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1 Design Summary 

The design requirements are as follows: 

 Supply Voltage: ±15 V 

 Input: 10 µA – 100 mA (bidirectional) 

 Output: ± 4.9 V (differential) 

 Maximum Shunt Voltage: 700 mV 

The design goals and performance are summarized in Table 1. Figure 1 depicts the measured transfer 
function of the design. 

Table 1. Comparison of Design Goals, Simulation, and Measured Performance 

 Goal Simulated Measured 

Error (%FSRerror) 0.05% 0.002% 0.0481% 

Relative Error 

(ILOAD = 10 µA, G = 176) 
35.0% 30.47% 33.16% 

Relative Error 

(ILOAD = 100 µA, G = 176) 
5% 3.13% 3.15% 

Relative Error 

(ILOAD = 1 mA, G = 176) 
1% 0.31% 0.31% 

Relative Error 

(ILOAD = 10 mA, G = 5.5) 
0.1% 0.09% 0.09% 

Relative Error 

(ILOAD = 100 mA, G = 5.5) 
0.01% 0.01% 0.01% 
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Figure 1: Measured Transfer Function 
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2 Theory of Operation 

A more complete schematic for this design is shown in Figure 2. The transfer function of the circuit is 
based on the relationship between the load current ILOAD, the shunt resistance RSH, and the gain blocks 
inside the PGA281 which are controlled by the switch SW1. In this high-side current sense application, a 
power supply VBUS is connected to the load represented by RLOAD. RLOAD draws current ILOAD from VBUS 
which flows through RSH, developing a voltage drop across RSH as defined by Ohm’s Law. This differential 
voltage is filtered and applied to the input of the PGA, where it is amplified and output differentially with a 
common-mode voltage equal to half of its output stage supply voltage, or VSOP/2. 

 

Figure 2: Complete Circuit Schematic 

The transfer function for this design is defined by the following equation: 
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2.1 High-Side Current Sensing 

In high-side current sensing applications, the sense resistor is placed between the supply voltage VBUS and 
the load RLOAD. High-side sensing is desirable in that it directly monitors the current delivered by the 
supply, which allows for the detection of load shorts. The most common challenge when using this 
topology is that the amplifier’s input common-mode voltage range must include the load’s supply voltage, 
or VBUS. With ±15 V supplies the PGA281 can accept common-mode voltages of ±12.5 V, making it a 
suitable choice for high-side current sensing as long as VBUS falls within the common-mode voltage range.  

Figure 3 depicts a typical high-side current sensing scenario.  
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Figure 3: High-Side Current Sensing Topology 

As shown in Figure 3, the value of VSH is the voltage drop across the shunt resistor RSH. If the value of VSH 
is too large, then the voltage actually delivered to the load may not meet the load’s minimum requirements. 
Therefore it is important to limit the voltage drop across the shunt resistor. Equation 2 can be used to 
calculate the maximum value of RSH. 

          
        

          
 

     

      
     (2) 

It is recommended to use the maximum shunt resistance to minimize relative error at minimum load 
current. Relative error is discussed in Section 4.4. Based on the availability of resistors at major 
distributors, a value of 6.8 Ω was chosen for RSH. 

The gain(s) required for this design depend on the maximum output swing of the amplifier, shunt resistor, 
and the load current range. It is recommended to use the maximum gain to ensure full utilization of the 
linear operating range of the device. Equation 3 shows how to calculate the maximum gain for the 
maximum load current. 

              
         

        
 

         

                    
 

     

             
      

 

 
 (3) 

The closest available gain setting on the PGA281 (without exceeding the maximum) is 5.5 V/V.  

To determine if the design requires more than one gain, the minimum load current that can be measured 
given GI_LOAD(max) and VOUT(min) must be calculated as shown in Equation 4 and Equation 5. 
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Since ILOAD(min) does not meet the minimum load current specification of 10 µA, a second gain is required. It 
is recommended to now calculate the maximum gain for the minimum load current (GI_LOAD(min)) as shown 
in Equation 6. 
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The closest available gain setting on the PGA281 is 176 V/V. Equation 7 and Equation 8 show how to 
calculate the maximum load current that can be measured given GI_LOAD(min). 
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Since the minimum load current that can be measured when G = 5.5 V/V overlaps with the maximum load 
current for G = 176 V/V, only two gains are required to measure the entire load current range. 

2.2 Input and Output Filtering 

In order to minimize noise at the input of the PGA281, a low-pass filter network is placed between the 
sense resistor and the PGA281 input pins. Figure 4 shows the input filter schematic. 
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Figure 4: Input Filter Schematic 

The input filter has both a common-mode component and a differential component. Since the shunt 
voltage signal is dc, the cutoff frequencies of this filter can be set very low in order to attenuate any ac 
noise which may be present. However, this system can also be used as a universal differential gain block 
for signals up to 10 kHz, so the differential cutoff frequency is set to 10 kHz. 
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The cutoff frequency of the filter is defined by the following equations: 
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The desired cutoff frequencies for this filter are fC_DIFF = 10 kHz and fC_CM = 200 kHz. A simple way to 
calculate the required passive component values is to pick a common value for C4 and solve for R11. By 
rearranging the terms of the equations above, the required value of R11 for each filter is defined as: 
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Substituting C4 = 10 nF, fC_DIFF = 10 kHz and fC_CM = 200 kHz in the equations above yields the following 
values for R1: 
 

 
       

         

                

Given these ideal values, 75 Ω was selected as the nearest 1% standard value which satisfies both 
requirements. Using the final circuit values of R11 = 75 Ω and C4 = 10 nF, the final cutoff frequencies of the 
filter are: 
 

 
                   

                   

The filter at the output of the PGA281 follows the same topology, however the desired cutoff frequencies 
are one decade higher (fC_DIFF = 100 kHz and fC_CM = 2 MHz). The same design equations as above can be 
used to calculate the required resistor and capacitor values, yielding the following result: 
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3 Component Selection 

3.1 Instrumentation Amplifier Selection 

In high-side current sensing applications, the sense resistance is placed between the supply voltage VBUS 
and the load. In this case the instrumentation amplifier’s input common-mode voltage range must include 
VBUS, which can often be greater than the supply voltage range of most single-supply amplifiers. The 
PGA281 was chosen for this design since it features a wide input voltage range, made possible by its 
dedicated high-voltage input stage power supplies. 

In order to accurately measure a wide range of currents, multiple instrumentation amplifier gain settings 
must be used. The PGA281 is ideal for this application as it can be easily programmed to multiple gains, 
from 0.125 V/V to 176 V/V, by applying a logic-level voltage to its gain set pins.  

3.2 Power Management Selection 

The PGA281 requires three separate power connections: a high-voltage, split-supply for the input stage 
and single supplies for the output stage and digital logic. In order to simplify the power connections 
required on the PCB for this design, a linear regulator was used to generate a +5 V rail from the +15 V rail 
of the split supply. The TPS7A4101 was chosen for this design to meet the input voltage range and output 
current requirements of this design while allowing for adjustable output voltage and consuming low 
quiescent current. 

3.3 Passive Component Selection 

The passive component with the greatest impact on this design is the shunt resistor RSH. This component 
must accurately convert load current to a differential voltage, while also potentially dissipating a significant 
amount of power. Selecting an ideal shunt resistor can be difficult, since resistors with very low tolerances 
typically can’t dissipate significant power, and resistors with high power handling typically aren’t available 
in low tolerances. A compromise was found for this design by selecting a 6.8 Ω resistor with ±1% tolerance 
in a large 2512 package that can dissipate up to 16 W of power - well within the maximum requirement of 
1 W. 

The resistors and capacitors in the PGA281 input and output filter network also have an impact on the 
design as they are located within the signal path. However, the cutoff frequencies of the filters do not need 
to be extremely accurate, so resistor tolerance of ±1% and capacitor tolerance of ±10% are chosen. Select 
tighter tolerances if required by your application. 

Other passive components in this design may be selected for ±1% or greater tolerance as they will not 
directly affect the transfer function of the system. Ensure that all capacitors selected have sufficient voltage 
ratings. 

3.4 Protection Component Selection 

Several additional circuit components provide protection for the system against ESD (electrostatic 
discharge), EFT (electrical fast transients), and surge (simulates a lightning strike). This protection is 
provided by a Schottky diode and two TVS (transient voltage suppressor) diodes. 

The BAT54-V-GS08 Schottky diode ensures that no current flows through the split supply when the power 
terminals are connected in reverse polarity. This diode protects against reverse voltages up to 30V, and 
the small SOT-23 package takes up a minimal amount of PCB area. 

Since the split supplies to the PGA281 can reach up to ±18 V, the TVS diodes should have a breakdown 
voltage slightly higher than 18V. The diodes must also be bidirectional and should have a very fast 
response time in order to provide sufficient protection against fast transients. Based on these requirements 
the SMBJ20CA was chosen to provide up to 600 W of protection. 
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4 Simulation 

The TINA-TI
TM

 schematic shown in Figure 5 includes the circuit values obtained in the design process. 
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Figure 5: TINA-TI
TM

 Schematic 

Note that a series of single pole, double throw (SPDT) switches are used to control the gain of the 
PGA281. Refer to the gain control table in the PGA281 data sheet for all the possible gain settings. Also 
note that the power management circuitry in the real system is replaced with discrete power supplies in the 
simulation schematic. 
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4.1 Transfer Function 

The result of the dc transfer function is shown in Figure 6. 
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Figure 6: Simulated Transfer Function 
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4.2 Frequency Response 

The circuit shown in Figure 7 was utilized to perform an ac analysis for each gain of the circuit. The 
simulation results are shown in Figure 8. 
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Figure 7: AC Analysis Schematic 

 

Figure 8: Simulated AC Analysis 
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The dc gains of the simulation were found to be 44.91 dB and 14.81 dB, which equate to 176.0 V/V and 
5.5 V/V, respectively. The -3dB bandwidth of each gain configuration was 9.90 kHz and 10.00 kHz, 
respectively. 

4.3 Full Scale Error 

The data from Figure 6 was exported to a spreadsheet in order to calculate the error as a percent of the 
full-scale range (%FSRerror). Equation 14 was used to calculate %FSRerror. 
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In order to accurately calculate the error, the gain was switched from 176 V/V to 5.5 V/V once the load 
current reached 4 mA. Figure 9 shows %FSRerror as a function of load current. 
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Figure 9: Simulated Full Scale Error 

The maximum simulated %FSRerror was found to be 0.002%, which meets our design goal of 0.05%. 
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4.4 Relative Error 

The error relative to the load current (relative error) was also calculated for each load current decade. 
Equation 15 shows how to calculate relative error. 

           
        

   
     (15) 

 

The maximum offset voltage of the PGA281 is calculated using Equation 16.  

 

 
             

   

 
     (16) 

The maximum relative error for each decade of load current occurs at the minimum load current for each 
range (10 µA, 100 µA, 1 mA, 10 mA, and 100 mA). For example, the maximum relative error for a load 
current of 10 µA is calculated in Equation 17. 

                
        

   
     

    
   
      

         
        

(17) 

The maximum relative error for the other load currents can be calculated in a similar manner. Table 2 
summarizes the results of the calculations.  

Equation 18 calculates the relative error using the simulation data. The output voltage was referred to the 
input by dividing by the ideal gain (176 V/V or 5.5 V/V). 

               
          

    
     (18) 

4.5 Simulated Results Summary 

Table 2 summarizes the simulated performance of the design. 

Table 2. Comparison of Design Goals and Simulated Performance 

 Goal Simulated 

Error (%FSRerror) 0.05% 0.002% 

Relative Error 

(ILOAD = 10 µA, G = 176) 
35.0% 30.47% 

Relative Error 

(ILOAD = 100 µA, G = 176) 
5% 3.13% 

Relative Error 

(ILOAD = 1 mA, G = 176) 
1% 0.31% 

Relative Error 

(ILOAD = 10 mA, G = 5.5) 
0.1% 0.09% 

Relative Error 

(ILOAD = 100 mA, G = 5.5) 
0.01% 0.01% 
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5 PCB Design 

The PCB schematic and bill of materials can be found in the Appendix. 

5.1 PCB Layout 

The PCB used in this design is a 3” by 3” square. This generous size allows for efficient routing of critical 
components and the use of larger BNC and banana plug connectors. The high-level approach to this 
layout was to place the analog signal path components on the top layer, with input connections on the left 
and output connections on the right, and to place the power management components on the bottom 
layer. 

The load current source is connected at J2 and J4. Large copper areas are used to connect the load 
current to RSH, ensuring that parasitic trace resistance is minimized. Narrow copper traces running under 
RSH connect the induced current sense voltage to the PGA281 input filter while minimizing load current 
leakage. All passive components in the analog signal path are placed and routed very tightly in order to 
minimize parasitics, and all decoupling capacitors are located very close to their associated power pins. 
Solid copper areas on the bottom layer provide low-impedance paths for the various power supplies.  Solid 
copper planes on both layers provide an excellent low-impedance path for return currents to ground.  

Connections to the split power supply are made at J7, J8, and J9. Connections to the differential output 
voltage are made at J3 and J5. If a voltage input is used, connections to the input voltage source are made 
at J1 and J6. 

The PCB layout for both layers is shown in Figure 10. 

 

 
 

Figure 10: PCB Layout 
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6 Verification & Measured Performance 

6.1 Bench Test Hardware Setup 

The circuit defined by this reference design is intended to represent a functional block which, in a real 
application, would only be part of a greater complete system. Even so, the convenient input and output 
connectors on the PCB allow the circuit to be easily tested on a bench using standard lab equipment. The 
test setup used consists of the components listed below. Figure 11 shows the full bench test setup. 

1. Precision Current Source/Meter: Provides the load current to the system and sets the load 
compliance voltage. 

2. Digital Multimeter, 6 ½ Digits: Measures the differential output voltage of the system. 

3. Triple Output Power Supply: Provides ±15 V power supply rails to the system. 

4. Digital Multimeter, 8 ½ Digits: Measures the load current input to the system. 

 

 
 

Figure 11: Bench Test Setup 

Once the test hardware was connected, a LabVIEW program was used to communicate with the 
equipment over a GPIB interface and automate the data collection process. This allowed quick and 
thorough characterization of the system’s performance by automatically sweeping the load current and 
logging the load current and voltage output. This process was repeated for each gain setting of the 
PGA281. 
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6.2 Full Scale Error 

The logged test data was exported to a spreadsheet in order to calculate the error as a percent of the full-
scale range (%FSRerror). Equation 14 was used to calculate %FSRerror. 

In order to accurately calculate the error, the gain was switched from 176 V/V to 5.5 V/V once the load 
current reached 4 mA. Figure 12 shows %FSRerror as a function of load current. 
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Figure 12: Measured Full Scale Error 

 
The maximum %FSRerror was found to be 0.0481%, which meets our design goal of 0.05%. 
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6.3 Relative Error 

The error relative to the load current (relative error) was also calculated for each load current decade. 
Equation 18 calculates the measured relative error using the logged test data. The output voltage was 
referred to the input by dividing by the ideal gain (176 V/V or 5.5 V/V). 

Table 3 compares the measured and ideal output voltages at the minimum load current of each decade. 

Table 3. Measured Output Voltage for Various Load Currents 

Load Current Specified Gain (V/V) Ideal Output Voltage Measured Output Voltage 

10 µA 176 11.968 mV 11.323 mV 

100 µA 176 119.68 mV 119.107 mV 

1 mA 176 1.1968 V 1.1974 V 

10 mA 5.5 374.00 mV 374.15 mV 

100 mA 5.5 3.74 V 3.7419 V 

6.4 Measured Results Summary 

Table 4 summarizes the measured performance of the design. 

Table 4. Comparison of Design Goals and Measured Performance 

Load Current Goal Measured 

Error (%FSRerror) 0.05% 0.0481% 

Relative Error 

(ILOAD = 10 µA, G = 176) 
35.0% 33.16% 

Relative Error 

(ILOAD = 100 µA, G = 176) 
5% 3.15% 

Relative Error 

(ILOAD = 1 mA, G = 176) 
1% 0.31% 

Relative Error 

(ILOAD = 10 mA, G = 5.5) 
0.1% 0.09% 

Relative Error 

(ILOAD = 100 mA, G = 5.5) 
0.01% 0.01% 
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7 Modifications 

The components selected for this design were based on the design goals outlined at the beginning of the 
design process. 

The type of resistor selected for RSH was the best overall choice for the 10µA to 100mA current range and 
the gain settings offered by the PGA281. However, applications which measure lower currents should 
consider a resistor with lower tolerance in a smaller package. Conversely, applications dealing with higher 
currents could benefit from specialized current sense resistors in a larger package (such as D2PAK) or a 
parallel combination of resistors. 

Some applications may require or benefit from multiplexing of multiple inputs or more robust diagnostics. 
The PGA280 is a programmable-gain instrumentation amplifier with the same analog core as the PGA281 
but with these additional features included, as well as digital control via SPI

TM
 and seven GPIO pins. Table 

5 compares the PGA280 to the PGA281 as a potential PGA for this design. 

Table 5. Brief Comparison of PGA281 and PGA280 

Instrumentation 
Amplifier 

Error Diagnostics Number of 
Differential 

Inputs 

Gain Control Approx. Price 
(US$) 

PGA281 
Error Flag pin, no 
advanced error 

reporting 
1 

Dedicated gain 
set pins 

2.55 / 1ku 

PGA280 
Error Flag pin, detailed 

error reporting via 
registers 

2, more 
possible with 
GPIO mux 

control 

SPI 2.90 / 1ku 

Other programmable-gain instrumentation amplifiers with a wide power supply and analog input range and 
low offset voltage could also be used in a high-side current sensing application. The PGA204 and PGA205 
are suitable choices for this system, with the differences being different gain options, higher quiescent 
current, lower noise, and higher cost. Table 6 summarizes other potential PGAs for this design as 
compared to the PGA281. 

Table 6. Brief Comparison of Programmable-gain Instrumentation Amplifiers 

Instrumentation 
Amplifier 

Gain Options Offset Voltage 
(µV, RTI) 

Voltage Noise 
(RTI, 1 kHz) 

Quiescent 
Current 

Approx. Price 

(US$) 

PGA281 1/8 to 176 ±5 + 45/G 22 nV/√Hz 3 mA 2.55 / 1ku 

PGA204 1, 10, 100, 1000 ±10 + 20/G 13 nV/√Hz 5.2 mA 8.35 / 1ku 

PGA205 1, 2, 4, 8 ±10 + 20/G 13 nV/√Hz 5.2 mA 7.25 / 1ku 
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Appendix A.  

A.1 Electrical Schematic 

 

Figure A-1: Electrical Schematic 

A.2 Bill of Materials 

 

Figure A-2: Bill of Materials 
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