TMS320C6457 DSP Viterbi-Decoder Coprocessor 2 (VCP2)

User's Guide

Literature Number: SPRUGK0A March 2009-Revised December 2009

Pref	ace		. 6
1	Feature	s	. 7
2	Introdu	ction	. 8
3	Overvie	w	10
4	Input D	ata	11
	4 .1	Branch Metrics Calculations	11
	4.2	Soft Input Dynamic Ranges	12
5	Decisio	n Data	13
6		rs	
	6.1	VCP2 Input Configuration Register 0 (VCPIC0)	
	6.2	VCP2 Input Configuration Register 1 (VCPIC1)	16
	6.3	VCP2 Input Configuration Register 2 (VCPIC2)	
	6.4	VCP2 Input Configuration Register 3 (VCPIC3)	18
	6.5	VCP2 Input Configuration Register 4 (VCPIC4)	19
	6.6	VCP2 Input Configuration Register 5 (VCPIC5)	20
	6.7	VCP2 Output Register 0 (VCPOUT0)	21
	6.8	VCP2 Output Register 1 (VCPOUT1)	22
	6.9	VCP2 Execution Register (VCPEXE)	23
	6.10	VCP2 Endian Mode Register (VCPEND)	24
	6.11	VCP2 Status Register 0 (VCPSTAT0)	
	6.12	VCP2 Status Register 1 (VCPSTAT1)	26
	6.13	VCP2 Error Register (VCPERR)	27
	6.14	VCP2 Emulation Control Register (VCPEMU)	29
7	Endianı	ness	30
	7.1	Branch Metrics	30
8	Archite	cture	
_	8.1	Sliding-Windows Processing	
	8.2	Yamamoto Parameters	
	8.3	Input FIFO (Branch Metrics)	
	8.4	Output FIFO (Decisions)	
9		nming	
	9.1	EDMA3 Resources	
	9.1	Input Configuration Words	
10	-	Parameters	
11	•	Generation	
11	11.1		
		VCPREVT Congretion	
40	11.2	VCPREVT Generation	
12	-	onal Modes	
46	12.1	Debugging Features	
13		and Status	
App	endix A F	Revision History	47

List of Figures

1	Convolutional Encoder Example Block Diagram	8
2	Trellis Diagram for Convolutional Encoder Example	9
3	VCP2 Block Diagram	10
4	VCP2 Input Configuration Register 0 (VCPIC0)	15
5	VCP2 Input Configuration Register 1 (VCPIC1)	16
6	VCP2 Input Configuration Register 2 (VCPIC2)	17
7	VCP2 Input Configuration Register 3 (VCPIC3)	18
8	VCP2 Input Configuration Register 4 (VCPIC4)	19
9	VCP2 Input Configuration Register 5 (VCPIC5)	20
10	VCP2 Output Register 0 (VCPOUT0)	21
11	VCP2 Output Register 1 (VCPOUT1)	22
12	VCP2 Execution Register (VCPEXE)	23
13	VCP2 Endian Mode Register (VCPEND)	24
14	VCP2 Status Register 0 (VCPSTAT0)	25
15	VCP2 Status Register 1 (VCPSTAT1)	26
16	VCP2 Error Register (VCPERR)	27
17	VCP2 Emulation Control Register (VCPEMU)	29
18	Data Source - VBUSP/DMA (BM = 1)	30
19	Data Destination - Kernel for Processing Unit (BM = 1)	30
20	Data Source - VBUSP/DMA (BM = 0)	31
21	Data Destination - Kernel for Processing Unit (BM = 0)	31
22	Trellis Stage Ordering of Hard Decisions in 32-Bit Word (OUT_ORDER = 0)	32
23	Trellis Stage Ordering of Hard Decisions in 32-Bit Word (OUT_ORDER = 1)	32
24	Processing Unit	33
25	Tailed Traceback Mode	33
26	Mixed Traceback Mode-Example With Five Sliding Windows	34
27	Convergent Traceback Mode-Example With Five Sliding Windows	34
28	Input FIFO (Branch Metrics)	37
29	Output FIFO (Decisions Data)	38
30	EDMA3 Parameters Structure	30

www.ti.com

List of Tables

1	Branch Metrics for Rate 1/2	11
2	Branch Metrics for Rate 1/3	12
3	Branch Metrics for Rate 1/4	12
4	VCP2 Soft Inputs Quantization	12
5	VCP2 Registers	14
6	VCP2 Memories	14
7	VCP2 Input Configuration Register 0 (VCPIC0) Field Descriptions	15
8	VCP2 Input Configuration Register 1 (VCPIC1) Field Descriptions	16
9	VCP2 Input Configuration Register 2 (VCPIC2) Field Descriptions	17
10	VCP2 Input Configuration Register 3 (VCPIC3) Field Descriptions	18
11	VCP2 Input Configuration Register 4 (VCPIC4) Field Descriptions	19
12	VCP2 Input Configuration Register 5 (VCPIC5) Field Descriptions	20
13	VCP2 Output Register 0 (VCPOUT0) Field Descriptions	21
14	VCP2 Output Register 1 (VCPOUT1) Field Descriptions	22
15	VCP2 Execution Register (VCPEXE) Field Descriptions	23
16	VCP2 Endian Mode Register (VCPEND) Field Descriptions	24
17	VCP2 Status Register 0 (VCPSTAT0) Field Descriptions	25
18	VCP2 Status Register 1 (VCPSTAT1) Field Descriptions	26
19	VCP2 Error Register (VCPERR) Field Descriptions	27
20	VCP2 Emulation Control Register (VCPEMU) Field Descriptions	29
21	Branch Metrics	30
22	Branch Metrics in DSP Memory (BM = 1)	30
23	Branch Metrics in DSP Memory (BM = 0)	31
24	Soft Decision Organization	32
25	Traceback Soft Decision Sliding Window Limits	35
26	Traceback Hard Decision Sliding Window Limits	35
27	Code Rate versus SYMX	36
28	Required EDMA3 Links Per User Channel	39
20	C6/157 Revision History	47

Read This First

About This Manual

Channel decoding of voice and low bit-rate data channels found in third generation (3G) cellular standards requires decoding of convolutional encoded data. The Viterbi-decoder coprocessor 2 (VCP2) provided in the C6457 devices has been designed to perform Viterbi decoding for IS2000 and 3GPP wireless standards. The VCP2 coprocessor has been designed to perform forward-error correction for 2G and 3G wireless systems. The VCP2 coprocessor offers a very cost effective and synergistic solution when combined with Texas Instruments (TI) DSPs. The VCP2 supports 1941 12.2 Kbps class A 3G voice channels running at 333 MHz. This document describes the operation and programming of the VCP2.

Notational Conventions

This document uses the following conventions.

- Hexadecimal numbers are shown with the suffix h. For example, the following number is 40 hexadecimal (decimal 64): 40h.
- Registers in this document are shown in figures and described in tables.
 - Each register figure shows a rectangle divided into fields that represent the fields of the register.
 Each field is labeled with its bit name, its beginning and ending bit numbers above, and its read/write properties below. A legend explains the notation used for the properties.
 - Reserved bits in a register figure designate a bit that is used for future device expansion.
- The term "word" describes a 32-bit value.

Related Documentation From Texas Instruments

The following documents describe the C6000[™] devices and related support tools. Copies of these documents are available on the Internet at www.ti.com. *Tip:* Enter the literature number in the search box provided at www.ti.com.

- SPRU189 TMS320C6000 DSP CPU and Instruction Set Reference Guide. Describes the CPU architecture, pipeline, instruction set, and interrupts for the TMS320C6000 digital signal processors (DSPs).
- SPRU198 TMS320C6000 Programmer's Guide. Describes ways to optimize C and assembly code for the TMS320C6000™ DSPs and includes application program examples.
- <u>SPRU301</u> *TMS320C6000 Code Composer Studio Tutorial.* Introduces the Code Composer Studio™ integrated development environment and software tools.
- SPRU321 Code Composer Studio Application Programming Interface Reference Guide.

 Describes the Code Composer Studio™ application programming interface (API), which allows you to program custom plug-ins for Code Composer.
- SPRU871 TMS320C64x+ Megamodule Reference Guide. Describes the TMS320C64x+ digital signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access (IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth management, and the memory and cache.

C6000, TMS320C6000, Code Composer Studio are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

TMS320C6457 Viterbi-Decoder Coprocessor 2

Channel decoding of voice and low bit-rate data channels found in cellular standards such as 2.5G, 3G, and WiMAX requires the decoding of convolutional encoded data. The Viterbi-decoder coprocessor 2 (VCP2) provided in the C6457 devices performs Viterbi decoding for IS2000 and 3GPP wireless standards. The VCP2 coprocessor also performs forward-error correction for 2G and 3G wireless systems. The VCP2 coprocessor offers a very cost effective and synergistic solution when combined with Texas Instruments (TI) DSPs. The VCP2 supports 1941 12.2 Kbps class A 3G voice channels running at 333 MHz.

1 Features

The VCP2 provides:

- · High flexibility:
 - Variable constraint length, K = 5, 6, 7, 8, or 9
 - User-supplied code coefficients
 - Code rates (1/2, 1/3, or 1/4)
 - Configurable trace back settings (convergence distance, frame structure)
 - Branch metrics calculation and depuncturing done in software by the DSP
- System and development cost optimization:
 - The VCP2 releases DSP resources for other processing
 - Reduces board space and power consumption by performing on-chip decoding
 - Communication between the DSP and the VCP2 is performed through the high-performance EDMA3 engine
 - Uses its own optimized working memories
 - Provides debug capabilities during frame processing
 - Libraries are provided for reduced development time

Introduction www.ti.com

2 Introduction

A convolutional code is generated by passing the information sequence to be transmitted through a linear finite-state shift register. The VCP2 is able to decode only a subset of those codes known as a single-shift register, nonrecursive convolutional code (an example is given in Figure 1). Important parameters for this type of codes are:

- The constraint length K (length of the delay line, the VCP2 supports K values from 5 to 9).
- The rate R given by R = k/n where k is the number of information bits needed to produce n output bits also known as codewords (the VCP2 supports 1/2, 1/3, and 1/4 codes with rates).
- The generator polynomials Gn describe how the outputs are generated from the inputs.

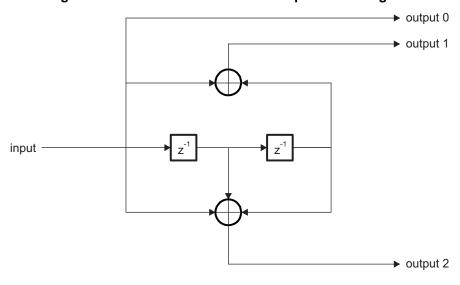
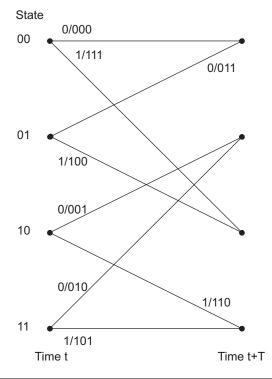


Figure 1. Convolutional Encoder Example Block Diagram

NOTE: K = 3, R = k/n = 1/3, $G_0 = (100)_8$, $G_1 = (101)_8$, $G_2 = (111)_8$ 0/000 means input is 0, output0 is 0, output1 is 0, output2 is 0. There are $2^{(K-1)}$ states and 2^k incoming branches per state.

From the parameters, we can derive a trellis diagram providing a useful representation of the code, but whose complexity grows exponentially with the constraint length K. Figure 2 shows the trellis diagram of the code from Figure 1. The fact that there is a limited number of possible transitions from one state to another makes the code powerful and will be used in the decoding process.


As a maximum-likelihood sequence estimation (MLSE) decoder, the Viterbi decoder identifies the code sequence with the highest probability of matching the transmitted sequence based on the received sequence.

The Viterbi algorithm is composed of a metric update and a traceback routine. The metric update performs a forward recursion in the trellis over a finite number of symbol periods where probabilities are accumulated (the VCP2 accumulates on 13 bits) for each individual state based on the current input symbol (branch metric information). The accumulated metric is known as path metrics or state metrics. Once a path through the trellis is identified, the traceback routine performs a backward recursion in the trellis and outputs hard decisions or soft decisions.

www.ti.com Introduction

Figure 2. Trellis Diagram for Convolutional Encoder Example

NOTE: K = 3, R = k/n = 1/3, $G_0 = (100)_8$, $G_1 = (101)_8$, $G_2 = (111)_8$ 0/000 means input is 0, output1 is 0, output2 is 0, output3 is 0. There are $2^{(K-1)}$ states and 2^k incoming branches per state.

Overview www.ti.com

3 Overview

The DSP controls the operation of the VCP2 (Figure 3) using memory-mapped registers. The DSP typically sends and receives data using synchronized EDMA3 transfers through the 64-bit EDMA3 bus. The VCP2 sends two synchronization events to the EDMA3: a receive event (VCPREVT) and a transmit event (VCPXEVT). The VCP2 input data corresponds to the branch metrics and the output data to the hard decisions or soft decisions.

Figure 3. VCP2 Block Diagram

www.ti.com Input Data

4 Input Data

4.1 Branch Metrics Calculations

The branch metrics (BM) are calculated by the DSP and stored in the DSP memory subsystem as 8-bit signed values. Per symbol interval T, for a rate R = k/n and a constraint length K, there are a total of 2^{K-1+k} branches in the trellis. For rate 1/n codes, only 2^{n-1} branch metrics need to be computed per symbol period and passed to the VCP2. Moreover, n symbols are required to calculate 1 branch metric.

Assuming BSPK modulated bits $(0 \rightarrow 1, 1 \rightarrow -1)$, the branch metrics are calculated as follows:

- Rate 1/2: there are 2 branch metrics per symbol period
 - $BM_0(t) = r_0(t) + r_1(t)$
 - $BM_1(t) = r_0(t) r_1(t)$

where r(t) is the received codeword at time t (2 symbols, $r_0(t)$ is the symbol corresponding to the encoder upper branch, see Figure 1).

- Rate 1/3: there are 4 branch metrics per symbol period
 - $BM_0(t) = r_0(t) + r_1(t) + r_2(t)$
 - $BM_1(t) = r_0(t) + r_1(t) r_2(t)$
 - $BM_2(t) = r_0(t) r_1(t) + r_2(t)$
 - $BM_3(t) = r_0(t) r_1(t) r_2(t)$

where r(t) is the received codeword (3 symbols, $r_0(t)$ is the symbol corresponding to the encoder upper branch, see Figure 1).

- Rate 1/4: there are 8 branch metrics per symbol period
 - $BM_0(t) = r_0(t) + r_1(t) + r_2(t) + r_3(t)$
 - $BM_1(t) = r_0(t) + r_1(t) + r_2(t) r_3(t)$
 - $BM_2(t) = r_0(t) + r_1(t) r_2(t) + r_3(t)$
 - $BM_3(t) = r_0(t) + r_1(t) r_2(t) r_3(t)$
 - $BM_4(t) = r_0(t) r_1(t) + r_2(t) + r_3(t)$
 - $BM_5(t) = r_0(t) r_1(t) + r_2(t) r_3(t)$
 - $BM_6(t) = r_0(t) r_1(t) r_2(t) + r_3(t)$
 - $BM_7(t) = r_0(t) r_1(t) r_2(t) r_3(t)$

where r(t) is the received codeword (4 symbols, $r_0(t)$ is the symbol corresponding to the encoder upper branch, see Figure 1).

The data must be sent to the VCP2 as described in Table 1, Table 2, and Table 3 for rates 1/2, 1/3, and 1/4, respectively (the base address must be double-word aligned).

The branch metrics can be saved in the DSP memory subsystem in either their native format or packed in words (user implementation). When working in big-endian mode, the VCP2 endian mode register (VCPEND) indicates if the data is 32-bit word packed or native 8-bit format and the VCP2 will handle the endianness byte swapping accordingly (see Section 7).

Table 1. Branch Metrics for Rate 1/2

		Da	ata	
Address (hex)	MSB			LSB
Base	$BM_1(t=T)$	BM ₀ (t=T)	BM ₁ (t=0)	$BM_0(t=0)$
Base + 4h	$BM_1(t=3T)$	$BM_0(t=3T)$	$BM_1(t=2T)$	$BM_0(t=2T)$
Base + 8h	•••			

Input Data www.ti.com

Tahla 2	Rranch	Motrice	for Rate 1.	/2
Iable 2	L. Diantin	MEHICS	IUI IVALE I	13

		Da	ata	
Address (hex)	MSB			LSB
Base	BM ₃ (t=0)	BM ₂ (t=0)	BM ₁ (t=0)	$BM_0(t=0)$
Base + 4h	$BM_3(t=T)$	$BM_2(t=T)$	$BM_1(t=T)$	$BM_0(t=T)$
Base + 8h				

Table 3. Branch Metrics for Rate 1/4

		Da	ata	
Address (hex)	MSB			LSB
Base	BM ₃ (t=0)	BM ₂ (t=0)	BM ₁ (t=0)	$BM_0(t=0)$
Base + 4h	$BM_7(t=0)$	$BM_6(t=0)$	$BM_5(t=0)$	$BM_4(t=0)$
Base + 8h	$BM_3(t=T)$	$BM_2(t=T)$	$BM_1(t=T)$	$BM_0(t=T)$
Base + Ch	$BM_7(t=T)$	$BM_6(t=T)$	$BM_5(t=T)$	$BM_4(t=T)$
Base + 10h				

The state metric accumulation resolution is 13 bits on the VCP2. Consequently, full 8-bit dynamic range is available for branch metrics on the C6457 VCP2, for all constraint lengths and all code rates.

4.2 Soft Input Dynamic Ranges

The VCP2 implementation implies that the soft inputs need to be quantized so that the branch metrics satisfy the following bound B1 (branch metrics upper bound - absolute value):

$$2^{(C-1)} - 1 \ge (2 \times (K-1) + 2) \times B_1$$

K is the constraint length and *C* determines the truncation of state metrics that can be performed without loss of decoding performance.

The VCP2 is designed with C = 13. The branch metrics can have a maximum dynamic range of 7 + 1 sign bits [-128; +127]. This gives another branch metrics upper bound $B_2 \le 128$.

So for a given constraint length, min (B₁, B₂) gives the final branch metrics maximum bound B.

To satisfy B in the branch metrics calculation, the soft input values, delivered as 8-bit-signed equalized values, are linearly scaled with the following formula where 1/n is the rate.

Scaled = min $(B_1, B_2)/n \times SoftValue/128$

Example

K = 9, then $B_1 \le 227.5$ and the branch metrics range B_2 is [-128; +127]. So the branch metrics need to be in [-128; +127] range.

If rate 1/3, 128/3 42, so the soft inputs need to be scaled by a factor of 0.333333 and saturated within the range [-42; +42].

Table 4 summarizes the calculations for the different constraint length and rate:

Table 4. VCP2 Soft Inputs Quantization

1/Rate	K	Scaling Factor	Range
2	5, 6, 7, 8, 9	0.5	[-64; +63]
3	5, 6, 7, 8, 9	0.333333	[-42; +42]
4	5, 6, 7, 8, 9	0.25	[-31; +31]

www.ti.com Decision Data

5 Decision Data

The VCP2 can be configured to generate either hard decisions (one bit per decision), or soft decisions (8-bit value per decision). Ordering of the VCP2 decisions depends on the OUT_ORDER field of VCPIC3 and the SD field of VCPEND. If the DSP is set to work in big-endian mode and the results are soft decisions (see the VCP2 endian mode register, Section 6.2). The decisions buffer start address must be double-word aligned and the buffer size must be a multiple of 8 bytes.

The soft decisions in the VCP2 are initially computed with the path metrics at 13-bit values. The results are then clipped to 8-bit signed integer values before being stored in the traceback soft decision memory.

6 Registers

The VCP2 contains several memory-mapped registers accessible by the CPU, the IDMA, the QDMA, and the EDMA3. A configuration-bus access is faster than an EDMA3-bus access for isolated accesses (typically when accessing control registers). EDMA3-bus accesses are used for EDMA3 transfers and provide maximum throughput to/from the VCP2. The registers are listed in Table 5. For the memory map and full register addresses, see the device-specific data manual.

The branch metric and traceback decision memories contents are not accessible and the memories can be regarded as FIFOs by the DSP, meaning you do not have to perform any indexing on the addresses.

Table 5. VCP2 Registers

EDMA3 Bus Offsets	Configuration Bus Offsets	Acronym	Register Name	See
0000h		VCPIC0	VCP input configuration register 0	Section 6.1
0004h		VCPIC1	VCP input configuration register 1	Section 6.2
0008h		VCPIC2	VCP input configuration register 2	Section 6.3
000Ch		VCPIC3	VCP input configuration register 3	Section 6.4
0010h		VCPIC4	VCP input configuration register 4	Section 6.5
0014h		VCPIC5	VCP input configuration register 5	Section 6.6
0048h		VCPOUT0	VCP output register 0	Section 6.7
004Ch		VCPOUT1	VCP output register 1	Section 6.8
0080h		VCPWBM	VCP branch metrics write FIFO register	
00C0h		VCPRDECS	VCP decisions read FIFO register	
	0018h	VCPEXE	VCP execution register	Section 6.9
	0020h	VCPEND	VCP endian mode register	Section 6.10
	0040h	VCPSTAT0	VCP status register 0	Section 6.11
	0044h	VCPSTAT1	VCP status register 1	Section 6.12
	0050h	VCPERR	VCP error register	Section 6.13
	0060h	VCPEMU	VCP emulation control register	Section 6.14

Table 6. VCP2 Memories

EDMA3 Bus Offsets	Acronym	Name	Size
1000h	BM	Branch Metrics (BM)	512 Bytes
2000h	SM	State Metric (SM)	448 Bytes
3000h	TBHD	Traceback Hard Decision	4K Bytes
6000h	TBSD	Traceback Soft Decision	16K Bytes
F000h	Ю	Decoded Bits (IO)	512 Bytes

6.1 VCP2 Input Configuration Register 0 (VCPIC0)

The VCP2 input configuration register 0 (VCPIC0) is shown in Figure 4 and described in Table 7.

Figure 4. VCP2 Input Configuration Register 0 (VCPIC0)

31	24	23 16	15 8	7 0
	POLY3	POLY2	POLY1	POLY0
	R/W-0	R/W-0	R/W-0	R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 7. VCP2 Input Configuration Register 0 (VCPIC0) Field Descriptions

Bit	Field	Value	Description ⁽¹⁾
31-24	POLY3	0-FFh	Polynomial generator G ₃ (see Section 9.2).
23-16	POLY2	0-FFh	Polynomial generator G ₂ (see Section 9.2).
15-8	POLY1	0-FFh	Polynomial generator G ₁ (see Section 9.2).
7-0	POLY0	0-FFh	Polynomial generator G ₀ (see Section 9.2).

The polynomial generators are 9-bit values defined as $G(z) = b_8 z^{-8} + b_7 z^{-7} + b_6 z^{-6} + b_5 z^{-5} + b_4 z^{-4} + b_3 z^{-3} + b_2 z^{-2} + b_1 z^{-1} + b_0$, but only 8 bits are passed in the POLY*n* bitfields so that b_1 is the most significant bit and b_8 is the least significant bit (b_0 is not passed, but set by the internal VCP hardware).

6.2 VCP2 Input Configuration Register 1 (VCPIC1)

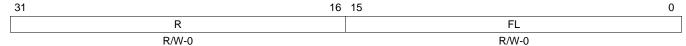
The VCP2 input configuration register 1 (VCPIC1) is shown in Figure 5 and described in Table 8.

Figure 5. VCP2 Input Configuration Register 1 (VCPIC1)

31		29	28	27	10	6
	Reserved		YAMEN		YAMT	
	R/W-0		R/W-0		R/W-0	
15					C)
					Reserved	
	R/W-0					

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8. VCP2 Input Configuration Register 1 (VCPIC1) Field Descriptions


Bit	Field	Value	Description	
31-29	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.	
28	YAMEN		Yamamoto algorithm enable bit. See Section 8.2.	
		0	Yamamoto algorithm is disabled.	
		1	Yamamoto algorithm is enabled.	
27-16	YAMT	0-FFFh	Yamamoto threshold value bits. See Section 8.2.	
15-0	Reserved	0	Reserved. These reserved bit locations must be 0. A value written to this field has no effect.	

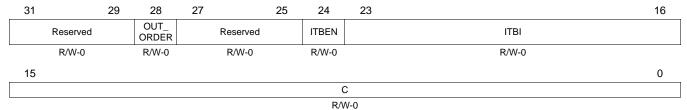
6.3 VCP2 Input Configuration Register 2 (VCPIC2)

The VCP2 input configuration register 2 (VCPIC2) is shown in Figure 6 and described in Table 9.

Figure 6. VCP2 Input Configuration Register 2 (VCPIC2)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9. VCP2 Input Configuration Register 2 (VCPIC2) Field Descriptions


Bit	Field	Value	Description
31-16	R	0-FFFFh	Reliability length bits (see Section 8.1).
15-0	FL	0-FFFFh	Frame length bits (see Section 8.1).

6.4 VCP2 Input Configuration Register 3 (VCPIC3)

The VCP2 input configuration register 3 (VCPIC3) is shown in Figure 7 and described in Table 10.

Figure 7. VCP2 Input Configuration Register 3 (VCPIC3)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10. VCP2 Input Configuration Register 3 (VCPIC3) Field Descriptions

Bit	Field	Value	Description
31-29	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
28	OUT_ORDER	0 and 1	Defines the order of VCP output for decoded data.
		0	0 to 31
		1	31 to 0
27-25	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
24	ITBEN	0 and 1	Traceback state index enable/disable.
		0	Disabled
		1	Initialization of traceback starting state is enabled
23-16	ITBI	0-FFh	Traceback state index. The index of the starting state for the traceback unit.
15-0	С	0-FFFFh	Convergence distance bits. The length of the convergent section of the siding window. This is only used if $f > F + (K-1)$ in mixed mode, or if $f > F + C$ in convergence mode.

6.5 VCP2 Input Configuration Register 4 (VCPIC4)

The VCP2 input configuration register 4 (VCPIC4) is shown in Figure 8 and described in Table 11.

Figure 8. VCP2 Input Configuration Register 4 (VCPIC4)

31	29	28		16
Rese	erved		IMINS	
R/V	W-0		R/W-0	
15	13	12		0
Rese	erved		IMAXS	
R/V	W-0		R/W-0	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11. VCP2 Input Configuration Register 4 (VCPIC4) Field Descriptions

Bit	Field	Value	Description	
31-29	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.	
28-16	IMINS	0-1FFFh	0-1FFFh Minimum initial state metric (13 bits).	
15-13	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.	
12-0	IMAXS	0-1FFFh	Maximum initial state metric (13 bits).	

6.6 VCP2 Input Configuration Register 5 (VCPIC5)

The VCP2 input configuration register 5 (VCPIC5) is shown in Figure 9 and described in Table 12.

Figure 9. VCP2 Input Configuration Register 5 (VCPIC5)

31	30	29	28	27		25	24			20	19		16
SDHD	OUTF	Т	В		Reserved				SYMR			SYMX	
R/W-0	R/W-0	R/W-0			R/W-0		R		R/W-0		R/W-0		
15							8	7					0
Reserved									IM	AXI			
R/W-0									R/	W-0			

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 12. VCP2 Input Configuration Register 5 (VCPIC5) Field Descriptions

Bit	Field	Value	Description
31	SDHD		Output decision type select bit.
		0	Hard decisions
		1	Soft decisions
30	OUTF		Output parameters read flag bit.
		0	VCPREVT is not generated by VCP for output parameters read
		1	VCPREVT generated by VCP for output parameters read
29-28	ТВ		Traceback mode select bits.
		0	Not allowed
		1h	Tailed, $F \le F_{max}^{(1)}$
		2h	Convergent, (no tail bits)
		3h	Mixed, F ≥ F _{max} and tail bits are used
27-25	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
24-20	SYMR	0-1Fh	Determines decision buffer length in output FIFO. When programming register values for the SYMR bits, always subtract 1 from the value calculated. Valid values for the SYMR bits are from 0 to 1Fh.
			For hard decision:
			If $F \le 2048$; then SYMR = ceil[f/64] - 1 If $F > 2048$; then SYMR = 15 or 31
			For soft decision:
			If $F \le 256$; then SYMR = ceil[f/8] - 1 If $F > 256$; then SYMR = 15 or 31
19-16	SYMX	0-Fh	Determines branch metrics buffer length in input FIFO. For information on selecting the appropriate SYMX value, see Section 8.3.
15-8	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
7-0	IMAXI	0-FFh	Maximum initial state metric value bits. IMAXI bits determine which state should be initialized with the maximum state metrics value (IMAXS) bits in VCPIC4; all the other states are initialized with the value in the IMINS bits.

 $^{\,^{(1)}\,\,}$ For more details on $F_{max},$ see Section 8.1.4.

6.7 VCP2 Output Register 0 (VCPOUT0)

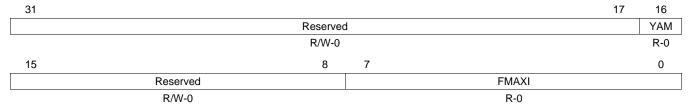
The VCP2 output register 0 (VCPOUT0) is shown in Figure 10 and described in Table 13.

Figure 10. VCP2 Output Register 0 (VCPOUT0)

31	29	28		16
Re	served		FMINS	
R	2/W-0		R/W-0	
15	13	12		0
Re	served		FMAXS	
R	2/W-0		R/W-0	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13. VCP2 Output Register 0 (VCPOUT0) Field Descriptions


Bit	Field	Value	Description
31-29	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
28-16	FMINS	0-FFFh	Minimum final state metric value (13 bits).
15-13	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
12-0	FMAXS	0-FFFh	Maximum state metric value for the final trellis stage (at trellis stage R+C). 13 bits

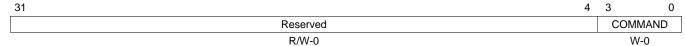
6.8 VCP2 Output Register 1 (VCPOUT1)

The VCP2 output register 1 (VCPOUT1) is shown in Figure 11 and described in Table 14.

Figure 11. VCP2 Output Register 1 (VCPOUT1)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14. VCP2 Output Register 1 (VCPOUT1) Field Descriptions


Bit	Field	Value	Description
31-17	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
16	YAM		Yamamoto bit result. This bit is a quality indicator bit and is only used if the Yamamoto logic is enabled. See Section 8.2.
		0	At least one trellis stage had an absolute difference less than the Yamamoto threshold and the decided frame has poor quality
		1	No trellis stage had an absolute difference less than the Yamamoto threshold and the frame has good quality
15-8	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
7-0	FMAXI	0-FFFh	State index for the state with the final maximum state metric. There are $2^{(k-1)}$ state metrics for each trellis stage. Valid range for FMAXI is 0 to $2^{(k-1)}$ -1.

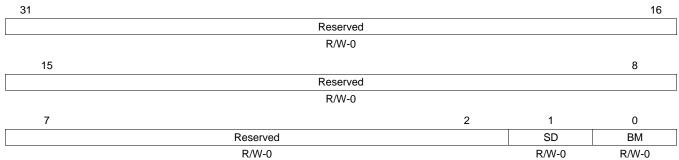
6.9 VCP2 Execution Register (VCPEXE)

The VCP2 execution register (VCPEXE) is shown in Figure 12 and described in Table 15.

Figure 12. VCP2 Execution Register (VCPEXE)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 15. VCP2 Execution Register (VCPEXE) Field Descriptions


Bit	Field	Value	Description
31-4	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
3-0	COMMAND		VCP command select bits; see Section 10.
		0	Reserved (no instruction)
		1h	Start VCP (normal mode)
		2h	Halt or Pause VCP (debug mode). The VCP is halted (or paused) after processing the state metric for the current sliding window and before the start of the traceback.
		3h	Restart VCP and process one sliding window (debug mode). The VCP is restarted from the pause state and begins the traceback operation. The VCP is again paused after processing the state metrics for next sliding window.
		4h	Restart VCP (debug mode). The VCP is restarted from the paused state and begins the traceback operation. The VCP will run to normal completion.
		5h	Stop. Soft reset all VCP registers to their initial condition. All registers in the VCP are reset in this mode except for the execution register, endian register, emulation register, and other internal registers.
		6h-FFh	Reserved

6.10 VCP2 Endian Mode Register (VCPEND)

The VCP2 endian mode register (VCPEND) is shown in Figure 13 and described in Table 16. VCPEND has an effect only in big-endian mode.

Figure 13. VCP2 Endian Mode Register (VCPEND)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 16. VCP2 Endian Mode Register (VCPEND) Field Descriptions

Bit	Field	Value	Description
31-2	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
1	SD		Traceback soft-decision memory format select bit.
		0	32-bit-word packed.
		1	Native format (8 bits).
0	ВМ		Branch metrics memory format select bit.
		0	32-bit-word packed.
		1	Native format (8 bits).

6.11 VCP2 Status Register 0 (VCPSTAT0)

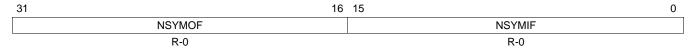
The VCP2 status register 0 (VCPSTAT0) is shown in Figure 14 and described in Table 17.

Figure 14. VCP2 Status Register 0 (VCPSTAT0)

31	29 28	3					16
Reserved	Reserved		NSYMPROC				
R/W-0				R	-0		
15			12	11			8
	NSYMPROC				Rese	erved	
	R-0				RΛ	W-0	
7	6	5	4	3	2	1	0
Reserved	EMU HALT	OFFUL	IFEMP	WIC	ERR	RUN	PAUSE
R/W-0	R-0	R-0	R-1	R-0	R-0	R-0	R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 17. VCP2 Status Register 0 (VCPSTAT0) Field Descriptions


Bit	Field	Value	Description
31-29	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
28-12	NSYMPROC		Number of symbols processed bits. The NSYMPROC bits indicate how many symbols have been processed in the state metric unit with respect to time.
			The maximum number of processed stages is equal to $f + (k-1)$ in tailed or mixed mode. The maximum number of processed stages is equal to $f + c$ in convergent mode.
11-7	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
6	EMUHALT		Emulation halt status bit.
		0	No halt due to emulation.
		1	Halt due to emulation.
5	OFFUL		Output FIFO buffer full status bit.
		0	Output FIFO buffer is not full.
		1	Output FIFO buffer is full.
4	IFEMP		Input FIFO buffer empty status bit.
		0	Input FIFO buffer is not empty.
		1	Input FIFO buffer is empty.
3	WIC		Waiting for input configuration bit. The WIC bit indicates that the VCP is waiting for new input control parameters to be written. This bit is always set after decoding of a user channel.
		0	Not waiting for input configuration words.
		1	Waiting for input configuration words.
2	ERR		VCP error status bit. The ERR bit is cleared as soon as the DSP reads the VCP error register (VCPERR).
		0	No error.
		1	VCP paused due to error.
1	RUN		VCP running status bit.
		0	VCP is not running.
		1	VCP is running.
0	PAUSE		VCP pause status bit.
		0	VCP is not paused. The UNPAUSE command is acknowledged by clearing the PAUSE bit.
		1	VCP is paused. The PAUSE command is acknowledged by setting the PAUSE bit. The PAUSE bit can also be set, if the input FIFO buffer is becoming empty or if the output FIFO buffer is full.

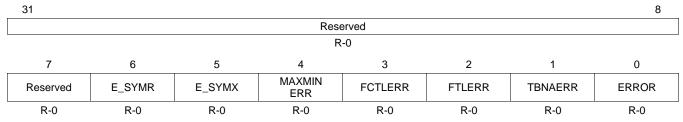
6.12 VCP2 Status Register 1 (VCPSTAT1)

The VCP2 status register 1 (VCPSTAT1) is shown in Figure 15 and described in Table 18.

Figure 15. VCP2 Status Register 1 (VCPSTAT1)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 18. VCP2 Status Register 1 (VCPSTAT1) Field Descriptions


Bit	Field	Value	Description	
31-16	NSYMOF	0-FFFFh	Number of symbols in the output FIFO buffer.	
15-0	NSYMIF	0-FFFFh	Number of symbols in the input FIFO buffer.	

6.13 VCP2 Error Register (VCPERR)

The VCP2 error register (VCPERR) is shown in Figure 16 and described in Table 19.

Figure 16. VCP2 Error Register (VCPERR)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 19. VCP2 Error Register (VCPERR) Field Descriptions

Bit	Field	Value	Description				
31-7	Reserved	0	Reserved. The reserve	ed bit location is a	always read as 0. A value w	ritten to this field	has no effect.
6	E_SYMR	0	No error for SMAR, as	shown in the foll	owing relationships:		
			TB Mode	SYMR	# of 64 Bit Transfers	Condition Transfer	
			Hard	0 to 31	1 to 32	f ≤ 2048	
			Hard	31	32	f > 2048	
			Hard	15	16	f ≥ 2048	
			Soft	0 to 31	1 to 32	f ≤ 2048	
			Soft	31	32	f ≥ 2048	
			Soft	15	16	f > 2048	
		1	Error occurred				
5	E_SYMX	0	No error for SMAX, as	shown in the foll	owing relationships:		
			Code Rate	SYMX	# of 64 Bit Transfers	# of BM per	# trellis per
			1/4	3	16	128	16
			1/4	1	8	64	8
			1/3	7	16	128	32
			1/3	3	8	64	16
			1/2	15	16	128	64
			1/2	7	8	64	32
		1	Error occurred				
4	MAXMINERR	0	No error. Error check f	or the following re	elationships:		
			Sign IMAXS	Sign IMINS	Check Equa	Check Equation	
			0	0	0 ≤ IMAXS - IMIN	IS < 2048	
			1	1	0 ≤ IMAXS - IMIN	IS < 2048	
			0	1	0 ≤ IMAXS - IMIN	IS < 2048	
			1	0	$0 \le (2 \times 4096 + IMAXS)$	- IMINS < 2048	
		1	Error occurred				
3	FCTLERR	0	No error				
		1	1 = r + c too large [(r -	+ c) > (r + c)max]	for mixed or convergent tra	aceback modes	
2	FTLERR	0	No error	, , , , , , ,	<u> </u>	<u> </u>	
		1		er tailed traceback	(modo ⁽¹⁾		
1	TBNAERR	1	F too large $(f > F_{max})$ for	п тапец пасераск	∖ moue∵.		
1	IDINAEKK	0	No error				
		1	Traceback mode is not	t allowed. (1 to 3	are valid modes)		

 $^{^{(1)}}$ $\;$ For more details on $F_{\text{max}},$ see Section 8.1.4.

Table 19. VCP2 Error Register (VCPERR) Field Descriptions (continued)

Bit	Field	Value	Description
0	ERROR	0	No error is detected.
		1	An error has occurred

6.14 VCP2 Emulation Control Register (VCPEMU)

The VCP2 emulation control register (VCPEMU) is shown in Figure 17 and described in Table 20.

Figure 17. VCP2 Emulation Control Register (VCPEMU)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 20. VCP2 Emulation Control Register (VCPEMU) Field Descriptions

Bit	Field	Value	Description
31-1	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
0	FREE		Free bit
		0	Reserved
		1	Free run mode - vcp_emususp signal and functions normally.

Endianness www.ti.com

7 Endianness

The VCP endian mode register (VCPEND) is intended to solve possible big-endian issues and is, therefore, used only when the DSP is in big-endian mode. Depending on whether the data is saved in the DSP memory subsystem in its native format or is 32-bit word packed, data interpretation will be different.

7.1 Branch Metrics

When the data are saved in their 8-bit native format (BM = 1), they must be organized in the DSP memory as described in Table 22. When the data are packed on 32-bit words (BM = 0), they must be organized in the DSP memory as described in Table 23.

Table 21. Branch Metrics

Little_big_endian	ВМ	Description (MSB to LSB)	
0	0	3,2,1,0,7,6,5,4 \Rightarrow 7,6,5,4,3,2,1,0 (bytes)	
0	1	$0,1,2,3,4,5,6,7 \Rightarrow 7,6,5,4,3,2,1,0 \text{ (bytes)}$	
1	0	Endianness manager has no effect $7,6,5,4,3,2,1,0 \Rightarrow 7,6,5,4,3,2,1,0$ (bytes)	
1	1	Endianness manager has no effect $7,6,5,4,3,2,1,0 \Rightarrow 7,6,5,4,3,2,1,0$ (bytes)	

Table 22. Branch Metrics in DSP Memory (BM = 1)

Address (hex bytes)	Data
Base	BM0
Base + 1	BM1
Base + 2	BM2
Base + 3	BM3
Base + 4	BM4
Base + 5	BM5
Base + 6	BM6
Base + 7	BM7

Data are presented to the EDMA3 as shown in Figure 18. The endianness manager reorders the BMs, as shown in Figure 19, for processing.

Figure 18. Data Source - VBUSP/DMA (BM = 1)

63:56	55:48	47:40	39:32	31:24	23:16	15:8	7:0
BM0	BM1	BM2	BM3	BM4	BM5	BM6	BM7

Figure 19. Data Destination - Kernel for Processing Unit (BM = 1)

63:56	55:48	47:40	39:32	31:24	23:16	15:8	7:0	
BM7	BM6	BM5	BM4	BM3	BM2	BM1	BM0	

www.ti.com Endianness

Table 23. Branch Metrics in DSP Memory (BM = 0)

Address (hex bytes)	Data
Base	BM3
Base + 1	BM2
Base + 2	BM1
Base + 3	BM0
Base + 4	BM7
Base + 5	BM6
Base + 6	BM5
Base + 7	BM4

Data are presented to the EDMA3 as shown in Figure 20. The endianness manager reorders the BMs, as shown in Figure 21, for processing.

Figure 20. Data Source - VBUSP/DMA (BM = 0)

63:56	55:48	47:40	39:32	31:24	23:16	15:8	7:0
BM3	BM2	BM1	BM0	BM7	BM7	BM5	BM4

Figure 21. Data Destination - Kernel for Processing Unit (BM = 0)

63:56	55:48	47:40	39:32	31:24	23:16	15:8	7:0
BM7	BM6	BM5	BM4	BM3	BM2	BM1	BM0

Endianness www.ti.com

7.1.1 Hard Decisions

The VCP2 hard-decisions bit ordering within the 32-bit hard-decision word is programmable via the OUT_ORDER = 0 register, such that the oldest bit can be either in the MSB or the LSB position.

Figure 22. Trellis Stage Ordering of Hard Decisions in 32-Bit Word (OUT_ORDER = 0)

63	62	 32	31	 1	0
Stage N	Stage N - 1	 Stage N - 31	Stage N - 32	 Stage N - 62	Stage N - 63

OUT_ORDER = 1 orders the hard-decision data in the order it is calculated in the state metric computation, from 31 to 0 in the 32-bit word output.

Figure 23. Trellis Stage Ordering of Hard Decisions in 32-Bit Word (OUT_ORDER = 1)

63	62	 32	31	 1	0
Stage N - 31	Stage N - 30	 Stage N	Stage N - 63	 Stage N - 33	Stage N - 32

7.1.2 Soft Decisions

The VCP2 soft decisions are 8-bit results and output 64 bits at a time. The soft decisions are organized as shown in Table 24, based on the CPU's endianness and whether SD is set for native or 32-bit packed results.

Table 24. Soft Decision Organization

Little_big_endian	ВМ	Description (MSB to LSB)	
0	0	7,6,5,4,3,2,1,0 ⇒ 3, 2, 1, 0, 7, 6, 5, 4 (bytes)	
0	1	$7,6,5,4,3,2,1,0 \Rightarrow 0, 1, 2, 3, 4, 5, 6, 7 \text{ (bytes)}$	
1	0	Endianness manager has no effect $7,6,5,4,3,2,1,0 \Rightarrow 7,6,5,4,3,2,1,0$ (bytes)	
1	1	Endianness manager has no effect $7,6,5,4,3,2,1,0 \Rightarrow 7,6,5,4,3,2,1,0$ (bytes)	

www.ti.com Architecture

8 Architecture

The VCP2 processing unit is shown in Figure 24. The state metrics unit performs the Viterbi forward recursion using branch metrics as inputs and updates the states metrics for all states (add/compare/select or ACS operations) at every trellis stage. The state metrics memory is not accessible by the DSP. The traceback unit performs the Viterbi backward recursion and generates hard decisions or soft decisions. The traceback memories are not directly accessible by the DSP.

Branch metrics

State metric unit

Decisions

Traceback unit

Viterbi Processing Unit

Figure 24. Processing Unit

8.1 Sliding-Windows Processing

The traceback hard-decision memory can store up to 32768 traceback bits and there are $2^{(K-1)}$ bits stored at each trellis stage. Therefore, the traceback hard-decision memory can store decisions of $32768/2^{(K-1)}$ symbols. The traceback soft-decision memory can store up to 8192 traceback soft values and, therefore, contain up to 8192 soft decisions of $8192/2^{(K-1)}$ symbols. Assume a terminated frame of length F (excluding tail bits) and a constraint length K, F and K determine whether all decisions can be stored in the traceback memories.

If the decisions do not fit in the traceback HD/SD memory, then the convergent or mixed mode is used and the original frame is segmented into sliding windows (SW); otherwise, the traceback mode is set to tailed and no segmentation is required.

8.1.1 Tailed Traceback Mode

This mode is used when a full frame resides within the coprocessor traceback memory (see Figure 25). The state metrics are computed over F + K - 1 symbols, the traceback is initialized with the tailed state and executed over F + K - 1 symbols. It should be noted that only F decisions are output. They are output in reverse order and in blocks of user-defined size.

TB computation

Only output F decisions

Figure 25. Tailed Traceback Mode

Architecture www.ti.com

8.1.2 Mixed Traceback Mode

This mode is used when the frame is terminated and does not fit within the coprocessor traceback memory. The frame is split into sliding windows (see Figure 26). The state metrics are computed over F + K - 1 symbols, the traceback is initialized with the tailed state and executed over F + K - 1 symbols. It should be noted that only F decisions are output in blocks of user-defined size (see Section 8.3). The state metrics computation of sliding window I + 1 is done in parallel with the traceback computation of sliding window I. Tailed traceback type is used on the last sliding window.

8.1.3 Convergent Traceback Mode

This mode is used with non-terminated frames or when you want to decode a portion of the frame. When the frame does not fit into the coprocessor traceback memory, then the frame is split into sliding windows (see Figure 27). The state metrics are computed over F + C symbols, the traceback is initialized with the tailed state and executed over F + C symbols. It should be noted that only F decisions are output in blocks of user-defined size (see Section 8.4). The state metrics computation of sliding window I + 1 is done in parallel with the traceback computation of sliding window I.

Figure 26. Mixed Traceback Mode-Example With Five Sliding Windows

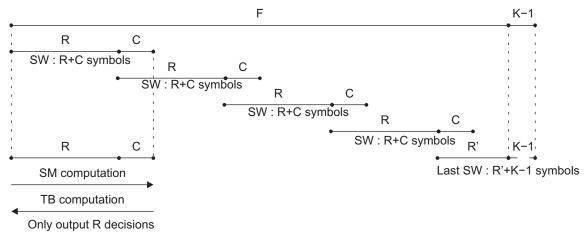
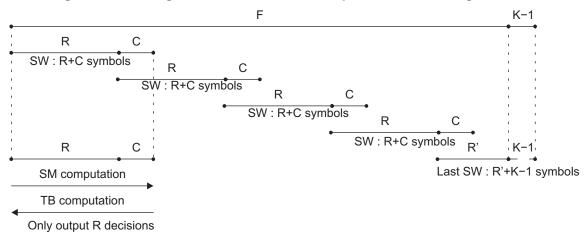



Figure 27. Convergent Traceback Mode-Example With Five Sliding Windows

www.ti.com Architecture

8.1.4 F, R, and C Limitations

VCP2 has increased the traceback soft-decision memory and output FIFO compared to the memory in VCP. The traceback soft-decision memory size has been increased from 1024×96 bits to 2048×64 bits. The output FIFO memory has been increased from 32×64 bits to 64×64 bits. In addition, the soft-decision resolution is increased internally to 13 bits and is clipped to 8 bits when output from VCP2. These memory sizes have an effect on the F_{max} parameter (i.e., the max. frame size for tailed processing), and the $(R+C)_{max}$ parameter (i.e., the max. sliding window length for mixed/convergent processing).

The differences between VCP and VCP2 are related to F_{max} , $(R+C)_{max}$, and C. The impact on VCP2 performance is as follows:

Soft decisions:

- Allowed values for C are C = N*(K 1), where N is a convergence multiplier. Table 25 and Table 26 show the possible values of N for each value of K for hard and soft decisions.
- R is constrained to be less than or equal to 248.
- F_{max} and (R+C)_{max} for VCP2 have been increased over VCP. This change reduces the number of sliding windows and, therefore, decreases the number of VCP2 cycles needed for traceback.
 Overall, there is no major improvement in the processing delay because a larger portion of cycles is spent in state metric accumulation, which is largely unaffected by the choice of R and C.

· Hard decisions:

(R+C)_{max} for mixed/convergent processing for hard decisions has been increased from 605 to 635 for K = 6, and from 1020 to 2044 for K = 5. As with soft decisions, this change results in a small decrease in VCP2 cycle counts during traceback.

The procedure to calculate the reliability length is as follows [the reliability length cannot be larger than 1920, $C \le 1920 - (k - 1)$]:

- 1. Determine the convergence length.
- 2. Determine the number of sliding windows: $N_{sw} = ceil(f/[(r + c)_{max} c])$.
- 3. Determine the reliability length: $R = m \times \text{ceil}[f/(Nsw \times m)]$.
- 4. If hard decisions are being used and R > 1920 or if soft decisions are being used and R > 248, then increment the number of sliding windows and go back to step 3.
- 5. For hard decision and soft-decision limits, see Table 25 and Table 26.

Table 25. Traceback Soft Decision Sliding Window Limits

К	Maximum Frame Size	F _{max}	(r + c) _{max}	Multiple (m)	Convergent Multiplier (N)	Special Constraint
9	64	56	60	4	3,6	
8	112	105	105	7	3,6,9,12	
7	192	186	186	6	3,6,9,12,15,18	
6	320	315	315	5	3,6,9,12,15,18	r ≤ 248
5	1024	1020	320	4	3,6,9,12,15,18	r ≤ 248

Table 26. Traceback Hard Decision Sliding Window Limits

K	Maximum Frame Size	F _{max}	(r + c) _{max}	Multiple (m)	Convergent Multiplier (N)
9	128	120	124	4	3,6,9,12,15
8	224	217	217	7	3,6,9,12,15,18
7	384	378	378	6	3,6,9,12,15,18
6	640	635	635	5	3,6,9,12,15,18
5	2048	2044	2044	4	3,6,9,12,15,18

Architecture www.ti.com

8.2 Yamamoto Parameters

During the standard forward recursion, an entity called the Yamamoto bit is computed for each state and updated every symbol interval. The Yamamoto bit was proposed by Hirosuke Yamamoto (Hirosuke Yamamoto, *Viterbi Decoding Algorithm for Convolutional Codes with Repeat Request*, IEEE Transactions on Information Theory, Vol. IT-26, No. 5, September 1980).

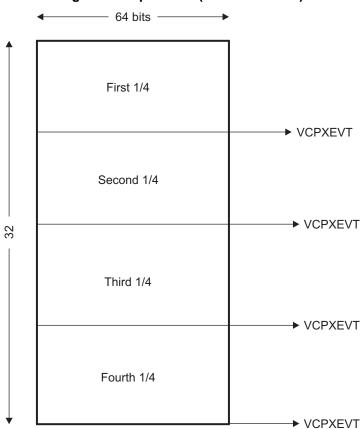
Basically, a bit (the Yamamoto bit) is associated with each state in the decoding process. Initially, all the Yamamoto bits are set (1). During the decoding process, the Yamamoto bit for a particular state comes from a couple of decisions made on the path metrics and the Yamamoto bit of previous states. The metrics of all paths leading to a particular state are compared. If the difference between any two metrics is less than a given threshold (YAMT bits in VCPIC1), then the Yamamoto bit is cleared; otherwise, the Yamamoto bit is inherited from the previous state of the path with the largest metric. The end result of this process (YAM bit in VCPOUT1) yields a zero (0) if anywhere along the decoding path there was a point where the decision between two paths was ambiguous. The YAM bit can therefore be used as a binary frame quality indicator.

The Yamamoto algorithm can be enabled or disabled by toggling the YAMEN bit in VCPIC1.

8.3 Input FIFO (Branch Metrics)

Figure 28 shows how the FIFO is used in either a double- or quad-buffering scheme. The VCP2 generates a VCPXEVT synchronization event each time the nx1/4 of the buffer is empty, where (n = 1, 2, 3, 4) or (n = 2, 4), depending on the value of SYMX.

VCPIC5 contains the SYMX bits, which define the buffer length as well as the VCPXEVT event rate. The maximum allocatable size for the buffer in the input FIFO is 16 64-bit words.


SYMX defines the branch metric buffer length (minus one) to be transmitted to the VCP for each VCPXEVT. Table 27 has the valid values for SYMX, along with the corresponding number of 64-bit transfers. If the number of 64 bit transfers is 16, then the double buffering scheme is used and VCPXEVTs will be generated when half the FIFO is empty (either top or bottom half). If the number of 64-bit transfers is 8, then a quad buffering scheme is used and VCPXEVTs are generated as each quarter of the FIFO is emptied. The VCP2 only generates as many VCPXEVTs as needed to produce all the BMs required based on the SYMX value, frame length, and rate. In other words, no potential excess VCPXEVTs will be generated based on the FIFO being partially empty at the end of processing.

Code Rate SYMX **Number of 64-Bit Transfers** 1/4 3 16 1/4 8 1 1/3 7 16 1/3 3 8 15 1/2 16 1/2 7 8

Table 27. Code Rate versus SYMX

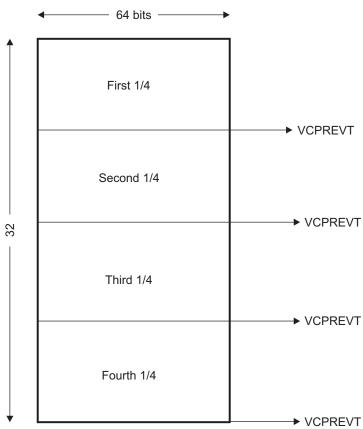
www.ti.com Architecture

Figure 28. Input FIFO (Branch Metrics)

8.4 Output FIFO (Decisions)

Figure 29 shows how the output FIFO is used in either a double- or quad-buffering scheme. The VCP2 generates a VCPREVT synchronization event each time the nx1/4 of the buffer is empty, where (n = 1, 2, 3, 4) or (n = 2, 4), depending on the value of SYMR.

VCPIC5 contains the SYMR bits, which define the buffer length, as well as the VCPREVT event rate. The maximum size for buffer is 16 64-bit words.


- For hard decisions:
 - If F ≤ 2048, then symr = ceil [f/64]-1
 - If F > 2048, then symr = 15 or 31
- For soft decisions:
 - If F ≤ 256, then symr = ceil [f/8]-1
 - If F > 256, then symr = 15 or 31

If SYMR = 31, double buffering is used and a VCPREVT is generated when the first or second half of the buffer is filled. If SYMR = 15, then VCPREVT is generated after each quarter of the buffer is filled. When F \leq 2048 for HD or F \leq 256 for SD outputs and SYMR is determined as described above, a single VCPREVT is generated once all decisions have been written to the output FIFO.

Architecture www.ti.com

www.ti.com Programming

9 Programming

The VCP2 requires setting up the following context per user channel:

- 3 to 4 EDMA3 parameters (see Table 28)
- The input configurations parameters

Several user channels can be programmed prior to starting the VCP2. A suggested implementation is to use the EDMA3 interrupt generation capabilities [see the *TMS320C6457 DSP Enhanced DMA (EDMA3) Controller User's Guide* (SPRUGK6)] and program the EDMA3 to generate an interrupt after the user channel's last VCPREVT synchronized EDMA3 transfer has completed.

Table 28. I	Required	EDMA3	Links	Per	User	Channel
-------------	----------	-------	-------	-----	------	---------

Direction ⁽¹⁾	Data	Usage	Required/Optional
Transmit	Input configuration parameters	Send the input configuration parameters	Required
Transmit	Branch metrics	Send branch metrics	Required
Receive	Decisions	Read decisions	Required
Receive	Output parameters	Read output parameters	Optional (OUTF bit)

⁽¹⁾ Transmit direction (DSP → VCP), receive direction (VCP → DSP)

9.1 EDMA3 Resources

9.1.1 VCP2 Dedicated EDMA3 Resources

Within the available 64 EDMA3 channel event sources, two are assigned to the VCP2: event 28 and event 29.

- Event 28 is associated to the VCP2 receive event (VCPREVT) and is used as the synchronization
 event for EDMA3 transfers from the VCP2 to the DSP (receive). EDMA3 channel 28 is primarily
 intended to serve VCP2-to-DSP transfers.
- Event 29 is associated to the VCP2 transmit event (VCPXEVT) and is used as the synchronization
 event for EDMA3 transfers from the DSP to the VCP2 (transmit). EDMA3 channel 29 is primarily
 intended to serve DSP-to-VCP2 transfers.

9.1.2 Special VCP2 EDMA3 Programming Considerations

The EDMA parameters consist of eight words as shown in Figure 30. All EDMA transfers, in the context of the VCP, must contain an even number of words, and have source and destination addresses double-word aligned.

All EDMA transfers must be double-word aligned and the ACNT for the VCP EDMA transfer must be a multiple of 8. Single-word transfers that are not double-word aligned cause errors in the TCP2/VCP2 memory.

For more information, see the *TMS320C6457 DSP Enhanced DMA (EDMA3) Controller User's Guide* (SPRUGK6).

Figure 30. EDMA3 Parameters Structure

31

EDMA3 Channel Options Parameter (OPT)

EDMA3 Channel Source Address (SRC)

Number of arrays of length ACNT (BCNT)

Number of bytes in array (ACNT)

EDMA3 Channel Destination Address (DST)

Destination 2nd Dimension Index (DSTBIDX)

BCNTRLD

BCNTRLD

LINK

Destination 3rd Dimension Index (DSTCIDX)

Reserved

Number of frames in block (CCNT)

Programming www.ti.com

9.1.2.1 Input Configuration Parameters Transfer

This EDMA3 transfer to the input configuration parameters is a 6-word VCPXEVT frame-synchronized transfer. The OPTIONS should be set as:

- ITCCEN = 0 (Intermediate transfer complete chaining is disabled)
- TCCEN = 0 (Transfer complete chaining is disabled)
- ITCINTEN = 0 (Intermediate transfer complete interrupt is disabled)
- WIMODE = 0 (Normal operation)
- TCINTEN = 0 (Transfer complete interrupt is disabled)
- TCC = 1 to 63 (Transfer complete code)
- TCCMODE = 0 (Normal completion)
- FWID = Don't care
- STAT = 0 (Entry is updated as normal)
- SYNCDIM = 0 (A-sync transfer, each event triggers the transfer of ACNT elements)
- DAM = 0 (Dst address within an array increments. Dst is not a FIFO.)
- SAM = 0 (Src Address within an array increments. Src is not a FIFO.)
- SOURCE ADDRESS: User input configuration parameters start address
- ACNT = 24 (Number of bytes in an array)
- BCNT = 1 (Number of arrays in a frame)
- Destination Address: VCPIC0
- SRCBIDX = 0
- DSTBIDX = 0
- SRCCIDX = 0
- DSTCIDX = 0
- CCNT = 1 (Number of frames in a block)

Upon completion, this EDMA3 transfer is linked to the EDMA3 for branch metrics transfer parameters.

9.1.2.2 Branch Metrics Transfer

This EDMA3 transfer to the branch metrics FIFO is a VCPXEVT frame-synchronized transfer. The OPTIONS should be set as:

- ITCCEN = 0 (Intermediate transfer complete chaining is disabled)
- TCCEN = 0 (Transfer complete chaining is disabled)
- ITCINTEN = 0 (Intermediate transfer complete interrupt is disabled)
- TCINTEN = 1 (Transfer complete interrupt is Enabled)
- WIMODE = 0 (Normal operation)
- TCC = 1 to 63 (Transfer complete code)
- TCCMODE = 0 (Normal completion)
- FWID = Don't care
- STAT = 0 (Entry is updated as normal)
- SYNCDIM = 0 (A-sync transfer, each event triggers the transfer of ACNT elements)
- DAM = 1 (Dst address is fixed. Dst is a FIFO.)
- SAM = 0 (Src Address within an array increments. Src is not a FIFO.)
- SOURCE ADDRESS: Branch Metrics Array start address
- ACNT = $4x(SYMX+1)x2^{(r-1)}$ (Number of branch metrics bytes in an array)
- BCNT = CEIL(TNBM/ACNT) (Number of arrays in a frame)

Where TNBM = Total Number of Branch Metrics, in bytes

To calculate total number of branch metrics data in bytes:

For mixed and tailed traceback mode, Total number of Branch Metrics = $(F + K - 1) \times (2^{(r-1)})$

www.ti.com Programming

For convergent mode, Total number of Branch Metrics = $(F + C) \times (2^{(r-1)})$

- DESTINATION ADDRESS: VCPWBM branch metrics FIFO address
- SRCBIDX = ACNT
- DSTBIDX = 0
- SRCCIDX = 0
- DSTCIDX = 0
- CCNT = 1 (Number of frames in a block)

Upon completion, this EDMA3 transfer is linked to one of the following:

- The DMA input configuration parameters transfer parameters of the next user channel, if there is one ready to be decoded.
- Dummy DMA transfer parameters, if there are no more user channels ready to be decoded [for information on how to set up a dummy Xfer, see the TMS320C6457 DSP Enhanced DMA (EDMA3) Controller User's Guide (SPRUGK6)]. Do not link to a NULL transfer, as the secondary event register will set the event flag for Event 29. The final VCPXEVT is generated upon the reading of the decisions and output registers, which is intended to transfer the input configuration of the next user channel. If a NULL transfer link is in place, the final VCPXEVT will set the event 29 flag of SER and no further VCP execution will occur until it is cleared.

9.1.2.3 Decisions Transfer

EDMA3 transfers from the decision buffer are VCPREVT frame-synchronized transfers. The programming of these transfers depend on the decision type and the traceback mode.

Upon completion, this EDMA3 transfer is linked to one of the following:

- 1. The decisions EDMA3 transfer parameters of the next user channel, if there is one ready to be decoded and the OUTF bit is 0.
- 2. Null EDMA3 transfer parameters (with all zeros), if there are no more user channels ready to be decoded and the OUTF bit is 0.
- 3. The output parameters EDMA3 transfer parameters, if the OUTF bit is 1.

9.1.2.4 Hard-Decisions Mode

The OPTIONS should be set as:

- ITCCEN = 0 (Intermediate transfer complete chaining is disabled)
- TCCEN = 0 (Transfer complete chaining is disabled)
- ITCINTEN = 0 (Intermediate transfer complete interrupt is disabled)
- TCINTEN = 0 (Transfer complete interrupt is disabled)
- WIMODE = 0 (Normal operation)
- TCC = 1 to 63 (Transfer complete code)
- TCCMODE = 0 (Normal completion)
- FWID = Don't care
- STAT = 0 (Entry is updated as normal)
- SYNCDIM = 0 (A-sync transfer, each event triggers the transfer of ACNT elements)
- DAM = 0 (Dst address within an array increments. Dst is not a FIFO.)
- SAM = 1 (Src Address is fixed. Src is a FIFO.)
- SOURCE ADDRESS: VCPRDECS Decision FIFO address
- ACNT = (SYMR+1) x 8 (Number of hard decision bytes in an array)
- BCNT = CEIL(TNHD/ACNT) (Number of arrays in a frame) Where TNHD is the total number of hard decisions in bytes (Framelength/8).
- Destination Address: hard-decision array address
- SRCBIDX = 0
- DSTBIDX = ACNT
- SRCCIDX = 0

Programming www.ti.com

- DSTCIDX = 0
- CCNT = 1 (Number of frames in a block)

9.1.2.5 Soft-Decisions Mode

The OPTIONS should be set as:

- ITCCEN = 0 (Intermediate transfer complete chaining is disabled)
- TCCEN = 0 (Transfer complete chaining is disabled)
- ITCINTEN = 0 (Intermediate transfer complete interrupt is disabled)
- TCINTEN = 0 (Transfer complete interrupt is disabled)
- WIMODE = 0 (Normal operation)
- TCC = 1 to 63 (Transfer complete code)
- TCCMODE = 0 (Normal completion)
- FWID = Don't care
- STAT = 0 (Entry is updated as normal)
- SYNCDIM = 0 (A-sync transfer, each event triggers the transfer of ACNT elements)
- DAM = 0 (Dst address within an array increments. Dst is not a FIFO.)
- SAM = 1 (Src Address is fixed. Src is a FIFO.)
- SOURCE ADDRESS: VCPRDECS Decision FIFO address
- ACNT = (SYMR+1) x 8 (Number of soft decision bytes in an array)
- BCNT = CEIL(TNSD/ACNT) (Number of arrays in a frame) Where TNSD is the total number of soft decisions (framelength)
- Destination Address: soft-decision array address
- SRCBIDX = 0
- DSTBIDX = ACNT
- SRCCIDX = 0
- DSTCIDX = 0
- CCNT = 1 (Number of frames in a block)

9.1.2.6 Output Parameters Transfer

This transfer is optional and depends on the OUTF bit. It is a 2- to 32-bit word VCPREVT frame synchronized transfer. The OPTIONS should be set as:

- ITCCEN = 0 (Intermediate transfer complete chaining is disabled)
- TCCEN = 0 (Transfer complete chaining is disabled)
- ITCINTEN = 0 (Intermediate transfer complete interrupt is disabled)
- TCINTEN = 0 (Transfer complete interrupt is disabled)
- WIMODE = 0 (Normal operation)
- TCC = 1 to 63 (Transfer complete code)
- TCCMODE = 0 (Normal completion)
- FWID = Don't care
- STAT = 0 (Entry is updated as normal)
- SYNCDIM = 0 (A-sync transfer, each event triggers the transfer of ACNT elements)
- DAM = 0 (Dst address within an array increments. Dst is not a FIFO.)
- SAM = 0 (Src Address within an array increments. Src is not a FIFO.)
- SOURCE ADDRESS: VCP2 output register 0 address
- ACNT = 8
- BCNT = 1
- Destination Address: output register store array address
- SRCBIDX = 0
- DSTBIDX = 0

www.ti.com Output Parameters

- SRCCIDX = 0
- DSTCIDX = 0
- CCNT = 1 (Number of frames in a block)

Upon completion, this EDMA3 transfer is linked to one of the following:

- The EDMA3 decisions transfer parameters of the next user channel, if there is one ready to be decoded.
- Null EDMA3 transfer parameters (with all zeros), if there are no more user channels ready to be decoded.

9.2 Input Configuration Words

The input configuration words should reflect the parameters of the user channels to be decoded.

The POLY*n* bits in VCPIC0 correspond to the generator polynomials in the encoder (see Figure 1). The values in each POLY*n* bit field must be entered in reverse order. The POLY*n* least-significant bit is set by the VCP2 logic.

- For rate 1/2, POLY0 and POLY1 are required.
- For rate 1/3, POLY0, POLY1, and POLY2 are required.
- For rate 1/4, all the POLY*n* bits are required.

The YAMT and YAMEN bits in VCPIC1 are described in Section 8.2.

The F and R bits in VCPIC2, the C bit in VCPIC3, and the TB bits in VCPIC5 are described in Section 8.1.

The IMAXI bits in VCPIC5 determine which state should be initialized with the maximum state metrics value (IMAXS), all the other states are initialized with the minimum state metrics value (IMINS). The IMAXI can range from 0 to 2^{K-1}-1. The IMAXS and IMINS are 13-bit signed values.

The SYMX and SYMR bits in VCPIC5 are described in Section 8.3 and Section 8.4.

The OUTF bit in VCPIC5 indicates whether the VCP should generate a VCPREVT for reading the output parameters. The OUTF bit setting will impact the EDMA3 programming (see Section 9.1.2.3).

10 Output Parameters

The FMAXS and FMINS bits in VCPOUT0 indicate the final maximum and minimum state metric values, respectively. The FMAXI bit in VCPOUT1 indicates the state index for the state with the final maximum state metric.

The YAM bit in VCPOUT1 is described in Section 8.2.

Event Generation www.ti.com

11 Event Generation

11.1 VCPXEVT Generation

A VCP2 transmit event (VCPXEVT) is generated when any of the following conditions appear:

- A START command write in VCPEXE.
- All input control words have been received and are correct.
- Top one-fourth and half or bottom one-fourth and half of the input FIFO buffer (see Figure 28) is empty.
- After all decisions have been read and OUTF is cleared, or if all decisions have been read and the
 output registers have been read and OUTF is set. Note that this extra XEVT pulls the next set of input
 configurations via EDMA3. If EDMA3 is not set up to link in another set of input configurations, then a
 dummy transfer should be set up to avoid an SER event flag being set for the EDMA3 parameter entry.
 If the flag is set, it effectively locks the VCP2, and must be cleared before any future events can be
 processed for that entry.

11.2 VCPREVT Generation

A VCP2 receive event (VCPREVT) is generated when any of the following conditions appear:

- The traceback unit has written top one fourth and half or bottom one-fourth and half of the output FIFO buffer (see Figure 29).
- After the traceback is completed (the whole frame has been decoded).
- OUTF bit in VCPIC5 is 1 and all decisions have been read to read the output registers.

www.ti.com Operational Modes

12 Operational Modes

- 0: Value at reset or value written by the coprocessor when previous instruction is read and its
 execution is ongoing. DSP may test the status word in the output control memory to check if the
 instruction is being executed.
- 1: Start CPU orders the coprocessor to start a processing block. The first action of the coprocessor is then to generate the first XEVT to trigger DMA transfer of the input control words.
- 2: Pause CPU orders the coprocessor to pause a processing block at the beginning of traceback.
- 3: Unpause (single_traceback) CPU orders the coprocessor to restart at the beginning of traceback and halt at next traceback.
- 4: Unpause (finish_traceback) CPU orders the coprocessor to restart at the beginning of traceback and complete decode.
- Stop CPU orders the coprocessor to reset. The coprocessor resets all VCP2 registers.

12.1 Debugging Features

Visibility into the internal operation of the VCP2 (i.e., the state metric accumulation, traceback memory) is available to the CPU via a pause command. However, since the *pause* command is not synchronized with the internal VCP2 state machine but is rather sent from the CPU at a random moment in time, this feature is of limited use.

The *pause* command on the VCP2 is augmented to provide visibility into VCP2 operation on a sliding window basis. Instead of using the normal *start* command which tells the VCP2 to perform a complete decode of one frame (including input/output transfers via EDMA3), *halt at beginning of traceback* and *resume until next traceback* commands are used, and the internal VCP2 memories can be inspected at various points in the decoding process. The procedure for using this command is as follows:

- VCP2 configuration and branch metrics are prepared
- A halt at beginning of traceback command is sent
- The VCP2 generates necessary interrupts to the EDMA3 to transfer input configuration and to start transferring branch metrics. The VCP2 performs state metric accumulation as branch metrics become available. When it reaches the end of the first sliding window (i.e., the reliability portion and the convergence portion), the VCP2 halts.
- The CPU polls the VCP2 status register until the VCP2 state changes from running to paused. At that point, the state metrics memory can be inspected, as well as the traceback memory. To perform an inspection, halt the CPU via a software breakpoint set at an appropriate point in the code, for instance. Then, the memory can be inspected visually via the debugger GUI, or, alternatively, the CPU can copy the relevant internal VCP2 memories to another location for later analysis.
 - The CPU sends the resume until next traceback command to the VCP2.
 - The VCP2 performs the traceback, generates a portion of hard or soft decisions, and continues with state metric accumulation until the end of the next sliding window (i.e., another number of R stages, where R is the reliability length).
 - The process continues until the decoding is complete. Alternatively, the decoding process can be
 run to completion after any sliding window by sending the *resume to completion* command instead
 of the *resume until next traceback* command.

Errors and Status www.ti.com

13 Errors and Status

When the coprocessor detects an error, the coprocessor sets the status and error words, then sends an interrupt to the CPU. Any coprocessor processing is paused and the DSP must reset or start the coprocessor. An error occurs if the VCP2 receives an invalid value in the input configuration parameters. If an error is detected, the VCPERR bit field is set accordingly, the ERR bit in VCPSTAT0 is set, the VCP2_INT interrupt is generated, and no processing is engaged. The only way to restart the VCP2 is to read VCPERR and send another START command. VCP2_INT has an interrupt selector value of 32. For details on how to set up interrupts, see the *TMS320C6000 DSP Interrupt Selector Reference Guide* (SPRU646).

The status registers are provided for debugging purposes and are best used when either the processor is halted or the VCP2 is halted. If an error occurs, the VCP2 is halted and a VCP2_INT interrupt is generated that can be mapped to a CPU interrupt. There may be cases where you would want to view the status registers when the VCP2 is still running. One such case is when the VCP2 seems to have taken a long time in processing the current frame. In such cases, a watchdog timer should be used and set according to the frame length and VCP2 configuration, in addition to some overhead to allow for EDMA3 usage.

www.ti.com

Appendix A Revision History

This revision history highlights the technical changes made to the document in this revision.

Table 29. C6457 Revision History

See	Additions/Modifications/Deletions
Section 8.1.4	Modified step 4 in numbered list

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated