# Test Report: PMP22301 Class 4 PoE PD (24-V/0.9-A) Power Supply Reference Design

# Texas Instruments

### Description

This reference design utilizes a flyback converter for a standard Class 4 Power over Ethernet (PoE) Powered Device (PD) with a 24-V/0.9-A output. The input can be standard PoE or a 24/48-Vdc adapter. A TPS23754 combination PD/PWM controller provides all PoE PD functions such as Detection, Class and In-rush limiting and the flyback PWM controller in one package. This reference design is ideally suited for PoE applications such as audio, signage and IP cameras.

# **Test Prerequisites**

## 1.1 Voltage and Current Requirements

| PARAMETER             | SPECIFICATIONS               |
|-----------------------|------------------------------|
| PoE Input voltage     | 42.5-57 Vdc                  |
| Adapter input voltage | 18-57 Vdc                    |
| Output voltage        | 24 Vdc                       |
| Output current        | 0.9 A (PoE), 1.0 A (Adapter) |
| Switching Frequency   | 250 kHz                      |

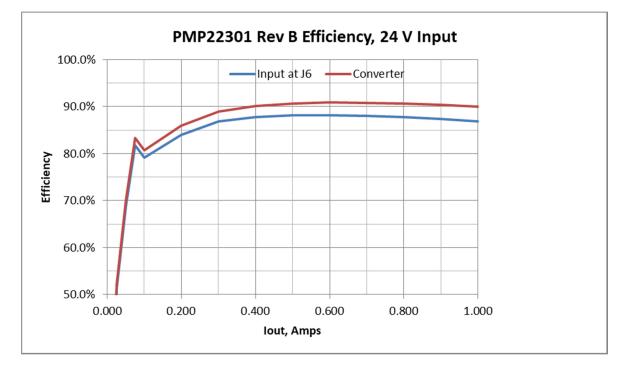
### Table 1.Voltage and Current Requirements

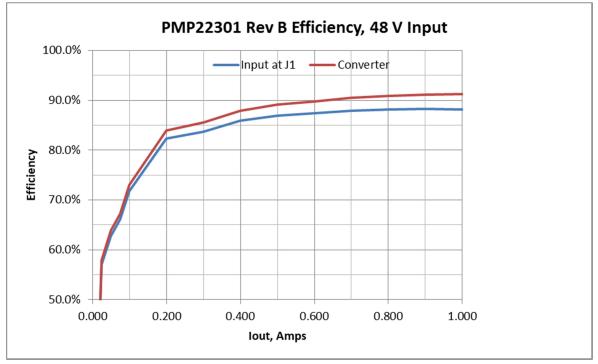
### 1.2 Required Equipment

- IEEE802.3.bt Type 2 PSE
- Isolated DC power source, 18-57 V, 2.0 A minimum
- CAT5e ethernet cables (<100m)
- 24 V/1.5 A electronic load

## 1.3 Considerations

All measurements taken at approximately 25C ambient.





An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.



# 2 Testing and Results

# 2.1 Efficiency Graphs

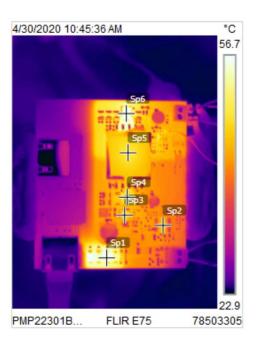






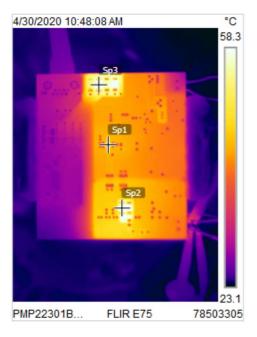
# 2.2 Efficiency Data

| J4    | J4          | J6    | J6         | J6    | VDD/PGND | CONV  |
|-------|-------------|-------|------------|-------|----------|-------|
| lout  | <u>Vout</u> | lin   | <u>Vin</u> | Eff   | Vin      | Eff   |
| 0.000 | 24.12       | 0.015 | 24.01      | 0.0%  | 23.64    | 0.0%  |
| 0.025 | 24.12       | 0.049 | 24.00      | 51.3% | 23.59    | 52.2% |
| 0.050 | 24.12       | 0.073 | 24.00      | 68.8% | 23.57    | 70.1% |
| 0.075 | 24.11       | 0.092 | 24.03      | 81.8% | 23.58    | 83.4% |
| 0.100 | 24.11       | 0.127 | 24.00      | 79.1% | 23.53    | 80.7% |
| 0.200 | 24.11       | 0.239 | 24.01      | 84.0% | 23.48    | 85.9% |
| 0.300 | 24.11       | 0.347 | 24.00      | 86.9% | 23.42    | 89.0% |
| 0.400 | 24.11       | 0.458 | 24.00      | 87.7% | 23.38    | 90.1% |
| 0.500 | 24.11       | 0.570 | 24.00      | 88.1% | 23.34    | 90.6% |
| 0.600 | 24.11       | 0.683 | 24.01      | 88.2% | 23.31    | 90.9% |
| 0.700 | 24.11       | 0.799 | 24.00      | 88.0% | 23.27    | 90.8% |
| 0.800 | 24.11       | 0.915 | 24.02      | 87.8% | 23.25    | 90.7% |
| 0.900 | 24.11       | 1.034 | 24.01      | 87.4% | 23.21    | 90.4% |
| 1.000 | 24.11       | 1.156 | 24.00      | 86.9% | 23.18    | 90.0% |


| J4    | J4          | J1         | J1         | J1         | VDD/PGND   | CONV  |
|-------|-------------|------------|------------|------------|------------|-------|
| lout  | <u>Vout</u> | <u>lin</u> | <u>Vin</u> | <u>Eff</u> | <u>Vin</u> | Eff   |
| 0.000 | 24.12       | 0.015      | 48.01      | 0.0%       | 47.32      | 0.0%  |
| 0.025 | 24.12       | 0.022      | 48.01      | 57.1%      | 47.29      | 58.0% |
| 0.050 | 24.12       | 0.040      | 48.00      | 62.8%      | 47.23      | 63.8% |
| 0.075 | 24.12       | 0.057      | 48.02      | 66.1%      | 47.21      | 67.2% |
| 0.100 | 24.12       | 0.070      | 48.02      | 71.8%      | 47.18      | 73.0% |
| 0.200 | 24.12       | 0.122      | 48.00      | 82.4%      | 47.07      | 84.0% |
| 0.300 | 24.12       | 0.180      | 48.03      | 83.7%      | 46.99      | 85.6% |
| 0.400 | 24.12       | 0.234      | 48.01      | 85.9%      | 46.89      | 87.9% |
| 0.500 | 24.12       | 0.289      | 48.02      | 86.9%      | 46.81      | 89.1% |
| 0.600 | 24.12       | 0.345      | 48.00      | 87.4%      | 46.70      | 89.8% |
| 0.700 | 24.12       | 0.400      | 48.02      | 87.9%      | 46.64      | 90.5% |
| 0.800 | 24.11       | 0.456      | 48.00      | 88.1%      | 46.54      | 90.9% |
| 0.900 | 24.11       | 0.512      | 48.02      | 88.3%      | 46.48      | 91.2% |
| 1.000 | 24.11       | 0.570      | 48.00      | 88.1%      | 46.37      | 91.2% |



# 2.3 Thermal Images

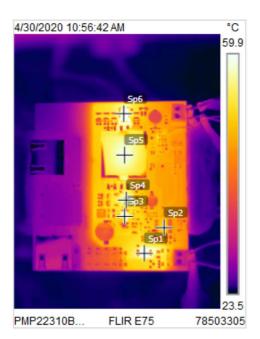

# 48 V Input, 1 A Load, Top:

| Measurements |         |
|--------------|---------|
| Sp1          | 57.1 °C |
| Sp2          | 45.1 °C |
| Sp3          | 47.6 °C |
| Sp4          | 50.4 °C |
| Sp5          | 49.0 °C |
| Sp6          | 57.5 °C |
| Parameters   |         |
| Emissivity   | 0.94    |
| Refl. temp.  | 20 °C   |



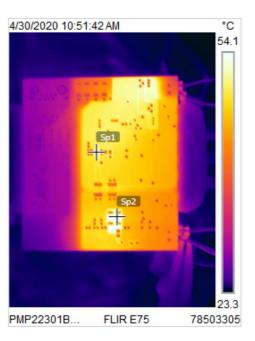
# 48 V Input, 1 A Load, Bottom:

| Measuremen  | ts      |
|-------------|---------|
| Sp1         | 47.4 °C |
| Sp2         | 64.5 °C |
| Sp3         | 58.7 °C |
| Parameters  |         |
| Emissivity  | 0.94    |
| Refl. temp. | 20 °C   |






#### www.ti.com

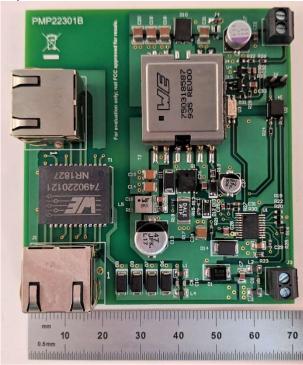

### 24 V Input, 1 A Load, Top:

| Measuremen  | its     |
|-------------|---------|
| Sp1         | 69.4 °C |
| Sp2 50.2 °C |         |
| Sp3         | 54.6 °C |
| Sp4         | 57.6 °C |
| Sp5         | 58.7 °C |
| Sp6         | 60.8 °C |
| Parameters  |         |
| Emissivity  | 0.94    |
| Refl. temp. | 20 °C   |

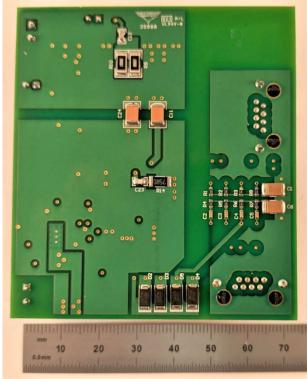


## 24 V Input, 1 A Load, Bottom:

| Measuremen  | Its     |
|-------------|---------|
| Sp1         | 52.2 °C |
| Sp2         | 57.2 °C |
| Parameters  |         |
| Emissivity  | 0.94    |
| Refl. temp. | 20 °C   |





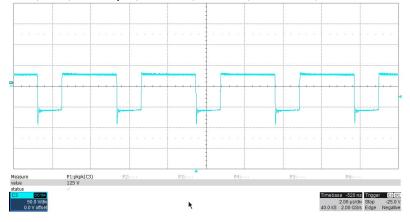


## 2.4 Photo

The board measures 71 mm x 78 mm.

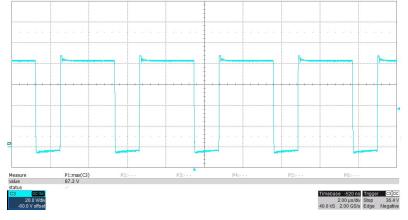
### Top:



### Bottom:

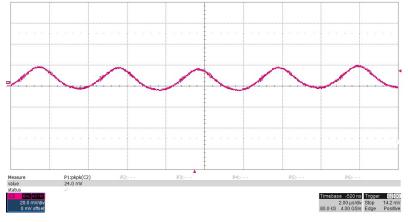






# 3 Waveforms

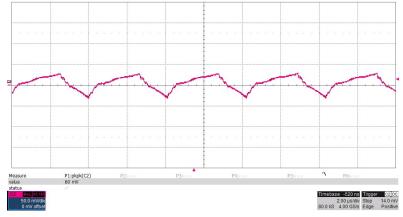
# 3.1 Switching

VAK, D10, 57 V input, 1 A load, 50 V/div, 2 usec/div, measured 125.0 Vpeak:

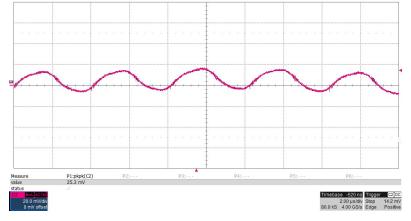



VDS, Q2, 57 V input, 1 A load, 20 V/div, 2 usec/div, measured 87.3 Vpeak:

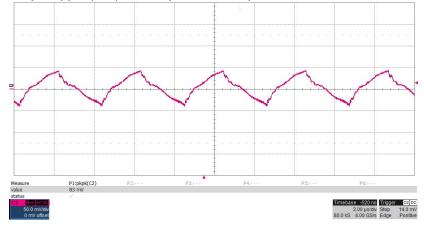



# 3.2 Ripple and Noise

Input ripple (C34), 48 V input, 1 A output, 20 mV/div, 2 usec/div, measured 24.0 mVpp:

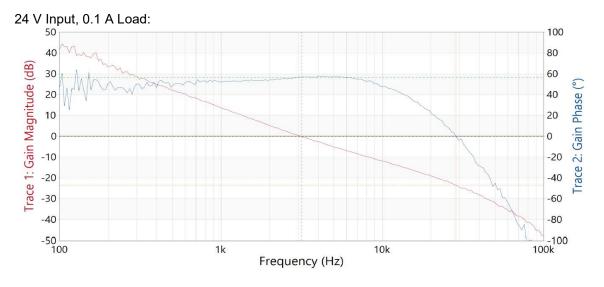




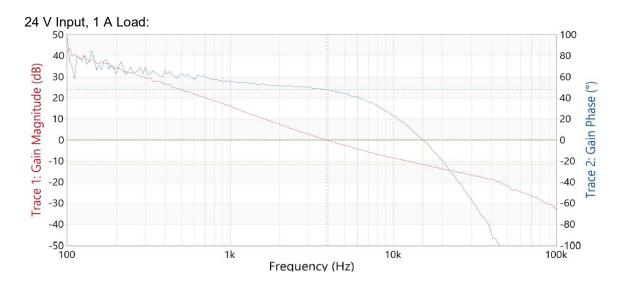


Output ripple (J5), 48 V input, 1 A output, 50 mV/div, 2 usec/div, measured 60.0 mVpp:





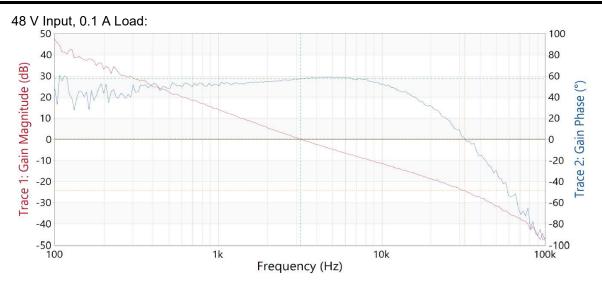



Output ripple (J52), 24 V input, 1.0 A output, 50 mV/div, 2 usec/div, measured 83.0 mVpp:

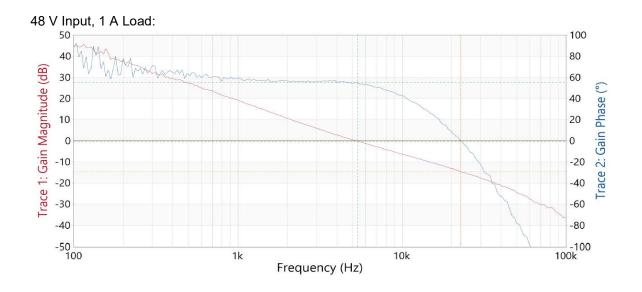





### 3.3 Bode Plot




Bandwidth = 3.1 kHz Phase Margin = 56.7 degrees Gain Margin = 23.4 dB

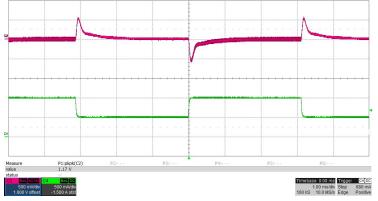



Bandwidth = 3.9 kHz Phase Margin = 47.6 degrees Gain Margin = 11.5 dB





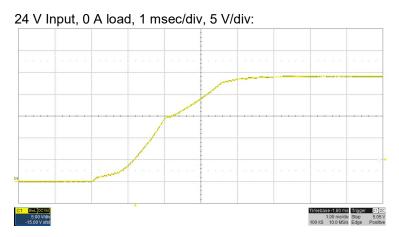
Bandwidth = 3.1 kHz Phase Margin = 57.4 degrees Gain Margin = 24.3 dB




Bandwidth = 5.3 kHz Phase Margin = 55.0 degrees Gain Margin = 14.5 dB

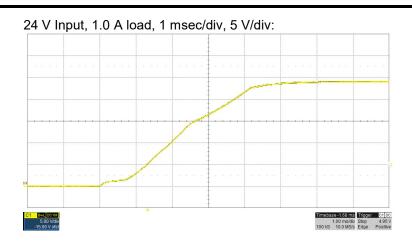


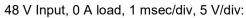
### 3.4 Load Transients

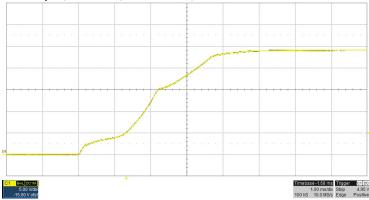

Output load step response, 24 V input, 0.5 A to 1.0 A load step 500 mV/div, 500 mA/div, 1 msec/div, slew rate = 250 mA/usec, measured 1.17 Vpp:

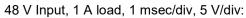


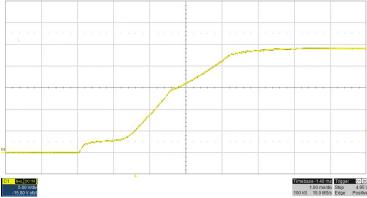
Output load step response, 48 V input, 0.5 A to 1.0 A load step 500 mV/div, 500 mA/div, 1 msec/div, slew rate = 250 mA/usec, measured 833 mVpp:


|                         |                       |     |                    |     | <br> | N                            |           |
|-------------------------|-----------------------|-----|--------------------|-----|------|------------------------------|-----------|
|                         |                       |     |                    |     |      |                              |           |
|                         |                       |     |                    |     |      |                              |           |
|                         |                       |     | +                  |     | <br> |                              |           |
|                         |                       |     |                    |     |      |                              |           |
| 12 (K. 12 (K. 1         |                       |     | с <u>коло</u> коло |     |      |                              |           |
| iure                    | P1:pkpk(C2)<br>833 mV | P2: | P3:                | P4: | P5:  | P6:                          |           |
| ue<br>tus<br>500 mV/div | Bill DO<br>500 mA/div |     |                    |     |      | Timebase 0.00 m<br>1.00 ms/d | s Trigger |


## 3.5 Start-up





TIDT186 - May 2020














# IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated