 Interface Functions
	4.3.1 Creation APIs
	4.3.2 Initialization API
	4.3.3 Control API
	4.3.4 Data Processing API
	4.3.5 Termination API

	4.4 Error Handling

