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It is hard to understate the promise of machine 
learning, the latest evolution of which, deep learning, 
has been called a foundational technology that will 
impact the world to the same degree as the internet, 
or the transistor before that.          

Brought on by great advancements in computing power and the availability of enormous 

labeled data sets, deep learning has already brought major improvements to image 

classification, virtual assistants and game playing, and will likely do the same for 

countless industries. Compared to traditional machine learning, deep learning can 

provide improved accuracy, greater versatility and better utilization of big data – all with 

less required domain expertise.

In order for machine learning to fulfill its promise in 

many industries, it is necessary to be able to deploy 

the inference (the part that executes the trained 

machine learning algorithm) into an embedded 

system. This deployment has its own unique set 

of challenges and requirements. This white paper 

will address the challenges of deploying machine 

learning in embedded systems and the primary 

considerations when choosing an embedded 

processor for machine learning.

Training and inference 

In the subset of machine learning that is deep 

learning, there are two main pieces: training and 

inference, which can be executed on completely 

different processing platforms, as shown in Figure 1, 

below. The training side of deep learning usually 

occurs offline on desktops or in the cloud and 

entails feeding large labeled data sets into a deep 

neural network (DNN). Real-time performance or 

power is not an issue during this phase. The result 

of the training phase is a trained neural network that 
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Figure 1. Traditional deep learning development flow. 
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when deployed can perform a specific task, such 

as inspecting a bottle on an assembly line, counting 

and tracking people within a room, or determining 

whether a bill is counterfeit. The deployment of the 

trained neural network on a device that executes 

the algorithm is known as the inference. Given the 

constraints imposed by an embedded system, 

the neural network will often be trained on a 

different processing platform than the one running 

the inference. This paper focuses on processor 

selection for the inference part of deep learning.  

The terms “deep learning” and “machine learning”  

in the rest of this paper refer to the inference.

Machine learning at the edge

The concept of pushing computing closer to 

where sensors gather data is a central point of 

modern embedded systems – i.e. the edge of the 

network. With deep learning, this concept becomes 

even more important to enable intelligence and 

autonomy at the edge. For many applications – from 

automated machinery and industrial robots on a 

factory floor, to self-guided vacuums in the home, 

to an agricultural tractor in the field – the processing 

must happen locally.

The reasons for local processing can be quite varied 

depending on the application. Here are just a few of 

the concerns driving the need for local processing:

• Reliability. Relying on an internet connection is 

often not a viable option.

• Low latency. Many applications need an 

immediate response. An application may not be 

able to tolerate the time delay in sending data 

somewhere else for processing.

• Privacy. The data may be private and therefore 

should not be transmitted or stored externally.

• Bandwidth. Network bandwidth efficiency is often 

a key concern. Connecting to a server for every 

use case is not sustainable.

• Power. Power is always a priority for embedded 

systems. Moving data consumes power. The further 

the data needs to travel, the more energy needed.

Choosing an embedded processor 

for machine learning

Many of the concerns requiring local processing 

overlap with those inherent in embedded systems, 

particularly power and reliability. Embedded 

systems also have several other factors to consider 

that are related to or caused by the system’s 

physical limitations. There are frequently inflexible 

requirements regarding size, memory, power, 

temperature, longevity and, of course, cost.

In the midst of balancing all of the requirements 

and concerns for a given embedded application, 

there are a few important factors to consider when 

choosing a processor to execute machine learning 

inference for the edge:

• Consider the entire application. One of the 

first things to understand before selecting a 

processing solution is the scope of the entire 

application. Will running the inference be the only 

processing required or will there be a combination 

of traditional machine vision with the addition of 

a deep learning inference? It can often be more 

efficient for a system to run a traditional computer 

vision algorithm at a high level and then run deep 

learning when needed. For example, an entire 

input image at high frames per second (fps) 

can run classical computer vision algorithms to 

perform object tracking with deep learning used 

on identified sub-regions of the image at a lower 

fps for object classification. In this example, the 

classification of objects across multiple subregions 

may require multiple instances of inference, or 

possibly even different inferences running on each 

sub-region. In the latter case, you must choose a 

processing solution that can run both traditional 

computer vision and deep learning, as well as 
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multiple instances of different deep learning 

inferences. Figure 2 shows an example usage of 

tracking multiple objects through sub-regions of 

an image and performing classification on each 

object being tracked. 

• Choose the right performance point. Once 

you have a sense of the scope of the entire 

application, it becomes important to understand 

how much processing performance is necessary 

to satisfy the application needs. This can be 

difficult to understand when it comes to machine 

learning because so much of the performance 

is application-specific. For example, the 

performance of a convolutional neural net (CNN) 

that classifies objects on a video stream depends 

on what layers are used in the network, how 

deep the network is, the video’s resolution, the 

fps requirement and how many bits are used for 

the network weights – to name just a few. In an 

embedded system, however, it is important to try 

and get a measure of the performance needed 

because throwing too powerful a processor at the 

problem generally comes at a trade-off against 

increased power, size and/or cost. Although a 

processor may be capable of 30fps at 1080p of 

ResNet-10, a popular neural net model used in 

high power, centralized deep learning applications, 

it’s likely overkill for an application that will run a  

 more embedded-friendly network on a 244 x 244 

region of interest.

• Think embedded. Selecting the right network is 

just as important as selecting the right processor. 

Not every neural net architecture will fit on an 

embedded processor. Limiting models to those 

with fewer operations will help achieve real-time 

performance. You should prioritize benchmarks 

of an embedded-friendly network, one that will 

tradeoff accuracy for significant computational 

savings, instead of more well-known networks 

like AlexNet and GoogleNet, which were not 

designed for the embedded space. Similarly, look 

for processors capable of efficiently leveraging 

the tools that bring these networks into the 

embedded space. For example, neural networks 

can tolerate lots of errors; using quantization is a 

good way to reduce performance requirements 

with minimal decreases in accuracy. Processors 

that can support dynamic quantization and 

efficiently leverage other tricks like sparsity (limiting 

the number of non-zero weights) are good choices 

in the embedded space.

• Ensure ease of use. Ease of use refers 

to both ease of development and ease of 

evaluation. As mentioned earlier, right-sizing the 

processor performance is an important design 

consideration. The best way to do this correctly 

is to run the chosen network on an existing 

processor. Some offerings provide tools that, 

given a network topology, will show achievable 

performance and accuracy on a given processor, 

thus enabling a performance evaluation without 

the need for actual hardware or finalization of a 

network. For development, being able to easily 

import a trained network model from popular 

frameworks like Caffe or TensorFlow is a must.

Additionally, support for open ecosystems like 

ONNX (Open Neural Network eXchange) will 

support an even larger base of frameworks to be 

used for development. 

Figure 2. Example of object classification using embedded deep learning.
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There are many different types of processors to 

consider when choosing one for deep learning, 

and they all have their strengths and weaknesses. 

Graphics Processing Units (GPUs) are usually 

the first consideration because they are widely 

used during network training. Although extremely 

capable, GPUs have had trouble gaining traction in 

the embedded space given the power, size and cost 

constraints often found in embedded applications.

Power- and size-optimized “inference engines” are 

increasingly available as deep learning grows in 

popularity. These engines are specialized hardware 

offerings aimed specifically at performing the deep 

learning inference. Some engines are optimized to the 

point of using 1-bit weights and can perform simple 

functions like key phrase detection, but optimizing 

this much to save power and compute comes with a 

tradeoff of limited system functionality and precision. 

The smaller inference engines may not be powerful 

enough if the application needs to classify objects 

or perform fine-grain work. When evaluating these 

engines, make sure that they are right-sized for the 

application. A limitation on these inference engines 

comes when the application needs additional 

processing aside from the deep learning inference. 

More often than not, the engine will need to be 

used alongside another processor in the system, 

functioning as a deep learning co-processor.

An integrated system on chip (SoC) is often a 

good choice in the embedded space because in 

addition to housing various processing elements 

capable of running the deep learning inference, an 

SoC also integrates many components necessary 

to cover the entire embedded application. Some 

integrated SoCs include display, graphics, video 

acceleration and industrial networking capabilities, 

enabling a single-chip solution that does more than 

just run deep learning.

An example of a highly integrated SoC for deep 

learning is the AM5749 device from Texas Instruments, 

shown in Figure 3. The AM5749 has two Arm® 

Cortex®-A15 cores for system processing, two 

C66x digital signal processor (DSP) cores for 

running traditional machine vision algorithms and 

two Embedded Vision Engines (EVE) for running the 

inference. TI’s deep learning (TIDL) software offering 

includes the TIDL library, which runs on either C66x 

DSP cores or the EVEs, enabling multiple inferences 

to run simultaneously on the device. Additionally, 

the AM5749 provides a rich peripheral set; an 

industrial communications subsystem (ICSS) for 

implementation of factory floor protocols such as 

EtherCat; and acceleration for video encode/decode 

and 3D and 2D graphics, facilitating the use of this 

SoC in an embedded space that also performs 

deep learning.

Choosing a processor for an embedded application 

is often the most critical component selection for a 

product, and this is true for many industry-changing 

products that will bring machine learning to the 

edge. Hopefully, this paper provided some insight 

into what you should consider when selecting a 

processor: consider the entire application, choose 

the right performance point, think embedded, and 

ensure ease of use.

Figure 3. Block diagram of the Sitara™ AM5749 SoC.  

http://www.ti.com/product/AM5749


Related websites:

• Learn more about Sitara AM57x processors.

• Download the Processor software development 

kit (SDK) for Sitara AM57x processors with deep 

learning for embedded applications.

• Download the Deep Learning Inference for 

Embedded Applications Reference Design
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