TMS320DM641, TMS320DM640 Digital Signal Processors Silicon Errata

Silicon Revisions 2.0, 1.2, 1.1, 1.0

SPRZ201G July 2003 Revised August 2005

REVISION HISTORY

This silicon errata revision history highlights the technical changes made to the SPRZ201F revision to make it an SPRZ201G revision.

Scope: Applicable updates to the C64x device family, specifically relating to the DM641 and DM640 devices, have been incorporated. Differences between the actual silicon revisions 2.0 and earlier specification values and the data sheet values specified in the *TMS320DM641/TMS320DM640 Video/Imaging Fixed-Point Digital Signal Processors* data manual (literature number SPRS222B or higher) have been documented. Added the device-specific information supporting the **TMS**320DM641/DM640 silicon revisions 2.0, 1.2, 1.1, and 1.0 devices, which are in the production data (PD) stage of development.

TMS320DM641/TMS320DM640 silicon revision 2.0 orderables are designated with "A" (e.g., TMS320DM641<u>A</u>GDK5 for –500 MHz speed).

PAGE(S) NO.	ADDITIONS/CHANGES/DELETIONS
6	Moved "L1P Cache: Incorrect Update of the L1P Tag RAMs (All 64x Devices)" Usage Note to Silicon Revision 2.0 Usage Note section
7–12	Moved/updated the following advisories to Silicon Revision 2.0 Known Design Exceptions to Functional Specifications section: Advisory 1.2.2 – I2C: Bus Busy Bit Does Not Reflect the State of the I2C Bus When the I2C is in Reset Advisory 1.2.3 – I2C: Addressed-As-Slave (AAS) Bit is not Cleared Correctly Advisory 1.2.4 – EMAC: Multi-Channel Mode Ignores Writes to Interrupt Acknowledgement Register Advisory 1.2.5 – Video Port: Y/C Edge Pixel Bug/Mode Filtering Bug Advisory 1.2.6 – Video Port: Capture Mode Event Pre-Generation Bug Advisory 1.2.7 – EMIF: Data Corruption can Occur in SDRAM When HOLD Feature is Used Advisory 1.2.8 – EMIF: PDT Write Transfers Fail When PDTWL Equals 3 Advisory 1.2.13 – EMIF: PDT Transfers Fail When Accessing the Same SDRAM Page as Non-PDT Transfers Advisory 1.2.14 – Video Port: Ancillary Data Header Clipped When Using BT.656 or Y/C Mode

Contents

1	Introduction		4						
	1.1 Device and	Development-Support Tool Nomenclature	4						
	1.2 Revision Id	entification	5						
2	Silicon Revision	1 2.0 Known Design Exceptions to Functional Specifications and Usage Notes	6						
	2.1 Usage Note	es for Silicon Revision 2.0	6						
		: Incorrect Update of the L1P Tag RAMs (All C64x Devices)							
	Advisory 2.0.1	I2C: Bus Busy Bit Does Not Reflect the State of the I2C Bus When the I2C is in Reset							
	Advisory 2.0.1 Advisory 2.0.2	I2C: Addressed-As-Slave (AAS) Bit is not Cleared Correctly							
	Advisory 2.0.2 Advisory 2.0.3	EMAC: Multi-Channel Mode Ignores Writes to Interrupt Acknowledgement Register							
	Advisory 2.0.3 Advisory 2.0.4								
	Advisory 2.0.4 Advisory 2.0.5	Video Port: Y/C Edge Pixel Bug/Mode Filtering Bug Video Port: Capture Mode Event Pre-Generation Bug							
	•								
	Advisory 2.0.6	EMIF: Data Corruption can Occur in SDRAM When HOLD Feature is Used							
	Advisory 2.0.7	EMIF: PDT Write Transfers Fail When PDTWL Equals 3	11						
	Advisory 2.0.8	EMIF: PDT Transfers Fail When Acessing the Same SDRAM Page as Non-PDT Transfers	12						
	Advisory 2.0.9	Video Port: Ancillary Data Header Clipped When Using BT.656 or Y/C Mode	12						
3	Silicon Revision	1.2 Known Design Exceptions to Functional Specifications and Usage Notes	13						
	3.1 Usage Note	es for Silicon Revision 1.2	13						
	3.2 Silicon Rev	ision 1.2 Known Design Exceptions to Functional Specifications	13						
	Advisory 1.2.1	EMU: Data Corruption With RTDX and Real-Time Emulation Memory Read	13						
	Advisory 1.2.9	EMIF: Programmable Synchronous Interface AC Timings Differ							
	•	From Data Sheet Specifications	14						
	Advisory 1.2.10	EMIF: Synchronous DRAM AC Timings Differ From Data Sheet Specifications	15						
	Advisory 1.2.11	L2 Cache: Accesses to Mapped L2 RAM Update L2 LRU Information	16						
	Advisory 1.2.12	L2 Cache: L2 Controller Incorrectly Updates LRU for Accesses in L2 Cache	17						
4	Silicon Revision	1.1 Known Design Exceptions to Functional Specifications and Usage Notes	18						
	4.1 Usage Note	es for Silicon Revision 1.1	18						
	4.2 Silicon Rev	ision 1.1 Known Design Exceptions to Functional Specifications	18						
5	Silicon Revision	1.0 Known Design Exceptions to Functional Specifications and Usage Notes	18						
	5.1 Usage Note	es for Silicon Revision 1.0	18						
	5.2 Silicon Rev	5.2 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications							

1 Introduction

This document describes the known exceptions to the functional specifications for the TMS320DM641 and TMS320DM640 digital signal processors. [See the *TMS320DM641/TMS320DM640 Video/Imaging Fixed-Point Digital Signal Processors* data manual (literature number SPRS222).] Throughout this document, TMS320C64x and C64x refer to TMS320DM641 and TMS320DM640, unless specified otherwise.

For additional information, see the latest version of the *TMS320C6000 DSP Peripherals Overview Reference Guide* (literature number SPRU190).

The advisory numbers in this document are not sequential. Some advisory numbers have been moved to the next revision and others have been removed and documented in the user's guide. When items are moved or deleted, the remaining numbers remain the same and are not resequenced.

This document also contains "Usage Notes". Usage Notes highlight and describe particular situations where the device's behavior may not match presumed or documented behavior. This may include behaviors that affect device performance or functional correctness. These notes will be incorporated into future documentation updates for the device (such as the device-specific data sheet), and the behaviors they describe will not be altered in future silicon revisions.

1.1 Device and Development-Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (i.e. **TMS**320DM641GDK600). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).

Device development evolutionary flow:

TMX Experimental device that is not necessarily representative of the final device's electrical specifications

TMP Final silicon die that conforms to the device's electrical specifications but has not completed quality

and reliability verification

TMS Fully qualified production device

Support tool development evolutionary flow:

TMDX Development-support product that has not yet completed Texas Instruments internal qualification

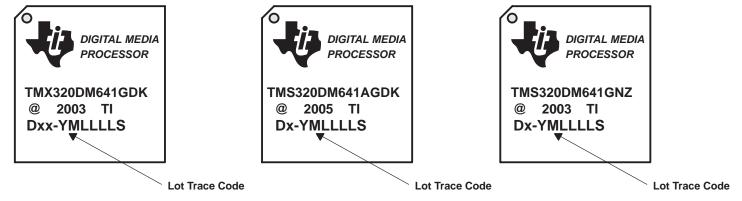
testing.

TMDS Fully qualified development-support product

TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

All trademarks are the property of their respective owners.



1.2 Revision Identification

Α

10

The device revision can be determined by the lot trace code marked on the top of the package. The location of the lot trace code for the GDK and GNZ packages are shown in Figure 1 (using DM641 as an example).

NOTE: Qualified devices are marked with the letters "TMS" at the beginning of the device name, while nonqualified devices are marked with the letters "TMX" or "TMP" at the beginning of the device name.

Figure 1. Example, Lot Trace Codes for TMX320DM641/DM640 and TMS320DM641/DM640 (GDK and GNZ Packages)

Silicon revision is identified by a code on the chip. The code is of the format Dxx-YMLLLLS or Dx-YMLLLLS. If xx is 10, then the silicon is revision 1.0; if x is "A", then the silicon is revision 1.1; if x is "B", then the silicon is revision 1.2, if x is "C", then the silicon is revision 2.0. etc.

 Lot Trace Code (xx or x)
 Silicon Revision
 Comments

 C
 2.0
 TMS320DM641A, TMS320DM640A

 B
 1.2
 TMS320DM641, TMS320DM640

TMX320DM641, TMX320DM640

TMX320DM641, TMX320DM640, TMS320DM641, and TMS320DM640

1.1

1.0

Table 1. Lot Trace Codes

2 Silicon Revision 2.0 Known Design Exceptions to Functional Specifications and Usage Notes

2.1 Usage Notes for Silicon Revision 2.0

Usage Notes highlight and describe particular situations where the device's behavior may not match presumed or documented behavior. This may include behaviors that affect device performance or functional correctness. These notes will be incorporated into future documentation updates for the device (such as the device-specific data sheet), and the behaviors they describe will not be altered in future silicon revisions.

L1P Cache: Incorrect Update of the L1P Tag RAMs (All C64x Devices)

On DM641/DM640 silicon revision 2.0 and earlier, when the CPU is executing non-cacheable code from external memory and there is snoop activity from L2 to L1P occurring at the same time, an incorrect update to the L1P Tag RAM can occur.

Snoop activity from L2 to L1P can be generated two ways:

- 1. EDMA/QDMA activity to L2
- 2. Block cache invalidates initiated in L2

When there is a non-cacheable L1P fetch that is returned from L2 to L1P, **and** there is a snoop from L2 in the very next cycle, then the snoop tag read interferes with the tag/status RAM write for the non-cacheable data. This interference causes the tag RAMs to be incorrectly updated with the tag for that line, rather than discarding the write to the tags. When the NEXT access to that non-cacheable line in L2 occurs, the L1P incorrectly registers this as a hit and transfers data from the L1P rather than the desired external data.

To avoid an incorrect update of the L1P tag RAMs, do the following as best practice:

- While executing code from non-cacheable space, do not perform either EDMA/QDMA transfers to L2 or block cache invalidates initiated in L2
- 2. Mark program code as cacheable as soon as possible.

2.2 Silicon Revision 2.0 Known Design Exceptions to Functional Specifications

Advisory 2.0.1

I2C: Bus Busy Bit Does Not Reflect the State of the I2C Bus When the I2C is in Reset

Revision(s) Affected:

2.0 and earlier

Details:

The bus busy (BB) bit indicates the status of the I2C bus. The BB bit is set to "1" by a START condition (bus is busy) and set to "0" by a STOP condition (bus is free). The I2C peripheral cannot detect a START or STOP condition when it is in reset (IRS bit set to "0"); therefore, the BB bit will keep the state it was in when the I2C peripheral was placed in reset (when IRS bit is set to "0") instead of reflecting the actual I2C bus status. The BB bit stays in that state until the I2C peripheral is taken out of reset (IRS bit set to "1") and a START or STOP condition is detected on the I2C bus. When the device is powered up, the BB bit stays stuck at the default value of "0" until the IRS bit is set to "1" (taking the I2C peripheral out of reset). After the IRS bit is set to "1", the START or STOP condition can be captured in the BB bit.

Workaround:

For multi-master systems, be aware that the BB bit does not reflect the bus status until the I2C peripheral is out of reset (IRS set to "1") and the first START or STOP condition is detected. Before initiating the first data transfer with the I2C peripheral, follow this sequence:

- After taking the I2C peripheral out of reset (IRS bit set to "1"), wait a certain period to
 detect the actual bus status before starting the first data transfer. [The period should be
 set longer than the total time it takes for the longest data transfer in the application.]
 Waiting this amount of time after the I2C comes out of reset should ensure at least one
 START or STOP condition occurred on the I2C bus and captured by the BB bit. After this
 period, the BB bit will correctly reflect the state of the I2C bus.
- 2. Poll the BB bit and verify that BB = 0 (bus not busy) before proceeding to next step.
- 3. Begin data transfers.
- 4. Do not reset the I2C peripheral between transfers so that the BB bit reflects the actual bus status. If the I2C peripheral must be reset between transfers, repeat steps 1 through 3 **every** time the I2C peripheral is taken out of reset (IRS bit set to "1").

(Internal reference number: 1474)

I2C: Addressed-As-Slave (AAS) Bit is not Cleared Correctly

Revision(s) Affected:

2.0 and earlier

Details:

The addressed-as-slave (AAS) bit indicates that the I2C peripheral has recognized its own slave address on the I2C bus. In normal (proper) operation for both 7- and 10-bit addressing modes, the AAS bit has the capability to know that its own I2C peripheral has been addressed as a slave and is now capable of transferring/receiving. Also, in normal operation for both addressing modes, the AAS bit is subsequently cleared by receiving a STOP condition *or* by a slave address different from the I2C peripheral's own slave address.

Currently, in the 7-bit addressing mode, the AAS bit *is* cleared when receiving a NACK, a STOP condition, or a repeated START condition. The AAS bit currently is *not* cleared by receiving a slave address different from the I2C peripheral's own slave address.

Currently, in the 10-bit addressing mode, the AAS bit *is* cleared when receiving a NACK, a STOP condition, or by a slave address different from the I2C peripheral's own slave address. The AAS bit, in 10-bit addressing mode, is *not* cleared by a repeated START condition.

For either address mode, the AAS bit is properly set when addressed as a slave.

The only divergence from normal operation is how the AAS bit is cleared in either address

modes.

Workaround:

None.

Note the AAS bit is set correctly when the I2C peripheral is addressed as a slave for both addressing modes. Also, take into account that when the AAS bit is cleared, the I2C peripheral is no longer addressed as a slave, regardless of addressing mode.

(Internal reference number: 1483)

EMAC: Multi-Channel Mode Ignores Writes to Interrupt Acknowledgement Register

Revision(s) Affected:

2.0 and earlier

Details:

This bug occurs in both TX and RX, when more than one channel is in use. Under multi-channel conditions, the EMAC can "miss" processor writes to the interrupt

acknowledgement registers. The specific writes affected are to the RX[0-7]INTACK registers

on multi-channel RX, and the TX[0–7]INTACK registers on multi-channel TX.

Use of the EMAC in single-channel mode is not affected. When operating either TX or RX in

multi-channel mode (but not the other), only the multi-channel operation is affected.

Workaround:

One workaround is to use EMAC only in single-channel mode.

When using the EMAC in multi-channel mode, application software must verify writes to the RX[0-7]INTACK/TX[0-7]INTACK registers by checking that the corresponding bits in the MACINVECTOR register have been cleared. Alternatively, an application my be coded that is

tolerant of receiving duplicate interrupts from the EMAC.

The ideal workaround approach is dependent on the software architecture. When using descriptor rings as circular queues, verifying the writes to the ACK registers is the cleanest

and safest approach.

When using the CSL HAL to develop driver software, programmers will need to mind this advisory. However, the CSL Ethernet MAC (EMAC) interface functions have the proper

workarounds in place.

Video Port: Y/C Edge Pixel Bug/Mode Filtering Bug

Revision(s) Affected:

2.0 and earlier

Details:

This error occurs under the following conditions:

- Y/C 08-bit mode
- Filter mode = 01 and 11 (1/2 scaling and 1/2 scaling with resampling)
- When capture window is NOT the entire active video
- Cr samples ONLY

For the last Cr (right-hand-side edge pixel), a value of 80h is used instead of taking the next pixel from outside the captured window. This results in a maximum error or ±3 for the last Cr pixel.

Workaround:

There are some potential software workarounds.

One possibility is to pad the desired captured window on the right-side. This allows the actual desired edge pixel to be filtered correctly since it is not the rightmost pixel captured. The rightmost pixel captured is going to be discarded or ignored so it won't matter in this case that it is filtered incorrectly.

In many cases the horizontal filtered output from the video port will subsequently be fed into vertical filtering in software. The vertical filtering routine can take care of discarding the horizontal pixels captured only for padding so that the final resulting 2D image has exactly the right pitch and correctly filtered data including the rightmost edge.

Advisory 2.0.5

Video Port: Capture Mode Event Pre-Generation Bug

Revision(s) Affected:

2.0 and earlier

Details:

This error occurs under the following conditions:

- Mode = Capture mode.
- Field/Frame operation = all modes.
- Field1 and Field2 Threshold not equal to each other.

When transitioning from Field1 to Field2, the Video Port DMA logic falsely pregenerates events based on 2x Field1 values instead of using Field1 + Field2 values.

Workaround:

Make sure that both fields have the same threshold value, Threshold0 = Threshold1.

EMIF: Data Corruption can Occur in SDRAM When HOLD Feature is Used

Revision(s) Affected:

2.0 and earlier

Details:

When using EMIFA in a system where the HOLD feature is used, data can be corrupted in the SDRAM. When the SDRAM refresh counter within the EMIF expires around the same time a $\overline{\text{HOLD}}$ request is asserted, the DSP starts a refresh of the SDRAM. Before the t_{RFC} specification is met, the DSP generates a DCAB command and asserts $\overline{\text{HOLDA}}$, thus violating t_{RFC} specification for SDRAM.

Workaround:

Since both the DSP and the other processor can act as a master, external arbitration logic is needed. There are three possible workarounds:

- Program the arbitration logic to take care of SDRAM refresh. Disable refresh on DSP. Since the DSP is no longer responsible for refresh of SDRAM, the arbitration logic ensures t_{RFC} specification is not violated.
- 2. Use one of the DSP internal timers to provide an output signal to the arbitration logic that indicates refresh is pending. The arbitration logic would then be responsible for de-asserting HOLD and starting its own timer to estimate when the refresh operation has completed. Once the timer within the arbitration logic expires, the arbitration logic should assert HOLD if needed.
- 3. Use two of the DSP internal timers to output two signals that indicate the start and end of a refresh operation to the arbitration logic. The arbitration logic would then be responsible for de-asserting HOLD between the start and end of a refresh operation.

Advisory 2.0.7

EMIF: PDT Write Transfers Fail When PDTWL Equals 3

Revision(s) Affected:

2.0 and earlier

Details:

During a PDT write transfer, the PDT, PDTA, PDTDIR, SDWE, and SDCAS signals will not be driven to their appropriate states when a non-PDT write is followed by a PDT write to a different bank. The incorrect behavior of PDT, PDTA, PDTDIR, SDWE, and SDCAS can result in data corruption, as well as bus contention. This only occurs when PDTWL is set equal to 3 in the PDTCTL register.

Workaround:

When performing both non-PDT writes and PDT writes to the same CE space, do not set PDTWL equal to 3.

EMIF: PDT Transfers Fail When Acessing the Same SDRAM Page as Non-PDT Transfers

Revision(s) Affected:

2.0 and earlier

Details:

When PDT and non-PDT transfers occur to the same SDRAM page, PDTA, PDT, and PDTDIR may not be driven to their appropriate state. The incorrect behavior of these signals can result in PDT data corruption.

Workaround:

Place all PDT transfers, whether reads or writes, in a memory range that is an aliased version of the physical SDRAM. For example, if SDRAM is in CE0 and is 128 Mbytes (MB) in depth, then the functional addressable space is 0x8000 0000 through 0x87FF FFFF and all normal CPU and non-PDT DMA transfers should access this memory range. The "aliased" view of the SDRAM is at address 0x8800 0000 through 0x8FFF FFFF and must be used for all PDT transfers. Similarly, if SDRAM is 64 MB in depth, the functional addressable view is 0x8000 0000 through 0x83FF FFFF and the "aliased" view is 0x8400 0000 through 0x87FF FFFF. The aliased view accesses the same underlying physical address as the functional view.

The address space for the "aliased" view can be created by bit-wise ORing the "logical address" (functional address) in use as follows.

- For 128 MB, OR with 0x0800 0000
- For 64 MB, OR with 0x0400 0000
- For 32 MB, OR with 0x0200 0000
- For 16 MB, OR with 0x0100 0000

This workaround is ONLY applicable if the CE space has less than or equal to 128 MB of SDRAM connected to it. If a CE space is full (maximum addressable space is 256 MB), then that CE space cannot support PDT transfers.

Advisory 2.0.9

Video Port: Ancillary Data Header Clipped When Using BT.656 or Y/C Mode

Revision(s) Affected:

2.0 and earlier

Details:

When using BT.656 or Y/C mode, the Video Display Clipping Register (VDCLIP) can be used to automatically clip data that is beyond the programmed register values. When set to the minimum (0x00) and maximum (0xFF) values, data is clipped to 0x01 and 0xFE, respectively. Because of this clipping, an ancillary data header (0x00, 0xFF, 0xFF) can not be placed in the data path as described in the TMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide (literature number SPRU629).

Workaround:

Use RAW display mode. RAW display mode does not use the programmable clipping associated with the VDCLIP register. If required, embedded synchronization and ancillary data can then be placed in the video port buffers, simulating a BT.656 video stream.

3 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications and Usage Notes

3.1 Usage Notes for Silicon Revision 1.2

Silicon Revision 1.2 applicable usage note(s) have been found on a later silicon revision; for more detail, see the *Usage Notes for Silicon Revision 2.0* section of this document.

3.2 Silicon Revision 1.2 Known Design Exceptions to Functional Specifications

Advisory 1.2.1

EMU: Data Corruption With RTDX and Real-Time Emulation Memory Read

Revision(s) Affected:

1.2 and earlier

Details:

This advisory impacts emulation accesses including JTAG Real-Time Data Exchange

(RTDX[™]), HSRTDX, and real-time emulation memory reads.

If using one or more of the aforementioned impacted emulation functions, you may experience data corruption when performing emulation read requests 2 cycles after L1D has stalled due to a snoop stall, or when the last CPU access is a falsely predicated read request where the

predication bit is zero and is ignored by L1D.

When the above condition is true, L1D incorrectly interprets the CPU read request as an emulation request, and assumes the predication (normally true) is intended for the emulation

request. As a result, L1D ignores the emulation request.

Because the CPU still expects a data return to the active pipeline cycle, it reads the last data

from the read bus, which can cause an update halt and create RTDX corruption

(DSPvd03642).

Workaround:

For workaround suggestions on how to reduce (minimize) the chances of receiving corrupted data, please see the release notes provided with CCS C6000 2.12.10 [Code Composer Studio™ Integrated Development Environment (IDE) TMS320C64x Silicon Revision 1.1 Chip Support Package (CSP)]. These workaround suggestions are discussed in release note #12 — "SDSsq27324: DSP/BIOS™ Real-Time Analysis (RTA) Update Halt and Real-Time Data

Exchange (RTDX) Data Corruption".

RTDX, Code Composer Studio, and DSP/BIOS are trademarks of Texas Instruments.

EMIF: Programmable Synchronous Interface AC Timings Differ From Data Sheet Specifications

Revision(s) Affected:

1.2 and earlier

Details:

The timing parameters in Table 2 and Table 3 differ from the ones specified in the TMS320DM641/TMS320DM640 Video/Imaging Fixed-Point Digital Signal Processors data manual (literature number SPRS222A or later). Table 2 and Table 3 list the differences between the data manual values and the actual values on silicon revisions 1.2 and earlier.

Table 2. Timing Requirements for Programmable Synchronous Interface Cycles for EMIFA Module

			SPRS	222A (C	DLD VAL	UES)		AL VAL	UES RE\ ARLIER	/. 1.2	
NO.			-500		-600		-500		-600		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
7	th(EKOxH-EDV)	Hold time, read AEDx valid after AECLKOUTx high	1.5		1.5		2.0		2.0		ns

Table 3. Switching Characteristics Over Recommended Operating Conditions for Programmable Synchronous Interface Cycles for EMIFA Module

			SPRS	LD VAL	UES)	ACTU.					
NO.		PARAMETER	-50	00	-600		-500		-600		UNIT
				MAX	MIN	MAX	MIN	MAX	MIN	MAX	
1	td(EKOxH-CEV)	Delay time, AECLKOUTx high to ACEx valid	1.3	6.4	1.3	4.9	1.0	6.5	1.0	5.0	ns
2	td(EKOxH-BEV)	Delay time, AECLKOUTx high to ABEx valid		6.4		4.9		6.5		5.0	ns
3	td(EKOxH-BEIV)	Delay time, AECLKOUTx high to ABEx invalid	1.3		1.3		1.0		1.0		ns
4	td(EKOxH-EAV)	Delay time, AECLKOUTx high to AEAx valid		6.4		4.9		6.5		5.0	ns
5	td(EKOxH-EAIV)	Delay time, AECLKOUTx high to AEAx invalid	1.3		1.3		1.0		1.0		ns
8	td(EKOxH-ADSV)	Delay time, AECLKOUTx high to ASADS/ASRE valid	1.3	6.4	1.3	4.9	1.0	6.5	1.0	5.0	ns
9	td(EKOxH-OEV)	Delay time, AECLKOUTx high to ASOE valid	1.3	6.4	1.3	4.9	1.0	6.5	1.0	5.0	ns
10	td(EKOxH-EDV)	Delay time, AECLKOUTx high to AEDx valid		6.4		4.9		6.5		5.0	ns
11	td(EKOxH-EDIV)	Delay time, AECLKOUTx high to AEDx invalid	1.3		1.3		1.0		1.0		ns
12	^t d(EKOxH-WEV)	Delay time, AECLKOUTx high to ASWE valid	1.3	6.4	1.3	4.9	1.0	6.5	1.0	5.0	ns

Workaround:

These parameters will be improved in the next *major* silicon revision.

EMIF: Synchronous DRAM AC Timings Differ From Data Sheet Specifications

Revision(s) Affected:

1.2 and earlier

Details:

The timing parameters in Table 4 and Table 5 differ from the ones specified in the *TMS320DM641/TMS320DM640 Video/Imaging Fixed-Point Digital Signal Processors* data manual (literature number SPRS222A or later). Table 4 and Table 5 list the differences between the data manual values and the actual values on silicon revisions 1.2 and earlier.

Table 4. Timing Requirements for Synchronous DRAM Cycles for EMIFA Module

			SPRS	3222A (C	LD VAL	UES)	ACTU				
NO.			-5	00	-6	00	-5	00	-60	00	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
6	t _{su} (EDV-EKO1H)	Setup time, read AEDx valid before AECLKOUTx high	2.1		0.6		2.1		0.7		ns
7	th(EKO1H-EDV)	Hold time, read AEDx valid after AECLKOUTx high	2.5		1.8		3.0		2.3		ns

Table 5. Switching Characteristics Over Recommended Operating Conditions for Synchronous DRAM Cycles for EMIFA Module

	PARAMETER		SPRS	222A (O	LD VAL	UES)	ACTU				
NO.			-500		-600		-500		-600		UNIT
				MAX	MIN	MAX	MIN	MAX	MIN	MAX	
1	td(EKO1H-CEV)	Delay time, AECLKOUTx high to ACEx valid	1.3	6.4	1.3	4.9	1.1	6.5	1.1	5.0	ns
2	td(EKO1H-BEV)	Delay time, AECLKOUTx high to ABEx valid		6.4		4.9		6.5		5.0	ns
3	td(EKO1H-BEIV)	Delay time, AECLKOUTx high to ABEx invalid	1.3		1.3		1.1		1.1		ns
4	td(EKO1H-EAV)	Delay time, AECLKOUTx high to AEAx valid		6.4		4.9		6.5		5.0	ns
5	td(EKO1H-EAIV)	Delay time, AECLKOUTx high to AEAx invalid	1.3		1.3		1.1		1.1		ns
8	td(EKO1H-CASV)	Delay time, AECLKOUTx high to ASDCAS valid	1.3	6.4	1.3	4.9	1.1	6.5	1.1	5.0	ns
9	td(EKO1H-EDV)	Delay time, AECLKOUTx high to AEDx valid		6.4		4.9		6.5		5.0	ns
10	td(EKO1H-EDIV)	Delay time, AECLKOUTx high to AEDx invalid	1.3		1.3		1.1		1.1		ns
11	td(EKO1H-WEV)	Delay time, AECLKOUTx high to ASDWE valid	1.3	6.4	1.3	4.9	1.1	6.5	1.1	5.0	ns
12	td(EKO1H-RAS)	Delay time, AECLKOUTx high to ASDRAS valid	1.3	6.4	1.3	4.9	1.1	6.5	1.1	5.0	ns
13	td(EKO1H-ACKEV)	Delay time, AECLKOUTx high to ASDCKE valid	1.3	6.4	1.3	4.9	1.1	6.5	1.1	5.0	ns
14	^t d(EKO1H-PDTV)	Delay time, AECLKOUTx high to APDT valid	1.3	6.4	1.3	4.9	1.1	6.5	1.1	5.0	ns

Workaround:

These parameters will be improved in the next *major* silicon revision.

L2 Cache: Accesses to Mapped L2 RAM Update L2 LRU Information

Revision(s) Affected:

1.2 and earlier

Details:

CPU accesses to L2 RAM addresses incorrectly cause updates to the "Least-Recently Used" (LRU) state information in the L2 cache. This may cause an increased number of L2 cache misses in some systems.

The L2 cache implements a 4-way set-associative cache. The cache uses the (LRU) information to determine what "way" within each set is least recently used. When the CPU accesses data in L2 cache, the L2 controller determines what "way" holds the data in that set, and marks that "way" as most-recent. When allocating a new line in the cache, the L2 controller evicts the line in the set from the least-recently used "way" under the assumption that more-recently accessed data is more relevant.

When the CPU accesses data in L2 SRAM, either via program fetches or data accesses, the L2 cache is incorrectly updated by the L2 controller. The L2 controller updates the LRU as if the access was to "way 0" in the cache. This causes the LRU history to *not* reflect the actual sequence of accesses to L2 cache. As a result, the L2 may not choose the actual least-recently used line during an eviction.

Only CPU accesses to L2 RAM cause this update to LRU information in L2 cache. DMA accesses to L2 RAM *do not* trigger updates to the L2 LRU information.

Workaround:

Perform one of the following three workarounds:

- Choose an L2 cache size that fits your cached working set. The advisory primarily impacts programs that are significantly larger than the L2 cache size.
- Explicitly remove cached contents from L2 when finished with them. The L2 cache
 allocates "invalid" lines within each set before consulting the LRU. Programs may do
 this using "block invalidate" or "block writeback-invalidate" commands in the L2 cache.
- Lay out buffers in L2 RAM so they do not conflict with buffers or code held in L2 cache. L2 RAM addresses map onto L2 sets in the same manner as external memory addresses.

For more detailed information on the organization and manipulation of the L2 cache, see the TMS320C64x DSP Two-Level Internal Memory Reference Guide (literature number SPRU610).

L2 Cache: L2 Controller Incorrectly Updates LRU for Accesses in L2 Cache

Revision(s) Affected:

1.2 and earlier

Details:

The L2 cache implements a 4-way set-associative cache. The cache uses the "Least-Recently Used" (LRU) information to determine what "way" within each set is least recently used. When the CPU accesses data in L2 cache, the L2 controller determines what "way" holds the data in that set, and marks that "way" as most-recent. When allocating a new line in the cache, the L2 controller evicts the line in the set from the least-recently used "way" under the assumption that more-recently accessed data is more relevant.

For this advisory, CPU accesses which hit L2 cache *do not* correctly update the LRU information for the set accessed. Instead of storing the LRU information back to the set being accessed, the L2 controller stores the information to 3 adjacent sets.

LRU information is stored in groups of 4 sets. The 3 adjacent sets affected by the current set are defined as follows:

- Group 1 contains sets 0, 1, 2, 3
- Group 2 contains sets 4, 5, 6, 7
- Etc.

For example, during an access to set 5, the L2 controller incorrectly stores the LRU information to sets 4, 6, 7.

As a result of this issue, repeated misses to the same set with no intervening accesses to adjacent sets will allocate from the same "way". This can make the L2 cache appear to "thrash". A series of misses to consecutive sets in L2 cache may appear to allocate with reduced associativity; that is, L2 could appear to behave as a 2-way or direct-mapped cache.

Workaround:

Perform one of the following three workarounds:

- Choose an L2 cache size that fits your cached working set. The advisory primarily impacts programs that are significantly larger than the L2 cache size.
- Explicitly remove cached contents from L2 when finished with them. The L2 cache
 allocates "invalid" lines within each set before consulting the LRU. Programs may do
 this using "block invalidate" or "block writeback-invalidate" commands in the L2 cache.
- Offset external buffers that are accessed as part of the same working set so that
 accesses to the buffers are at least 4 L2 sets apart (512 bytes). This will prevent the
 buffers from "thrashing" each other in L2 cache.

For more detailed information on the organization and manipulation of the L2 cache, see the TMS320C64x DSP Two-Level Internal Memory Reference Guide (literature number SPRU610).

4 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications and Usage Notes

4.1 Usage Notes for Silicon Revision 1.1

Silicon Revision 1.1 applicable usage note(s) have been found on a later silicon revision; for more detail, see the *Usage Notes for Silicon Revision 2.0* section of this document.

4.2 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications

All known design exceptions to functional specifications for silicon revision 1.1 still apply and have been moved up to the Silicon Revision 2.0 Known Design Exceptions to Functional Specifications section and Silicon Revision 1.2 Known Design Exceptions to Functional Specifications section of this document.

5 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications and Usage Notes

5.1 Usage Notes for Silicon Revision 1.0

Silicon Revision 1.0 applicable usage note(s) have been found on a later silicon revision; for more detail, see the *Usage Notes for Silicon Revision 2.0* section of this document.

5.2 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications

All known design exceptions to functional specifications for silicon revision 1.0 still apply and have been moved up to the Silicon Revision 2.0 Known Design Exceptions to Functional Specifications section and Silicon Revision 1.2 Known Design Exceptions to Functional Specifications section of this document.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated