

 1

CC USB Software Examples

User’s Guide

swru222

 swru222

1/22 1

Table of Contents

1 Introduction....................................... .. 2

2 About this Manual.................................. ... 2

3 Acronyms 2

4 Getting Started.................................... .. 3

4.1 Preparations.. 3
4.2 General Guidelines ... 3
4.3 Known Problems ... 3

5 USB Application Examples........................... ... 5

5.1 Building and Running the Examples ... 5
5.2 RF Protocol ... 7
5.2.1 MRFI Frame Format.. 7
5.2.2 MRFI API .. 7
5.2.3 Packet Sniffer Capture .. 9
5.3 USB HID Example (“simple_hid”) ... 10
5.3.1 Software Components... 10
5.3.2 Installing the Application, CC1111/CC2511 ... 10
5.3.3 Installing the Application, CC2531... 10
5.3.4 Running the Application .. 10
5.3.5 Packet Sniffer Capture .. 11
5.4 USB RF Modem Example (“rf_modem”)... 13
5.4.1 Software Components... 13
5.4.2 Installing the Application, CC1111/CC2511 ... 13
5.4.3 Installing the Application, CC2531... 13
5.4.4 Running the USB Application .. 14
5.4.5 Running the EB Application... 16
5.4.6 Packet Sniffer Capture .. 17
5.5 USB Firmware Library... 17
5.5.1 Structure ... 17
5.6 USB Source Code Organization ... 19
5.6.1 Adapting the USB Applications.. 19
5.7 USB Descriptors.. 20

6 References 21

7 General Information................................ .. 21

7.1 Document History.. 21

 swru222

2/22 2

1 Introduction

This document describes the software examples for the CC1111, CC2511 and CC2531 RF USB
dongles. The Human Interface Device (HID) application emulates mouse and keyboard using a
SmartRF05EB or SmartRF04EB. The RF Modem example shows how the USB CDC class can be
implemented to provide serial port emulation across USB (Virtual COM-port). Both examples use the
MRFI protocol for radio communication. This document the software referred to in [5].

2 About this Manual

This manual covers the USB software examples and USB Firmware Library for the Texas Instruments
Low-Power RF USB Dongles for the chipsets CC1111, CC2511 and CC2531.

3 Acronyms

ACM - Abstract Control Model
API - Application Programming Interface
CCA - Clear Channel Available
CDC - Communication Device Class
DCE - Distributed Computing Environment
DTE - Data Terminal Equipment
FCS - Frame Check Sequence
HAL - Hardware Abstraction Layer
HID - Human Interface Device
ICE - In Circuit Emulator
IO - Input/Output
PAN - Personal Area Network
MRFI - Minimal RF Interface
RF - Radio Frequency
RSSI - Received Signal Strength Indicator
SFD - Start of Frame Delimiter
SoC - System on Chip
USB - Universal Serial Bus

 swru222

3/22 3

4 Getting Started

4.1 Preparations

The USB firmware described in this document may be debugged using any of the following In-Circuit
Emulators:

• CC Debugger
• SmartRF05EB
• SmartRF04EB with SOC_DEM debug connector [1]

Please install SmartRF Studio before connecting the ICE to a PC. SmartRF Studio is a PC application
for Windows that helps you find and adjust the radio register settings. Please refer to [3] for
instructions on how to download and install SmartRF Studio. Installing SmartRF Studio prior to
connecting the debugger ensures that all the relevant Windows drivers are installed.

Please see the relevant USB Hardware User’s Guide ([7] or [8]) for detailed instructions on how to
interconnect the PC, the ICE debugger and the target dongle.

When the drivers are installed and the debugger connected, the USB dongle can be programmed and
debugged using IAR Embedded Workbench. Programming can also be done using the SmartRF Flash
programmer [4].

4.2 General Guidelines

When writing and debugging USB firmware one should remember that when Windows (or another OS)
detects a USB device it will assume that it works in accordance with the USB specification. During
debugging this might not be the case. Breakpoints may stop the execution of code on the USB Dongle
and firmware under development may not be completed or error free. This may lead to the PC
disconnecting the USB device and turning off or toggling its power supply. In some cases Windows (or
the OS in use) may crash or misbehave. Hence breakpoints should be used with caution.

Obviously inserting and using breakpoints in the firmware during debugging will be extremely useful to
pinpoint bugs and follow code execution. And they can and should be used. But they will also stop the
code execution on the target and may cause the device to act in conflict with the USB specification.

If the firmware contain bugs that make the PC disconnect the USB Dongle it may be necessary to
disconnect the USB cable, and power the USB Dongle from the SmartRF04EB/SmartRF05EB in order
to reprogram it. Please refer to the relevant USB Hardware User’s Guide ([7] or [8]) for instructions
on how to reprogram the dongle without it being powered by the PC.

4.3 Known Problems

When using the debug interface through the level-converter on the SmartRF04EB it might become
unstable. This problem is more likely to occur at low voltages or with crosstalk in the cable at high
interface speed.

Using the SOC_DEM instead of the P14 “SoC Debug/Flash” connector on SmartRF04EB is more
stable when the voltage differs on the SmartRF04EB and the target board.

If problems are still experienced when using SOC_DEM, make sure that the 10 pin flat cable used to
connect the RF USB Dongle to the SmartRF04EB is as short as possible.

Next, it might be necessary to reduce the debug interface speed in order to achieve stable operation.
In the IAR workbench do the following:

• Highlight the project name by clicking on it in the “Files” window (see Figure 1).
• Go to “Project” > “Options…”
• Select the Category “Texas Instruments”
• Click on the “Target” tab.

 swru222

4/22 4

Check the “Reduce interface speed” option (see Figure 2).

Figure 1. Selecting Project

Figure 2. Reduce Interface Speed

Highlight the
project name

Check the
“Reduce interface

speed” option.

 swru222

5/22 5

5 USB Application Examples

This section describes the application examples available for the USB dongles. These application
examples focus on how to use the USB part of the respective device. The examples are available both
as source code and ready-to-upload .hex files from [5]. There are two USB application examples.

Application
example name Description USB class demonstrated

“simple_hid” Wireless mouse / keyboard HID (Human Interface Device)

“rf_modem” Wireless USB to serial port converter CDC-ACM (Communication Device Class,
with Abstract Control Model subclass)

Table 1. Overview of application examples

Working together with the USB examples are peer applications running on CC1110EM, CC2510EM
and CC2530EM respectively. The CC1110EM and CC2510EM must be plugged into a SmartRF04EB.
The CC2530EM must be plugged into a SmartRF05EB.

5.1 Building and Running the Examples

First of all make sure that the dongle is connected to the ICE as described the “Programming” section
of the relevant USB Dongle User’s Guide (please see [7] for programming the CC1111/CC2511), or
[8] for programming the CC2531).

When building the examples from source with IAR EW8051, make sure you select the project
corresponding to the target you are developing your software for. Please see Figure 5 for an overview
of the projects found the in the USB application example package. The IAR workspace is located in
the sub-folder ‘ide’ just below the root of the installation. The file is named ‘usb_app_ex.eww’ (Figure
3).

Figure 3. Directory Structure

Note. The IAR projects contained in this package requires IAR EW8051 v7.51 or above. If a newer
version than v7.51 is used, IAR will automatically convert the project files to the correct format.

 swru222

6/22 6

After opening the IAR workspace all the examples can be built in one operation by hitting the F8 key.
Downloading to the target can be done using the keyboard shortcut ‘CTRL+D’, alternatively ‘Project-
>Debug’ as shown in Figure 4.

Figure 4. Launching the Debugger

Figure 5. usb_app_ex.eww Workspace

Alternatively the generated HEX-file can be downloaded to the target using the SmartRF Flash
programmer.

 swru222

7/22 7

5.2 RF Protocol

Both examples use MRFI as the basic protocol for RF communication. On top of MRFI there is a
minimal network layer which adds retransmission and acknowledge. The application layer uses two
frame types: DATA and ACK. The latter is used to indicate to the sender that the receiver is busy.
The RF channel is fixed to MRFI logical channel ‘0’, defined as shown in Table 2. Please refer to the
document SimpliciTI Channel Table Information.pdf contained in the SimpliciTI installer for details on
the channel allocation [21].

RF Device Channel Frequency [MHz]
CC1111 20 906
CC2511 3 2425.7
CC2531 15 2425

Table 2. MRFI Channel '0' Frequencies

5.2.1 MRFI Frame Format

The MRFI frame format is identical to SimpliciTI apart from the NWK payload which is this example
has been replaced by a two-byte header and the application payload. The MRFI/SimpliciTI header
varies slightly between IEEE 802.15.4 compliant devices (CC2531) and CC1111/CC2511, please refer
to [11] for details.

Frame Header Sequence Number Frame Type Payload Frame Check
11 bytes 1 byte 1 byte 0 - 44 bytes 1 byte

Table 3. Frame format

5.2.2 MRFI API

MRFI is the lowest software layer of the SimpliciTI protocol and is used in these application examples
without the rest of SimpliciTI. It implements a common API for all supported RF devices, hiding the
implementation details from the application. It is a pure radio interface, not to be confused with a more
generic HAL. This section is limited to a brief overview of the API, as this document focuses on the
applications and the USB Firmware Library. Only the API calls which are used by the examples are
mentioned here. For a complete overview of the MRFI API, please refer to the MRFI interface header,
mrfi.h (located in source/components/simpliciTI/mrfi) and the various implementations found in
mrfi_radio.c (source/components/simpliciTI/mrfi/radios/familyXX). The relevant sub-folders are
family6 (CC2530/31) and family2 (CC1110/1111/2510/2511).
All references to MRFI are contained in a single source file which is common to both examples
(source/apps/common/mrfi_link.c).

void MRFI_Init(void);

This function must be called before any other MRFI calls.

uint8_t MRFI_Transmit(mrfiPacket_t *, uint8_t);

This call supplies a pointer to a mrfiPacket_t object whose frame element has been populated with the
payload. The implementation populating the payload portion of the frame should use the MRFI macro
(MRFI_P_PAYLOAD(p) defined in mrfi.h) to obtain a pointer to the place in the frame in which the
payload information should be written. This allows MRFI to protect the preamble portion of the frame
into which MRFI itself populates radio-specific information. This implies that the mrfiPacket_t pointer
must point to a valid object even if there is no payload at all.
The txType parameter specifies whether transmit should occur immediately and unconditionally or
CCA should be applied.

 swru222

8/22 8

Valid values are:

• MRFI_TX_TYPE_FORCED
• MRFI_TX_TYPE_CCA

The address fields and the length field must also be set before the transmit call is invoked. These
fields are not strictly part of the network layer encapsulation but it is that layer’s responsibility to
populate those fields. MRFI supplies 3 macros to populate these fields and they should be used. The
‘p’ formal parameter is (mrfiPacket_t *). The ‘x’ parameter is the length to be set in when using that
macro.

• MRFI_P_SRC_ADDR(p)
• MRFI_P_DST_ADDR(p)
• MRFI_SET_PAYLOAD_LEN(p,x)

This routine returns a value indicating status of the transmit attempt.

• MRFI_TX_RESULT_SUCCESS
• MRFI_TX_RESULT_FAILED

Transmit may fail if CCA is requested and the channel is not clear after a number of retries.
All symbols referenced here are defined in mrfi.h.

void MRFI_Receive(mrfiPacket_t *);

This function copies a received frame into user space from the MRFI layer. The parameter is a pointer
to an area in user space into which the frame can be copied.
This routine should be called as a result of having MRFI_RxCompleteISR() invoked. At that time there
is guaranteed to be a valid frame available. The MRFI payload may be maximum 53 bytes for the
CC1111/CC2511 and maximum 117 bytes with the CC2531.

void MRFI_RxCompleteISR(void);

User code must implement this method. When MRFI has obtained a frame from the radio and
validated it MRFI will invoke this function. This is done within the receive ISR context.
At the very least the function should invoke MRFI_Receive() so that the new, valid frame is copied into
user space and queued for processing. If the ISR thread is released before this copy is done it is
possible that a second frame can be received and the first will be lost.

void MRFI_RxOn(void);

This function sets the radio to receive mode. Currently it is used only at startup by the mrfi_link layer.
When the radio wakes up it is in the state IDLE. This call puts it in the RECEIVE state.

void MRFI_SetLogicalChannel(uint8_t);

This function sets the logical channel to the value specified as the argument. MRFI keeps a table of
actual values to be written to the radio to accomplish the actual channel change. The argument is not
the channel value itself but a logical channel number that is mapped to a tabled value actually sent to
the radio. This table is instantiated at build time.
The maximum allowed logical channel can be determined by subtracting one from the number of
logical channels. This is available from the following definition in mrfi.h :

• MRFI_NUM_LOGICAL_CHANS

The discipline to accomplish the channel change, such as perhaps changing the radio through the
correct state transitions, is owned by MRFI and is not a concern of the caller.

 swru222

9/22 9

uint8_t MRFI_SetRxAddrFilter(uint8_t *);

This function sets the address to be used as a filter value. Depending on the radio not all the bytes
may be used as part of the native hardware filtering capabilities. Some of the actual filtering
implementation may be in software. MRFI hides this partition and the caller does not know how the
actual filtering is accomplished.

void MRFI_EnableRxAddrFilter(void);

When this call is made MRFI will subsequently filter out all received packets that do not match the
address previously set. Broadcast packets are always received regardless of filter setting.

void MRFI_Sleep(void);

This call puts the radio into the sleep state. The call is synchronous in the sense that when it returns
the radio in SLEEP state. To ensure reliable operation, this function must never be called from
interrupt context.

void MRFI_WakeUp(void);

This call takes the radio out of SLEEP state into IDLE state. The call is synchronous in the sense that
when it returns the radio in IDLE state.

5.2.3 Packet Sniffer Capture

The Texas Instruments Packet Sniffer is an indispensable tool when developing RF based
applications. Using it for sniffing on IEEE 802.15.4 compliant devices like the CC2531 is
straightforward as no configuration file is required. Simply select Channel 15 (0xF) and start. Sniffing
on the CC1111 and CC2511 can be done by selecting the SimpliciTI protocol and selecting logical
channel ‘0’.

Figure 6. Screenshot of the Texas Instruments Gener al Packet Sniffer

 swru222

10/22 10

5.3 USB HID Example (“simple_hid”)

This application demonstrates the use of the USB Dongle as a USB composite HID (Human Interface
Device), with both keyboard and mouse.

This application example uses the USB framework found in the USB firmware library [5] to configure
the USB part of the device and to handle all USB standard requests. In addition, the Class requests
required by the HID device class are implemented in a separate file. The radio communication
between SmartRF board/EM and the dongle is carried out using MRFI.
Please see [9] or more information about the HID class.

5.3.1 Software Components

The executables for the applications are located as follows:

simple_hid_dongle.hex

The file is located in ide\rfusb_cc1111\iar , ide\rfusb_cc2511\iar or ide\rfusb_cc2531\iar depending
on the target device.

simple_hid_eb.hex

The file is located in ide\srf04_cc1110\iar , ide\srf04_cc2511\iar or ide\srf05_cc2531\iar depending
on the target device.

5.3.2 Installing the Application, CC1111/CC2511

• Attach the CC1110EM/CC2510EM to the SmartRF04EB and program it with the flash image
simple_hid_eb.hex, using IAR Embedded Workbench or the SmartRF Flash Programmer.
(See [1] for more information).

• Connect the CC1111/CC2511 USB dongle to the other SmartRF04EB through the SOC_DEM
and program it with the flash image simple_hid_dongle.hex, using IAR Embedded Workbench
or the SmartRF Flash Programmer. (See [1] for more information).

5.3.3 Installing the Application, CC2531

• Attach the CC2530EM to the SmartRF05EB and program it with the flash image
simple_hid_eb.hex, using IAR Embedded Workbench or the SmartRF Flash Programmer.
(See [1] for more information).

• Connect the the CC2531 USB dongle to the other SmartRF05EB and program it with the flash
image simple_hid_dongle.hex, using IAR Embedded Workbench or the SmartRF Flash
Programmer. (See [1] for more information). It is also possible to use the CC Debugger for this
purpose.

5.3.4 Running the Application

Insert USB Dongle into a free USB port. The firmware will identify the USB Dongle as a composite HID
with a keyboard and mouse. On most operating systems no extra driver is necessary; the OS will
automatically load a standard driver for HID devices.
Select the operating mode “Mouse” or “Keyboard” by operating the joystick left/right and confirm the
selection using the ‘S1’ button, see Figure 7.

Note. The application has been tested on Windows XP SP2, Windows XP SP3, Windows Vista
SP1 and GNU/Linux (Ubuntu 9.04). Being a standard HID-device it should work on other operating
systems as well.

 swru222

11/22 11

Figure 7. Selecting Mouse/Keyboard Mode, SmartRF05E B.

Mouse Mode

In mouse mode the joystick on the SmartRF04EB/SmartRF05EB can be used as a mouse. Push the
joystick up/down/left/right to emulate mouse movement. The button “S1” emulates the right mouse
button, pushing the joystick emulates the left mouse button.

Keyboard Mode

In keyboard mode, the joystick operations and button hits transmit characters to the PC according to
Table 4.

EB Operation Transmitted
Character

Joystick up U
Joystick down D
Joystick left L
Joystick right R
Joystick press P
Button S1 press B

Table 4. Transmitted Characters in Keyboard Mode

In order to observe the output from the HID example in keyboard mode it is recommended to open an
editor like Notepad and make sure that the editor window has focus. Please observe that when
pressing the joystick or S1 button, the letter will be transmitted as the button/joystick is released.

5.3.5 Packet Sniffer Capture

Figure 8 shows the radio traffic when operating the joystick left in mouse mode. The first byte of the
MAC payload is the sequence number. The second byte is the frame type, where 7E identifies a data
frame and 7F an ACK frame. The third byte is the in this case single byte payload. Frame 1 and 3 in
the figure are data packets with the payload 45 and 42 respectively, i.e. the letters E and B. The
source address of the EB is 25EB and the source address of the dongle is 25DE.

The mouse mode payload is decoded as shown in Table 5. Figure 8 gives an example of a mouse
frame. Byte 4 of the MAC payload is decoded as 0xFF (-1) which means mouse left movement. Byte 2
identifies the frame as a mouse packet. There is no button activity (byte 3), and no activity on the Y
(byte 5) and Z (byte 6) axis. The frames with 2-byte payloads are application ACK frames.

 swru222

12/22 12

MAC Payload Byte Description
1 Sequence number
2 Frame type (DATA)
3 Mouse DATA ID (fixed 1)
4 Button activity
5 Mouse X movement
5 Mouse Y movement
6 Mouse Z movement (Scroll wheel)

Table 5. Mouse Mode Payload

Figure 8. Mouse Left Movement

The keyboard mode payload is decoded as shown in Table 6. An example of a keyboard frame is
shown in Figure 9. Byte 4 of the MAC payload has the value 0x02 which means that the “SHIFT LEFT”
button is pressed. This is hard-coded in the application for the purpose of this example. Byte 6 is 0x18
which corresponds to the letter ‘u’. The capitalization is achieved through the key modifier, bit 1.

MAC Payload Byte Description
1 Sequence number
2 Frame type (here DATA)
3 Keyboard data ID (fixed 0)
4 Key modifiers
5 Reserved (fixed 0)
6 - 11 Key values

Table 6. Keyboard Mode Payload

Figure 9. Operating Joystick UP (letter ‘U’)

 swru222

13/22 13

5.4 USB RF Modem Example (“rf_modem”)

This application example is a wireless USB to serial port (RS232) converter. It creates a virtual serial
port on the host operating system.

Data sent to this virtual serial port will be transferred to the USB device over the PC’s USB hub, then
over the air to the CC1110/CC2510/CC2530EM and finally to a PC serial port via the
SmartRF04EB/SmartRF05EB.

Hardware flow control for RTS is implemented. CTS is not supported directly by the CDC driver but is
indirectly implemented by stopping the processing of USB requests when the RF modem is busy with
processing the RF traffic. The radio link has CRC check and automatic retransmission for error free
operation.

This application example uses the USB framework found in the USB firmware library to configure the
USB Dongle and to handle all USB standard requests. In addition, the class requests required by the
CDC device class are implemented in a separate file.

The radio communication between CC2530EM and the USB Dongle is done using the MRFI protocol
Please see [10] for more information about the CDC class.

5.4.1 Software Components

The executables for the applications are located as follows:

rf_modem.hex

The file is located in ide\rfusb_cc1111\iar , ide\rfusb_cc2511\iar , ide\rfusb_cc2531\iar,
ide\srf04_cc1110\iar , ide\srf04_cc2511\iar or ide\srf05_cc2531\iar depending on the intended
target device.

In addition, a setup information file (usb_cdc_driver_cc xxxx.inf) will be needed on Windows
operating systems to associate the device with the operating system’s driver for USB CDC-ACM class
(usbser.sys). There are three files, one per USB dongle, located in the .\driver folder.

5.4.2 Installing the Application, CC1111/CC2511

• Attach the CC1110EM/CC2510EM to the SmartRF04EB and program it with the flash image
rf_modem.hex , using IAR Embedded Workbench or the SmartRF Flash Programmer. (See
[1] for more information).

• Connect the USB Dongle to the other SmartRF04EB through the SOC_DEM and program it
with the flash image rf_modem.hex , using IAR Embedded Workbench or the SmartRF Flash
Programmer. (See [1] for more information).

5.4.3 Installing the Application, CC2531

• Attach CC2531EM to the SmartRF05EB and program it with the flash image rf_modem.hex ,
using IAR Embedded Workbench or the SmartRF Flash Programmer. (See [1] for more
information).

Note. The 64-bit edition of Microsoft Windows Vista only accepts digitally signed driver installation
files. This driver files in this software package are not signed and will not be accepted. They can
however be used on 32-bit edition of Windows Vista.

Note. The application has been tested on Windows XP SP2, Windows XP SP3, Windows Vista
SP1 and GNU/Linux (Ubuntu 9.04). For other operating systems a suitable drivers may have to be
found or created.

 swru222

14/22 14

• Connect the CC2531 USB Dongle to the other SmartRF05EB and program it with the flash
image rf_modem.hex , using IAR Embedded Workbench or the SmartRF Flash Programmer.
(See [1] for more information). It is also possible to use the CC Debugger for this purpose.

5.4.4 Running the USB Application

• Disconnect the programmed USB Dongle from the SmartRFEB/Programmer and plug it into a
free USB port on the PC.

• If using Microsoft Windows, the operating system will ask for a driver. Point to the file “.\driver”
folder containing the “usb_cdc_driver_ccxxxx.inf” setup information files.

When the USB-dongle is plugged in first time it will appear in Windows XP as in Figure 10.

Figure 10. Plugging in the USB Dongle First Time

The Windows installation Wizard will now start and guide the user through the driver installation
procedure. Please select “Install from a list or specific location ” as shown in Figure 11.

Figure 11. Driver Installation, Step 1

Click ‘Next’ to advance to the next step. Select “Search for the best driver in these locations” as
shown in Figure 12. Make sure that the wizard searches the driver directory one level below the
installation root. It is also possible to install the driver manually. This is quicker but the user runs the
risk of installing the wrong driver.

 swru222

15/22 15

Figure 12. Driver Installation, Step 2

Click Next to advance to the next step. Windows will now search for the driver which may take some
time (see Figure 13).

Figure 13. Driver Installation, Step 3

 swru222

16/22 16

You are now likely to encounter the warning dialog shown in Figure 14. If that’s the case you can
safely click ‘Continue anyway’ and the driver installation will be complete.

Figure 14. Driver Signature Warning

When Windows have finished installing the device, a new serial port will show in the device manager
in Windows. See Figure 15.

Figure 15. Virtual COM Port in Windows Device Manag er

The Virtual COM-port is now ready and can be used as any standard serial port. Note that the control
line CTS (Clear To Send) will not be visible in terminal emulators or analysis tools which shows the
state of this line – the CDC class does not make use of this feature. The green LED on the dongle is lit
only when the PC asserts the RTS signal, in HyperTerminal this is equivalent to connecting.

5.4.5 Running the EB Application

Connect the CC2510/CC1100EM to the SmartRF04EB and power it OR connect the CC2530EM to a
SmartRF05EB and apply power. Select “Device 1” by pushing button S1 – LCD will then display
“Device 1 ready”. Connect an RS232 NULL-modem cable between a COM-port on the PC and the

Note. Make sure that the PC application (e.g. HyperTerminal) is disconnected before physically
unplugging and inserting the USB dongle. Leaving HyperTerminal connected may cause the USB
dongle to fail during enumeration due to being flooded by requests by a PC application which
thinks it is still connected.

Note. The port number assigned to the USB Virtual Serial port is arbitrary. You may change it to
an alternative port number as follows: Right click on the port in the device manager and choose
“Properties” > “Port settings” > “Advanced” to change.

 swru222

17/22 17

serial port on the SmartRF04B/SmartRF05EB. Connect one HyperTerminal window to the Virtual
COM port, and another HyperTerminal window to the COM port connected to the evaluation board.
The port settings should be 38400 baud, 8 bits, 1 stop bit, no parity. Hardware handshaking must be
enabled. You should observe text written in one HyperTerminal window appearing in the other as
shown in Figure 16 and Figure 17.

Figure 16. CC2531 Receiving Data

Figure 17. CC2530 Receiving Data

5.4.6 Packet Sniffer Capture

When typing single characters in the HyperTerm window the slow input speed means that each packet
will only contain one byte of payload. Figure 18 shows the radio traffic when typing the letters ‘EB’ in
the terminal window connected to COM1. The first byte of the MAC payload is the sequence number.
The second byte is the frame type, where 7E identifies a data frame and 7F an ACK frame. The third
byte is the in this case single byte payload. Frame 1 and 3 in the figure are data packets with the
payload 45 and 42 respectively, i.e. the letters E and B. The source address of the EB is 25EB and the
source address of the dongle is 25DE.

Figure 18. Typing 'EB' at COM1

5.5 USB Firmware Library

5.5.1 Structure

Texas Instruments LPRF provides a USB Firmware Library which contains all the basic USB firmware
needed for application development. The firmware library handles the interface to the USB chip,

 swru222

18/22 18

handles endpoints, traffic flow, descriptor parsing and configuration. It also performs USB standard
request processing. The USB Firmware Library consists of firmware common to all the three USB
supported USB devices as well as some device specific low-level code. The USB Firmware Library
does NOT contain any USB class specific components. It supports both vendor-specified device
classes and standardized device classes such as HID and USB audio, with any number of
configurations, interfaces, and alternate settings. The following features are provided:

• Initialization of the USB peripheral unit, and response to reset-signaling on the bus.
• Automated response to almost all standard requests, based on data from the USB descriptor

set (the SYNCH_FRAME and SET_DESCRIPTOR requests must be handled by the
application).

• Automated setup of endpoint control registers, depending on the selected configuration and
interface alternate settings.

• All endpoint types are supported: Setup, bulk, interrupt and isochronous.
• An interface for responding to class and vendor requests. Both automated and manual data

transfer is supported.
• Endpoint access via a simple set of macros and functions.
• Support for suspend mode and remote wake-up.
• A function hook- and event-based interface allows for the framework to run from main, the

USB interrupt, or a combination of both.

The library is generic. However, it does require some knowledge of the USB specification, including
the concepts of configurations, interfaces and endpoints, different endpoint types, standard, vendor
and class requests, and USB descriptor sets. Figure 19 shows how the USB firmware library is
organized.

Figure 19. USB Firmware Library Structure

As shown in Figure 19 the USB library is divided into five modules:
The USB Firmware Library contains all USB status information and functions for initialization, device
reset handling, and transfers on endpoint 0. It also contains basic macros and functions for endpoint
control and FIFO access. Vendor and class requests are passed up to the application, and standard
requests further down for internal processing.
The USB Standard Requests (usbsr) module contains automated processing functions for almost all
standard requests. The automated handling and endpoint configuration relies on the USB descriptor
set and two look-up tables. Requests that are not supported (SYNCH_FRAME and
SET_DESCRIPTOR) or requests that are class specific are passed up to the application. The
application is also notified upon important events, such as change in endpoint status or interface
alternate settings.
The USB Descriptor Parser (usbdp) module provides a mechanism for locating standard-formatted
USB descriptors. The user must provide a USB descriptor set, and two simple lookup tables - one for
locating other descriptor formats, and another for setting up endpoint double-buffering. The necessary

 swru222

19/22 19

constant and structure definitions, and guidelines for writing compatible descriptor sets, are found in
the USB Descriptor module.
The USB Suspend (usbsusp) module provides easy to use, fully automated support for USB
suspend, USB resume, and USB remote wakeup functionality.
To implement USB suspend and USB resume the user only need to add a short piece of code to the
main loop. USB remote wakeup is performed by a single function call.

5.6 USB Source Code Organization

Figure 20 shows how the source code of the USB firmware library is organized. The common code is
kept in the ‘library’ directory and the device dependent code is place in sub-folders, one for each
device. Note that the code for the CC1111 and CC2511 is identical; the device dependent code is
shared in the folder CCxx11.

Figure 20. USB Firmware Library Directory Structure

The complete documentation of USB Firmware Library is available as a compressed HTML file,
usb_firmware_library.chm found in “.\docs” folder.

5.6.1 Adapting the USB Application

Although the USB Firmware Library will work as is for most applications it may in some cases be
desirable to reorganize the way interrupts/events are handled. In the default configuration handling
USB standard requests, USB class requests and USB data transfer is done in the main loop to keep
interrupt processing time as brief as possible. The interrupt handler simply schedules events and
passes these on to the main loop for processing. Simple round-robin scheduling is thus implicitly
determined by the order in which the event processing is done. For more sophisticated pre-emptive
schemes the choice is either to do more of the processing in an interrupt context or devise a method
for pre-emptive scheduling in the main loop - it is beyond the scope of this document to describe in
detail how either can be achieved. However, this section will give a brief outline on how to achieve
immediate processing of time-critical code sections. Note that there is no need to modify the USB
Firmware Library; the desired effect is achieved by moving code from the main loop to the USB
interrupt hook.

The USB Firmware Library requires the application to provide a hook, usbirqHookProcessEvents(), for
events which needs immediate processing in an interrupt context. The applications described in this
document do all their USB processing in the main context, this in effect gives the radio traffic priority
over the USB traffic. Hence usbirqHookProcessEvents() is just a stub in both applications. However, it
is straightforward to move code from the main loop to the interrupt hook.

In the HID example the main loop processing is found in the file usb/class_hid/usb_hid.c . All the
processing in done in the main loop, i.e. standard requests, vendor requests, class requests and data

 swru222

20/22 20

transfer. For the HID example this makes perfect sense as the data rates are very low. The hooks
found in usb/class_hid/usb_hid_hooks.c. These are just stubs for this application. The stubs must
be declared as the USB firmware library assumes that they are present.

In the CDC example the main loop processing is found in the file usb/class_cdc/usb_cdc.c . All the
processing is done in the main loop, i.e. standard requests, vendor requests, class requests and data
transfer. The hooks are found in usb/class_cdc/usb_cdc_hooks.c. Most of these are stubs, only the
hooks for setting and reading control lines and port settings are implemented. Note that these are still
processed by the main loop, the reason for implementing this functionality as hooks is that it is
application dependent.

5.7 USB Descriptors

One of the challenges when developing USB firmware is to understand and work with USB
Descriptors. Details can be found in the help file usb_firmware_library.chm found in the docs
directory of this software distribution [5]. The USB class definitions ([9] and [10]) contain further
guidelines on writing USB descriptor. USB developers should also visit
http://www.usb.org/developers for more resources.

 swru222

21/22 21

6 References

[1] CC1110-CC1111DK CC2510-CC2511DK Development Kit User Manual (swru134)

[2] CC2530DK Development Kit User Manual (swru208)

[3] Texas Instruments SmartRF Studio (swrc046)

[4] Texas Instruments SmartRF Flash Programmer (swrc044)

[5] CC USB Firmware Library and Examples (swrc088)

[6] Texas Instruments Packet Sniffer (swrc045)

[7] CC1111/CC2511 USB Hardware User’s Manual (swrc082)

[8] CC2531 USB Hardware User’s Manual (swrc221)

[9] Device Class Definition for HID 1.11, US-IF Inc., 2001
(http://www.usb.org/developers/devclass_docs/HID1_11.pdf)

[10] USB Class Definitions for Communication Devices 1.1, USB-IF Inc., 1999
(http://www.usb.org/developers/devclass_docs/usbcdc11.pdf)

[11] SimpliciTI Installer (simpliciti.html)

7 General Information

7.1 Document History

Revision Date Description/Changes
SWRU222 2009.05.08 Initial release

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

