
Test Report: PMP21488 A high efficiency 3.3-V/4-A synchronous flyback with hiccup protection reference design

Texas Instruments

Description

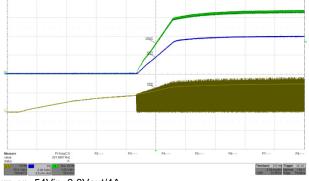
This flyback was designed for an isolated 15W low voltage rail. It features LM5020—100V wide input flyback controller. A synchronous secondary rectifier UCC24610 was used for high efficiency. It further enhances LM5020 with hiccup protection by using a simply discrete circuitry. It is good for low voltage isolated supplies where high efficiency and hiccup protection are needed.

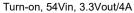
An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.

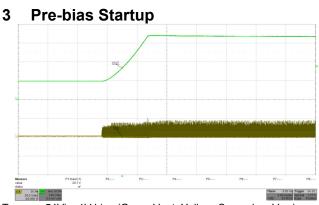
1 Test Prerequisites

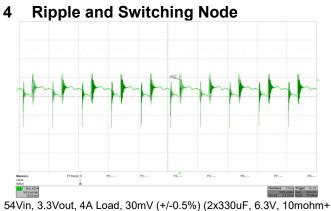
1.1 Voltage and Current Requirements

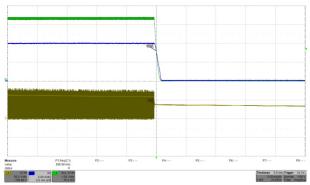
PARAMETER	SPECIFICATIONS
Input voltage, Vin	44V~57V
Output Voltage, Vo1	3.3V/4A

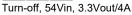

Table 1. Voltage and Current Requirements

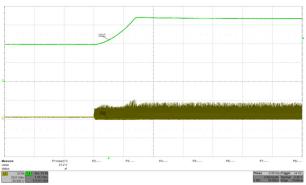

1.2 Required Equipment*

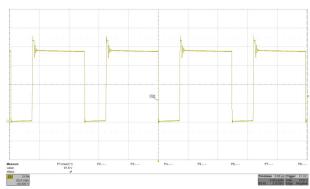

- Power Supply, 0~60V, 0~2A
- Load: 3.3V/4A

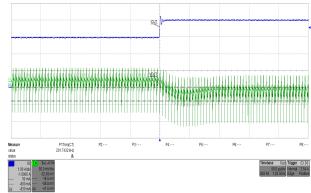

2 Startup and shutdown

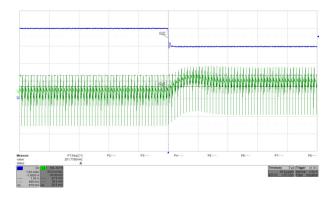


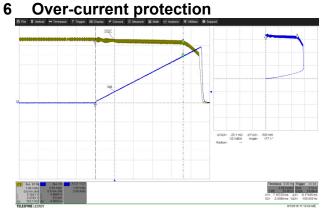


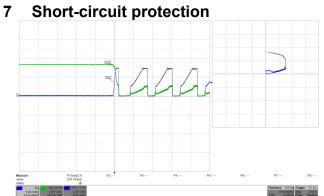

Turn-on, 54Vin, 1V bias (Green:Vout, Yellow: Secondary Vsw)

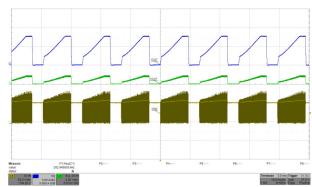

4Vin, 3.3Vout, 4A Load, 30mV (+/-0.5%) (2x330uF, 6.3V, 10mohm 2x 100uF,6.3V,1210)

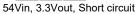

Turn-on, 54Vin, 2V bias (Green:Vout, Yellow: Secondary Vsw)


54Vin, 3.3Vout, 4A Load, Vmax=91.9V

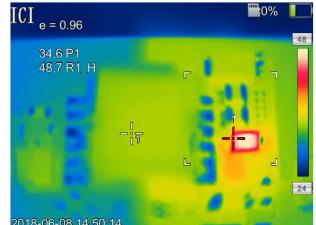

5 Transient

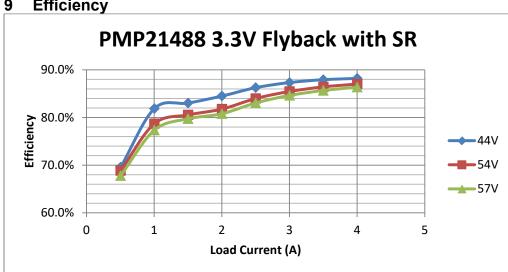

54Vin, 3.3Vout, 3A to 4A Load Step, -41.5mV (-1.3%)


54Vin, 3.3Vout, 4A to 3A Load Step, +30.5mV (+0.9%)



54Vin, 3.3Vout, Over-load applied, OCP=4.65A.

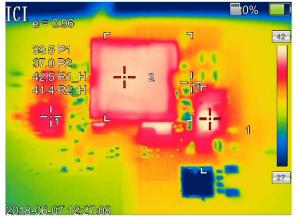




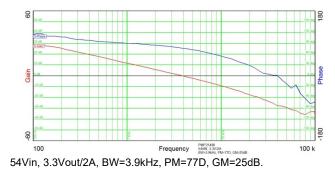
Short-circuit thermal 8

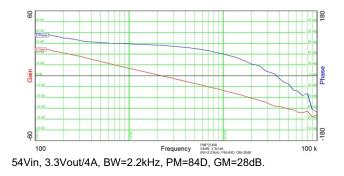
2018-06-08 14:50:14 54Vin, 76mAin, 0Vout, 3.71A short circuit average current, T_{FET(SEC)}=48.7C

Efficiency 9


Test conditions: 3.3Vout, 200kHz.

323 322 320	A) 0.013 0.055 0.093 0.137	lout(A) 0.018 0.504 1.004 1.502	Effciency 10.2% 69.6% 81.9%	P _{LOSS} (W) 0.53 0.73 0.74
323 322 320	0.055 0.093	0.504 1.004	69.6% 81.9%	0.73
322 320	0.093	1.004	81.9%	
320				0.74
	0.137	1.502	02.00/	
19		1.502	83.0%	1.02
,1,5	0.179	2.002	84.5%	1.22
818	0.219	2.501	86.3%	1.32
817	0.260	3.002	87.3%	1.44
816	0.301	3.501	87.9%	1.59
814	0.343	4.002	88.2%	1.77
327	0.013	0.018	8.7%	0.62
324	0.045	0.504	68.9%	0.76
322	0.078	1.004	78.7%	0.90
	18 17 16 14 27 24	18 0.219 17 0.260 16 0.301 14 0.343 27 0.013 24 0.045	18 0.219 2.501 17 0.260 3.002 16 0.301 3.501 14 0.343 4.002 27 0.013 0.018 24 0.045 0.504	18 0.219 2.501 86.3% 17 0.260 3.002 87.3% 16 0.301 3.501 87.9% 14 0.343 4.002 88.2% 27 0.013 0.018 8.7% 24 0.045 0.504 68.9%


53.984	3.321	0.115	1.501	80.5%	1.20
53.964	3.319	0.151	2.002	81.8%	1.48
53.947	3.318	0.183	2.501	84.0%	1.58
53.928	3.317	0.216	3.002	85.5%	1.69
53.909	3.316	0.249	3.501	86.4%	1.82
53.890	3.315	0.283	4.002	87.0%	1.98
57.030	3.327	0.013	0.018	8.3%	0.66
57.014	3.323	0.043	0.504	67.8%	0.80
56.996	3.322	0.076	1.003	77.4%	0.98
56.978	3.321	0.110	1.501	79.7%	1.27
56.959	3.319	0.144	2.002	80.8%	1.58
56.942	3.318	0.175	2.501	83.1%	1.69
56.924	3.317	0.207	3.002	84.6%	1.81
56.907	3.316	0.238	3.501	85.7%	1.94
56.889	3.315	0.270	4.002	86.4%	2.09


10 Thermal

Test conditions: 54Vin, 3.3V/4Aout, 200 kHz, Room Temperature, Natural convection. T_{FET(SEC)}=42.5C, T_{XFMR}=41.4C, T_{FET(PRI)}=39.5C.

11 Bode Plot

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated