TPS65921 PCB Layout Guidelines

Application Report

Literature Number: SWCA091A October 2010–Revised March 2012

Contents

1	Introdu	ction 4
2	TPS659	021 Layout Recommendations 4
	2.1	PCB Recommendation for Each Pin 4
	2.2	USB-Specific Recommendation
	2.3	Layout Examples 10
3	Revisio	n History 15

List of Figures

1	Critical Component Placement	10
2	VIO DCDC Layout Top	11
3	VIO DCDC Layout IN1	11
4	Power Layer Layout on PMIC Side	12
5	USB Board Layout Bottom Side	13
6	USB Board Layout TOP/IN1 Side	13
7	Reference and 32-kHz Oscillator Layout Top	14
8	Reference and 32-kHz Oscillator Layout IN1	14

List of Tables

1	PCB Recommendation for Each Pin	4
2	REVISION HISTORY	15

TPS65921 PCB Layout Guidelines

ABSTRACT

This document describes how to connect the TPS65921 features during board layout.

1 Introduction

Some TPS65921 features need specific attention during board layout. This document describes how to connect each ball on the PCB and what to do when functions are not used.

2 TPS65921 Layout Recommendations

2.1 PCB Recommendation for Each Pin

Name	Ball	Туре	I/O ⁽¹⁾	Description	PCB Recommendation	Not Used Features ⁽²⁾
JTAG.TDO/GPIO	L9	Digital	I/O	JTAG® test output or GPIO0/card detection 1		Floating
ADCIN0	F2	Analog	I/O	General-purpose ADC input		Floating
STAR.ADC/JTAG.T DI	H7	Digital	I	ADC conversion request/JTAG test data input		GND
SDA	C4	Digital	I/O	General-purpose inter- integrated circuit (I ² C™) bidirectional data signal		N/A ⁽³⁾
SCL	B3	Digital	I/O	General-purpose I ² C bidirectional clock signal		N/A
SRI2C_SDA	D4	Digital	I/O	SmartReflex [™] I ² C bidirectional data signal		Floating
SRI2C_SCL	A3	Digital	I/O	SmartReflex I ² C bidirectional clock signal		GND
PWRON	D5	Digital	I	Input detects a control command to start or stop the system.		VBAT
REGEN	G3	Digital	0	Enable signal for external low- dropout (LDO) regulator.		Floating
MSECURE	G8	Digital	I	Security and digital rights management		IO.1P8
BOOT0	E5	Digital	I	Power-up sequence selection		N/A
BOOT1	F6	Digital	I	Power-up sequence selection		N/A
NRESPWRON	E7	Digital	0	Output control the NRESETN of the application processor		Floating
NRESWARM	H8	Digital	I	Warm reset signal		GND
NSLEEP	K4	Digital	I	ACTIVE-SLEEP state transition control signal		GND

Table 1. PCB Recommendation for Each Pin

⁽¹⁾ I = Input, O = Output

⁽³⁾ N/A = Not applicable

⁽²⁾ This column provides the connection when the associated feature is not used or not connected.

Name	Ball	Туре	I/O ⁽¹⁾	Description	PCB Recommendation	Not Used Features ⁽²
INT	A9	Digital	0	Interrupt line output		Floating
SYSEN	B9	Digital	0	System enable output		Floating
CLKEN	F10	Digital	0	Clock enable		Floating
CLK32KOUT	G6	Digital	0	32-kHz clock output		Floating
32KXOUT	G11	Analog	0	32-kHz crystal oscillator	Sensitive balls. Route as differential pair. Place crystal as close as possible to balls.	Floating
32KXIN	H11	Analog	I	_		N/A
HFCLKIN	C8	Analog	I	Sine wave or square wave input	High-speed (HS) clock. Keep away from sensitive signals.	N/A
HFCLKOUT	K8	Digital	0	50% duty cycle square wave output	HS clock. Keep away from sensitive signals.	Floating
VREF	G10	Analog	0	Reference voltage	Very sensitive, connect capacitor close ball	N/A
GND_AGND	K7	Analog	I/O	Substrate ground	Connect to a clean ground.	GND
AGND	H10	Analog	I/O	Reference ground	Connect to a clean ground same as 32-kHz oscillator foot capacitor ground and VREF capacitor ground.	GND
DGND	B8	Power	I/O	Digital ground	Do not connect with DCDC/charge pump ground.	GND
IO.1P8	A10	Power	I	Supply for input/output (I/O) buffers (VDDIO)		N/A
VBACKUP	G9	Power	I	Must be shorted to GND		GND
VDD1.IN	E9, E10, E11	Power	I	VDD1 DCDC input	High current (≈2.5-A peak) and noisy balls. Place input capacitor close to balls. Connect input capacitor ground to VDD1.GND.	VBAT
VDD1.GND	A11, B10, B11	Power	I/O	VDD1 DCDC power ground	High current (≈2.5-A peak) pin. Connect to separate GND plane. Connect separate plane to main plane in a single point to avoid GND loop.	GND
VDD1.L	C10, C11, D10	Power	0	VDD1 DCDC switched output	High current (≈2.5-A peak) and noisy balls. Connect with shortest shape to inductor.	Floating
VDD1.FDBK	D11	Analog	I	VDD1 feedback voltage (output)	Sensitive signal. Keep away from noisy signals as VDD1.L. Connect output capacitor ground to VDD1.GND.	GND
VDD2.IN	K10,L1 0	Power	I	VDD2 DCDC input	High current (≈1.2-A peak) and noisy balls. Place input capacitor close to balls. Connect input capacitor ground to VDD2.GND.	VBAT
VDD2.GND	J10, J11	Power	I/O	VDD2 DCDC power ground	High current (≈1.2-A peak) pin. Connect to separate GND plane. Connect separate plane to main plane in a single point to avoid GND loop.	GND

Table 1. PCB	Recommendation	for	Each	Pin	(continued)
--------------	----------------	-----	------	-----	-------------

Name	Ball	Туре	I/O ⁽¹⁾	Description	PCB Recommendation	Not Used Features ⁽²⁾
VDD2.L	K11, L11	Power	0	VDD2 DCDC switched output	High current (≈1.2-A peak) and noisy balls. Connect with shortest shape to inductor.	Floating
VDD2.FDBK	H9	Analog	I	VDD2 feedback voltage (output)	Sensitive signal. Keep away from noisy signals as VDD2.L. Connect output capacitor ground to VDD2.GND.	GND
VIO.IN	K2, L2	Power	I	VIO DCDC input	High current (≈1.4-A peak) and noisy balls. Place input capacitor close to balls. Connect input capacitor ground to VIO.GND.	VBAT
VIO.GND	J1, J2	Power	I/O	VIO DCDC power ground	High current pin (≈1.4-A peak). Connect to separate GND plane. Connect with main plane in a single point to avoid GND loop.	GND
VIO.L	K1, L1	Power	0	VIO DCDC switched output	High current (≈1.4-A peak) and noisy balls. Connect with shortest shape to inductor.	Floating
VIO.FDBK	H1	Analog	I	VIO feedback voltage (output)	Sensitive signal. Keep away from noisy signals as VIO.L. No current, route with thin net. Connect output capacitor ground to VIO.GND.	GND
VAUX12S.IN	F1	Power	I	VAUX LDO input	100-mA trace. Place capacitor close to ball.	VBAT
VAUX.OUT	G1	Power	0	VAUX regulator output	100-mA trace. Place capacitor close to ball.	
VPLLA3R.IN	A6	Power	I	VPLL//VRTC LDO input	70-mA trace. Place capacitor close to ball.	VBAT
VPLL1.OUT	A8	Power	0	VPLL LDO output	40-mA trace. Place capacitor close to ball.	Floating
VRTC.OUT	B5	Power	0	VRTC internal LDO output (internal use only)	Place capacitor close to ball.	N/A
VINT.IN	A7	Power	I	VINTDIG LDO input	100-mA trace. Place capacitor close to ball.	VBAT
VINTANA1	D1	Power	0	VINTANA1 internal LDO output (internal use only)	Place capacitor close to ball.	N/A
VINTANA2	A2	Power	0	VINTANA2 internal LDO output (internal use only)	Place capacitor close to ball.	N/A
VDAC.IN	C1	Power	I	VDAC/VINTANA1/VINTAN2 LDO input	370-mA trace. Place capacitor close to ball.	VBAT
VDAC.OUT	E1	Power	0	VDAC LDO output	70-mA trace. Place capacitor close to ball.	Floating
VINTDIG.OUT	B7	Power	0	VINTDIG internal LDO output (internal use only)	Place capacitor close to ball.	N/A
VMMC.IN	B1	Power	I	VMMC Input LDO	220-mA trace. Place capacitor close to ball.	VBAT
VMMC1.OUT	A1	Power	0	VMMC LDO output	220-mA trace. Place capacitor close to ball.	Floating
VBAT.USB	K6	Power	I	VUSB1P8, VUSB1P5, and VUSB3P1 regulators input	Place capacitor close to ball.	VBAT

Table 1. PCB Recommendation for Each Pin (continued)

Name	Ball	Туре	I/O ⁽¹⁾	Description	PCB Recommendation	Not Used
VUSB.3P1	L6	Power	0	VUSB.3P1 LDO output	Place capacitor close to ball.	Features ⁽²⁾ N/A
VUSB1P8.OUT	J6	Power	0	VUSB1P8 LDO output (internal use only)	Place capacitor close to ball.	Floating
VUSB1P5.OUT	J5	Power	0	VUSB1P5 LDO output (internal use only)	Place capacitor close to ball.	Floating
TESTV1	H2	Analog	IO	Analog test pin 1		Floating
TESTV2	C9	Analog	IO	Analog test pin 2		Floating
TEST	D3	Digital	IO	Selection between JTAG mode and application mode		Floating
AVSS1	F3	Power	I/O	Analog ground		GND
AVSS2	H6	Power	I/O	Analog ground		GND
AVSS3	F9	Power	I/O	Analog ground		GND
AVSS4	A4	Power	I/O	Analog ground		GND
VBUS	K5	Power		VBUS power rail	100-mA trace	N/A
DP	L7	Analog	I/O	USB differential data line	See Section 2.2 of the USB PCB recommendation.	N/A
DM	L8	Analog	I/O	USB differential data line] [N/A
ID	J7	Digital	I/O	USB ID		Floating
UCLK	D6	Digital	I/O	HS USB clock		Floating
STP	E6	Digital	I/O	HS USB stop		Floating
DIR	A5	Digital	I/O	HS USB direction		Floating
NXT	C5	Digital	I/O	HS USB next		Floating
DATA0	B6	Digital	I/O	HS USB Data0		Floating
DATA1	C6	Digital	I/O	HS USB Data1		Floating
DATA2	C7	Digital	I/O	HS USB Data2		Floating
DATA3	D7	Digital	I/O	HS USB Data3		Floating
DATA4	F8	Digital	I/O	HS USB Data4		Floating
DATA5	F11	Digital	I/O	HS USB Data5		Floating
DATA6	E8	Digital	I/O	HS USB Data6		Floating
DATA7	D9	Digital	I/O	HS USB Data7		Floating
CP_IN	L4	Power	I/O	Charge pump input voltage	200-mA trace. Noisy ball. Place input capacitor close to balls. Connect input capacitor ground to CP_GND.	VBAT
CP_GND	J3	Power GND	I/O	Charge pump ground	Connect to separate GND plane. Connect separate plane to main plane in a single point to avoid GND loop.	GND
CP_CAPP	L5	Analog	I/O	Charge pump flying capacitor P	Place fly capacitor as close as possible to balls.	Floating
CP_CAPM	L3	Analog	I/O	Charge pump flying capacitor M		
KPD.C0	B4	Open-drain	0	Keypad column 0		Floating
KPD.C1	D2	Open-drain	0	Keypad column 1		Floating
KPD.C2	E2	Open-drain	0	Keypad column 2		Floating
KPD.C3	B2	Open-drain	0	Keypad column 3		Floating
KPD.C4	C2	Open-drain	0	Keypad column 4		Floating
KPD.C5	E4	Open-drain	0	Keypad column 5		Floating
KPD.C6	E3	Open-drain	0	Keypad column 6		Floating

Table 1. PCB	Recommendation	for Eac	h Pin	(continued)
				(001111100)

Name	Ball	Туре	I/O ⁽¹⁾	Description	PCB Recommendation	Not Used Features ⁽²⁾
KPD.C7	F4	Open-drain	0	Keypad column 7		Floating
KPD.R0	H5	Digital	I	Keypad row 0		Floating
KPD.R1	G4	Digital	I	Keypad row 1		Floating
KPD.R2	H4	Digital	I	Keypad row 2		Floating
KPD.R3	G5	Digital	I	Keypad row 3		Floating
KPD.R4	J4	Digital	I	Keypad row 4		Floating
KPD.R5	J8	Digital	I	Keypad row 5		Floating
KPD.R6	G7	Digital	I	Keypad row 6		Floating
KPD.R7	F5	Digital	I	Keypad row 7		Floating
VBAT	K3	Power	I/O	Battery input voltage	Battery sense pin, very sensitive. Connect to a clean Vsystem.	VBAT
CLKREQ	D8	Digital	I	Clock request		GND
TEST.RESET	J9	Digital	I	Reserved		GND
VPROG	H3	Analog	I	Reserved		GND
JTAG.TCK	F7	Digital	I	JTAG clock input		GND
JTAG.TMS/GPIO	К9	Digital	I/O	JTAG test mode state or GPIO1/card detection 2		Floating
TEST2/GPIO2	G2	Digital	I	Digital test pin/GPIO2		Floating

Table 1. PCB Recommendation	for Each Pin	(continued)
-----------------------------	--------------	-------------

2.2 USB-Specific Recommendation

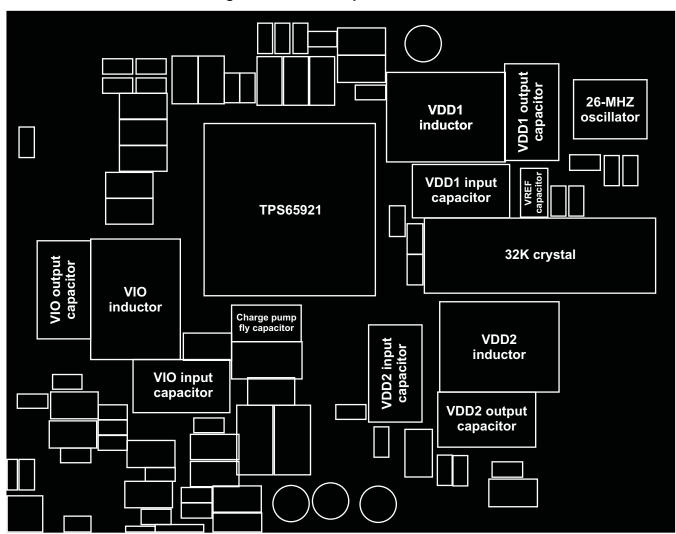
2.2.1 General Considerations

- USB design requires symmetrical termination and symmetrical components placement along DP and DM paths.
- Place the USB host controller and major components on the unrouted board first.
- Place the USB host controller as close as possible to the transceiver device; for example, ULPI traces as short as possible.
- Route the HS clock and HS USB. Route differential pairs first.
- Maintain the maximum possible distance between HS clocks/periodic signals to the HS USB differential pairs and any connector leaving the PCB (such as I/O connectors, control and signal headers, and power connectors).
- The maximum TI-recommended external capacitance on DP (or DM) lines is 4 pF.
 - This capacitance is the sum of all external discrete components; that is, the total capacitance on DP/DM lines, including trace capacitance, can be larger than 4 pF.
 - All discrete components must be placed as close as possible to the USB receptacle.
- Place low-capacitance ESD protections as close as possible to the USB receptacle, with no other external devices in between.
- Common mode chokes degrade signal quality; thus, they must be used only if EMI performance enhancement is necessary.
- Place common mode chokes (if required to improve EMI performance) as close as possible to the USB receptacle, but after the ESD device(s).

2.2.2 USB Interface (DP/DM)

- Route the USB receptacle ground pin to the analog ground plane of the device with multiple vias connections.
- Route the DP/DM trace pair together.
- For HS-capable devices, route the DP/DM signals from the device to the USB receptacle with the optimum trace length of 5 cm, and the maximum trace length 1-way delay of 0.5 ns (7.5 cm for 67 ps/cm in FR-3).
- Match DP/DM trace lengths. The maximum mismatch allowed is 150 mils (~0.4 cm).
- Route DP/DM signals with 90-Ω differential impedance, and 22.5~30-Ω common-mode impedance (the objective is to have Zodd ~= Z0 = Zdiff/2 = 45 Ω)
- Use an impedance calculator to determine the trace width and spacing required for the specific board stackup being used.
- Keep the maximum possible distance between DP/DM signals from other platform clocks, power sources, and digital/analog signals.
- Do not route DP/DM signals over/under crystals, oscillators, clock synthesizers, magnetic devices, and ICs that use clocks.
- Avoid changing the routing layer for DP/DM traces; if unavoidable, use multiple vias.
- Minimize bends and corners on DP/DM traces.
- When it becomes necessary to turn 90 degrees, use two 45-degree turns or an arc instead of one 90degree turn. This reduces reflections on the signal by minimizing impedance discontinuities.
- Avoid creating stubs on DP/DM traces, because stubs cause signal reflections and affect global signal quality.
- If stubs are unavoidable, they must be lower than 200 mils (~0.5 cm).
- Route DP/DM signals over continuous VCC or GND planes without interruption, avoiding crossing antietch (plane splits), which increases inductance and radiation levels by introducing a greater loop area.
- Route DP/DM signals at least 25 mils (~0.65 mm) away from any plane splits.
- Follow the 20 * h rule of thumb by keeping traces at least 20 * (height above the plane) away from the edge of the plane (VCC or GND, depending on the plane the trace is over).
- Changing signal layers is preferable to crossing plane splits if a choice must be made.
- If crossing a plane split is unavoidable, proper placement of stitching caps can minimize the adverse effects on EMI and signal quality performance caused by crossing the split.
- Avoid anti-etch on the ground plane.

2.2.3 ULPI Interface


- Route the ULPI 12-pin bus as a 50- Ω single-ended nonterminated adapted bus.
- Route the ULPI 12-pin bus with minimum trace lengths and a strict maximum of 50 mm, to ensure timing. Match 12 ULPI signal trace lengths.
- Route the ULPI 12-pin bus as clock signals and set a minimum spacing of three times the trace width (S < 3W).

www.ti.com

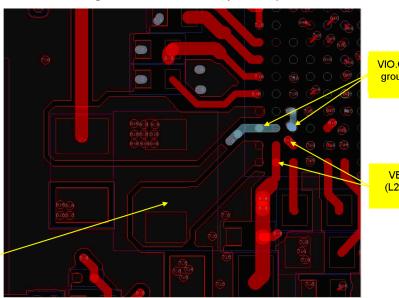
2.3 Layout Examples

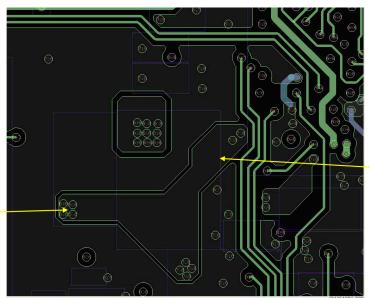
2.3.1 Critical Component Placement

Figure 1. Critical Component Placement

SWCA091-001

2.3.2 DCDC Layout:VIO



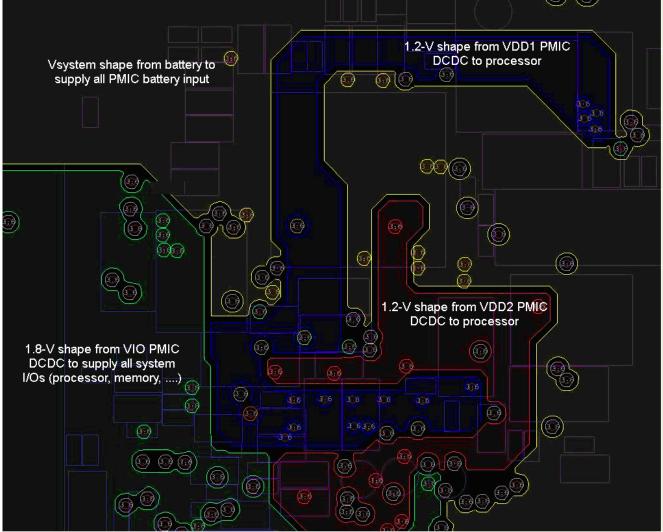

Figure 2. VIO DCDC Layout Top

VIO.GND ground and other ground are not connected together.

VBAT (K3) and VIO.IN (L2, K2) have separated power supply

Shape between VIO.L and inductor

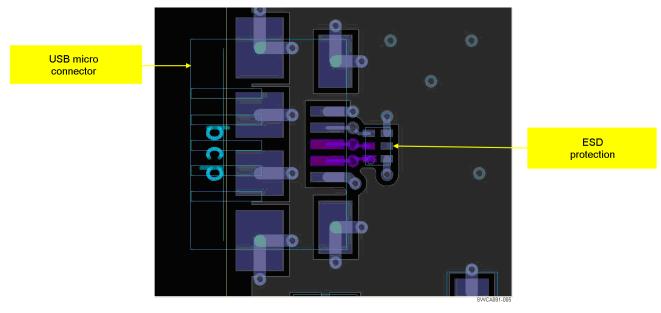
Figure 3. VIO DCDC Layout IN1


Dedicated ground shape connecting VIO.GND, input capacitor ground, and output capacitor ground only

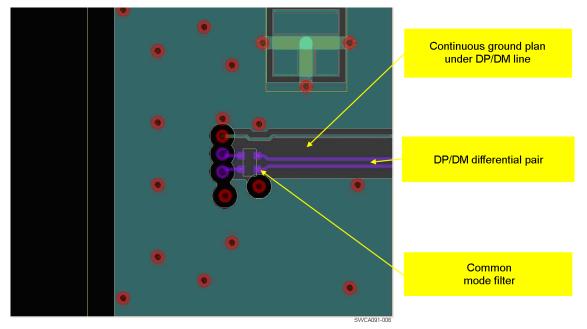
Vias connecting output capacitor ground to VIO dedicated ground shape and dedicated ground to main ground on one point

2.3.3 Power Supply Layout

A layer must be used for system power. Use shape for Vsystem and a DCDC-to-processor connection to minimize the loss of power in the PCB (see Figure 4).

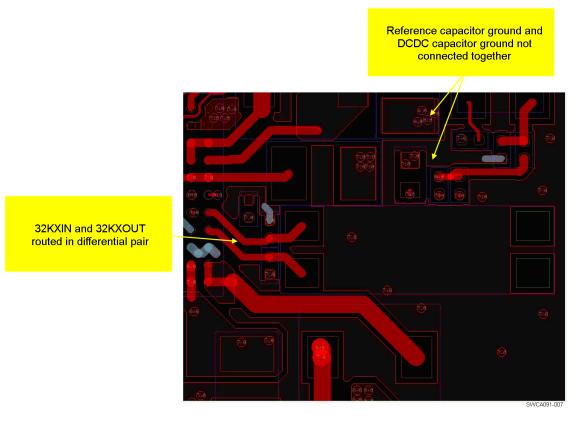

Figure 4. Power Layer Layout on PMIC Side

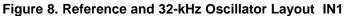
SWCA091-004

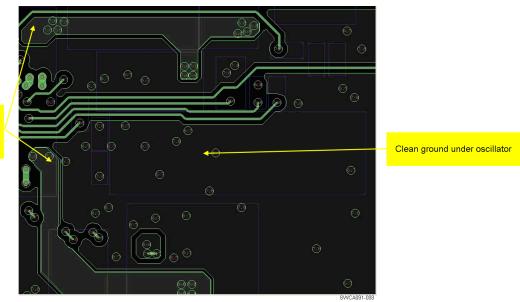

www.ti.com

2.3.4 USB Connector Layout

Figure 5. USB Board Layout Bottom Side


Figure 6. USB Board Layout TOP/IN1 Side




www.ti.com

2.3.5 32-kHz and Reference Layout

Figure 7. Reference and 32-kHz Oscillator Layout Top

Noisy ground (DCDC ground) not connected to reference or oscillator ground

3 Revision History

Table 2. REVISION HISTORY

Version	Literature Number	Date	Notes
*	SWCA091	October 2010	See ⁽¹⁾ .
А	SWCA091	March 2012	See ⁽²⁾

⁽¹⁾ TPS65921 PCB Layout Guidelines, SWCA091 - Initial release.

⁽²⁾ TPS65921 PCB Layout Guidelines, SWCA091A - Table 1: Swap and update ground desctions

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

. . ..

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated