TMS320C5515/14/05/04 DSP Real-Time Clock (RTC)

User's Guide

Literature Number: SPRUFX2A March 2010-Revised May 2014

Contents

Prefa	се			5
1	Real-	Time C	lock (RTC)	8
	1.1	Introdu	iction	9
		1.1.1	Purpose of the Peripheral	9
		1.1.2	Features	9
		1.1.3	Functional Block Diagram	10
	1.2	Periph	eral Architecture	10
		1.2.1	Clock Control	10
		1.2.2	Signal Descriptions	10
		1.2.3	RTC-Only Mode	11
		1.2.4	Using the Real-Time Clock Time and Calendar Registers	11
		1.2.5	Using the Real-Time Clock Time and Calendar Alarms	13
		1.2.6	Real-Time Clock Interrupt Requests	
		1.2.7	Reset Considerations	
	1.3	Regist	ers	18
		1.3.1	Overview	18
		1.3.2	RTC Registers	18
Revis	ion Hi	story		35

List of Figures

1-1.	Block Diagram	10
1-2.	RTC Interrupt and Wakeup Logic	16
1-3.	RTCINTEN Register	20
1-4.	RTCUPDATE Register	20
1-5.	RTCMIL Register	21
1-6.	RTCMILA Register (RTCMILA)	21
1-7.	RTCSEC Register	22
1-8.	RTCSECA Register	22
1-9.	RTCMIN Register	23
1-10.	RTCMINA Register	23
1-11.	RTCHOUR Register	24
1-12.	RTCHOURA Register	24
1-13.	RTCDAY Register	25
1-14.	RTCDAYA Register	25
1-15.	RTCMONTH Register	26
1-16.	RTCMONTHA Register	26
1-17.	RTCYEAR Register	27
1-18.	RTCYEARA Register	27
1-19.	RTCINTFL Register	28
1-20.	RTCNOPWR Register	29
1-21.	RTCINTREG Register	30
1-22.	RTCDRIFT Register	31
1-23.	RTCOSC Register	31
1-24.	RTCPMGT Register	32
1-25.	RTCSCR1 Register	33
1-26.	RTCSCR2 Register	33
1-27.	RTCSCR3 Register	34
1-28.	RTCSCR4 Register	34

List of Tables

1-1.	Time/Calendar Registers	12
1-2.	Time and Calendar Alarm Data	13
1-3.	Time/Calendar Alarm Settings	14
1-4.	Periodic Interrupts	17
1-5.	RTC Registers	18
1-6.	RTCINTEN Register Field Descriptions	20
1-7.	RTCUPDATE Register Field Descriptions	20
1-8.	RTCMIL Register Field Descriptions	21
1-9.	RTCMILA Register Field Descriptions	21
1-10.	RTCSEC Register Field Descriptions	22
1-11.	RTCSECA Register Field Descriptions	22
1-12.	RTCMIN Register Field Descriptions	23
1-13.	RTCMINA Register Field Descriptions	23
1-14.	RTCHOUR Register Field Descriptions	24
1-15.	RTCHOURA Register Field Descriptions	24
1-16.	RTCDAY Register Field Descriptions	25
1-17.	RTCDAYA Register Field Descriptions	25
1-18.	RTCMONTH Register Field Descriptions	26
1-19.	RTCMONTHA Register Field Descriptions	26
1-20.	RTCYEAR Register Field Descriptions	27
1-21.	RTCYEARA Register Field Descriptions	27
1-22.	RTCINTFL Register Field Descriptions	28
1-23.	RTCNOPWR Register Field Descriptions	29
1-24.	RTCINTREG Register Field Descriptions	30
1-25.	RTCDRIFT Register Field Descriptions	31
1-26.	RTCOSC Register Field Descriptions	31
1-27.	RTCPMGT Register Field Descriptions	32
1-28.	RTCSCR1 Register 1 Field Descriptions	33
1-29.	RTCSCR2 Register Field Descriptions	
1-30.	RTCSCR3 Register Field Descriptions	34
1-31.	RTCSCR4 Register Field Descriptions	34

About This Manual

This document describes real-time clock (RTC) on the TMS320C5515/14/05/04 digital signal processor (DSP).

Notational Conventions

This document uses the following conventions.

- Hexadecimal numbers are shown with the suffix h. For example, the following number is 40 hexadecimal (decimal 64): 40h.
- Registers in this document are shown in figures and described in tables.
 - Each register figure shows a rectangle divided into fields that represent the fields of the register.
 Each field is labeled with its bit name, its beginning and ending bit numbers above, and its read/write properties below. A legend explains the notation used for the properties.
 - Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments

The following documents describe the TMS320C5515/14/05/04 digital signal processor (DSP). Copies of these documents are available on the internet at http://www.ti.com.

<u>SWPU073</u> — TMS320C55x 3.0 CPU Reference Guide. This manual describes the architecture, registers, and operation of the fixed-point TMS320C55x digital signal processor (DSP) CPU.

<u>SPRU652</u> — TMS320C55x DSP CPU Programmer's Reference Supplement. This document describes functional exceptions to the CPU behavior.

SPRUF01A — TMS320C5515/14/05/04/VC05/VC04 Digital Signal Processor (DSP) Inter-Integrated Circuit (I2C) Peripheral User's Guide. This document describes the inter-integrated circuit (I2C) peripheral in the TMS320C5515/14/05/04/VC05/VC04 Digital Signal Processor (DSP) devices. The I2C peripheral provides an interface between the device and other devices compliant with Phillips Semiconductors Inter-IC bus (I2C-bus) specification version 2.1 and connected by way of an I2Cbus. This document assumes the reader is familiar with the I2C-bus specification.

SPRUF02 — TMS320C5515/14/05/04/VC05/VC04 Digital Signal Processor (DSP) Timer/Watchdog Timer User's Guide. This document provides an overview of the three 32-bit timers in the TMS320C5515/14/05/04/VC05/VC04 Digital Signal Processor (DSP) devices. The 32-bit timers of the device are software programmable timers that can be configured as general-purpose (GP) timers. Timer 2 can be configured as a GP, a Watchdog (WD), or both simultaneously.

SPRUF03 — TMS320C5515/14/05/04/VC05/VC04 Digital Signal Processor (DSP) Serial Peripheral Interface (SPI) User's Guide. This document describes the serial peripheral interface (SPI) in the TMS320C5515/14/05/04/VC05/VC04 Digital Signal Processor (DSP) devices. The SPI is a highspeed synchronous serial input/output port that allows a serial bit stream of programmed length (1 to 32 bits) to be shifted into and out of the device at a programmed bit-transfer rate. The SPI supports multi-chip operation of up to four SPI slave devices. The SPI can operate as a master device only.

<u>SPRUF04</u> — TMS320C5515/14/05/04/VC05/VC04 Digital Signal Processor (DSP) General-Purpose Input/Output (GPIO) User's Guide. This document describes the general-purpose input/output (GPIO) on the TMS320C5515/14/05/04/VC05/VC04 digital signal processor (DSP) devices. The GPIO peripheral provides dedicated general-purpose pins that can be configured as either inputs or outputs. When configured as an input, you can detect the state of an internal register. When configured as an output you can write to an internal register to control the state driven on the output pin.

SPRUF05 — TMS320C5515/14/05/04/VC05/VC04 Digital Signal Processor (DSP) Universal Asynchronous Receiver/Transmitter (UART) User's Guide. This document describes the universal asynchronous receiver/transmitter (UART) peripheral in the TMS320C5515/14/05/04/VC05/VC04 Digital Signal Processor (DSP) devices. The UART performs serial-to-parallel conversions on data received from a peripheral device and parallel-to-serial conversion on data received from the CPU.

SPRUFP1 — TMS320C5515/05/VC05 Digital Signal Processor (DSP) Successive Approximation (SAR) Analog to Digital Converter (ADC) User's Guide. This document provides an overview of the Successive Approximation (SAR) Analog to Digital Converter (ADC) on the TMS320C5515/14/05/04/VC05/VC04 Digital Signal Processor (DSP) devices. The SAR is a 10-bit ADC using a switched capacitor architecture which converts an analog input signal to a digital value.

SPRUFP3 — TMS320C5515/05/VC05 Digital Signal Processor (DSP) Liquid Crystal Display Controller (LCDC) User's Guide. This document describes the liquid crystal display controller (LCDC) in the TMS320C5515/14/05/04/VC05/VC04 Digital Signal Processor (DSP) devices. The LCD controller includes a LCD Interface Display Driver (LIDD) controller.

<u>SPRUFT2</u>— TMS320C5515/14/05/04 DSP Direct Memory Access (DMA) Controller User's Guide This document describes the features and operation of the DMA controller that is available on the TMS320C5515/14/05/04 Digital Signal Processor (DSP) devices. The DMA controller is used to move data among internal memory, external memory, and peripherals without intervention from the CPU and in the background of CPU operation.

<u>SPRUGU6</u>— TMS320C5515/14/05/04 DSP External Memory Interface (EMIF) User's Guide. This document describes the operation of the external memory interface (EMIF) in the TMS320C5515/14/05/04 Digital Signal Processor (DSP) devices. The purpose of the EMIF is to provide a means to connect to a variety of external devices.

<u>SPRUF06</u>— TMS320C5515/14/05/04/VC05/VC04 DSP Multimedia Card (MMC)/Secure Digital (SD) Card Controller This document describes the Multimedia Card (MMC)/Secure Digital (SD) Card Controller on the TMS320C5515/14/05/04 Digital Signal Processor (DSP) devices. The multimedia card (MMC)/secure digital (SD) card is used in a number of applications to provide removable data storage. The MMC/SD card controller provides an interface to external MMC and SD cards.

<u>SPRUFX2</u>— TMS320C5515/14/05/04 Digital Signal Processor (DSP) Real-Time Clock (RTC) User's Guide. This document describes the operation of the Real-Time Clock (RTC) module in the TMS320C5515/14/05/04 Digital Signal Processor (DSP) devices. The RTC also has the capability to wake-up the power management and apply power to the rest of the device through an alarm, periodic interrupt, or external WAKEUP signal.

SPRUFX4— TMS320C5515/14/05/04 Digital Signal Processor (DSP) Inter-IC Sound (I2S) Bus User's Guide. This document describes the features and operation of Inter-IC Sound (I2S) Bus in the TMS320C5515/14/05/04 Digital Signal Processor (DSP) devices. This peripheral allows serial transfer of full duplex streaming data, usually streaming audio, between DSP and an external I2S peripheral device such as an audio codec.

SPRUFX5— TMS320C5515 DSP System User's Guide. This document describes various aspects of the TMS320C5515 digital signal processor (DSP) including: system memory, device clocking options and operation of the DSP clock generator, power management features, interrupts, and system control.

- SPRUGH5— TMS320C5505 DSP System User's Guide. This document describes various aspects of the TMS320C5505 digital signal processor (DSP) including: system memory, device clocking options and operation of the DSP clock generator, power management features, interrupts, and system control.
- SPRUFX6— TMS320C5514 DSP System User's Guide. This document describes various aspects of the TMS320C5514 digital signal processor (DSP) including: system memory, device clocking options and operation of the DSP clock generator, power management features, interrupts, and system control.
- <u>SPRUGH6</u>— TMS320C5504 DSP System User's Guide. This document describes various aspects of the TMS320C5504 digital signal processor (DSP) including: system memory, device clocking options and operation of the DSP clock generator, power management features, interrupts, and system control.
- SPRUGH9— TMS320C5515 DSP Universal Serial Bus 2.0 (USB) Controller User's Guide This document describes the universal serial bus 2.0 (USB) in the TMS320C5515 Digital Signal Processor (DSP) devices. The USB controller supports data throughput rates up to 480 Mbps. It provides a mechanism for data transfer between USB devices.
- <u>SPRABB6</u>— FFT Implementation on the TMS320VC5505, TMS320C5505, and TMS320C5515 DSPs This document describes FFT computation on the TMS320VC5505 and TMS320C5505/15 DSPs devices.

Real-Time Clock (RTC)

Topic

Page

1.1	Introduction	9
1.2	Peripheral Architecture	10
1.3	Registers	18

1.1 Introduction

The following sections describe the features and operation of the real-time clock (RTC) on the digital signal processor (DSP).

1.1.1 Purpose of the Peripheral

The device includes a real time clock (RTC) that provides a time reference to an application executing on the DSP.

The RTC has its own crystal input, clock domain, and core and I/O power supplies. The separate clock domain allows the RTC to run while the rest of the device is clock gated. All RTC registers are preserved and the counter continues to operate when the host CPU is clock gated. The RTC has the capability to wake-up the rest of the device through an alarm interrupt, periodic interrupt, or external WAKEUP signal.

NOTE: The RTC Core (CV_{DDRTC}) must be powered using an external power source if the RTC is not used.

1.1.2 Features

The real-time clock (RTC) provides the following features:

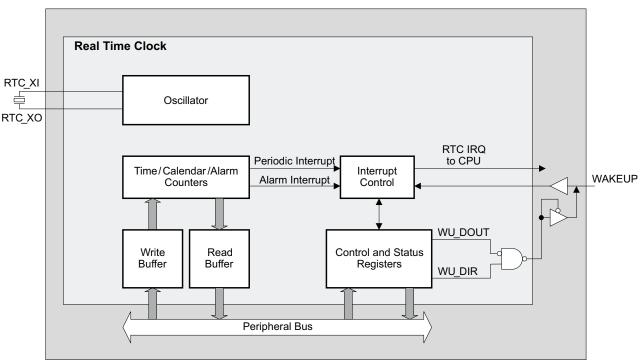
- RTC-only mode
- 100-year calendar up to year 2099
- Counts milliseconds, seconds, minutes, hours, and date (including day, month, and year with leap year compensation)
- Millisecond time correction
- Binary-coded-decimal (BCD) representation of time, calendar, and alarm
- 24-hour clock mode
- Alarm interrupt for specific millisecond, second, minute, hour, day, month, and year
- Periodic interrupt: every millisecond, second, minute, hour, or day
- Single interrupt to the DSP CPU
- 32.768kHz oscillator with frequency calibration
- Bidirectional I/O pin that can be set up as:
 - Input for an external device to wake up the DSP
 - Output to wake up an external device

The current date and time is tracked in a set of counter registers that update once per millisecond. The time is represented in 24-hour mode. For information on how to set the time and date, see Section 1.2.4.

Alarms can be set to interrupt the DSP CPU at a particular time, or at periodic time intervals, such as once per minute or once per day. For information on how to set and use alarms, see Section 1.2.5.

The clock reference for the RTC is an external 32.768kHz crystal (connected between signals RTC_XI and RTC_XO). The RTC also has separate core and I/O power supplies that are isolated from the rest of the DSP.

9


Introduction

Introduction

1.1.3 Functional Block Diagram

Figure 1-1 shows a block diagram of the RTC.

1.2 Peripheral Architecture

This section describes the Real-Time Clock (RTC) peripheral.

NOTE: If the WAKEUP pin is used to wake up the device, DV_{DDRTC} and CV_{DDRTC} must be powered. If the RTC is not used DV_{DDRTC} can be tied to ground (V_{SS}), but CV_{DDRTC} must be powered by an external power source. In addition, the RTC_XI pin must be tied to CV_{DDRTC} and the RTC_XO pin must be tied to V_{SS} . If the RTC_XI and RTC_XO pins are tied off, then the RTC registers are inaccessible.

1.2.1 Clock Control

The RTC oscillator is driven by an external 32.768 KHz crystal connected between RTC_XI and RTC_XO.

1.2.2 Signal Descriptions

As shown in Figure 1-1, the WAKEUP pin is a bidirectional pin that can be used as an input to wake up the DSP clock domains or it can be used as an open-drain output to wake up an external device. At power-up the WAKEUP pin is configured as an input. This signal can be used to trigger the RTC interrupt to the CPU and to wake-up gated clocks regardless of whether the clocks were gated by the master clock gate or whether they were gated by the DSP's idle instruction.

A high pulse for a minimum of one RTC clock period (30.5 μ s) to the WAKEUP pin will trigger the RTC interrupt when:

- The WAKEUP pin is configured as an input (RTCPMGT:WU_DIR = 0)
- The RTC interrupt is enabled (RTCINTEN:RTCINTEN = 1)
- The External Event Interrupt in RTCINTREG is enabled (RTCINTREG:EXTINTEN = 1)

In addition, when WAKEUP is high, the Master Clock Gater for the whole digital core is forced into the ungated state (clocks on). Note that the interrupt generation is edge sensitive while the clocks on condition is level sensitive. Please see Section 1.2.6 for Interrupt support.

1.2.3 RTC-Only Mode

RTC-only mode allows all supplies except LDOI, DV_{DDRTC} and CV_{DDRTC} to be powered down. In this mode, the RTC counter continues to operate. The RTC has the capability to wake up the device from idle states, or completely power down the CPU, via alarms, periodic interrupts, or an external WAKEUP input. The RTC will reboot after waking up from the CPU powering down.

In addition, the RTC is able to output an alarm or periodic interrupt on the WAKEUP pin to cause external power management to re-enable power to the DSP core and I/O.

1.2.4 Using the Real-Time Clock Time and Calendar Registers

The current time and date are maintained in the RTC time and calendar registers. Information about how to use these registers is in the sections that follow.

1.2.4.1 Time/Calendar Data Format

The time and calendar data in the RTC is stored as binary-coded decimal (BCD) format. In BCD format, the decimal numbers 0 through 9 are encoded with their binary equivalent. Although most of the time/calendar registers have 4 bits assigned to each BCD digit, some of the register fields are shorter since the range of valid numbers may be limited. For example, only 3 bits are required to represent the first digit (most significant digit) of the "seconds" because only 0 through 5 are required.

The summary of the time/calendar registers is shown in Table 1-1. The alarm registers are interleaved with the time/calendar registers and are not shown in this table. The alarm registers are shown in Table 1-2. A complete description all RTC registers is available in Section 1.3.

Address (Hex)	Name	Function	Decimal Range	BCD Format
1904h	RTCMIL	Milliseconds	0-1023	0000-1023
1908h	RTCSEC	Seconds	0-59	00-59
190Ch	RTCMIN	Minutes	0-59	00-59
1910h	RTCHOUR	Hours (24)	0-23	00-23
1914h	RTCDAY	Days	1-31	01-31
1918h	RTCMONTH	Months (January = 01)	1-12	01-12
191Ch	RTCYEAR	Years	0-99	00-99

 Table 1-1.
 Time/Calendar Registers

- The RTC Milliseconds Register (RTCMIL) stores the milliseconds value of the current time. After the milliseconds count reaches 1023 then the seconds register is updated by one. The reason for the rollover occurring at 1024, rather than 1000, is due to the crystal's oscillation frequency being a power of two, 32.768kHz. 32768 / 1024 = 32 clocks per 'millisecond'. Thus, calling this register a 'milliseconds' register is a bit of a misnomer. The milliseconds digit 3 is 1 bit and the milliseconds digits 2:0 are 4 bits; digits 3:0 are encoded BCD values 0000 (0b 0000b 0000b) through 1023 (1b 0000b 0010b 0011b).
- The RTC Seconds Register (RTCSEC) stores the seconds value of the current time. The seconds digit 1 is 3 bits and the seconds digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 00 (000b 0000b) through 59 (101b 1001b).
- The RTC Minutes Register (RTCMIN) stores the minutes value of the current time. The minutes digit 1 is 3 bits and the minutes digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 00 (000b 0000b) through 59 (101b 1001b).
- The RTC Hours Register (RTCHOUR) stores the hours value of the current time. The hours digit 1 is 2 bits and the hours digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 01 (00b 0001b) through 23 (10b 0011b).
- The RTC Days Register (RTCDAY) stores the day of the month for the current date. The days digit 1 is 2 bits and the days digit 0 is 4 bits; digits 1 and 0 are encoded BCD 01 (00b 0001b) through 31 (11b 0001b).
- The RTC Months Register (RTCMONTH) stores the month for the current date. The months digit 1 is 1 bit and the months digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 01 (0b 0000b) through 12 (1b 0010b).
- The RTC Years Register (RTCYEAR) stores the year for the current date. The years digit 1 is 4 bits and the years digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 00 (0000b 0000b) through 99 (1001b 1001b).

1.2.4.2 Setting the Time/Calendar Register

The time/calendar registers are set or initialized by writing to the appropriate register bytes. To set date and time, unlock the RTC registers and write all the time and date registers. When written to, the data is stored to a buffer. Next, set the TIMEUPDT bit in the RTC Update Register (RTCUPDATE). Setting this bit causes the time/calendar values in the buffer to be loaded into the RTC simultaneously. All values should be encoded as BCD values.

1.2.4.3 Reading the Time/Calendar Registers

The time/calendar registers are updated every millisecond as the time changes. To get the most accurate time reading you should start with reading the Millisecond register (RTCMIL) and then the Second register (RTCSEC) followed by the remaining time/calendar register values (RTCMIN, RTCHOUR, RTCDAY, RTCMONTH, and RTCYEAR). Read the RTCMIL again and compare to the previous value. If both values are the same, an RTC update did not occur while the other registers were being read and all the values read represent the current time. If the Milliseconds have changed, this indicates that and RTC update occurred while the registers were being read and the process should be repeated. Results are unpredictable if values are written out of the register's normal range.

1.2.5 Using the Real-Time Clock Time and Calendar Alarms

Alarms can be configured to interrupt the CPU at a specific time, that is, at specific values for the following:

- Milliseconds
- Seconds
- Minutes
- Hours
- Days of the month
- Months
- On specific Years

The time/calendar alarm registers control the setting of alarms. Information about how to use these registers can be found in the following sections. The alarms can be configured to generate an interrupt to the CPU or to wake-up the clocks. The operation of the alarm interrupt is described in Section 1.2.6.4.

1.2.5.1 Time/Calendar Alarm Data Format

The time and calendar alarm data in the RTC is stored as binary-coded decimal (BCD) format. In BCD format, the decimal numbers 0 through 9 are encoded with their binary equivalent. Although most of the time/calendar alarm registers have 4 bits assigned to each BCD digit, some of the register field lengths may differ to accommodate the desired function.

The summary of the time/calendar alarm registers is shown in Table 1-2. The time/calendar registers are interleaved with the alarm registers and are not shown in this table. The time/calendar registers are shown in Table 1-1. A complete description of all RTC registers is available in Section 1.3.

Format
0-1023
0-59
0-59
0-23
)1-31
)1-12
0-99
)()())

Table 1-2. Time and Calendar Alarm Data

The RTC Milliseconds Alarm Register (RTCMILA) stores the milliseconds value of the desired alarm. The milliseconds alarm digit 3 is 1 bit and the milliseconds alarm digits 2:0 are 4; digits 3:0 are encoded BCD values 0000 (0b 0000b 0000b) through 1023 (1b 0000b 0010b 0011b). Values outside of the decimal range of 0 - 1023 will cause the alarm to never occur.

The RTC Seconds Alarm Register (RTCSECA) stores the seconds value of the desired alarm. The seconds alarm digit 1 is 3 bits and the seconds alarm digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 00 (000b 0000b) through 59 (101b 1001b). Values outside of the decimal range of 0 - 59 will cause the alarm to never occur.

The RTC Minutes Alarm Register (RTCMINA) stores the minute value of the desired alarm. The minutes alarm digit 1 is 3 bits and the minutes alarm digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 00 (000b 0000b) through 59 (101b 1001b). Values outside of the decimal range of 0 - 59 will cause the alarm to never occur.

The RTC Hours Alarm Register (RTCHOURA) stores the hour value of the desired alarm. The hours alarm digit 1 is 2 bits and the hours alarm digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 01 (00b 0001b) through 23 (10b 0011b). Values outside of the decimal range of 1 - 23 will cause the alarm to never occur.

Peripheral Architecture

www.ti.com

The RTC Days Alarm Register (RTCDAYA) stores the day of the month value of the desired alarm. The days alarm digit 1 is 2 bits and the days alarm digit 0 is 4 bits; digits 1 and 0 are encoded BCD 01 (00b 0001b) through 31 (11b 0001b). Values outside of the decimal range of 1 - 31 will cause the alarm to never occur.

The RTC Months Alarm Register (RTCMONTHA) stores the month of the year value of the desired alarm. The months alarm digit 1 is 1 bit and the months alarm digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 01 (0b 0000b) through 12 (1b 0010b). Values outsides the range 1 - 12 will cause the alarm to never occur.

The RTC Years Alarm Register (RTCYEARA) stores the year value of the desired alarm. The years alarm digit 1 is 4 bits and the years alarm digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 00 (0000b 0000b) through 99 (1001b 1001b). Values outsides the range 0 - 99 will cause the alarm to never occur.

1.2.5.2 Setting and Reading the Time/Calendar Alarm Registers

The time/calendar alarm registers are set or initialized by writing to the appropriate register bytes. To set date and time, write all the time and date registers. Then set the ALARMUPDT bit in the RTC Update Register (RTCUPDATE). This will simultaneously copy all the alarm register settings in one RTC cycle.

Time/calendar alarm registers can be read at any time and are not updated by the RTC.

1.2.5.3 Examples of Time/Calendar Alarm Settings

Some examples of various alarm settings are shown in Table 1-3. A complete description of the RTC registers and their functions is provided in Section 1.3.

Alarm Occurs	RTCYEARA	RTCMONTHA	RTCDAYA	RTCHOURA	RTCMINA	RTCSECA	RTCMILA
May 7, 2010 @ 3:19:46 AM	10h	5h	7h	3h	19h	46h	0h
Dec 22, 2099 @ 5:50:15 and 300ms PM	99h	12h	22h	17h	50h	15h	300h

Table 1-3. Time/Calendar Alarm Settings

1.2.6 Real-Time Clock Interrupt Requests

The RTC provides the ability to interrupt the CPU based on three events: a periodic interrupt, an alarm interrupt, or an external "Wakeup" interrupt. Although three interrupt sources are available, the RTC makes a single interrupt request to the CPU. Specific information about using each of the interrupt types is in the sections that follow.

1.2.6.1 Interrupt Enable

The RTC has two registers for enabling interrupts. The RTC Interrupt Enable (RTCINTEN) enables the RTC interrupt to the CPU. This bit allows any interrupt that is triggered in the RTC to be sent to the CPU. The second register is the RTC Interrupt Register (RTSINTREG) is used to enable the different interrupt events that can be passed to the CPU. These include the following:

- Alarm Interrupt
- External "wakeup" Interrupt
- Periodic Day Interrupt
- Periodic Hour Interrupt
- Periodic Minute Interrupt
- Periodic Second Interrupt
- Periodic Millisecond Interrupt

NOTE: To use the external wakeup interrupt, you must set the WU_DIR bit in the RTCPMGT register to 0.

When an RTC interrupt is generated, the RTC's interrupt is directed to two places (see Figure 1-2).

- 1. System Clock Wakeup Logic: the interrupt will cause the Master Clock Gater to enable the Master Clock.
- 2. The RTC interrupt can be directed to the CPU if RTCINTEN = 1. The CPU's RTC interrupt must be unmasked for the CPU to respond to the interrupt.
 - If the CPU is idled, the interrupt will cause the CPU to exit idle. If interrupts are globally enabled, the CPU will execute the RTC ISR.
 - If the CPU is not idled and interrupts are globally enabled, the CPU will execute the RTC ISR.

Peripheral Architecture

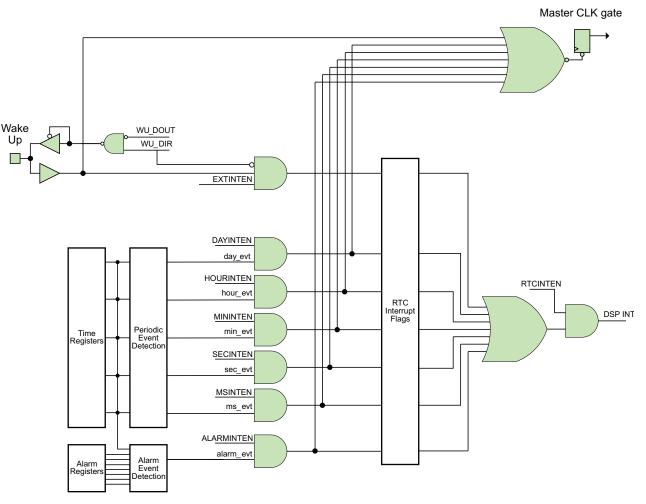


Figure 1-2. RTC Interrupt and Wakeup Logic

1.2.6.2 Interrupt Flag Bits

When the interrupts are enabled in Section 1.2.6.1 and the event occurs, the equivalent flag is set in the RTC Interrupt Flag Register (RTCINTFL). See Section 1.3 for complete details of the RTC registers. The flagged event is cleared when the programmer writes a "1" to the flag bit.

There is also an RTC Lost Power Register (RTCNOPWR). If this flag is set the RTC has lost power and requires a software reset. NOTE: at least 3 RTC clock cycles must elapse after power-up in order to read valid data since the synchronization logic between the CPU and RTC consumes 3 RTC clock cycles.

If the RTC Interrupt enable bit is set and any of the active events occur then an RTC interrupt is sent to the CPU. The RTC interrupt is asserted as long as at least one of the interrupt flag bits are set. When an interrupt occurs from the RTC, the source of the interrupt can be determined by reading the flag bits in RTCINTFL.

1.2.6.3 Periodic Interrupt Request

Periodic Interrupts cause the RTC to make an interrupt request to the CPU periodically. The periodicity can be every millisecond, every second, every minute, hourly, or daily. The periodic interrupt rate is selected using the RTC Interrupts Register (RTCINTREG), see Table 1-4. Writing a 1 to these bits enables the periodic interrupt. Writing a 0 disables the interrupt. Once the interrupt occurs it will remain active until the corresponding flag bit in the RTC Status Register is cleared.

NOTE: The interrupt occurs whenever that particular time value is incremented.

RTCINTREG bits	Periodic Interrupt Rate
Bit 0	Every Millisecond
Bit 1	Every Second
Bit 2	Every Minute
Bit 3	Every Hour
Bit 4	Every Day

Table 1-4. Periodic Interrupts

To use the RTC Periodic interrupt:

- Select the desired interrupt period by enabling the proper interrupt in the RTCINTREG
- Enable the RTC interrupt to the CPU by setting bit 0 of RTCINTEN

When the periodic interrupt occurs, the corresponding interrupt flag will be set in the RTC Interrupt Flag (RTCINTFL) register and the interrupt is sent to the CPU.

1.2.6.4 Alarm Interrupt Request

The RTC alarm interrupt can be used to generate an interrupt to the CPU at a specific time. The alarm interrupt occurs when the alarm time programmed in the RTC alarm registers match the current time. For information about programming an alarm time, see Section 1.2.5.

To use the RTC alarm interrupt:

- Select the desired alarm time by configuring the RTC alarm registers.
- Enable the RTC alarm interrupt by setting bit 15 of the RTCINTREG.
- Enable the RTC interrupt to the CPU by setting bit 0 of RTCINTEN

When the alarm interrupt occurs, the Alarm Flag (bit 15) in the RTCINTFL register will be set and the RTC interrupt is sent to the CPU.

1.2.6.5 WAKEUP Interrupt Request

The external WAKEUP signal or RTC alarm trigger sends a WAKEUP event to the System Clock Wakeup Logic. This asynchronously clears the clock gate which gates the Master Clock and enables the Master Clock. When the DSP wakes up due to an RTC alarm, periodic interrupt, or by the external WAKEUP signal, the DSP latches the RTC interrupt. Because there is only one interrupt line for the RTC, the user must look at the RTC status register to determine which RTC event caused the wake-up.

1.2.7 Reset Considerations

The RTC can be reset by the RTCRESET bit located in the RTC oscillator register (RTCOSC). The RTC can also be reset by an internal POR circuit that monitors VDD_RTC. Neither the RESETN pin nor the DSP's POR can reset the RTC.

1.2.7.1 Software Reset Considerations

The DSP can cause a software reset of the RTC when the RTCRESET bit is set to 1. When this occurs, all RTC registers are reset to the default settings. The RTC will not be reset when the RESETN pin goes low. After a RTC software reset, do not access any RTC register for three 32.768kHz clock cycles after setting the software reset bit.

1.2.7.2 Hardware Reset Considerations

The RTC has a hardware reset that is tied to a POR circuit that monitors the VDD_RTC. The RTC is not reset with the RESETN pin or the DSP's POR.

TEXAS INSTRUMENTS

www.ti.com

Registers

1.3 Registers

1.3.1 Overview

This section describes the memory-mapped registers for the Real Time Clock (RTC).

Control of the RTC is maintained through a set of I/O memory mapped registers. The first two registers, RTCINTEN and RTCUPDATE, are located in the DSP core power domain, while the remaining registers in Table 5 are located in the RTC power domain.

Writes to registers in the RTC power domain are synchronized to the RTC 32.768-kHz clock and can therefore take many CPU clock cycles to complete. The CPU clock must run at least three-times faster than the RTC, and writes to registers in the RTC domain will not be evident for up to two 32.768kHz clock cycles. If the RTC oscillator is disabled (RTC_XI and RTC_XO pins tied off), no RTC register in the RTC power domain can be written.

1.3.2 RTC Registers

This section describes the memory-mapped registers for the Real Time Clock (RTC).

Control of the RTC is maintained through a set of I/O memory mapped registers. The first two registers, RTCINTEN and RTCUPDATE, are located in the DSP core power domain, while the remaining registers in Table 5 are located in the RTC power domain.

Writes to registers in the RTC power domain are synchronized to the RTC 32.768-kHz clock and can therefore take many CPU clock cycles to complete. The CPU clock must run at least three-times faster than the RTC, and writes to registers in the RTC domain will not be evident for up to two 32.768kHz clock cycles. If the RTC oscillator is disabled (RTC_XI and RTC_XO pins tied off), no RTC register in the RTC power domain can be written.

Offset	Acronym	Register Name	Section
1900h	RTCINTEN	RTC Interrupt Enable Register	Section 1.3.2.1
1901h	RTCUPDATE	RTC Update Register	Section 1.3.2.2
1904h	RTCMIL	Milliseconds Register	Section 1.3.2.3
1905h	RTCMILA	Milliseconds Alarm Register	Section 1.3.2.4
1908h	RTCSEC	Seconds Register	Section 1.3.2.5
1909h	RTCSECA	Seconds Alarm Register	Section 1.3.2.6
190Ch	RTCMIN	Minutes Register	Section 1.3.2.7
190Dh	RTCMINA	Minutes Alarm Register	Section 1.3.2.8
1910h	RTCHOUR	Hours Register	Section 1.3.2.9
1911h	RTCHOURA	Hours Alarm Register	Section 1.3.2.10
1914h	RTCDAY	Days Register	Section 1.3.2.11
1915h	RTCDAYA	Days Alarm Register	Section 1.3.2.12
1918h	RTCMONTH	Months Register	Section 1.3.2.13
1919h	RTCMONTHA	Months Alarm Register	Section 1.3.2.14
191Ch	RTCYEAR	Years Register	Section 1.3.2.15
191Dh	RTCYEARA	Years Alarm Register	Section 1.3.2.16
1920h	RTCINTFL	RTC Interrupt Flag Register	Section 1.3.2.17
1921h	RTCNOPWR	RTC Lost Power Status Register	Section 1.3.2.18
1924h	RTCINTREG	RTC Interrupt Register	Section 1.3.2.19
1928h	RTCDRIFT	RTC Compensation Register	Section 1.3.2.20
192Ch	RTCOSC	RTC Oscillator Register	Section 1.3.2.21
1930h	RTCPMGT	RTC Power Management Register	Section 1.3.2.22
1960h	RTCSCR1	RTC LSW Scratch Register 1	Section 1.3.2.23
1961h	RTCSCR2	RTC MSW Scratch Register 2	Section 1.3.2.24

Table 1-5. RTC Registers

Table 1-5. RTC Registers	(continued)
--------------------------	-------------

Offset	Acronym	Register Name	Section
1964h	RTCSCR3	RTC LSW Scratch Register 3	Section 1.3.2.25
1965h	RTCSCR4	RTC MSW Scratch Register 4	Section 1.3.2.26

Registers

1.3.2.1 RTCINTEN Register

The RTC interrupt enable register (RTCINTEN) is shown in Figure 1-3 and described in Table 1-6.

Figure 1-3. RTCINTEN Register

15	1	0
Reserved		RTCINTEN
R-0		RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-6. RTCINTEN Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-1	Reserved	R	0	Reserved.
0	RTCINTEN	R/W	0	RTC interrupt enable.
				0 = RTC interrupt is disabled.
				1 = RTC interrupt is enabled.

1.3.2.2 RTCUPDATE Register

The RTC update register (RTCUPDATE) is shown in Figure 1-4 and described in Table 1-7.

Figure 1-4. RTCUPDATE Register

15	14	13		0
TIMEUPDT	ALARMUPDT		Reserved	
RW-0	RW-0		R-0	

LEGEND: R/W = Read/Write; R = Read only; -*n* = value after reset

Table 1-7. RTCUPDATE Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	TIMEUPDT	RW	0	Initiates the Time updates. 0 = RTC time registers updated. 1 = Initiates the transfar of the time registers from the DSP to the RTC
14	ALARMUPDT	RW	0	Initiates the alarm updates. 0 = RTC alarm registers updated. 1 = Initiate update of the alarm registers.
13-0	Reserved	R	0	Reserved.

1.3.2.3 **RTCMIL Register**

The milliseconds register (RTCMIL) is shown in Figure 1-5 and described in Table 1-8.

Figure 1-5. RTCMIL Register

15		13	12	11		8	7		4	3		0
	Reserved		MS3		MS2			MS1			MS0	
	R-0		RW-0		RW-0			RW-0			RW-0	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Reset Bit Field Description Туре 15-13 Reserved R 0 Reserved. 12 MS3 R/W 0 Digit 3 of Milliseconds in BCD format. 0 = Digit 3 of MS is 0.1 = Digit 3 of MS is 1.11-8 MS2 R/W 0 Digit 2 of Milliseconds in BCD format, value 0 to 9. 7-4 MS1 R/W 0 Digit 1 of Milliseconds in BCD format, value 0 to 9 3-0 MS0 R/W 0 Digit 0 of Milliseconds in BCD format, value 0 to 9

1.3.2.4 **RTCMILA Register**

The milliseconds alarm register (RTCMILA) is shown in Figure 1-6 and described in Table 1-9.

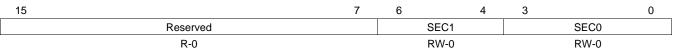
	Figure 1-6. RTCMILA Register (RTCMILA)									
15		13	12	11	8	7	4	3	(0
	Reserved		MSA3		MSA2	Ν	/ISA1		MSA0	
	R-0		RW-0		RW-0	F	RW-0		RW-0	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-9. RTCMILA Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-13	Reserved	R	0	Reserved.
12	MSA3	RW	0	Digit 3 of Millisecond alarm in BCD format. 0 = Digit 3 of MS Alarm is 0. 1 = Digit 3 of MS Alarm is 1.
11-8	MSA2	RW	0	Digit 2 of Millisecond alarm in BCD format, value 0 to 9
7-4	MSA1	RW	0	Digit 1 of Millisecond alarm in BCD format, value 0 to 9
3-0	MSA0	RW	0	Digit 0 of Millisecond alarm in BCD format, value 0 to 9

Table 1-8. RTCMIL Register Field Descriptions



Registers

1.3.2.5 RTCSEC Register

The seconds register (RTCSEC) is shown in Figure 1-7 and described in Table 1-10.

Figure 1-7. RTCSEC Register

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-10. RTCSEC Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-7	Reserved	R	0	Reserved.
6-4	SEC1	RW	0	Digit 1 of Seconds in BCD format, value 0 to 5
3-0	SEC0	RW	0	Digit 0 of Seconds in BCD format, value 0 to 9

1.3.2.6 RTCSECA Register

The seconds alarm register (RTCSECA) is shown in Figure 1-8 and described in Table 1-11.

Figure 1-8. RTCSECA Register

15	7	6	4	3		0
Reserved		SECA	.1		SECA0	
R-0		RW-0)		RW-0	

LEGEND: R/W = Read/Write; R = Read only; -*n* = value after reset

Table 1-11. RTCSECA Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-7	Reserved	R	0	Reserved.
6-4	SECA1	R/W	0	Digit 1 of Seconds Alarm in BCD format, value 0 to 5
3-0	SECA0	R/W	0	Digit 0 of Seconds Alarm in BCD format, value 0 to 9

1.3.2.7 RTCMIN Register

The minutes register (RTCMIN) is shown in Figure 1-9 and described in Table 1-12.

Figure 1-9. RTCMIN Register

15	7	6	4	3		0
Reserved		MIN1			MIN0	
R-0		RW-0			RW-0	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-12. RTCMIN Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-7	Reserved	R	0	Reserved.
6-4	MIN1	R/W	0	Digit 1 of Minutes in BCD format, value 0 to 5
3-0	MIN0	R/W	0	Digit 0 of Minutes in BCD format, value 0 to 9

1.3.2.8 RTCMINA Register

The minutes alarm register (RTCMINA) is shown in Figure 1-10 and described in Table 1-13.

Figure 1-10. RTCMINA Register

15	7	6	4	3		0
Reserved		MINA1			MINA0	
R-0		RW-0			RW-0	

LEGEND: R/W = Read/Write; R = Read only; -*n* = value after reset

Table 1-13. RTCMINA Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-7	Reserved	R	0	Reserved.
6-4	MINA1	R/W	0	Digit 1 of Minutes Alarm in BCD format, 0 to 5
3-0	MINA0	R/W	0	Digit 0 of Minutes Alarm in BCD format, 0 to 9

Registers

Registers

1.3.2.9 RTCHOUR Register

The hours register (RTCHOUR) is shown in Figure 1-11 and described in Table 1-14.

Figure 1-11. RTCHOUR Register

15 6	5	4	3	0	
Reserved	HO	UR1	F	HOUR0	
R-0	RV	V-0		RW-0	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-14. RTCHOUR Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-6	Reserved	R	0	Reserved.
5-4	HOUR1	R/W	0	Digit 1 of Hours in BCD format, value 0 to 2
3-0	HOUR0	R/W	0	Digit 0 of Hours in BCD format, value 0 to 9

1.3.2.10 RTCHOURA Register

The hours alarm register (RTCHOURA) is shown in Figure 1-12 and described in Table 1-15.

Figure 1-12. RTCHOURA Register							
15		6	5	4	3		0
	Reserved		HOU	RA1		HOURA0	
	R-0		RW	/-0		RW-0	

LEGEND: R/W = Read/Write; R = Read only; -*n* = value after reset

Table 1-15. RTCHOURA Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-6	Reserved	R	0	Reserved.
5-4	HOURA1	R/W	0	Digit 1 of Hours Alarm in BCD format, value 0 to 2
3-0	HOURA0	R/W	0	Digit 0 of Hours Alarm in BCD format, value 0 to 9

1.3.2.11 RTCDAY Register

The days register (RTCDAY) is shown in Figure 1-13 and described in Table 1-16.

Figure 1-13. RTCDAY Register

15 6	_	5	4	3		0
Reserved		DAY	′1		DAY0	
R-0		RW	-0		RW-1	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-16. RTCDAY Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-6	Reserved	R	0	Reserved.
5-4	DAY1	R/W	0	Digit 1 of Days in BCD format, 0 to 3
3-0	DAY0	R/W	1	Digit 0 of Days in BCD format, 0 to 9

1.3.2.12 RTCDAYA Register

The days alarm register (RTCDAYA) is shown in Figure 1-14 and described in Table 1-17.

Figure 1-14. RTCDAYA Register

15 6	5 4	3 0
Reserved	DAYA1	DAYA0
R-0	RW-0	RW-0

LEGEND: R/W = Read/Write; R = Read only; -*n* = value after reset

Table 1-17. RTCDAYA Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-6	Reserved	R	0	Reserved.
5-4	DAYA1	R/W	0	Digit 1 of Days Alarm in BCD format, 0 to 3
3-0	DAYA0	R/W	0	Digit 0 of Days Alarm in BCD format, value 0 to 9

Registers

1.3.2.13 RTCMONTH Register

The months register (RTCMONTH) is shown in Figure 1-15 and described in Table 1-18.

Figure 1-15. RTCMONTH Register

15 5	4	3	0
Reserved	MONTH1	MONTH0	
R-0	RW-0	RW-1	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-18. RTCMONTH Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-5	Reserved	R	0	Reserved.
4	MONTH1	RW	0	Digit 1 of Months in BCD format, value 0 to 1.
3-0	MONTH0	RW	1	Digit 0 of Months in BCD format, value 0 to 9.

1.3.2.14 RTCMONTHA Register

The months alarm register (RTCMONTHA) is shown in Figure 1-16 and described in Table 1-19.

Figure 1-16. RTCMONTHA Register

15 5	4	3	0
Reserved	MONTHA1	MONTHA0	
R-0	RW-0	RW-0	

LEGEND: R/W = Read/Write; R = Read only; -*n* = value after reset

Table 1-19. RTCMONTHA Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-5	Reserved	R	0	Reserved.
4	MONTHA1	RW	0	Digit 1 of Months Alarm in BCD format, value 0 to 1.
3-0	MONTHA0	RW	0	Digit 0 of Months Alarm in BCD format, value 0 to 9.

...

1.3.2.15 RTCYEAR Register

The years register (RTCYEAR) is shown in Figure 1-17 and described in Table 1-20.

Figure 1-17. RTCYEAR Register

15	8	7	-	4	3		0
Reserved			YEAR1			YEAR0	
R-0			RW-0			RW-0	

LEGEND: R/W = Read/Write; R = Read only; -*n* = value after reset

Table 1-20. RTCYEAR Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	Reserved	R	0	Reserved.
7-4	YEAR1	RW	0	Digit 1 of Year in BCD format (20XX), value 0 to 9.
3-0	YEAR0	RW	0	Digit 0 of Year in BCD format (20XX), value 0 to 9.

1.3.2.16 RTCYEARA Register

The years alarm register (RTCYEARA) is shown in Figure 1-18 and described in Table 1-21.

Figure 1-18. RTCYEARA Register8743

15 8	7 4	3 0
Reserved	YEARA1	YEARA0
R-0	RW-0	RW-0

LEGEND: R/W = Read/Write; R = Read only; -*n* = value after reset

Table 1-21. RTCYEARA Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	Reserved	R	0	Reserved.
7-4	YEARA1	RW	0	Digit 1 of Year Alarm in BCD format (20XX), value 0 to 9.
3-0	YEARA0	RW	0	Digit 0 of Year Alarm in BCD format (20XX), value 0 to 9.

Registers

1.3.2.17 RTCINTFL Register

The RTC interrupt flag register (RTCINTFL) is shown in Figure 1-19 and described in Table 1-22.

					g		
15	14						8
ALARMFL				Reserved			
R/W-0				R-0			
7	6	5	4	3	2	1	0
Reserved		EXTFL	DAYFL	HOURFL	MINFL	SECFL	MSFL
R	-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Figure 1-19. RTCINTFL Register

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-22. RTCINTFL Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	ALARMFL	R/W	0	Flag indicating whether an Alarm interrupt has occurred. 0 = Alarm interrupt did not occur.
				1 = Alarm interrupt occurred (write 1 to clear)
14-6	Reserved	R	0	Reserved.
5	EXTFL	R/W	0	Flag indicating whether an external event interrupt (WAKEUP pin) has occurred. 0 = External event interrupt did not occur 1= External event interrupt occurred (write 1 to clear).
4	DAYFL	R/W	0	Flag indicating whether a periodic Day interrupt has occurred. 0 = Periodic Day interrupt did not occur. 1 = Periodic Day interrupt occurred (write 1 to clear).
3	HOURFL	R/W	0	 Flag indicating whether a periodic Hour event interrupt has occurred. 0 = Periodic Hour interrupt did not occur. 1 = Periodic Hour interrupt occurred (write 1 to clear).
2	MINFL	R/W	0	 Flag indicating whether a periodic Minute event interrupt has occurred. 0 = Periodic Minute interrupt did not occur. 1 = Periodic Minute interrupt occurred (write 1 to clear).
1	SECFL	R/W	0	 Flag indicating whether a periodic Second event interrupt has occurred. 0 = Periodic Second interrupt did not occur. 1 = Periodic Second interrupt occurred (write 1 to clear).
0	MSFL	R/W	0	 Flag indicating whether a periodic Millisecond event interrupt has occurred. 0 = Periodic Millisecond interrupt did not occur. 1 = Periodic Millisecond interrupt occurred (write 1 to clear).

1.3.2.18 RTCNOPWR Register

The RTC lost power status register (RTCNOPWR) is shown in Figure 1-20 and described in Table 1-23.

Figure 1-20. RTCNOPWR Register

15 1	0
Reserved	PWRUP
R-0	R-1

LEGEND: R = Read only; -n = value after reset

Bit	Field	Туре	Reset	Description
15-1	Reserved	R	0	Reserved.
0	PWRUP	R	1	RTC has lost power Flag. 0 = RTC has not lost power since software reset.
				1 = RTC has lost power and requires a software reset and initialization of the time registers to the current time and date.
				PWRUP is cleared by a read of RTCINTFL or RTCNOPWR. Therefore, read RTCNOPWR before reading RTCINTFL to obtain the correct PWRUP value.

Table 1-23. RTCNOPWR Register Field Descriptions

Registers

1.3.2.19 RTCINTREG Register

The RTC interrupt register (RTCINTREG) is shown in Figure 1-21 and described in Table 1-24.

		-	i iguic 1-21.1		gister		
15	14						8
ALARMINTEN				Reserved			
R/W-0				R-0			
7	6	5	4	3	2	1	0
Res	Reserved		DAYINTEN	HOURINTEN	MININTEN	SECINTEN	MSINTEN
R-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Figure 1-21. RTCINTREG Register

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-24. RTCINTREG Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	ALARMINTEN	R/W	0	Alarm interrupt enable. 0 = Alarm interrupt not enabled. 1 = Alarm interrupt enabled.
14-6	Reserved	R	0	Reserved.
5	EXTINTEN	R/W	0	External event (WAKEUP pin) interrupt enable. 0 = External event interrupt not enabled. 1 = External event interrupt enabled.
4	DAYINTEN	R/W	0	Periodic Day interrupt enable. 0 = Periodic Day interrupt not enabled. 1 = Periodic Day interrupt enabled.
3	HOURINTEN	R/W	0	Periodic Hour interrupt enable. 0 = Periodic Hour interrupt not enabled. 1 = Periodic Hour interrupt enabled.
2	MININTEN	R/W	0	Periodic Minute interrupt enable. 0 = Periodic Minute interrupt not enabled. 1 = Periodic Minute interrupt enabled.
1	SECINTEN	R/W	0	Periodic Second interrupt enable. 0 = Periodic Second interrupt not enabled. 1 = Periodic Second interrupt enabled.
0	MSINTEN	R/W	0	Periodic Millisecond interrupt enable. 0 = Periodic Millisecond interrupt not enabled. 1 = Periodic Millisecond interrupt enabled.

1.3.2.20 RTCDRIFT Register

Every hour on the hour, a positive or negative number of milliseconds is added to the milliseconds register to compensate for inaccuracy in the 32.768kHz crystal based on the value of COMP[3:0]. If this value is 0 then no compensation will be applied.

Any positive compensation value must not be a multiple of 10.

The RTC compensation register (RTCDRIFT) is shown in Figure 1-22 and described in Table 1-25.

Figure 1-22. RTCDRIFT Register

15	14	13	12	11	8	7	-	4	3		0	
DRIFT	Reserved		COMP3	OMP3 COMP2			COMP1			COMP0		
RW-0	F	२-०	RW-0		RW-0		RW-0			RW-0		

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-25. RTCDRIFT Register Field Descriptions

Bit	Field	Туре	Reset	Description	
15	DRIFT	R/W	0	Positive or Negative Compensation.	
				0 = Negative compensation.	
				1 = Positive compensation	
14-13	Reserved	R	0	Reserved.	
12	COMP3	R/W	0	Digit 3 of Compensation in BCD format.	
				0 = Digit 3 of Compensation is 0.	
				1 = Digit 3 of Compensation is 1.	
11-8	COMP2	R/W	0	Digit 2 of Compensation register in BCD format, value 0 to 9	
7-4	COMP1	R/W	0	Digit 1 of Compensation register in BCD format, value 0 to 9	
3-0	COMP0	R/W	0	Digit 0 of Compensation register in BCD format. Value = 0-9, value 0 to 9	

1.3.2.21 RTCOSC Register

The RTC oscillator register (RTCOSC) is shown in Figure 1-23 and described in Table 1-26.

Figure 1-23. RTCOSC Register

15	14	4	3	0
RTCRESET	Reserved		OSCRES	
W-0	R-0		RW-1011b	

LEGEND: R/W = Read/Write; R = Read only; W = Write only; *n* = value after reset

Table 1-26. RTCOSC Register Field Descriptions

Bit	Field	Туре	Reset	Description	
15	RTCRESET	W	0	RTC software reset. The RTC only resets when this bit is set. The RTC is not reset when RESTN goes low. Once set, this bit is cleared by the RTC. Do not access any RTC register for three 32.768kHz clock cycles after setting this bit.	
				0 = RTC not reset.	
				1 = RTC reset.	
14-4	Reserved	R	0	Reserved.	
3-0	OSCRES	R/W	1011b	Value of the oscillator cell's internal resistor. The default (reset state) is 1011b and t gives faster startup but higher power. Once the oscillator is running it can be change to 1000b for lower power consumption, value 0 to Fh.	

1.3.2.22 RTCPMGT Register

The RTC power management register (RTCPMGT) is shown in Figure 1-24 and described in Table 1-27.

Figure 1-24. RTCPMGT Register						
15	5	4	3	2	1	0
Reserved		WU_DOUT	WU_DIR	BG_PD	LDO_PD	RTCCLKOUTEN
R-0		RW-1	RW-0	RW-0	RW-0	RW-0
	بريا مراجع ام					

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Registers

Table 1-27. RTCPMGT Register Field Descriptions

Bit	Field	Туре	Reset	Description	
15-5	Reserved	R	0	Reserved.	
4	WU_DOUT	R/W	0	Wake-up output, active low/open-drain. 0 = WAKEUP pin driven low. 1 = WAKEUP pin is in high impedance.	
3	WU_DIR	R/W	0	 Wake-up pin direction control. 0 = WAKEUP pin is configured as input. 1 = WAKEUP pin is configured as output Note: The WAKEUP pin, when configured as an input, is active high. When it is configured as an output, it is open-drain and thus it should have an external pullup and it is active low. 	
2	BG_PD	R/W	0	Bandgap, on-chip LDOs, and the analog POR power down bit. This bit shuts down the on-chip LDOs (ANA_LDO, DSP_LDO, and USB_LDO), the Analog POR, and Bandgap reference. BG_PD and LDO_PD are only intended to be used when the internal LDOs supply power to the chip. If the internal LDOs are bypassed and not used then the BG_PD and LDO_PD power down mechanisms should not be used since POR gets powered down and the POWERGOOD signal is not generated properly. After this bit is asserted, the on-chip LDOs, Analog POR, and the Bandgap reference can be re-enabled by the WAKEUP pin (high) or the RTC alarm interrupt. The Bandgap circuit will take about 100 msec to charge the external 0.1 uF capacitor via the internal 326-k Ω resistor. 0 = On-chip LDOs, Analog POR, and Bandgap reference are enabled. 1 = On-chip LDOs, Analog POR, and Bandgap reference are disabled (shutdown).	
1	LDO_PD	R/W	0	 1 = On-chip LDOs, Analog POR, and Bandgap reference are disabled (shutdown). On-chip LDOs and Analog POR power down bit. This bit shuts down the on-chip LDOs (ANA_LDO, DSP_LDO, and USB_LDO) and the Analog POR. BG_PD and LDO_PD are only intended to be used when the internal LDOs supply power to the chip. If the internal LDOs are bypassed and not used then the BG_PD and LDO_PD power down mechanisms should not be used since POR gets powered down and the POWERGOOD signal is not generated properly. After this bit is asserted, the on-chip LDOs and Analog POR can be re-enabled by the WAKEUP pin (high) or the RTC alarm interrupt. This bit keeps the Bandgap reference turned on to allow a faster wake-up time with the expense power consumption of the Bandgap reference. 0 = On-chip LDOs and Analog POR are enabled. 1 = On-chip LDOs and Analog POR are disabled (shutdown). 	
0	RTCCLKOUTE N	R/W	0	Clockout output enable. 0 = RTC clock output disabled 1 = RTC clock output enabled	

. -

1.3.2.23 RTCSCR1 Register

The RTC Scratch Registers are general purpose memory that can be used to store a value that will be preserved even when the DSP power is off.

The RTC LSW scratch register 1 (RTCSCR1) is shown in Figure 1-25 and described in Table 1-28.

Figure 1-25. RTCSCR1 Register

15		0
	SCRATCH0	
	RW-0	

LEGEND: R/W = Read/Write; R = Read only; -*n* = value after reset

Table 1-28. RTCSCR1 Register 1 Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	SCRATCH0	R/W	0	Scratch registers, available to program, value 0 to FFFFh

1.3.2.24 RTCSCR2 Register

The RTC MSW scratch register 2 (RTCSCR2) is shown in Figure 1-26 and described in Table 1-29.

Figure 1-26. RTCSCR2 Register

15		0
	SCRATCH2	

RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-29. RTCSCR2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	SCRATCH2	R/W	0	Scratch registers, available to program, value 0 to FFFFh

Registers

Registers

1.3.2.25 RTCSCR3 Register

The RTC LSW scratch register 3 (RTCSCR3) is shown in Figure 1-27 and described in Table 1-30.

Figure 1-27. RTCSCR3 Register

15		0
	SCRATCH3	
	RW-0	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-30. RTCSCR3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	SCRATCH3	R/W	0	Scratch registers, available to program, value 0 to FFFFh

1.3.2.26 RTCSCR4 Register

15

The RTC MSW scratch register 4 (RTCSCR4) is shown in Figure 1-28 and described in Table 1-31.

Figure 1-28. RTCSCR4 Register

0

SCRATCH4
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-31. RTCSCR4 Register Field Descriptions

Bit	Field	eld Type Reset		Description
15-0	SCRATCH4	R/W	0	Scratch registers, available to program, value 0 to FFFFh.

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

This revision history highlights the changes made to this document from its previous version.

Revision History

See		Revision	
	Section 1.2.2, Device Configuration	Updated description of when the RTC interrupt will trigger in Section 1.2.2, Signal Descriptions.	
	Section 1.2.3, RTC-Only Mode	Updated description of RTC during wake up and power down for RTC-only mode.	

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated