SPRZ123C – JANUARY 1998 – REVISED MARCH 1999

ADDENDUM

TMS320C54x, TMS320LC54x, TMS320VC54x DATA SHEET (SPRS039B/C)

This addendum provides current updated information regarding different speed performance versions and available derivative devices in the '54x family.

This addendum provides changed dc characteristics and parameter data that apply to the 66 and 80 MIPS version of the TMS320LC548 devices only.

Data in the unshaded cells is new and applies only to the TMS320LC548-66 and TMS320LC548-80 devices as indicated. The data in the shaded areas has not changed from that supplied in the current TMS320C54x, TMS320LC54x, TMS320VC54x data sheet (literature number SPRS039B/C). Please note the page numbers referenced apply to the SPRS039B/C data sheet.

electrical characteristics over recommended operating case temperature range (unless otherwise noted) (see page 61)

	PARAME	TER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT	
VOH	High-level output volta	ige‡	$V_{DD} = 3.3 \pm 0.3 \text{ V}, I_{OH} = \text{MAX}$	2.4			V	
VOL	Low-level output voltage	ge‡	I _{OL} = MAX			0.4	V	
l	Input current in high	A[22:0] ('548/'549 only)	$V_{DD} = MAX, V_O = V_{SS}$ to V_{DD}	-150		250	۸	
ΙZ	impedance	All other '54x devices	$V_{DD} = MAX, V_O = V_{SS}$ to V_{DD}	-10		10	μA	
		TRST	With internal pulldown	-10		800		
		HPIENA	With internal pulldown, $\overline{RS} = 0$	-10		400		
1.	Input current	TMS, TCK, TDI, HPI	With internal pullups	-400		10		
1	$(V_I = V_{SS} \text{ to } V_{DD})$	D[15:0], HD[7:0]	Bus holders enabled, $V_{DD} = MAX$, $V_I = V_{SS}$ to V_{DD}	-150		250	μΑ	
		All other input-only pins		-10		10		
IDDC	Supply current, core C	PU	$DV_{DD} = 3.0 \text{ V}, \text{ f}_{X} = 40 \text{ MHz}, \text{T}_{C} = 25^{\circ}\text{C}$		28¶		mA	
IDDC	Supply current, core C	CPU ('549 only)	$CV_{DD} = 2.5 \text{ V}, \text{ f}_{X} = 40 \text{ MHz}, \text{\$ T}_{C} = 25^{\circ}\text{C}$		20¶		mA	
IDDP	Supply current, pins		V _{DD} = 3.0 V, f _X = 40 MHz,§ T _C = 25°C		10.8#		mA	
1	Supply current,	IDLE2	PLL × 1 mode, 40 MHz input		2		mA	
DD	standby	IDLE3	Divide-by-two mode, CLKIN stopped	ł			μΑ	
Ci	Input capacitance	•			10		pF	
Co	Output capacitance				10		pF	

[†] All values are typical unless otherwise specified.

‡ All input and output voltage levels except RS, INTO-INT3, NMI, CNT, X2/CLKIN, CLKMD0-CLKMD3 are LVTTL-compatible.

§ Clock mode: PLL × 1 with external source

This value was obtained with 50% usage of MAC and 50% usage of NOP instructions. Actual operating current varies with program being executed.

[#] This value was obtained with single-cycle external writes, CLKOFF = 0 and load = 15 pF. For more details on how this calculation is performed, refer to the *Calculation of TMS320C54x Power Dissipation* application report (literature number SPRA164).

|| HPI input signals except for HPIENA.

SPRZ123C – JANUARY 1998 – REVISED MARCH 1999

timing requirements over recommended operating conditions (see page 65)

		'LC548-80		UNIT
		MIN	MAX	UNIT
t _{c(CI)}	Cycle time, X2/CLKIN	6.25	†	ns
^t f(CI)	Fall time, X2/CLKIN		1	ns
^t r(CI)	Rise time, X2/CLKIN		1	ns
^t w(CIL)	Pulse duration, X2/CLKIN low	3	†	ns
^t w(CIH)	Pulse duration, X2/CLKIN high	2	†	ns

[†] This device utilizes a fully static design and therefore can operate with t_{C(CI)} approaching ∞. The device is characterized at frequencies approaching 0 Hz.

<u>switching</u> characteristics over recommended operating conditions for a memory read (MSTRB = 0) [H = 0.5 $t_{c(CO)}$]^{†‡} (see page 68)

DADAMETED	'LC54	UNIT	
PARAMETER	MIN	MAX	UNIT
Delay time, address valid from CLKOUT low§	0	6	ns
Delay time, address valid from CLKOUT high (transition) \P	0	5	ns
Delay time, MSTRB low from CLKOUT low	0	6	ns
Delay time, MSTRB high from CLKOUT low	0	5	ns
Hold time, address valid after CLKOUT low§	0	6	ns
Hold time, address valid after CLKOUT high ${ m I}$	0	5	ns
	Delay time, address valid from CLKOUT high (transition) [¶] Delay time, MSTRB low from CLKOUT low Delay time, MSTRB high from CLKOUT low Hold time, address valid after CLKOUT low§	PARAMETER MIN Delay time, address valid from CLKOUT low§ 0 Delay time, address valid from CLKOUT high (transition)¶ 0 Delay time, MSTRB low from CLKOUT low 0 Delay time, MSTRB high from CLKOUT low 0 Hold time, address valid after CLKOUT low§ 0	MINMAXDelay time, address valid from CLKOUT low§06Delay time, address valid from CLKOUT high (transition)¶05Delay time, MSTRB low from CLKOUT low06Delay time, MSTRB high from CLKOUT low05Hold time, address valid after CLKOUT low§06

[†]Address, PS, and DS timings are all included in timings referenced as address.

[‡] See Table 15, Table 16, and Table 17 for address bus timing variation with load capacitance.

§ In the case of a memory read preceded by a memory read

 \P In the case of a memory read preceded by a memory write

switching characteristics over recommended operating conditions for a memory write (MSTRB = 0) [H = 0.5 $t_{c(CO)}$]^{†‡} (see page 71)

	PARAMETER	'LC5	'LC548-80		
	PARAMETER	MIN	MAX	UNIT	
^t d(CLKH-A)	Delay time, address valid from CLKOUT high§	- 2	5	ns	
td(CLKL-A)	Delay time, address valid from CLKOUT low¶	0	6	ns	
td(CLKL-MSL)	Delay time, MSTRB low from CLKOUT low	0	6	ns	
^t d(CLKL-D)W	Delay time, data valid from CLKOUT low	0	7	ns	
^t d(CLKL-MSH)	Delay time, MSTRB high from CLKOUT low	0	5	ns	
td(CLKH-RWL)	Delay time, R/W low from CLKOUT high	- 1	4	ns	
^t d(CLKH-RWH)	Delay time, R/W high from CLKOUT high	- 1	4	ns	
td(RWL-MSTRBL)	Delay time, MSTRB low after R/W low	H – 2	H + 2	ns	
^t h(A)W	Hold time, address valid after CLKOUT high§	- 1	5	ns	

[†] Address, PS, and DS timings are all included in timings referenced as address.

[‡] See Table 15, Table 16, and Table 17 for address bus timing variation with load capacitance.

§ In the case of a memory write preceded by a memory write.

¶ In the case of a memory write preceded by an I/O cycle.

SPRZ123C – JANUARY 1998 – REVISED MARCH 1999

switching characteristics over recommended operating conditions for a parallel I/O port read (IOSTRB = 0) [H = $0.5 t_{c(CO)}$]^{†‡} (see page 73)

	, PARAMETER			UNIT
	PARAMETER	MIN	MAX	UNIT
^t d(CLKL-A)	Delay time, address valid from CLKOUT low	0	6	ns
^t d(CLKH-ISTRBL)	Delay time, IOSTRB low from CLKOUT high	- 1	4	ns
^t d(CLKH-ISTRBH)	Delay time, IOSTRB high from CLKOUT high	- 1	4	ns
^t h(A)IOR	Hold time, address after CLKOUT low	0	6	ns

[†]Address and IS timings are included in timings referenced as address.

[‡] See Table 15, Table 16, and Table 17 for address bus timing variation with load capacitance.

timing requirements over recommended operating conditions for a parallel I/O port read (IOSTRB = 0) [H = $0.5 t_{c(CO)}$]^{†‡} (see page 74)

		'LC548–66		'LC548-80		UNIT
		MIN M	IAX	MIN	MAX	UNIT
^t a(A)IO	Access time, read data access from address valid	3H	-10		3H–5	ns
ta(ISTRBL)IO	Access time, read data access from IOSTRB low	2H	-10		2H–5	ns
t _{su} (D)IOR	Setup time, read data before CLKOUT high	5		4		ns
^t h(D)IOR	Hold time, read data after CLKOUT high	2		2		ns
^t h(ISTRBH-D)R	Hold time, read data after IOSTRB high	0		0		ns

[†]Address and IS timings are included in timings referenced as address.

[‡] See Table 15, Table 16, and Table 17 for address bus timing variation with load capacitance.

switching characteristics over recommended operating conditions for a parallel I/O port write (IOSTRB = 0) [H = 0.5 $t_{c(CO)}$][†] (see page 75)

	PARAMETER		'LC548-80	
	PARAMETER	MIN	MAX	UNIT
^t d(CLKL-A)	Delay time, address valid from CLKOUT low [‡]	0	6	ns
^t d(CLKH-ISTRBL)	Delay time, IOSTRB low from CLKOUT high	- 1	4	ns
^t d(CLKH-D)IOW	Delay time, write data valid from CLKOUT high	H–5	H+6	ns
^t d(CLKH-ISTRBH)	Delay time, IOSTRB high from CLKOUT high	- 1	4	ns
^t d(CLKL-RWL)	Delay time, R/W low from CLKOUT low	0	4	ns
^t d(CLKL-RWH)	Delay time, R/W high from CLKOUT low	0	5	ns
^t h(A)IOW	Hold time, address valid from CLKOUT low [‡]	0	6	ns
^t h(D)IOW	Hold time, write data after IOSTRB high	H–4	H+4	ns
t _{su} (D)IOSTRBH	Setup time, write data before IOSTRB high	H–4	H+1	ns
t _{su(A)} IOSTRBL	Setup time, address valid before IOSTRB low	H–5	H+5	ns

[†] See Table 15, Table 16, and Table 17 for address bus timing variation with load capacitance.

 \ddagger Address and \overline{IS} timings are included in timings referenced as address.

SPRZ123C – JANUARY 1998 – REVISED MARCH 1999

timing requirements over recommended operating conditions for externally generated wait states $[H = 0.5 t_{c(CO)}]^{\dagger}$ (see page 79)

		'LC548-80		UNIT
		MIN	MAX	UNIT
^t su(RDY)	Setup time, READY before CLKOUT low	6		ns
^t h(RDY)	Hold time, READY after CLKOUT low	0		ns
^t v(RDY)MSTRB	Valid time, READY after MSTRB low [‡]		4H-10	ns
^t h(RDY)MSTRB	Hold time, READY after MSTRB low [‡]	4H		ns
^t v(RDY)IOSTRB	Valid time, READY after IOSTRB low [‡]		5H-10	ns
^t h(RDY)IOSTRB	Hold time, READY after IOSTRB low [‡]	5H		ns
^t v(MSCL)	Valid time, MSC low after CLKOUT low	0	4	ns
^t v(MSCH)	Valid time, MSC high after CLKOUT low	0	4	ns

[†] The hardware wait states can be used only in conjunction with the software wait states to extend the bus cycles. To generate wait states by READY, at least two software wait states must be programmed. READY is not sampled until the completion of the internal software wait states.
[‡] These timings are included for reference only. The critical timings for READY are those referenced to CLKOUT.

switching characteristics over recommended operating conditions for memory control signals and HOLDA [H = 0.5 $t_{c(CO)}$] (see page 84)

	PARAMETER			'LC54	18-80	UNIT
	PARAMETER	MIN	MAX	MIN	MAX	UNIT
^t dis(CLKL-A)	Disable time, CLKOUT low to address, PS, DS, IS high impedance		5		5	ns
^t dis(CLKL-RW)	Disable time, CLKOUT low to R/W high impedance		5		5	ns
^t dis(CLKL-S)	Disable time, CLKOUT low to MSTRB, IOSTRB high impedance		5		5	ns
ten(CLKL-A)	Enable time, CLKOUT low to address, PS, DS, IS		2H+5		2H+5	ns
ten(CLKL-RW)	Enable time, CLKOUT low to R/W enabled		2H+5		2H+5	ns
ten(CLKL-S)	Enable time, CLKOUT low to MSTRB, IOSTRB enabled		2H+5	2	2H+5	ns
	Valid time, HOLDA low after CLKOUT low	0†	5	0	5	ns
^t ∨(HOLDA)	Valid time, HOLDA high after CLKOUT low	- 2	3	0	4	ns
^t w(HOLDA)	Pulse duration, HOLDA low duration	2H-3		2H–3		ns

SPRZ123C – JANUARY 1998 – REVISED MARCH 1999

timing requirements over recommended operating conditions for reset, interrupt, $\overline{\text{BIO}}$, and MP/\overline{MC} [H = 0.5 t_{c(CO)}] (see page 87)

		'LC548-	·66	'LC548	3-80	UNIT
		MIN	MAX	MIN MAX		UNIT
^t h(RS)	Hold time, RS after CLKOUT low	0		0		ns
^t h(BIO)	Hold time, BIO after CLKOUT low	0		0		ns
^t h(INT)	Hold time, INTn, NMI, after CLKOUT low [†]	0		0		ns
^t h(MPMC)	Hold time, MP/MC after CLKOUT low	0		0		ns
^t w(RSL)	Pulse duration, RS low‡¶	4H+10		4H+7		ns
^t w(BIO)S	Pulse duration, BIO low, synchronous	2H+10		2H+7		ns
^t w(BIO)A	Pulse duration, BIO low, asynchronous	4H		4H		ns
^t w(INTH)S	Pulse duration, INTn, NMI high (synchronous)	2H+10		2H+7		ns
^t w(INTH)A	Pulse duration, INTn, NMI high (asynchronous)	4H		4H		ns
^t w(INTL)S	Pulse duration, INTn, NMI low (synchronous)	2H+10		2H+7		ns
^t w(INTL)A	Pulse duration, INTn, NMI low (asynchronous)	4H		4H		ns
^t w(INTL)WKP	Pulse duration, INTn, NMI low for IDLE2/IDLE3 wakeup	10		10		ns
^t su(RS)	Setup time, RS before X2/CLKIN low§	5		5		ns
^t su(BIO)	Setup time, BIO before CLKOUT low	10	13	10	13	ns
^t su(INT)	Setup time, INTn, NMI, RS before CLKOUT low	10	14	10	14	ns
t _{su} (MPMC)	Setup time, MP/MC before CLKOUT low	10		10		ns

[†] The external interrupts (INT0–INT3, NMI) are synchronized to the core CPU by way of a two flip-flop synchronizer which samples these inputs with consecutive falling edges of CLKOUT. The input to the interrupt pins is required to represent a 1–0–0 sequence at the timing that is corresponding to three CLKOUTs sampling sequence.

[‡] If the PLL mode is selected, then at power-on sequence, or at wakeup from IDLE3, RS must be held low for at least 50 µs to assure synchronization and lock-in of the PLL.

§ Divide-by-two mode

¶Note that RS may cause a change in clock frequency, therefore changing the value of H (see the PLL section).

switching characteristics over recommended operating conditions for \overline{IAQ} and \overline{IACK} [H = 0.5 t_{c(CO)}] (see page 89)

	PARAMETER	'LC548-66		'LC548	3-80	UNIT
			MAX	MIN	MAX	UNIT
^t d(CLKL-IAQL)	Delay time, IAQ low from CLKOUT low	0	5	0	5	ns
^t d(CLKL-IAQH)	Delay time, IAQ high from CLKOUT low	- 2	3	0	5	ns
^t d(A)IAQ	Delay time, address valid before IAQ low		4		4	ns
^t d(CLKL-IACKL)	Delay time, IACK low from CLKOUT low	- 2	3	– 1	4	ns
^t d(CLKL-IACKH)	Delay time , IACK high from CLKOUT low	- 2	3	– 1	4	ns
^t d(A)IACK	Delay time, address valid before IACK low		3		3	ns
^t h(A)IAQ	Hold time, address valid after IAQ high	0		- 4		ns
^t h(A)IACK	Hold time, address valid after IACK high	0		- 3		ns
^t w(IAQL)	Pulse duration, IAQ low	2H-3		2H-3		ns
^t w(IACKL)	Pulse duration, IACK low	2H-3		2H-3		ns

SPRZ123C – JANUARY 1998 – REVISED MARCH 1999

switching characteristics over recommended operating conditions for external flag (XF) and TOUT $[H = 0.5 t_{c(CO)}]$ (see page 90)

	PARAMETER		'LC548-66		'LC548-80		
	PARAMETER	MIN	MAX	MIN	MAX	UNIT	
+ 10/-	Delay time, XF high after CLKOUT low	F high after CLKOUT low 0 5	0	5	20		
^t d(XF)	Delay time, XF low after CLKOUT low	0	5	0	5	ns	
^t d(TOUTH)	Delay time, TOUT high after CLKOUT low	- 2	3	0	4	ns	
^t d(TOUTL)	Delay time, TOUT low after CLKOUT low	-2	3	0	4	ns	
^t w(TOUT)	Pulse duration, TOUT	2H-3		2H-3		ns	

timing requirements over recommended operating conditions for serial port receive $[H = 0.5 t_{c(CO)}]$ (see page 91)

		'LC548-66		'LC548-80		UNIT
		MIN MA	MAX	MIN	MAX	
^t c(SCK)	Cycle time, serial port clock	6H	†	6H	†	ns
^t f(SCK)	Fall time, serial port clock		6		6	ns
^t r(SCK)	Rise time, serial port clock		6		6	ns
^t w(SCK)	Pulse duration, serial port clock low/high	ЗH		ЗH		ns
t _{su(FSR)}	Setup time, FSR before CLKR falling edge	6		4		ns
^t su(DR)	Setup time, DR before CLKR falling edge	6		4		ns
^t h(FSR)	Hold time, FSR after CLKR falling edge	6		6		ns
^t h(DR)	Hold time, DR after CLKR falling edge	6		6		ns

[†] The serial port design is fully static and, therefore, can operate with t_{C(SCK)} approaching ∞. It is characterized approaching an input frequency of 0 Hz but tested at a much higher frequency to minimize test time.

switching characteristics over recommended operating conditions for serial port transmit with external clocks and frames $[H = 0.5t_{c(CO)}]$ (see page 92)

PARAMETER		'LC548-66		'LC548-80		UNIT
		MIN	MAX	MIN	MAX	UNIT
^t d(DX)	Delay time, DX valid after CLKX rising		25		25	ns
^t h(DX)	Hold time, DX valid after CLKX rising	- 5		- 5		ns
^t dis(DX)	Disable time, DX after CLKX rising		40		40	ns

SPRZ123C – JANUARY 1998 – REVISED MARCH 1999

timing requirements over recommended operating conditions for serial port transmit with external clocks and frames $[H = 0.5t_{c(CO)}]$ (see page 92)

		'LC548-66		'LC548-80		UNIT
		MIN	MAX	MIN	MAX	UNIT
^t c(SCK)	Cycle time, serial port clock	6H	‡	6H	‡	ns
^t h(FSX)	Hold time, FSX after CLKX falling edge (see Note 1)	6		6		ns
^t h(FSX)H	Hold time, FSX after CLKX rising edge (see Note 1)		2H–5§		2H–3§	ns
^t f(SCK)	Fall time, serial port clock		6		6	ns
^t r(SCK)	Rise time, serial port clock		6		6	ns
^t w(SCK)	Pulse duration, serial port clock low/high	ЗH		ЗH		ns
^t d(FSX)	Delay time, FSX after CLKX rising edge		2H–5		2H–3	ns

[‡] The serial port design is fully static and, therefore, can operate with t_{C(SCK)} approaching ∞. It is characterized approaching an input frequency of 0 Hz but tested at a much higher frequency to minimize test time.

§ If the FSX pulse does not meet this specification, the first bit of serial data is driven on DX until the falling edge of FSX. After the falling edge of FSX, data is shifted out on DX pin. The transmit buffer-empty interrupt is generated when the th(FSX) and th(FSX)H specification is met.

NOTE 1: Internal clock with external FSX and vice versa are also allowable. However, FSX timings to CLKX always are defined depending on the source of FSX, and CLKX timings always are dependent upon the source of CLKX. Specifically, the relationship of FSX to CLKX is independent of the source of CLKX.

switching characteristics over recommended operating conditions for serial port transmit with internal clocks and frames $[H = 0.5t_{c(CO)}]$ (see page 93)

PARAMETER		'LC548-66		'LC548-80			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
^t c(SCK)	Cycle time, serial port clock		8H			8H		ns
^t d(FSX)	Delay time, CLKX rising to FSX			15			7	ns
^t d(DX)	Delay time, CLKX rising to DX			15			7	ns
^t dis(DX)	Disable time, CLKX rising to DX			20			20	ns
^t h(DX)	Hold time, DX valid after CLKX rising edge	-5			-2			ns
^t f(SCK)	Fall time, serial port clock		4				3	ns
^t r(SCK)	Rise time, serial port clock		4				3	ns
^t w(SCK)	Pulse duration, serial port clock low/high	4H-8			4H-4			ns

SPRZ123C - JANUARY 1998 - REVISED MARCH 1999

switching characteristics over recommended operating conditions [H = 0.5tc(CO)] (see page 97)

	PARAMETER		'LC548-66		'LC548-80	
			MAX	MIN	MAX	UNIT
^t c(SCK)	Cycle time, serial port clock, internal clock	20	62H	20	62H	ns
^t d(BFSX)	Delay time, BFSX after BCLKX rising edge (see Notes 3 and 4)		10		10	ns
^t d(BDX)	Delay time, BDX valid after BCLKX rising edge		8		8	ns
^t dis(BDX)	Disable time, BDX after BCLKX rising edge	0	5	0	5	ns
^t dis(BDX)pcm	Disable time, PCM mode, BDX after BCLKX rising edge		5		5	ns
^t en(BDX)pcm	Enable time, PCM mode, BDX after BCLKX rising edge	7		7		ns
^t h(BDX)	Hold time, BDX valid after BCLKX rising edge	0		0		ns
^t f(SCK)	Fall time, serial port clock		4		4	ns
^t r(SCK)	Rise time, serial port clock		4		4	ns
^t w(SCK)	Pulse duration, serial port clock low/high	6		6		ns

NOTES: 3. Internal clock with external BFSX and vice versa are also allowable. However, BFSX timings to BCLKX always are defined depending on the source of BFSX, and BCLKX timings always are dependent upon the source of BCLKX.

4. Timings for BCLKX and BFSX are given with polarity bits (BCLKP and BFSP) set to 0.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated