
Test Report: PMP21000 Single Stage AC-DC Auxless LLC Resonant Converter Reference Design

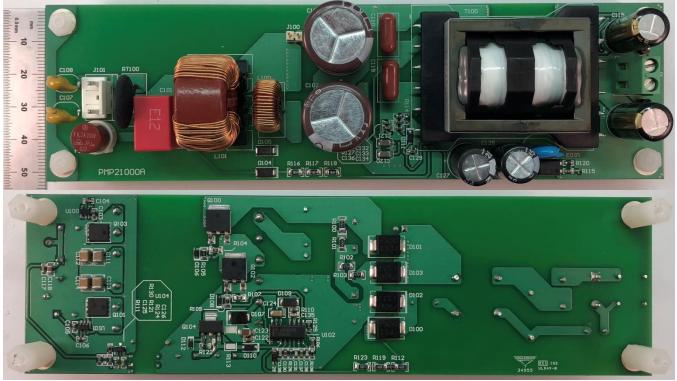
🦉 Texas Instruments

Description

The PMP21000 reference design provides a 12-V/100-W output from either 120-Vac or 230-Vac input with a single LLC resonant converter stage. The BOM cost of this design is highly optimized with the single-stage structure and the use of UCC256302 LLC Resonant Controller. High voltage startup, integrated driver, as well as burst operation that UCC256302 provided allows minimum use of discrete components. Along with UCC24612-2 synchronous rectifier (SR) controller to optimize SR MOSFET's conduction time, this design is able to achieve 91.7% peak efficiency at 120-Vac input and 93.1% peak efficiency at 230-Vac input.

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.

1 Test Prerequisites

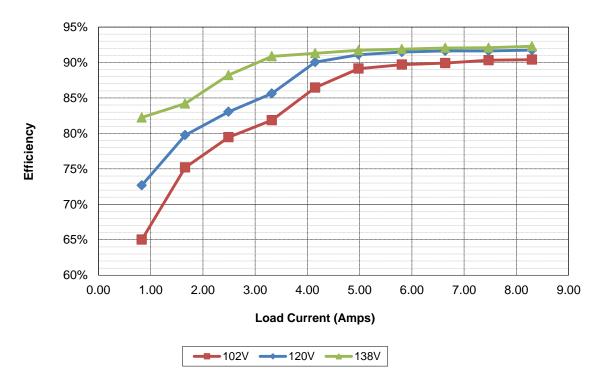

1.1 Voltage and Current Requirements

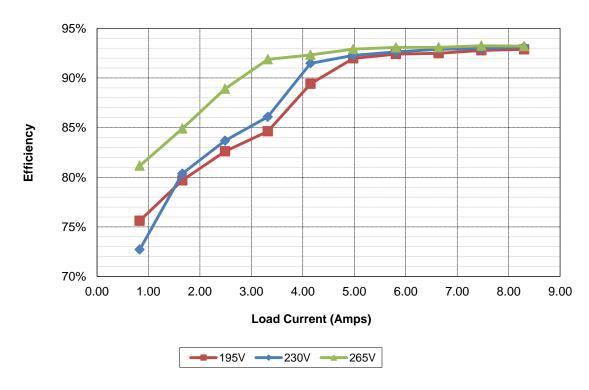
PARAMETER	SPECIFICATIONS
Vin	102VAC-138VAC, 195VAC-265VAC
Vout	12V
lout	8.33A

Table 1. Voltage and Current Requirements

1.2 Dimensions

The photos below show the PMP21000RevA board.




2 Testing and Results

2.1 Efficiency Graphs

The converter efficiency is shown in the figures below for a 102VAC-138VAC input with a 12V output.

The converter efficiency is shown in the figures below for a 195VAC-265VAC input with a 12V output.

2.2 Efficiency Data

lout	Vout	Vin AC	lin Arms (mA)	Pin	PF	Pout	Losses	Efficiency
0.830	11.890	102.0	243.0000	15.1790	0.6140	9.87	5.31	65.0%
1.660	11.890	102.0	414.000	26.2500	0.6310	19.74	6.51	75.2%
2.490	11.890	102.0	596.000	37.2600	0.6200	29.61	7.65	79.5%
3.320	11.890	102.0	781.000	48.2200	0.6150	39.47	8.75	81.9%
4.150	11.880	102.0	931.000	57.0200	0.6050	49.30	7.72	86.5%
4.980	11.890	102.0	1.107	66.4300	0.6050	59.21	7.22	89.1%
5.810	11.890	102.0	1.266	77.0100	0.6010	69.08	7.93	89.7%
6.640	11.880	102.0	1.438	87.7300	0.6020	78.88	8.85	89.9%
7.470	11.880	102.0	1.610	98.2600	0.6020	88.74	9.52	90.3%
8.300	11.880	102.0	1.781	109.0800	0.6040	98.60	10.48	90.4%

Below is the efficiency data for 102VAC-138VAC input with 12V output

lout	Vout	Vin AC	lin Arms (mA)	Pin	PF	Pout	Losses	Efficiency
0.830	11.890	119.8	198.0000	13.5800	0.5700	9.87	3.71	72.7%
1.660	11.890	119.8	356.000	24.7500	0.5800	19.74	5.01	79.7%
2.490	11.890	119.8	507.000	35.6500	0.5930	29.61	6.04	83.0%
3.320	11.890	119.8	659.000	46.1000	0.5880	39.47	6.63	85.6%
4.150	11.880	119.8	790.000	54.7500	0.5810	49.30	5.45	90.0%
4.980	11.890	119.8	946.000	65.0000	0.5760	59.21	5.79	91.1%
5.810	11.890	119.8	1.095	75.5200	0.5780	69.08	6.44	91.5%
6.640	11.890	119.8	1.246	86.1600	0.5780	78.95	7.21	91.6%
7.470	11.880	119.8	1.398	96.8500	0.5800	88.74	8.11	91.6%
8.300	11.880	119.8	1.548	107.4800	0.5820	98.60	8.88	91.7%

lout	Vout	Vin AC	lin Arms (mA)	Pin	PF	Pout	Losses	Efficiency
0.830	11.890	138.0	175.0000	12.0000	0.4960	9.87	2.13	82.2%
1.660	11.890	138.0	306.000	23.4400	0.5560	19.74	3.70	84.2%
2.490	11.890	138.0	429.000	33.5600	0.5700	29.61	3.95	88.2%
3.320	11.890	138.0	554.000	43.4400	0.5740	39.47	3.97	90.9%
4.150	11.880	138.0	690.000	54.0000	0.5700	49.30	4.70	91.3%
4.980	11.890	138.0	827.000	64.5600	0.5700	59.21	5.35	91.7%
5.810	11.880	138.0	964.000	75.1200	0.5680	69.02	6.10	91.9%
6.640	11.880	138.0	1.103	85.7000	0.5670	78.88	6.82	92.0%
7.470	11.870	138.0	1.242	96.3000	0.5650	88.67	7.63	92.1%
8.300	11.880	138.0	1.376	106.8500	0.5660	98.60	8.25	92.3%

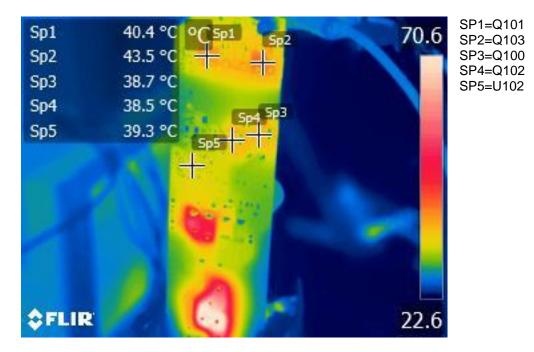
Below is the efficiency data for 195VAC-265VAC input with 12V output

			lin Arms	•				
lout	Vout	Vin AC	(mA)	Pin	PF	Pout	Losses	Efficiency
0.830	11.890	194.8	145.0000	13.0500	0.4620	9.87	3.18	75.6%
1.660	11.890	194.8	247.000	24.7700	0.5140	19.74	5.03	79.7%
2.490	11.890	194.8	346.000	35.8400	0.5320	29.61	6.23	82.6%
3.320	11.890	194.8	452.000	46.6500	0.5270	39.47	7.18	84.6%
4.150	11.880	194.8	533.000	55.1400	0.5290	49.30	5.84	89.4%
4.980	11.890	194.8	626.000	64.3800	0.5290	59.21	5.17	92.0%
5.810	11.890	194.8	725.000	74.7600	0.5300	69.08	5.68	92.4%
6.640	11.880	194.8	825.000	85.2900	0.5310	78.88	6.41	92.5%
7.470	11.880	194.8	922.000	95.6500	0.5330	88.74	6.91	92.8%
8.300	11.880	194.8	1.017	106.1600	0.5360	98.60	7.56	92.9%

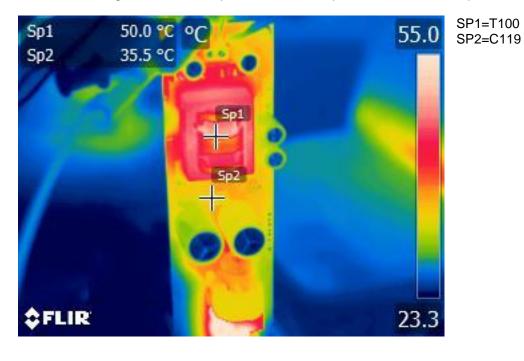
			lin Arms					
lout	Vout	Vin AC	(mA)	Pin	PF	Pout	Losses	Efficiency
0.830	11.880	229.9	129.5500	13.5600	0.4540	9.86	3.70	72.7%
1.660	11.880	229.9	213.800	24.5400	0.5000	19.72	4.82	80.4%
2.490	11.880	229.9	303.400	35.3500	0.5120	29.58	5.77	83.7%
3.320	11.880	229.9	390.000	45.8200	0.5080	39.44	6.38	86.1%
4.150	11.880	229.9	464.000	53.9000	0.5070	49.30	4.60	91.5%
4.980	11.880	229.9	544.000	64.1200	0.5120	59.16	4.96	92.3%
5.810	11.880	229.9	632.000	74.5200	0.5140	69.02	5.50	92.6%
6.640	11.880	229.9	720.000	84.9200	0.5130	78.88	6.04	92.9%
7.470	11.880	229.9	807.000	95.4500	0.5140	88.74	6.71	93.0%
8.300	11.870	229.9	893.000	105.7800	0.5160	98.52	7.26	93.1%

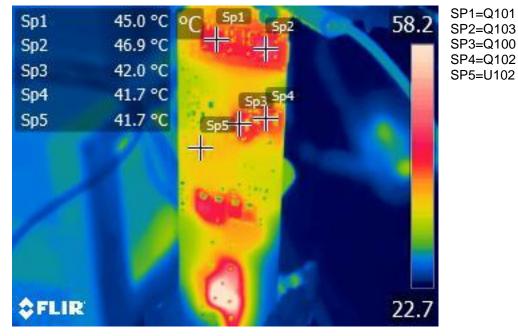
lout	Vout	Vin AC	lin Arms (mA)	Pin	PF	Pout	Losses	Efficiency
0.830	11.880	265.0	113.0000	12.1500	0.4040	9.86	2.29	81.2%
1.660	11.880	265.0	186.000	23.2300	0.4670	19.72	3.51	84.9%
2.490	11.880	265.0	257.000	33.2700	0.4880	29.58	3.69	88.9%
3.320	11.880	265.0	324.000	42.9300	0.4960	39.44	3.49	91.9%
4.150	11.880	265.0	400.000	53.4000	0.4970	49.30	4.10	92.3%
4.980	11.880	265.0	478.000	63.6800	0.4990	59.16	4.52	92.9%
5.810	11.880	265.0	560.000	74.1600	0.5010	69.02	5.14	93.1%
6.640	11.870	265.0	638.000	84.6700	0.5010	78.82	5.85	93.1%
7.470	11.880	265.0	718.000	95.1700	0.5000	88.74	6.43	93.2%
8.300	11.870	265.0	797.000	105.7000	0.5000	98.52	7.18	93.2%


2.3 Standby Efficiency Data

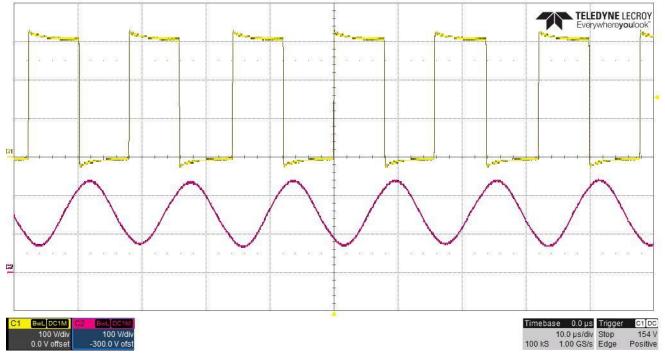

lout	Vout	Vin AC	lin Arms (mA)	Pin	PF
0.000	11.890	120	23.63	0.259	0.092
0.000	11.890	240	38.33	0.226	0.025
0.000	11.890	265	50.33	0.170	0.013

2.4 Thermal Images

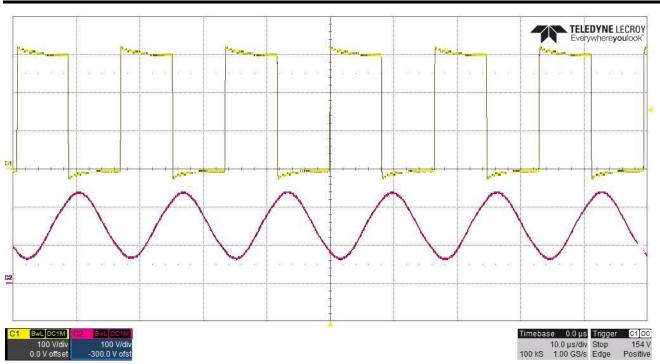

The thermal image below shows operation at 120VAC input and 12V@8.3A output, with no airflow.



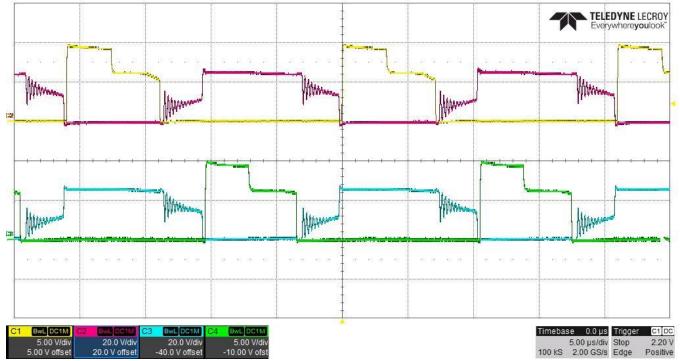
The thermal image below shows operation at 230V input and 12V@8.3A output, with no airflow.

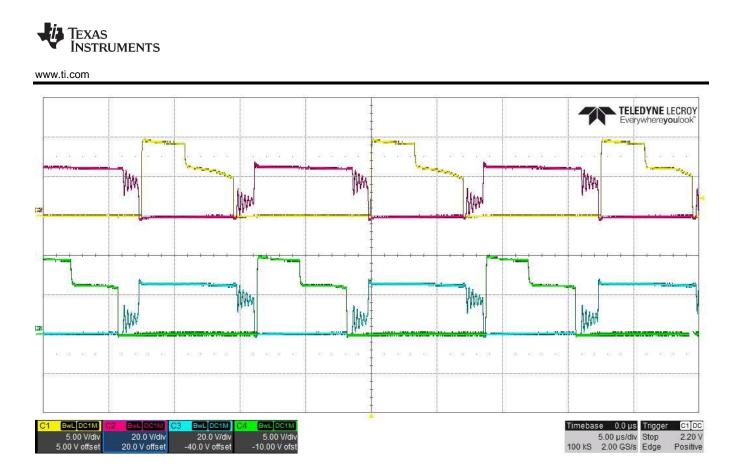


3 Waveforms

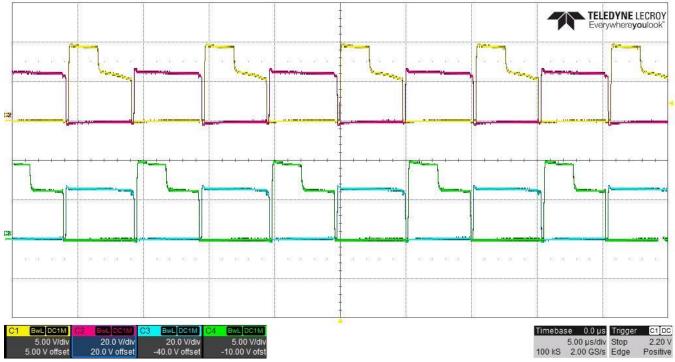

3.1 Switch node

The photo below shows the switch node voltage (Q102 Vds, and C119 voltage). The input voltage is 120VAC and the 12V output is loaded to 8.3A. (100V/DIV, 10uS/DIV)

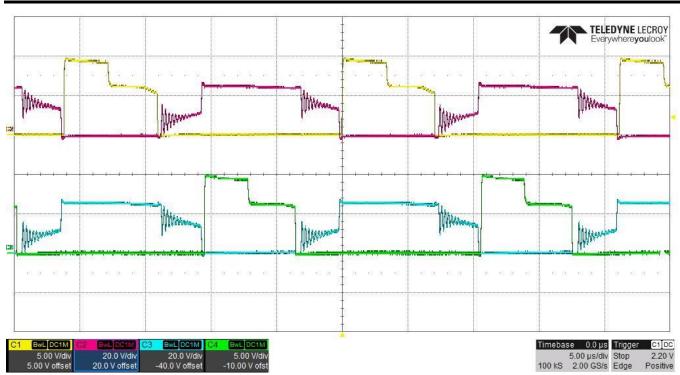

The photo below shows the switch node voltage(Q102 Vds, and C119 voltage). The input voltage is 230VAC and the 12V output is loaded to 8.3A. (100V/DIV, 20uS/DIV)



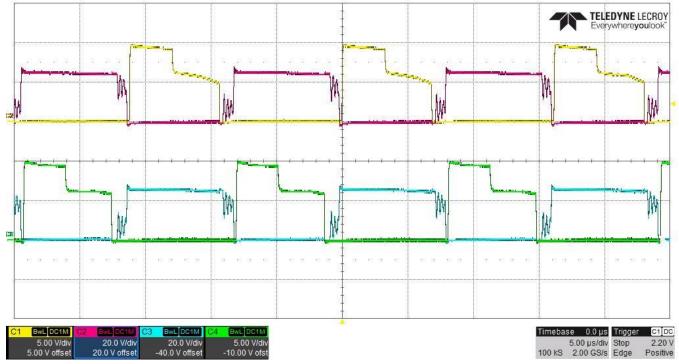
3.2 Synchronous rectifier waveforms


The photo below shows the synchronous rectifier waveforms. The input voltage is 102VAC and the 12V output is loaded to 8.3A.

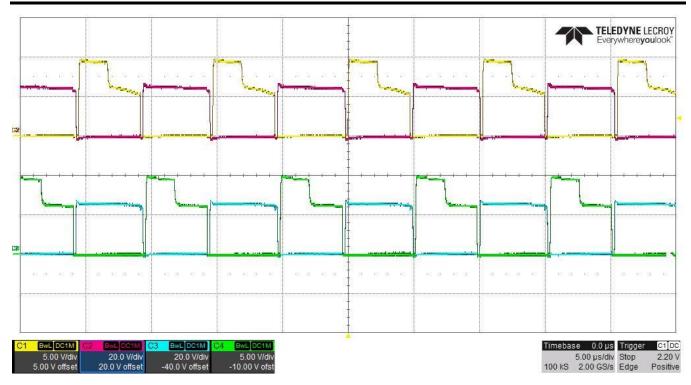
The photo below shows the synchronous rectifier waveforms. The input voltage is 120VAC and the 12V output is loaded to 8.3A.



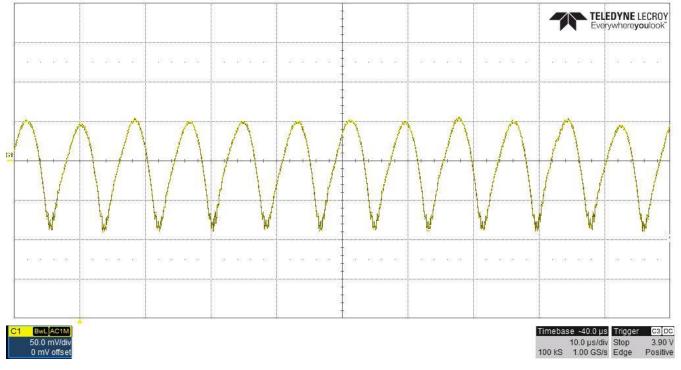
The photo below shows the synchronous rectifier waveforms. The input voltage is 138VAC and the 12V output is loaded to 8.3A.

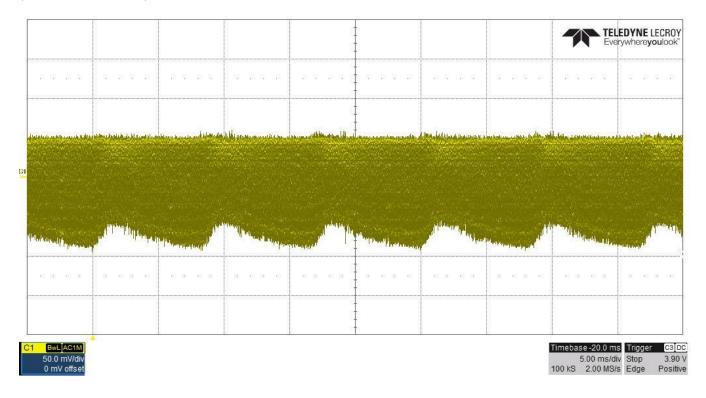


The photo below shows the synchronous rectifier waveforms. The input voltage is 195VAC and the 12V output is loaded to 8.3A.

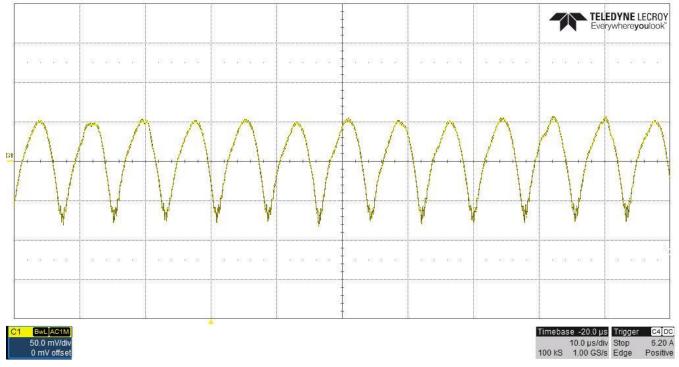


The photo below shows the synchronous rectifier waveforms. The input voltage is 230VAC and the 12V output is loaded to 8.3A.

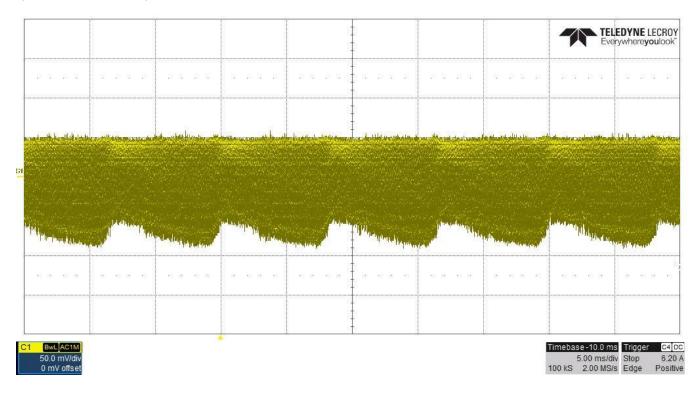

The photo below shows the synchronous rectifier waveforms. The input voltage is 265VAC and the 12V output is loaded to 8.3A.


3.3 Output Voltage Ripple

The output ripple voltage is shown in the figure below. The image was taken with the 12V output loaded to 8.3A and the input voltage set to 120VAC. (50mV/DIV, 10uS/DIV)

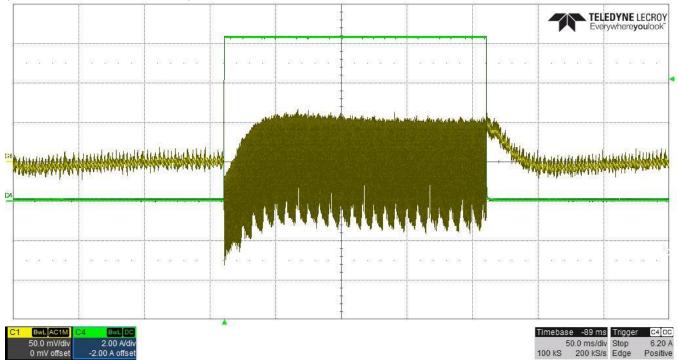


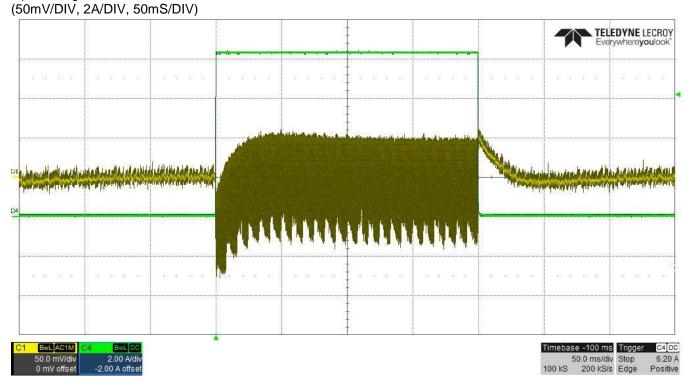
(50mV/DIV, 5mS/DIV)



The output ripple voltage is shown in the figure below. The image was taken with the 12V output loaded to 8.3A and the input voltage set to 230VAC. (50mV/DIV, 200uS/DIV)

(50mV/DIV, 5mS/DIV)




3.4 Load Transients

The photo below shows the 12V output voltage when the load current is stepped between 0A and 8.3A with an input voltage of 120VAC.

(50mV/DIV, 2A/DIV, 50mS/DIV)

The photo below shows the 12V output voltage when the load current is stepped between 0A and 8.3A with an input voltage of 230VAC.

3.5 Start-up Sequence

The photo below shows the output voltage startup waveform after the application of 120VAC and output loaded to 0A. (2V/DIV, 50mS/DIV)

		+		Eve	EDYNE LECRO Tywhereyouloo
 	 · · · .				5 i.
	1				
	 1				

2.00 V/div -6.00 V offset
 Timebase -100 ms
 Trigger
 C1_DC

 50.0 ms/div
 Stop
 1.94 V

 100 kS
 200 kS/s
 Edge
 Positive

The photo below shows the output voltage startup waveform after the application of 120VAC and output loaded to 8.3A.

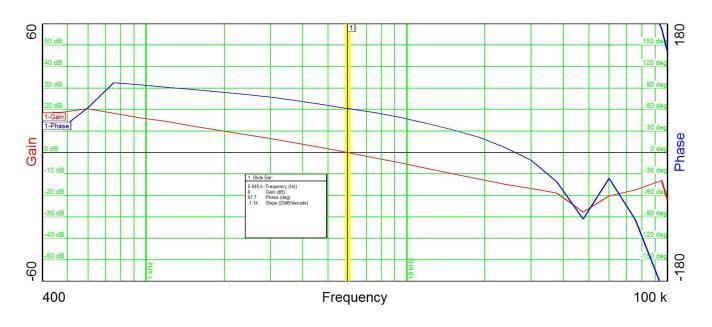
(2V/DIV, 50mS/DIV)

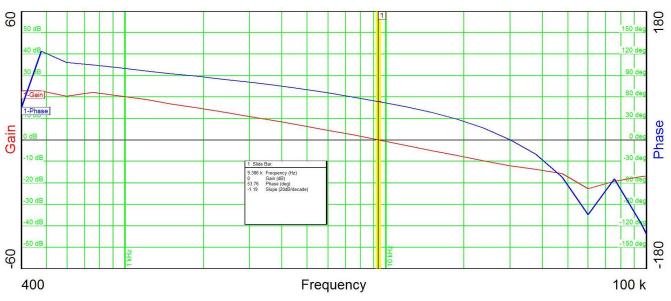
				-		TEL Eve	EDYNE LECROY rywhereyoulook
		1					
		1					
	 ****				 		3 2 3 2
BwL DC1M 2.00 V/div -6.00 V offset		1	5			Timebase -100 m 50.0 ms/di 100 kS 200 kS/	iv Stop 1.94

The photo below shows the output voltage startup waveform after the application of 230VAC and output loaded to 0A. (2V/DIV, 50mS/DIV)

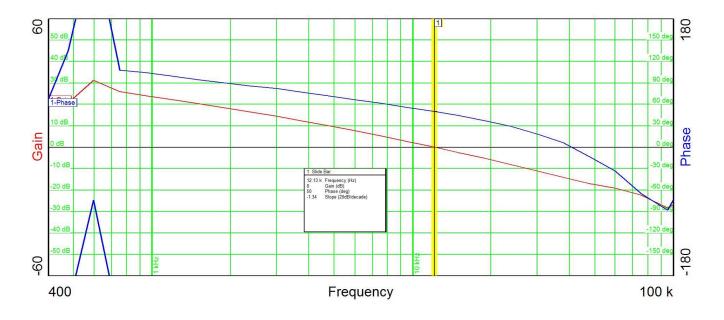
					- - -		TEL Eve	EDYNE LECRO rywhereyoulook
			· · · /					- 18 % IS
			1					
			1					
				1				
				-	-			
•0 is •0 is	(s. 6) (s. 6)	47 (S. 67 (S.	(8 42 (8 42	6 8 6 8 <mark> </mark>	а в ю в ю 2		10 IS 10 IS	13 K) 3 K)
					-			

The photo below shows the output voltage startup waveform after the application of 230VAC and output loaded to 8.3A.


(2V/DIV, 50mS/DIV)

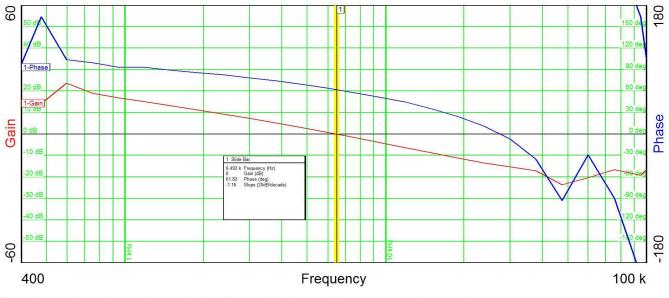

	-	TELEDYNE LECRO Everywhereyoulool
	-	
	+	
BwL[DC1M] 2.00 V/div -6.00 V offset		Timebase -100 ms Trigger C1 50.0 ms/div Stop 1.3 100 kS 200 kS/s Edge Pos

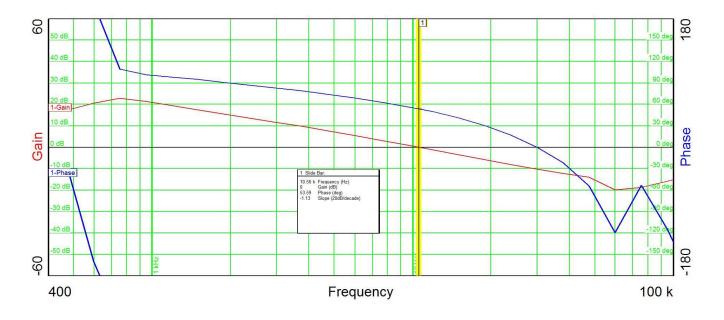
3.6 Loop Response


The photo below shows the Bode plot for 102V with a 12V output loaded to 8.3A.

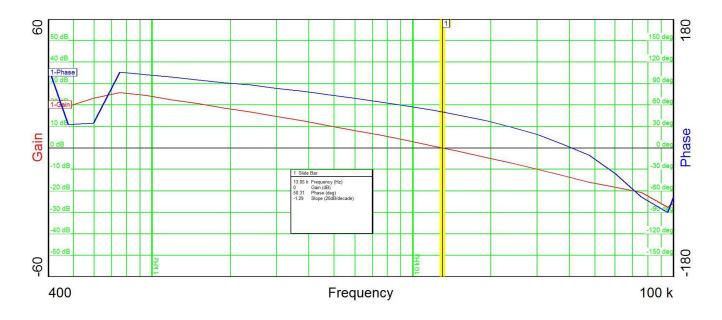
The photo below shows the Bode plot for 120V with a 12V output loaded to 8.3A.

The photo below shows the Bode plot for 138V with a 12V output loaded to 8.3A.




www.ti.com

The photo below shows the Bode plot for 195V with a 12V output loaded to 8.3A.



The photo below shows the Bode plot for 230V with a 12V output loaded to 8.3A.

The photo below shows the Bode plot for 265V with a 12V output loaded to 8.3A.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated